
Problem Set 11

Theoretical Solid State Physics (SoSe2017)

No due date

This problem set helps you to read: Liang Fu, C.L. Kane, Time reversal polarization and a Z2 adiabatic

spin pump, Phys. Rev. B 74, 195312 (2006). The basic point of this paper is to work out the relation

between quantum spin Hall insulators and adiabatic pumps. In problem 1, we remind ourselves of the

corresponding relation for Chern insulators. This case is described by a Z topological index, the Chern

number, while we have already seen in class that the quantum spin Hall e�ect is described by a Z2 index. In

problem 2, we introduce the concept of Wannier states and show how they are related to the modern theory

of polarization. Our discussion here provides an alternative approach to this theory which is reviewed in

Sec. IIIA of the paper. Problem 3 and 4 ask you to closely follow discusstions and calculations in the

paper.

Problem 1: Punping and Chern insulators

Laughlin's argument provides a direct link between the physics of Chern insulators and adiabatic quantum

transport (or, in other words, a quantum pump). This problem is meant to make this relation (yet more)

explicit for the square-lattice model of the Chern insulator,

H = τx sin kx + τy sin ky + τz(∆ + cos kx + cos ky). (1)

Consider this model on a cylinder, rolled up in the y-direction, threaded by a magnetic �ux φ along the

cylinder's axis.

(a) Explain why increasing the �ux by a �ux quantum φ0 induces the change ky → ky + 2π/L where L is

the circumference of the cylinder.

(b) Use the theory of adiabatic quantum transport to show that the total charge Q pumped along the

cylinder is given by a Chern number when the model is gapped and only the lower band is occupied.

(c) Now consider a one-dimensional pump which is described by the same Hamiltonian, except that now,

ky is taken as a time-dependent parameter which changes by 2π in a time interval T , e.g., from −π to π
or from 0 to 2π. The latter is implemented by the choice

ky = 2πt/T. (2)

Assuming the the lower band is fully occupied, show that the total charge pumped along the chain is again

given by a Chern number and this Chern number is identical to the one in part (b).

(d) Discuss the explicit amount of charge pumped along the chain in part (c) as a function of the parameter

∆.

Problem 2: Wannier states

Bloch states are delocalized throughout the entire system. Frequently, it is useful to de�ne an orthonormal

set of localized basis functions which are based on the Bloch states. Note that the atomic orbitals are not

qualifying since the same orbital, but localied on di�erent lattice sites are in general not orthogonal. This

motivates the de�nition of Wannier states.

Start with the Bloch states of a one-dimensional system with N unit cells (of volume 1) and periodic

boundary conditions,

|ψnk〉 =
1√
N
eikx|unk〉 (3)
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with nomalization 〈ψnk|ψn′k′〉 = δnn′δkk′ and de�ne the Wannier states

|R,n〉 =
1√
N
e−ikR|ψnk〉. (4)

In general, the Wannier state |R,n〉 is localized near lattice site R.

(a) First prove the following properties:

• The wavefunction 〈x|R,n〉 of the Wannier state is only a function of x−R by showing that 〈x|R,n〉 =
〈x+R′|R+R′, n〉.

• The Bloch states can be expressed in terms of the Wannier states as |ψnk〉 = 1√
N

∑
R e

ikR|R,n〉.

• Wannier states are orthonormal, 〈R,n|R′, n′〉 = δnn′δRR′ .

(b) Show that the dipole moment of the Wannier states can be expressed as

Pn = 〈0, n|x|0, n〉 =

∫
dk

2π
An(k) (5)

with the Berry connection An(k) = i〈unk|∂kunk〉.
(c) Show that a gauge transformation |unk〉 → e−imk|unk〉 with m ∈ Z changes Pn → Pn +m. As we saw

before in class, the polarization of a crystal is de�ned only up to integers, de�ning a polarization lattice.

(d) While polarizations are gauge dependent, changes in polarization are physical. Consider a periodic

variation of a time-dependent Hamiltonian H(t) with H(t) = H(t + T ). Assume that the Hamiltonian

describes a gapped system with all bands being either completely occupied or empty. Use the result of

(b) to express the adiabatic change in polarization in terms of a (sum of) Chern number(s).

Problem 3: A spin pump

Consider the spin pump discussed by Fu and Kane. In �rst quantization the Hamiltonian H = H0 + Vh +
Vh + Vso of the one-dimensional tight-binding model involves a term with uniform hopping,

H = t0
∑

j;α=↑,↓
|j, α〉〈j + 1, α|+ h.c., (6)

a staggered Zeeman �eld

Vh = hst
∑
j,αβ

(−1)j |j, α〉(sz)αβ〈j, β|, (7)

a staggered hopping term

Vt = ∆tst
∑
j,α

(−1)j |j, α〉〈j + 1, α|+ h.c., (8)

as well as a (uniform) spin orbit term

Vso =
∑
j,αβ

|j, α〉ie · sαβ〈j + 1, β|+ h.c., (9)

which generally lifts the spin rotation symmetry.

(a) Show that the spin-orbit term is time reversal symmetric and that the staggered Zeeman term breaks

time reversal symmetry.

(b) Consider an adiabatic pumping cycle of duration T de�ned by

∆tst = A cos
2πt

T
; hst = A sin

2πt

T
(10)
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Show that the Hamiltonian of the pump is time reversal symmetric for t = 0 and t = T/2. What does

this imply for the instantaneous eigenstates of the Hamiltonian at these times?

(c) For Vso = 0, write down the corresponding Bloch Hamiltonian Hk for a �xed spin orientation sz

in the form of a general two-band Hamiltonian. Show that in this limit, the model corresponds to two

independent SSH Hamiltonians, one for each spin orientation.

(d) By analogy with known results for the SSH chain, discuss the pumping of charge and spin in this limit.

(e) Also write down the spin orbit term in the Bloch Hamiltonian. Note that you now need two sets of

Pauli matrices corresponding to sublattices and spin, i.e., the model is really a four-band model.

(f) Discuss the numerical results shown in Fig. 1(b) of the above mentioned paper.

Problem 4: Z2 invariant

Do the calculations of Sec. IIIB in detail. You can treat the Pfa�an at the same level as we did in class

(i.e., restricting to the case where the antisymmetric matrices are 2x2 only.)
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