
Problem Set 7

Quantum Field Theory and Many Body Physics (SoSe2016)

Due: Thursday, June 9, 2016 at the beginning of the lecture

In this problem set, we study examples of e�ective �eld theories.

Problem 1: E�ective action of an LC circuit (25 points)

To illustrate the concept of an e�ective ��eld� theory, consider an LC circuit coupled to a harmonically

bound charge e:

L

C

x

The charge with coordinate x has a Hamiltonian

Hd =
1

2
mẋ2 +

1

2
mω0x

2 − eEx, (1)

where E is the electric �eld of the capacitor. As familiar from elementary physics, the LC circuit is also

a harmonic oscillator, as re�ected in its energy

HLC =
1

2
IQ̇2 +

Q2

2C
. (2)

This can also be written in terms of the electric �eld E = Q/Cd in the capacitor (d is the distance between
the capacitor plates),

HLC =
1

2g

(
Ė2 + ω2

LCE
2
)
. (3)

Here ωLC = 1/LC is the resonance frequency of the LC circuit and g = 1/C2Ld2. Thus, we can express

the partition function of this system as

Z =

∫
[dE][dx] exp

[
−
∫ β

0
dτ

(
1

2
mẋ2 +

1

2
mω0x

2 − eEx+
1

2g

(
Ė2 + ω2

LCE
2
))]

. (4)

Now consider the limit ωLC � ω0 and derive an e�ective action for the LC circuit by tracing out the charge

coordinate x (i.e. perform the integral over [dx]). Show that to leading order in this limit, the e�ective

action is again a harmonic-oscillator action with renormalized parameters. You should �nd that to leading

order, only the frequency becomes renormalized and the �mass� prefactor of Ė2 remains unchanged.

Problem 2: Friction in quantum mechanics (5+5+5+5+5 points)

Friction is an important phenomenon in everyday life but cannot be described within a Hamiltonian

language. This makes it di�cult to describe at the quantum level. In this problem, we show that friction

can be captured in quantum mechanics within the language of e�ective ��eld� theories.

First consider a classical particle subject to a frictional force −γẋ and driving force F (t). The equation

of motion is

mẍ = −γẋ+ F. (5)
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In frequency space we can de�ne the response function χ through

x(ω) = χ(ω)F (ω), (6)

and read o� from the equation of motion that

χ(ω) =
1

−mω2 − iωγ
. (7)

Let us now reproduce this from a quantum perspective.

Consider a quantum particle subject to a uniform force F , coupled to an environment consisting of (many)

harmonic oscillators,

H =
1

2
mẋ2 − Fx+

∑
i

(
1

2
µiẋ

2
i +

1

2
µi (ωixi − gix)2

)
. (8)

The harmonic oscillators are meant to model the environmental degrees of freedom which dissipate the

energy of the particle. De�ne the spectral density of the environmental oscillators

n(ω) =
∑
i

δ(ω − ωi), (9)

and the coupling function

g2(ω) =
1

n(ω)

∑
i

µig
2
i δ(ω − ωi). (10)

The system can also be described by the imaginary-time action

S =

∫
dτ

(
1

2
mẋ2 − Fx+

∑
i

(
1

2
µiẋ

2
i +

1

2
µi (ωixi − gix)2

))
. (11)

(a) Integrate out the harmonic-oscillator environment to obtain the e�ective action for x (setting F = 0),

Se� =

∫
dτ

1

2
mẋ2 +

∫
dτdτ ′

1

4
G(τ − τ ′)

(
x(τ)− x(τ ′)

)2
, (12)

where G(τ − τ ′) is the (Matsubara) Fourier transform of

G(iω) =
∑
i

µiω
2
i g

2
i

ω2 + ω2
i

. (13)

(b) Use this result to show that the response function de�ned by

x(τ) =

∫
dτ ′ χ(τ − τ ′)F (τ ′) (14)

is given by

χ(ω + iη) =
1

−m(ω + iη)2 − (G(ω + iη)− G(0 + iη))
. (15)

By comparison with the classical response function, we can thus identify the friction coe�cient

γ = Im
G(ω + iη)− G(0 + iη)

ω
, (16)

and the mass renormalization

m∗ = m+ Re
G(ω + iη)− G(0 + iη)

ω2
. (17)
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(c) Show that

γ =
π

2
n(|ω|)g2(|ω|). (18)

You might �nd the identity 1
x−iη = P

(
1
x

)
+ iπδ(x) useful. Show also that

m∗ = m+ P
∑
i

µig
2
i

1

ω2
i − ω2

, (19)

where P denotes the principal value.

(d) Choose n(ω)g2(ω) = n0g0θ(Ω − ω), where Ω is an upper frequency (ultraviolet) cuto� of the phonon

spectrum, and the step function is given by θ(x) = 1 (θ(x) = 0) for x > 0 (x < 0). Then

γ =
π

2
n0g

2
0. (20)

Show that the associated mass renormalization is given by

m∗ = m− n0g
2
0

Ω
. (21)

(e) Now, assume n(ω)g2(ω) = n0g
2
0e
−ω2

Ω2 , i.e., a phonon spectrum with a smooth cuto�. Show that

G(τ − τ ′) =

∫
dω′

ω

2
n(ω)g2(ω)e−ω|τ |, (22)

and perform the frequency integral to obtain the popular e�ective action

Se� =

∫
dτ

1

2m
ẋ2 +

∫
dτ dτ ′

γ (x(τ)− x(τ ′))2

4π(τ − τ ′)2
. (23)

Problem 3: Equation of motion approach to Hartree-Fock (10+10+5 points)

The Hartree-Fock approximation describes interacting systems in terms of an approximate non-interacting

one. In this problem, we want to formulate the Hartree-Fock approximation in the framework of of the

equation of motion for the single-particle Green function,

(∂τ +H0)G(rτ, r′τ ′)+

∫
dr1dτ1v(r−r1, τ −τ1)〈Tτψ(r1, τ1)ψ(r, τ)ψ†(r1, τ

+
1 )ψ†(r′, τ ′)〉 = δ(r−r′)δ(τ −τ ′).

(24)

Here, τ+1 is in�nitesimally later than τ1 and we consider a system with a Hamiltonian of the form

H =

∫
dr ψ†(r)

(
−∇

2

2m
+ U(r)

)
ψ(r) +

1

2

∫
drdr′ψ†(r)ψ†(r′)v(r− r′)ψ(r′)ψ(r), (25)

whose non-interacting part is denoted as H0. We also de�ned v(r− r1, τ − τ1) = v(r− r1)δ(τ − τ1).
(a) To close the equation of motion, we have to approximate

〈Tτψ(r1, τ1)ψ(r, τ)ψ†(r1, τ
+
1 )ψ†(r′, τ ′)〉 (26)

in terms of the single-particle Green function G(rτ, r′τ ′). We can do that by neglecting the two-body

interaction v(r− r′) in evaluating this correlator. Explain why this approximation yields

〈Tτψ(r1, τ1)ψ(r, τ)ψ†(r1, τ
+
1 )ψ†(r′, τ ′)〉 ' ±G(rτ, r′τ ′)G(r1τ1, r1τ

+
1 ) + G(rτ, r1τ1)G(r1τ1, r

′τ ′). (27)
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(b) In the Hartree approximation, one keeps only the �rst of the two terms on the right hand side of the

last equation. This yields the equation of motion

(∂τ +H0 + VH)G(rτ, r′τ ′) = δ(r− r′)δ(τ − τ ′), (28)

where we de�ned the Hartree potential

VH(r) = ±
∫

dr1v(r− r1)G(r1τ, r1τ
+). (29)

Express the Hartree potential in terms of the eigenfunctions and eigenenergies of H0 + VH ,

(H0 + VH)φα(r) = εαφα(r), (30)

and �nd

VH(r) =

∫
dr1v(r− r1)

∑
α

|φα(r1)|2n(εα). (31)

Here, n(ε) denotes the Bose or Fermi function, respectively.

(c) Now consider also the second term in Eq. (27) which introduces the nonlocal Fock potential in addition,

(∂τ +H0 + VH)G(rτ, r′τ ′)±
∫

dr1VF (r, r1)G(r1τ, r
′τ ′) = δ(r− r′)δ(τ − τ ′). (32)

Also express the Fock potential in terms of the e�ective single-particle eigenfunctions and eigenenergies in

Hartree-Fock approximation.

(d) Bonus Problem (You gain an additional 10 points and important insights): Consider the Hartree

approximation and redo the derivation of the polarization operator. Note that the Hartree potential is

a functional of the electron density. Show that this reproduces the RPA approximation discussed on an

earlier problem set. If you are even more adventurous, you may want to try to understand the response

function derived within the full Hartree-Fock approximation (or ask your tutor).
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