
Problem Set 11

Quantum Field Theory and Many Body Physics (SoSe2015)

Due: Monday, June 29, 2015 at the beginning of the lecture

This problem set

Problem 1: Grassmann basics (5+10+10 points)

Read your favorite book (e.g., Negele, Orland) to formulate and prove the following statements:

(a) Linear changes of variables in Grassmann integrals.

(b) Use (a) to prove the most general Gaussian integral for Grassmann variables as given in the class.

(c) Prove the resolution of the identity for fermionic coherent states.

Problem 2: Resonant-level model (10+5+5+5 points)

There are many physical situations in which a localized fermionic level is coupled to a (non-interacting)

fermionic many-body system with a continuum of states. For instance, consider an atom placed on a

metallic substrate. The atom has a large level spacing so that it can be a good approximation to consider

only the atomic level which is closest to the Fermi energy of the substrate. We may then be interested in

how the atomic level is in�uenced by the presence of the surface. Another situation where this model is

relevant is a quantum dot coupled to two electronic electrodes. If the quantum dot is su�ciently small, its

spectrum will also be discrete with large level spacing so that we can restrict attention to the level which

is closest to the Fermi energy in the electrodes.

As it is non-interacting, this problem can of course be solved by elementary means. In this problem, we

want to treat it by deriving an e�ective action for the localized level by integrating out the continuum

�eld. The Hamiltonian of the system takes the form

H = εdd
†d+

∑
k

εkψ
†
kψk +

t√
V

∑
k

(ψ†kd+ d†ψk). (1)

The �rst term accounts for the localized fermionic level with energy εd, the second term of the fermionic

continuum with dispersion εk and volume V , and the last term allows the fermions to hop between the

localized level and the continuum. Note that this hopping is local at the position of the localized level

(taken to be at the origin) as re�ected in the fact that the hopping amplitudes t (taken as real) are assumed

independent of momentum. We need not be very speci�c about the dispersion εk of the continuum. We will

simply assume that the continuum has a constant density of states ν0 and a with bandwidth −D < εk < D,

where D is some large energy. (This is sometimes refered to wide-band limit.)

(a) Write down the Grassmann functional integral for the partition function of this model. Integrate out

the �eld ψk of the fermionic continuum and show that the e�ective action for the localized level becomes

S = d∗(∂τ + εd − µ+ Σ)d (2)

in compact matrix notation or

S =

∫
dτd∗(τ)(∂τ + εd − µ)d(τ) +

∫
dτdτ ′d∗(τ)Σ(τ, τ ′)d(τ ′) (3)

when keeping the explicit time integrals. The self energy in this action is found to be

Σ(τ, τ ′) = − 1

V

∑
k

〈τ | t2

∂τ + εk − µ
|τ ′〉. (4)
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(b) Show that in Matsubara-frequency representation, the self-energy becomes

Σ(iωn) = − 1

V

∑
k

G(k, iωn) (5)

with the Green function

G(k, iωn) =
−1

iωn − εk + µ
(6)

of the fermionic continuum. To evaluate the self energy explicitly, replace the sum over momenta by an

integral in the usual way,
1

V

∑
k

→ ν0

∫ D

−D
dεk (7)

and show that to leading order in µ/D and ωn/D (i.e., assuming that the bandwidth D is large)

Σ(iωn) = −ν0t2 ln(1− 2µ/D)− iπν0t2sgnωn. (8)

The real part of the self energy can be interpreted as a small shift in the energy of the localized level. Note

that it approaches zero as D → ∞. Let us take this limit in the following and retain only the imaginary

part of the self energy in the following.

(c) Now use the resulting e�ective action to obtain the thermal Green function G(iωn) of the localized

level and show that it becomes

G(iωn) =
−1

iωn − εd + µ+ iπν0t2sgnωn
. (9)

Show that the corresponding spectral function is

ρ(ω) =
Γ/2π

(ω − εd)2 + (Γ/2)2
, (10)

where we introduced Γ = 2πt2ν0, i.e.,

G(iωn) = −
∫
dω′

ρ(ω′)

iωn − ω′
. (11)

Thus, we see that the imaginary part of the self energy broadens the delta-like spectral function of the

uncoupled localized level into a Lorentzian, with the broadening given by Γ/2. Remembering Fermi's

golden rule, interpret the explicit expression for Γ.

(d) To further interpret the imaginary part of the self energy, perform the appropriate analytical continu-

ation to obtain the retarded Green function and Fourier transform your result to real time. How does the

broadening Γ enter into the real-time retarded Green function?

Problem 3: E�ective action for interacting species of fermions (10+5+10 points)

Consider the partition function of two species of fermions, labeled a and b, that interact via a local,

spatially-uniform, and repulsive density-density interaction. We assume that particles of type a interact

with particles of type b and vice versa, but particles do not interact with other particles of their own kind.

This is described by the action

S =

∫ β

0
dτ

∫
dr

∑
j=a,b

ψ∗j (r)G−10 ψj(r) + vna(r)nb(r)

 (12)
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where G−10 = ∂τ +p2/2m−µ, v > 0 is the strength of the repulsive local interaction, nj(r) = ψ∗j (r)ψj(r)−
n0, and n0 is a constant equal to the density of either species of particles.

(a) Express the partition function (normalized to the partition function of the non-interacting system) in

terms of a functional integral and integrate out the ψb �eld. Express your result explicitly in terms of

determinants.

(b) Derive an e�ective action for the fermions of type a by expansion of the result in (a) in powers of v.
Show that the �rst order term in the expansion of the e�ective action is cancelled by the background term.

Hint: Use the fact that G0(r, τ ; r, τ) = −n0 (prove that!), due to charge neutrality.

(c) Show that to quadratic order in v, you obtain an e�ective interaction between particles of type a.
Show that this interaction is governed by the polarization operator Π of the particles of type b, i.e., that
the e�ective action of the a fermions to quadratic order in v is given by

S =

∫
dτdrψ∗a(r)G−10 ψa(r) +

∫
dτdτ ′

∫
drdr′na(r, τ)v2Π(r, τ ; r′τ ′)na(r

′, τ ′). (13)

Thus, even though there is no bare interaction between particles of the same kind, the presence of the

other kind of particles e�ectively mediates an interaction.
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