Problem Set 1
Quantum Field Theory and Many Body Physics (SoSe2015)

Due: Monday, April 20, 2015 before the beginning of the class

One of the most important techniques of quantum field theory are Gaussian integrals. In this problem
set, we want to discuss Gaussian integrals over real variables. We will use the results over and over again
throughout the class. The importance of doing this problem set carefully cannot be overstated.

Many Gaussian integrals of quantum field theory are functional integrals over continuous fields. However,
in many cases we can reduce these integrals to invole only a finite and discrete number of integration
variables. The simplest way is to put the field theory on a lattice, say with periodic boundary conditions.
Then, there are only a finite number of lattice points at which the field is defined. This is the case that we
want to discuss at length in this problem set. It actually turns out that ignoring mathematical subtleties,
appropriate versions of our results remain valid for integrals over continuous fields.

Problem 1: Gaussian integrals (5+5+10 points)

It is actually very instructive to start with the very simplest case of Gaussian integrals over a single
variable. This will be done in this problem.

/_Z dz exp <—;ax2> = \/? (1)

for any @ > 0. You may remember that the trick to do this integral is to consider its square and to
introduce polar coordinates.

(a) Let’s begin with showing that

(b) Now add a linear term to the exponent. This integral can be reduced to the previous one by completing
the square in the exponent and shifting the integration variable. Do this to find
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(c) The last integral can be used to compute many more integrals. Starting from this integral, show that
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Here, (n — 1)l =1-3-5-...- (n— 1) denotes the product over all odd numbers up to (n — 1). The basic
idea is to use the variable b in Eq. (2) as a “source field,” i.e., to take n derivatives with respect to b on
both sides of Eq. (2) and to subsequently set b = 0. Since the integral is highly convergent, one can freely
interchange integration and differentiation on the left-hand side. [Perhaps the simplest way to perform the

derivatives of the right-hand side is to expand exp(b?/2a) into a Taylor series and to take the derivatives
term by term. (Only a single term contributes for b = 0.)]

We can look at Eq. (3) in another way by treating the Gaussian factor as a probability distribution. Then,
we can define the averages
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and Eq. (3) gives the result
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We will see below that the combinatorial factor (n — 1)!! is just the number of ways in which one can pair
the n factors of x. The first © can be paired with n — 1 other factors. One of the remaining n — 2 factors
can then be paired with n — 3 factors and so on. Then, we can write this as

(z™) = (number of ways to pair n factors of z) x (z2)™/2, (6)

for even n. This is an example of a very general result for Gaussian probability distributions which is
known as Wick’s theorem and which underlies the derivation of Feynman diagrams.

Problem 2: Multidimensional Gaussian integrals (10+10+5+5 points)

Now, we want generalize the results of the first problem to Gaussian integrals over N variables z1,...,zxN.
For notational simplicity, it is sometimes convenient to collect these N variables into a vector x =

(x1,22,...,ZN).
(a) First, consider the integral
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where the integrals over all z; extend from —oo to co. We can consider the real M;; as the entries of a
symmetric (why?) matrix M. Then, we can write the quadratic form in the exponent in vector notation
as 2%21 Mijxix; = xI'Mx. Now, show that

Jiaxen (—5xx) = en, (®)

where we introduced the shorthand [dx] = dzidzs ... dzy.

The basic idea to do this integral is to diagonalize M = OTAO, where the matrix A is a diagonal and
O an orthogonal matrix. Now, introduce new integration variables such that the integral decouples into
N independent one-dimensional Gaussian variables. Be sure to consider the Jacobian of this change of
integration variables. Also discuss the conditions that the matrix M has to satisfy for the integral to be
well defined.

(b) Next, we introduce a linear term J'x = Zjvzl Jjx; into the exponent with a “source field” J =
(J1,J2,...,JN). Show that the resulting integral becomes

1 2m)N 1
/[dx] exp <—2XTMX + JTX> = (de?tg\/l exp <2JTM1J> . 9)

To show this, you can follow closely the corresponding calculation for the single-variable Gaussian integral
in Eq. (2). The only difference is that you have to be careful with the ordering of factors in the present
case because matrix multiplications do not commute.

(c) The result in Eq. (9) can again be used to compute many other integrals. Let us introduce averages
by
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as in problem 1. Here, ... stands for the function of the z; which we want to average. Now, use Eq. (9)
to show that
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To derive this result, you should again take derivatives of Eq. (9) with respect to appropriate elements of
J. This is another very important result that we will use over and over again.

(d) Finally, you are in a position to derive Wick’s theorem
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Here, P refers to the set of all distinct pairings (Py, P2), (Ps, Py), . .. (Pop—1, Pay) of the indices j1, j2, - . . , Jon-

One of these pairings is for instance (j1, j2), (j3, 1), - - - (Jan—1, Jon ), another (41, jon), (52, J2n—1), - - - (Jns Jnt1)-
As explained above, there are altogether (2n — 1)!! distinct pairings.



