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Motivated by a recent experiment, we study the microwave-induced photoconductivity of a two-dimensional
electron gas arising from intra-Landau-level transitions within a model where the electrons are subject to a
unidirectional periodic potential in addition to a weaker impurity potential. With appropriate identifications, our
results can be compared to experiment and allow us to explain the sign of the photocurrent, its dependence on
magnetic field and microwave frequency, as well as the microwave-induced suppression of the Shubnikov-
deHaas oscillations.
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I. INTRODUCTION

Recently, magneto-oscillations of the microwave photo-
conductivity were discovered in ultra-high-mobility two-
dimensional �2D� electron systems in the presence of a weak
magnetic field.1–5 For sufficiently strong microwave inten-
sity, the longitudinal photoconductivity can become close to
zero in certain magnetic field regions, with seemingly acti-
vated temperature dependence. Specifically, such so-called
zero-resistance states occur whenever the microwave fre-
quency � is related to the cyclotron frequency �c as �= �k
+���c �k=1,2 ,3 , . . .; � is a constant phase shift�.

Several mechanisms have been proposed to account for
the photocurrent oscillations.6–19 One mechanism is based on
the observation that disorder-assisted microwave absorption
is accompanied by a real-space displacement which, depend-
ing on the magnetic field, is preferentially along or against
the applied dc electric field.8–12 We refer to this mechanism
as displacement mechanism �DP�. A second contribution to
the photoconductivity arises from the microwave-induced
change in the electronic distribution function.4,13,14 It turns
out that typically, this distribution-function mechanism �DF�
tends to dominate the magneto-oscillations of the photocon-
ductivity in realistic samples,14 although there are exceptions
to this.17 Zero-resistance states are expected to occur once
the microwave-induced oscillations become so strong that
the microscopic longitudinal conductivity is negative within
certain magnetic-field regions.6

Recent experiments20,21 focus on the regime ���c. Un-
like in previous experiments, the microwave irradiation can
then only induce intra-Landau-level �LL� transitions. Ac-
cording to Dorozhkin et al.,20 a considerable microwave-
induced reduction of the diagonal conductivity is observed in
this regime, but it appears that no zero-resistance states were
found. This overall reduction of the diagonal conductivity is
accompanied by a significant suppression of the Shubnikov-
deHaas oscillations.

In this paper, we investigate the effect of microwave-
induced intra-Landau-level transitions on the photoconduc-
tivity within a model in which the two-dimensional electron
gas �2DEG� is subjected to a unidirectional and static peri-
odic potential. As shown in Ref. 17, this model allows one to

compute the photoconductivity using Fermi’s golden rule
which, in the appropriate geometry, leads to results which are
parametrically consistent with those for disorder-broadened
Landau levels. We find that our results are consistent with the
principal experimental findings and predict a periodic-
potential induced anisotropy of the intra-LL photocurrent.

We note that numerical results on the intra-LL photocon-
ductivity, based on the theory of Ref. 14, were obtained in
one of the experimental papers.20 Other theoretical works on
the intra-LL photoconductivity22,23 focus on different sce-
narios for the photoconductivity.

This paper is organized as follows. In Sec. II we introduce
the model and discuss the basic processes which contribute
to the photoconductivity for ���c. In Sec. III, we explicitly
compute the photoconductivity in this regime, including both
the displacement and the distribution-function mechanism.
Our results are compared to experiment in Sec. III D and
summarized in Sec. IV.

II. MODEL AND BASIC PROCESSES

We consider a two-dimensional electron gas subjected to
a perpendicular magnetic field B and a unidirectional, static
modulation potential V�r�=V cos�Qx� of period a=2� /Q.
We assume that the modulation potential V�r� exceeds the
residual disorder potential U�r�, whose correlator W�r� falls
off isotropically on the scale of the correlation length �.
As appropriate for a high-mobility 2DEG, we assume a
smooth disorder potential with correlation length ���F. Our
results for the photoconductivity will be obtained for modu-
lation periods a satisfying the inequality a��B

2 /�.
��F denotes the zero-field Fermi wavelength and �B
= �	 /eB�1/2 the magnetic length.�

The 2DEG is irradiated by microwaves described by the
electric potential


�r,t� = −
e

2
r�E*ei�t + Ee−i�t� = 
+e−i�t + 
−ei�t, �1�

where 
+= �
−�*=−eEr /2 and ��0. We first consider lin-
early polarized microwaves whose polarization vector E
=Ex̂ points along the x direction, i.e., parallel to the direction
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of modulation. Results for more general polarizations will
also be given.

In the absence of disorder, the Landau level states �nk� in
the Landau gauge remain good eigenstates if the amplitude
of the periodic modulation is small compared to the LL spac-
ing 	�c. �n denotes the LL index and k the momentum in y
direction.� The corresponding eigenenergies are approxi-
mately given by �nk

0 �	�c�n+ 1
2

�+Vn cos�Qk�B
2�, where the

modulation amplitude Vn is given by Vn�VJ0�QRc� for large
LL index n. �Rc is the cyclotron radius and Jn�z� denotes a
Bessel function.�

To identify the relevant microwave-induced processes, we
discuss the matrix elements of U and 
. For microwaves
linearly polarized in the x direction, the matrix elements for
absorption and emission are the same and given by

�n�k��
±�nk� = −
eE

2
k�B

2n,n�k,k�

+
eERc

4
�n,n�−1 + n,n�+1�k,k�. �2�

Thus, microwaves leave the LL index unchanged or couple
neighboring LLs. By contrast, the disorder potential has non-
zero matrix elements between arbitrary LLs,

��n�k��U�nk��2 �	 d2q

�2��2qy,k�−k�J�n�−n��qRc��2W̃�q� . �3�

This expression is valid in the limit of large LL indices
n ,n��1. The dominant microwave-induced processes con-
tributing to the photocurrent arise from the contributions

T± = UG0
± + 
±G0U �4�

to the general T matrix

T = U + 
 + �U + 
�G0�U + 
� + ¯ �5�

of the system.17 Here, G0 denotes the retarded Green’s func-
tion of the unperturbed system �U=
=0�. We refer to T+

�T−� as disorder-assisted microwave absorption �emission�.
T+ and T− can be considered separately, since they contribute

incoherently. The matrix elements of T− can be shown to
equal those of T+ up to a phase.

We now specialize to the regime ���c for well-
separated LLs, which is the focus of this paper. In this case,
only scattering processes with initial and final state in the
same LL are relevant. Disorder-assisted microwave absorp-
tion and emission then proceeds via intermediate states either
in the same LL �with amplitude M0� or in neighboring LLs
�with amplitude M1�, so that �nk��T+�nk�=M0+M1. These
processes are depicted in Figs. 1�a�, 1�b� and 1�c�–1�f� re-
spectively. We find that the amplitude M1 is smaller than M0
in the parameter � /�c. Thus, we first turn to the contribution
M0 which, using Eq. �2�, is equal to25

M0 = �nk��U�nk�G0,nk��nk + ���nk�
+�nk�

+ �nk��
+�nk��G0,nk���nk��nk��U�nk�

=
eE

2�
�k� − k��B

2�nk��U�nk� . �6�

Here we used that G0,nk��nk+��= ��nk+�−�nk�−1=�−1 and
G0,nk���nk�= ��nk−�nk��

−1=−�−1. With Eq. �3�, we obtain

�M0�2 � 
 eE

2�
�2	 d2q

�2��2qy,k�−k�qy�B
2J0�qRc��2W̃�q� , �7�

valid in the limit of high Landau levels.
We now turn to an estimate of the contribution M1. The

processes depicted in Figs. 1�c�–1�f� lead to

M1 = �nk��U�n + 1k�G0,n+1k��nk + ���n + 1k�
+�nk�

+ �nk��U�n − 1k�G0,n−1k��nk + ���n − 1k�
+�nk�

+ �nk��
+�n − 1k��G0,n−1k���nk��n − 1k��U�nk�

+ �nk��
+�n + 1k��G0,n+1k���nk��n + 1k��U�nk�

=
eERc

4
� �nk��U�n + 1k�

� − �c
+

�nk��U�n − 1k�
� + �c

−
�n − 1k��U�nk�

� − �c
−

�n + 1k��U�nk�
� + �c

 . �8�

FIG. 1. �Color online� Relevant processes in
the regime ���c. Solid lines represent micro-
wave absorption �
+� or emission �
−� and
dashed lines disorder scattering �U�. In processes
�a� and �b�, the intermediate states are in the same
�valence� LL as the initial and final states. As
shown in the text, these processes dominate the
photocurrent. For processes �c�—�f�, the LL in-
dex of the intermediate states differs by one from
the LL index of initial and final states. Their con-
tribution is smaller by a factor � /�c than �a� and
�b�.
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At first sight, the ratio M1 /M0 is of order �Rc /q�B
2��� /�c�.

For smooth disorder, q�1/�, so that M1 /M0��kF���� /�c�,
where kF��1. This would imply that M1 can actually domi-
nate over M0. However, this estimate turns out to be too
simplistic. The reason is that for ���c, we can write Eq. �8�
as

M1 =
eERc

4�c
���n − 1k��U�nk� − �nk��U�n + 1k��

+ ��nk��U�n − 1k� − �n + 1k��U�nk��� . �9�

We observe that the square brackets involve differences of
matrix elements which differ by a uniform shift by one Lan-
dau level. This leads to a partial cancellation which reduces
our previous estimate of M1 by q /kF�1/kF�. As a result, we
find that M1 /M0�� /�c as claimed above.

III. PHOTOCURRENT

A. Mechanisms

In perturbation theory, disorder-assisted microwave ab-
sorption and emission leads to two contributions to the pho-
tocurrent. First, it changes the electron momentum from k to
k�, which effectively corresponds to real-space jumps in the
x direction of length �k�−k��B

2 . Due to the applied dc electric
field, these jumps occur preferentially in a fixed direction.
Generalizing the approach of Titeica24 to the present situa-
tion, this displacement contribution to the longitudinal pho-
tocurrent can be expressed as17

jx
DP =

�e

LxLy
�
�=±

�
n

�
k,k�

�k� − k��B
2 ��nk��T��nk��2�fnk

0 − fnk�
0 �

���nk − �nk� + ��� . �10�

Here fnk
0 is the equilibrium electron distribution function and

�nk=�nk
0 −eEdck�B

2 is the Landau level energy including the
effect of the dc electric field.

Secondly, the microwaves change the electronic distribu-
tion function away from equilibrium. The resulting
distribution-function contribution to the longitudinal photo-
current is17

jx
DF =

�e

LxLy
�

n
�
k,k�

�k� − k��B
2 ��nk��U�nk��2�fnk − fnk��

���nk − �nk�� , �11�

where fnk= fnk− fnk
0 is the deviation of the nonequilibrium

electron distribution function fnk from the equilibrium distri-
bution fnk

0 . The distribution function fnk can be obtained from
the kinetic equation

�fnk

�t
= 
 �fnk

�t
�

dis
+ 
 �fnk

�t
�

mw
−

fnk − fnk
0

�in
. �12�

This kinetic equation includes collision integrals for
disorder scattering, ��fnk /�t�dis=�n�k�2���n�k��U�nk��2�fn�k�
− fnk���nk−�n�k��, and for disorder-assisted microwave
absorption and emission, ��fnk /�t� mw

=�n�k���=±2 � ��n�k�� T��nk� �2 �fn�k�− fnk� ��nk−�n�k�+���.
These collision integrals involve the electron energies in-
cluding the effects of the dc electric field. Finally, we include
inelastic relaxation within the relaxation-time approximation,
with a phenomenological relaxation time �in.

B. Longitudinal photocurrent

In this section, we compute the photocurrent for dc elec-
tric fields applied along the modulation direction. We first
turn to the distribution-function mechanism which gives the
dominant contribution in the �experimentally relevant� limit
of slow inelastic relaxation. The microwave-induced change
in the distribution function, as obtained from the kinetic
equation �12�, equals

fNk = �in�
k�

�
�

2���Nk��T��Nk��2�fNk�
0 − fNk

0 �

���Nk
0 − �Nk�

0 + ��� , �13�

where N denotes the valence Landau level in which the
Fermi energy is situated. fnk vanishes for all other Landau
levels n�N. In the temperature regime �c�T�V, the dis-
tribution function changes only weakly within the Landau
level. Exploiting the  function, we can thus write fNk�

0

− fNk
0 �−���nF��Nk

0 ��1−nF��Nk
0 ��, where �=1/kBT and nF���

denotes the Fermi-Dirac distribution. Noting that to leading
order nF��Nk

0 � is just the partial filling factor �N
* of the valence

Landau level, we obtain the relation

fNk�
0 − fNk

0 � − ����N
* �1 − �N

* � . �14�

Thus, the change in the distribution function is maximal for
half-filled �valence� Landau levels and falls off to zero for
empty and completely occupied Landau levels. Inserting the
expression �7� for the matrix element and performing the
sum over k�, we obtain

fNk = − 2��in���N
* �1 − �N

* �
 eE

2�
�2

�
�

�	 dq

�2��2

��qy�B
2J0�qRc��2W̃�q���Nk

0 − �Nk+qy

0 + ��� . �15�

The q integration simplifies significantly in the limit �F�a
��B

2 /�, where it factorizes into an average over the  func-
tion and an integral over the remaining integrand. The aver-
age over the  function can be expressed through the
Landau-level density of states,

���Nk
0 − �Nk+qy

0 + ����qy
= 2��B

2�*��Nk
0 + ���

���V − ��Nk
0 + ���� . �16�

Here, we introduced the LL density of states �DOS� �*���
=�*�̃*��� where �*= �1/2��B

2��1/�VN� denotes the DOS at
the LL center and �̃*���=1/ �1− ���−EN� /VN�2�1/2 a normal-
ized density of states. Exploiting the fact that the integrand
of the remaining q integration is cut off by the correlator

W̃�q� at large q, we can replace the Bessel function by an
asymptotic expression for large argument. In this way, we
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can relate the integral to the zero-field transport time, defined
by

1

�tr
=

1

�vF
	

0

�

dq�q2/2kF
2�W̃�q� . �17�

This yields for the change in the distribution function

fNk = − ���N
* �1 − �N

* �
 eERc

2�
�2

�
�

�
�in

�tr
*��Nk

0 + ���

���V − ��Nk
0 + ���� . �18�

This expression should be inserted into Eq. �11�. Here, we
introduced the transport time �tr

*���=�tr� /�*��� in the pres-
ence of the magnetic field. �� is the DOS in the absence of
the B field.� In a smooth random potential, this should be
distinguished from the single-particle times �s and �s

*���
=�s� /�*��� in the absence and presence of B, respectively.

By a sequence of steps very similar to those for the evalu-
ation of fNk just described, we can rewrite Eq. �11� as

�xx
DF = �e2 Rc

2

2�tr
* �*2��B

2

LxLy
2�V�

k

−

�fNk

��Nk
0 ��̃*��Nk

0 � . �19�

Finally performing the sum over k, we obtain the result

�xx
DF = − 2���N

* �1 − �N
* ��e2 Rc

2

2�tr
* �*
 eERc

2�
�2�in

�tr
*

� B1��/2VN� , �20�

where17

B1�x� =
1

16

1 − 2x

�x − x2�3/2 ln
VN

�
� . �21�

Here, � denotes an effective broadening in energy of the LL
edge due to disorder or the dc electric field, both of which
cut off the logarithmic divergence of the integral.

The sign and frequency dependence of the longitudinal
distribution function contribution are therefore determined
by the function −xB1�x�. This function is plotted in Fig. 2.
We find a negative photoconductivity in the frequency range
��VN. For larger frequencies VN���2VN, the sign of the
photoconductivity changes. This sign change is a specific
feature of our model, arising from the singular density of
states at the band edge for the static periodic modulation
potential. While this sign change is an interesting feature of
our model and may be helpful in distinguishing between the
displacement and the distribution function mechanism in an
appropriate experiment, it is not expected to occur in a more
generic situation without a singularity at the Landau level
edge. Specifically, one expects a negative photoconductivity
for all ��2VN for the case of disorder-broadened Landau
levels, relevant to current experiments.

Up to numerical factors, the result Eq. �20� for the longi-
tudinal distribution-function photocurrent differs from the
corresponding result for inter-LL transitions �cf. Ref. 17� in
two ways: The detuning ��=�c−� is replaced by −�, and
there is an additional prefactor ���N�1−�N�. The first
change directly reflects the fact that initial, final, and inter-

mediate states are all in the same Landau level. The addi-
tional prefactor stems from the difference in the thermal
populations of initial and final state �which was equal to
unity for inter-LL transitions�. Apart from these changes, the
magnitude of the photocurrent can be estimated as explained
in Ref. 17. Interestingly, we find that this provides a univer-
sal prescription to relate our results for the inter-LL photo-
conductivity to the inter-LL results of Ref. 17.

In accord with these remarks, starting from Eq. �10�, we
obain

�xx
DP � − ���N

* �1 − �N
* ��e2 Rc

2

2�tr
* �*
 eERc

2�
�2 �s

*

�tr
* A1��/2VN�

�22�

for the longitudinal displacement photoconductivity. We note
in passing that the precise numerical prefactor of �xx

DP de-
pends on the details of the smooth-disorder model. Clearly,
this result is parametrically smaller than the distribution-
function mechanism by a factor �s

* /�in, where �s
* denotes the

single-particle scattering time in the presence of the mag-
netic field. The function A1 appearing in Eq. �22� is given
by17

A1�x� = −
3

�2

�

�x
K��1 − x2� �23�

and the resulting frequency dependence is plotted in Fig. 2.
Here, K�x� denotes a complete elliptic function.

The dominant distribution-function contribution to the
longitudinal photocurrent is clearly independent of the mi-
crowave polarization. This is different from the cyclotron-
resonance case,17 where the photocurrent depends on the
type of circular polarization. The �subdominant� displace-
ment photocurrent does exhibit a polarization dependence.

FIG. 2. Sign and frequency dependence of the photocurrent.
Left panel: functions −xA1�x� �solid line� and −xB1�x� / ln�VN /��
�dashed� determining the sign and frequency dependence of the
displacement and distribution-function contributions to the longitu-
dinal photoconductivities, respectively �with x=� /2VN�. Right
panel: the corresponding functions −xA2�x� �solid line� and −xB2�x�
�dashed� for the transverse photocurrent.
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Specifically, we find that for linear polarization along the y
direction �i.e., perpendicular to the modulation direction�, it
includes an additional numerical factor of 1 /3 compared to
Eq. �22�. For circularly polarized microwaves �of identical
microwave power�, the corresponding factor is 2 /3, irrespec-
tive of the type of circular polarization.

C. Transverse photocurrent

It was shown in Ref. 17 that within our model, the con-
tributions of the displacement and the distribution-function
mechanisms to the transverse photocurrent can be of the
same order of magnitude for the cyclotron resonance �
��c. We find the same conclusion to hold for intra-LL tran-
sitions.

The methods used in Ref. 17 can be readily extended to
intra-LL transitions. The essential new ingredient in comput-
ing the distribution-function contribution is a drift term
−eEdc��fnk /�k� which enters the right-hand side of the ki-
netic equation, Eq. �12�. In this way, we arrive at the result

�yy
DF = − 4���N

* �1 − �N
* ��e2�vy

2�s
*��̃*�
 eERc

2�
�2�in

�tr
*

� B2��/2VN� , �24�

where B2�� /2VN� is given by26

B2�x� = �4x
arcsin�1 − 2x� +
�

2
� − 4�x − x2 . �25�

Computing the displacement contribution to the transverse
photoconductivity requires one to evaluate transition rates
between quantum states corresponding to the “meander”
equipotential lines in the presence of both static periodic
modulation and dc electric field. Following the relevant for-
malism developed in Ref. 17, we obtain

�yy
DP = − 2���N

* �1 − �N
* ��e2�vy

2�s
*��̃*�
 eERc

2�
�2�in

�tr
*

� A2��/2VN�
Edc
*

Edc
�2

. �26�

The frequency dependence of the photocurrent is described
by the function A2 given by

A2�x� = 2xK��1 − x2� . �27�

A plot of the frequency dependence implied by the functions
B2 and A2 is provided in Fig. 2.

Note the singular dependence of the displacement contri-
bution to the transverse photoconductivity on the dc electric
field Edc. This singularity is cut off for small dc electric fields
by inelastic processes when Edc�Edc

* , where Edc
*

=Ba /2���in�s
*.17 For Edc�Edc

* , the photoconductivity
crosses over to Ohmic behavior, matching with Eq. �26� for
Edc�Edc

* .17 This implies that the contributions by displace-
ment and distribution mechanisms are of the same order of
magnitude in the transverse case.

We finally remark that both displacement and distribution-
function contribution to the intra-LL transverse photocurrent
are independent of the type of polarization.

D. Comparison with experiment

Strictly speaking, our model is different from the experi-
mental system, due to the assumption of a static periodic
potential. However, previous work17 shows that the magni-
tude of the longitudinal photocurrent obtained within our
model is parametrically identical to that for disorder-
broadened Landau levels. Specific features arise within our
model due to its anomalous density of states at the LL edge
which leads to additional sign changes of the photocurrent.

Keeping these caveats in mind, we compare our results to
the experiment of Ref. 20. Our main results relevant to ex-
periment are: �i� When ignoring effects of the singular den-
sity of states at the LL edge, the sign of the photocurrent due
to intra-LL transitions is negative, leading to a reduction of
the experimentally observed resistivity. �ii� Comparing the
longitudinal photoconductivity in Eq. �20� to the dark con-
ductivity �xx

dark�e2�Rc
2 /2�tr

*��*�� /T�, we find that their ratio
depends on magnetic field as �xx

DF/�xx
dark�Rc

2 /��tr
* �1/B2 at

fixed �. This magnetic-field dependence actually also holds
for inter-LL processes.17 Here, we used that both for
disorder-broadenend LLs as well as modulation-broadened
LLs, the LL width � scales with magnetic field as ���B.
�iii� The amplitude of the photoconductivity due to intra-LL
transitions scales as 1 /� with the microwave frequency, see
Eq. �20�. �iv� Due to the factor �N

* �1−�N
* �, the magnitude of

the effect is strongest for half-filled LLs and falls off to zero
when the valence LL is either empty or completely occupied.
We note that this filling-factor dependence is specific to
intra-LL transitions and does not occur for inter-LL transi-
tions near the cyclotron resonance or its harmonics.17

These results are in good agreement with the central ex-
perimental observations. �i� explains the sign of the effect.
�ii� is in agreement with the observations that over the
magnetic-field range where intra-LL processes dominate, the
relative microwave-induced suppression of the conductivity
decreases as the magnetic field increases �see Fig. 1 of Ref.
20�. In addition, this magnetic-field scaling explains why ex-
perimentally, it is apparently harder to reach zero resistance
in the regime of intra-LL transitions which occur at higher
magnetic fields compared to the cyclotron resonance or its
harmonics. �iii� is in accordance with the observation that the
microwave-induced reduction of the diagonal resistivity de-
creases with increasing microwave frequency �see Fig. 2 of
Ref. 20�. Finally, �iv� implies that the photoconductivity sup-
presses the Shubnikov-deHaas oscillations, an effect which
was very pronounced experimentally.

IV. SUMMARY

We have studied the microwave photoconductivity of a
2DEG in a perpendicular magnetic field with additional uni-
directional static periodic modulation in the regime of
intra-LL transitions. We identify the dominant disorder-
assisted microwave absorption and emission processes for
this regime and compute both the longitudinal and transverse
photocurrents.

We find that the distribution-function mechanism domi-
nates for the longitudinal photocurrent while both
distribution-function and displacement mechanism contrib-
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ute to the same order to the transverse photocurrent. Except
for subdominant contributions, we find that the photoconduc-
tivity due to intra-LL processes is polarization independent.
The singular density of states of our model near the LL edges
leads to interesting sign changes, making the photoconduc-
tivity positive in certain frequency ranges. With the excep-
tion of these model-specific predictions, our results are in
good agreement with experiment. Specifically, we can ex-

plain the microwave-induced suppression of the Shubnikov-
deHaas oscillations in the regime of intra-LL transitions.
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