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We investigate the influence of extended scatterers on the finite temperature and finite frequency microwave
conductivity of d-wave superconductors. For this purpose we generalize a previous treatment by Durst and
Lee, which is based on a nodal approximation of the quasiparticle excitations and scattering processes, and
apply it to the analysis of experimental spectra of YBCO-123 and BSCCO-2212. For YBCO, we find that
accounting for a slight spatial extension of the strong scattering in-plane defects improves the fit of the low
temperature microwave conductivity to experiment. With respect to BSCCO we conclude that it is necessary to
include a large concentration of weak-to-intermediate strength extended scatterers, which we attribute to the
out-of plane disorder introduced by doping. These findings for BSCCO are consistent with similar analyses of
the normal state ARPES spectra and of STM spectra in the superconducting state, where an enhanced forward
scattering has been inferred as well.
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I. INTRODUCTION

Early in the debate over the symmetry of the supercon-
ducting order in the cuprates, a rather convincing picture of
the microwave properties of the YBCO-123 system was put
forward by Bonn et al.,1 and later placed on a microscopic
foundation.2–4 Crucial to this interpretation is the observed
collapse of the d-wave nodal quasiparticle scattering rate as
the system becomes superconducting,5–7 leading to a dra-
matic rise in the conductivity with decreasing temperature.
This rise is cut off when the inelastic mean free path be-
comes comparable to the elastic one, and the conductivity
subsequently decreases because of the vanishing nodal car-
rier density as temperature tends to zero. One consequence of
this picture is that the resulting conductivity peak should be
suppressed and occur at higher temperatures in dirtier
samples. In addition, the conductivity should approach the
universal value �0=e2v f / ���2v2� for zero temperature and
zero frequency as predicted by P. A. Lee8 for the case of
isotropic scatterers, where vF is the Fermi velocity and v2 the
gap velocity at the node.

If one extracts vF /v2 from thermal conductivity9 or angle
resolved photoemission �ARPES� measurements,10 one finds
that the universal value for both BSCCO and YBCO crystals
should be about �0=5�105 �−1 m−1. In YBCO, the residual
value of the conductivity for � ,T→0 is difficult to deter-
mine, but appears to be approaching 3–4�0 in the best
crystals.11 The peak in the conductivity occurs around 25 K
with an amplitude of approximately 100�0 for the lowest
frequency measured. In BSCCO, the peak is located around
20 K, but is only about 20% higher than the apparent re-
sidual value12 of 8–10�0. Virtually no frequency dependence
is seen in the measured microwave frequency range,12 sug-
gesting a very dirty material, in apparent contradiction—
within the “standard” scenario—with the low-temperature
peak position. The long-standing puzzle of the low tempera-
ture microwave peak together with indications of dirty limit
behavior have been analyzed as evidence for absorption into
a collective mode off resonance at low frequencies,13 as well

as a consequence of nanoscale inhomogeneity.14

In this work we argue that the temperature dependence of
the conductivity can be more naturally understood in terms
of the effect of extended scatterers present in the BSCCO
crystal. Current generation crystals are made typically with
excess Bi, deficiencies of Sr and Ca, and excess O content;
cation substitution is thought to occur frequently. Some as-
pects of this defect distribution have been discussed recently
by Eisaki et al.15 The net result of these defects is not only to
dope the nominally stoichiometric BSCCO crystal �pure
BSCCO would be an insulator�, but to provide a relatively
slowly varying potential landscape for quasiparticles moving
in the CuO2 planes. The effect of these extended scatterers
with respect to the normal state has recently been discussed
by Abrahams and Varma16 and it has been pointed out by
Zhu et al.17 that the broad momentum space peaks observed
in Fourier transform STM studies of BSCCO18–20 can only
be explained by potential scatterers with finite range. In a
further application of this notion to ARPES, Zhu et al.21

showed that a large concentration of impurities with poten-
tials peaked in the forward direction could be present without
substantially broadening quasiparticle states except near the
node. Since the microwave conductivity is dominated by
nodal quasiparticles, it is clearly important to ask what the
effects of extended or forward scatterers are in this case.

Since the work of Durst and Lee,22 we know that the
residual conductivity in the presence of extended scatterers
can be much larger than the “universal” value �0. This might
account for the large value of the microwave conductivity
observed in the BSCCO-2212 system at low temperatures.
To make this case, however, one needs to examine the influ-
ence of a finite scattering range at finite temperatures and
frequencies. We have therefore generalized the analysis of
Durst and Lee in this way and applied this treatment to the
analysis of experiments on YBCO and BSCCO.

The outline of the paper is as follows. In Sec. II, we
describe the model and derive expressions for the self-energy
and vertex function for extended scatterers. Our approach,
which is based on an extension of the work by Durst and
Lee,22 aims at treating scattering potentials with an extension
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of a few lattice spacings at maximum and is therefore in the
opposite limit from semiclassical calculations where the im-
purity potentials extend over a few coherence lengths.23,24 In
Sec. III we apply our treatment to the microwave conductiv-
ity of YBCO. We show that the consideration of slightly
extended instead of pointlike strong potential scatterers im-
proves the agreement with the experimental spectra. In Sec.
IV we address the microwave conductivity of BSSCO and
demonstrate that it is necessary to include a large concentra-
tion of weak extended scatterers in order to explain the ex-
perimental spectra. A good fit is obtained based on a realistic
disorder model for BSCCO which contains weak extended
scatterers in addition to strong pointlike in-plane defects
which are responsible for the unitary scattering resonances
observed by STM. Finally, in Sec. IV, we present our con-
clusions.

II. TREATMENT OF EXTENDED SCATTERERS

For low temperatures and low frequencies the quasiparti-
cle dispersion of a d-wave superconductor can be linearized
around the nodes. The resulting quasiparticle spectrum has
the form of a Dirac cone, whose anisotropy is determined by
the ratio v f /v2 of the Fermi velocity v f =��k /�k=2�2t and
the gap velocity v2=�	k /�k=	0 /�2, where t is the nearest
neighbor hopping parameter and 	0 is the maximum gap
value and we have set a=�=1. At low temperatures and
frequencies, quasiparticle excitations are restricted to small
regions around the nodes. Therefore momentum transfer be-
tween quasiparticles is limited to four wave vectors which
connect the four nodes and include intranode and internode
scattering processes �see Fig. 1�. Consequently a momentum
dependent impurity potential Vkk� can be represented by three
parameters V1, V2, and V3 which correspond to the respective
momentum transfers. For zero temperature and zero fre-

quency when the nodes reduce to points this nodal approxi-
mation for the impurity potential can reproduce any impurity
potential. For finite temperatures and frequencies, however,
this approximation poses a limitation on the forward scatter-
ing character of the impurity potential because it assumes
constant potential within one node, i.e., for all momenta in a
Brillouin zone quadrant around a particular node. Although
the strict forward scattering limit can therefore not be
reached for finite temperatures and frequencies, this approxi-
mation is still appropriate to treat intermediate range scatter-
ers as considered here.

Based on these approximations and treating impurity scat-
tering in T-matrix approximation, an expression for the mi-
crowave conductivity has been derived by Durst and Lee.22

They found that vertex corrections, which arise from the mo-
mentum dependence of the impurity potential, induce a de-
pendence of the zero-temperature and zero-frequency limit
of the conductivity on the impurity potential and the impurity
concentration. Contrary to the case of pointlike scatterers, no
universal value of the electrical conductivity exists therefore
in case of extended scatterers. Durst and Lee, however, did
not further explore the frequency and temperature depen-
dence of the microwave conductivity. Here, we generalize
their approach to finite frequencies and temperatures and
consider the effect of combining different types of scatterers.

A. Self-energy

Before proceeding to two-particle quantities like the mi-
crowave conductivity, it is instructive to focus first on single-
particle properties like the single-particle self-energy. Using
the Nambu notation, the disorder-averaged single-particle
self-energy in a superconductor can be decomposed as


̃�k,�� = �
�


��k,���̃�, �1�

where �̃� are the Pauli matrices and �̃0 is the unit matrix.
Treating impurity scattering in T-matrix approximation gives
rise to the following self-energy:


̃�k,�� = niT̃kk��� , �2�

where ni is the impurity concentration and Tkk��� is the di-
agonal element of the T-matrix,

T̃kk���� = Vkk��̃3 + �
k�

Vkk��̃3G̃�k�,��T̃k�k���� . �3�

The self-energy 
̃�k ,�� must be solved self-consistently in
combination with the single-particle Green’s function,

G̃�k,��−1 = G̃0�k,��−1 − 
̃�k,�� , �4�

where the unperturbed Green’s function is given as

G̃0�k,�� =
��̃0 + 	k�̃1 + �k�̃3

�2 − �k
2 − 	k

2 . �5�

Following the approach of Durst and Lee,22 we reduce the
impurity scattering potential to the four wave vectors con-
necting the nodes, i.e., Vkk� is replaced by a 4�4-matrix in
nodal space,

FIG. 1. For low temperatures and low frequencies the momen-
tum transfer between quasiparticles is basically limited to the four
wave vectors connecting the nodes of a d-wave superconductor.
Therefore the momentum dependent impurity potential V�k� can be
represented by the values at the respective wave vectors, i.e., by
three parameters V1, V2, and V3.
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Vkk� → V =�
V1 V2 V3 V2

V2 V1 V2 V3

V3 V2 V1 V2

V2 V3 V2 V1

� , �6�

where V1, V2, and V3 are the values of the impurity potential
at the wave vectors connecting the nodes, see Fig. 1.

Using this simplification, the impurity potential can be
pulled out of the integral and the T-matrix becomes a
4�4-matrix in nodal space

T̃jj���� = Vjj��̃3 + ĨG����̃3�
j�

Vjj�T̃j�j���� , �7�

where ĨG��� is the integral of the single-particle Green’s
function over one-quarter of the Brillouin zone,

ĨG��� = �
0

� �
0

� d2k

�2��2G̃�k,�� = g0����̃0 + g3����̃3. �8�

This allows for an analytical solution22 of the T-matrix,

T̃jj� = Tjj�
3 �̃3 + Tjj�

0 �̃0 �9�

with

T jj�
3 = � 	1 − g3���V
V

	1 − g3���V
2 − g0���2V2�
j j�

,

�10�

T jj�
0 = � g0���V2

	1 − g3���V
2 − g0���2V2�
j j�

,

where the denominators must be calculated as inverse matri-
ces in nodal space. This gives for the 
0 component of the
self-energy,


0��� =
ni

4
� 2g0����V1 − V3�2

	1 − g3����V1 − V3�
2 − 	g0����V1 − V3�
2 +
g0����V1 − 2V2 + V3�2

	1 − g3����V1 − 2V2 + V3�
2 − 	g0����V1 − 2V2 + V3�
2

+
g0����V1 + 2V2 + V3�2

	1 − g3����V1 + 2V2 + V3�
2 − 	g0����V1 + 2V2 + V3�
2� . �11�

For an isotropic impurity potential, i.e., V1=V2=V3=V this
expression simplifies to


0
iso�V,�� =

ni4g0���V2

	1 − 4g3���V
2 − 	4g0���V
2 , �12�

which implies that the self-energy in Eq. �11� can be decom-
posed into a sum of self-energies corresponding to three dif-
ferent isotropic impurity potentials,


0��� = 
0
iso� 1

4 �V1 + 2V2 + V3�,��
+ 
0

iso� 1
4 �V1 − 2V2 + V3�,��

+ 2
0
iso� 1

4 �V1 − V3�,�� . �13�

Consequently, the self-energy for an anisotropic impurity po-
tential in the nodal approximation contains up to three reso-
nances corresponding to the different impurity strengths V
= �V1+2V2+V3� /4, V= �V1−2V2+V3� /4, and V= �V1−V3� /4,
see Fig. 2.

Note that 
1 vanishes in our approach and 
3 plays no
important role. While 
3 itself is not necessarily always
small �see inset of Fig. 2�, its contribution to the single-
particle scattering rate �−1 vanishes at the node,

�−1��,k� = − 2�Im 
0��� +

k

�
Im 
3��� +

	k

�
Im 
1����

→ − 2 Im 
0��� for k = knode, �14�

and its contribution to the conductivity is small because it is

invariably suppressed by particle-hole asymmetry factors.
We nevertheless include the effect of 
3 in numerical evalu-
ations for completeness.

If the scattering strength of the impurities is weak, they
can be treated within Born approximation and the self-energy
of an extended weak impurity becomes

FIG. 2. Imaginary part of the self-consistently calculated self-
energy 
0��� for an anisotropic impurity potential characterized by
the three parameters V1 / t=100, V2 / t=60, and V3 / t=44 �solid line�.
The positions of the resonances coincide with the resonances of the
self-energies for isotropic impurity potentials V / t=66, V / t=14, and
V / t=6. Here 	0 / t=0.29 and ni=0.00002 have been used. The inset
shows the imaginary part of 
3��� for the same anisotropic impu-
rity potential V1 / t=100, V2 / t=60, and V3 / t=44.

MICROWAVE CONDUCTIVITY OF d-WAVE … PHYSICAL REVIEW B 72, 014514 �2005�

014514-3




0��� = − ni�V1
2 + 2V2

2 + V3
2�g0��� , �15�

i.e., the self-energy for an anisotropic impurity potential is
identical to the self-energy for an isotropic impurity potential
with V=�V1

2+2V2
2+V3

2.

B. Microwave conductivity

In linear response the electrical conductivity is given as

���,T� = −
Im �ret��,T�

�
, �16�

where �ret�� ,T� is the retarded current-current correlation
function, which can be obtained by analytical continuation
from

��i�� =
e2v f

2

�
�
i�,k

Tr	G̃�k,i��G̃�k,i� + i���̃�k,i� + i��
 ,

�17�

where �̃�k , i�+ i�� is the vertex function, which for a
d-wave superconductor arises entirely from the momentum
dependence of the impurity potential25 and will be calculated
here as the sum of ladder diagrams.

Summing up all ladder diagrams one arrives at the follow-
ing expression for the current-current correlation function:

��i�� =
e2v f

�v2

1

�
�
i�

J�i�,i�� �18�

with

J =
I0

0 + �A�I0
0I3

3 + I0
3I3

0�
	1 − ��AI0

0 + �BI3
0�
	1 − ��BI0

3 + �AI3
3�
 − ��AI0

3 + �BI3
3���BI0

0 + �AI3
0�

, �19�

where the frequency indices have been omitted for simplic-
ity. This expression for J is similar to the one derived by
Durst and Lee22 but contains additional terms arising from
the finite 
3 component of the single-particle self-energy.
The momentum integrated particle-hole bubbles I�

��i� , i�� in
Eq. �19� are

I0
0�̃0 + I0

3�̃3 = �
0

� �
0

� d2k

�2��2G̃�k,i��G̃�k,i� + i�� ,

�20�

I3
0�̃0 + I3

3�̃3 = �
0

� �
0

� d2k

�2��2G̃�k,i���̃3G̃�k,i� + i�� ,

and the vertex functions �A ,�B are given as

�A�i�,i�� =
ni

4�v fv2
	T 11

0 �i��T 11
0 �i� + i��

+ T 11
3 �i��T 11

3 �i� + i�� − T 13
0 �i��T 13

0 �i� + i��

− T 13
3 �i��T 13

3 �i� + i��
 ,

�21�

�B�i�,i�� =
ni

4�v fv2
	T 11

0 �i��T 11
3 �i� + i��

+ T 11
3 �i��T 11

0 �i� + i�� − T 13
0 �i��T 13

3 �i� + i��

− T 13
3 �i��T 13

0 �i� + i��
 .

After analytical continuation the microwave conductivity
can be expressed as22

���� =
e2v f

2�2v2
� d�

nF��� − nF�� + ��
�

�	Re J�� − i�,� + � + i��

− Re J�� + i�,� + � + i��
 . �22�

In Born approximation one arrives at the same expression for
the conductivity Eq. �22� but the current-current correlation
function is replaced by the much simpler expression

JBorn�i�,i�� =
I0

0�i�,i��
1 − �Born�i�,i��I0

0�i�,i��
�23�

with the vertex function

�Born =
ni

4�v fv2
�V1

2 − V3
2� . �24�

So far we have focused on the effect of impurity scatter-
ing, which is appropriate for low temperatures and low fre-
quencies. At higher temperatures, however, it is essential to
take into account inelastic scattering processes as well, like,
e.g., quasiparticle-quasiparticle scattering or scattering off
spin fluctuations. These inelastic scattering processes are
suppressed below Tc due to the opening of the superconduct-
ing gap in the quasiparticle excitation spectrum and therefore
the contribution of inelastic scattering increases rapidly when
Tc is approached from the low temperature side. A full treat-
ment of inelastic scattering is beyond the scope of this paper.
It has, however, been pointed out by Walker and Smith27 that
the contribution of quasiparticle-quasiparticle scattering to
the transport lifetime is exponentially suppressed for low
temperatures because only Umklapp scattering processes can
decay the current and a finite excitation energy 	U is neces-
sary to permit an Umklapp scattering process for a realistic
Fermi surface. Thus, we include the effect of inelastic scat-
tering by simply adding the inverse transport lifetime �inel

−1 �T�
�see Fig. 3�, which has been obtained by Duffy et al.26 via
extracting the Umklapp scattering processes from scattering
of quasiparticles off spin fluctuations, to the imaginary part
of the self-energy 
0��� in Eq. �11� or Eq. �15�,
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0
tot��,T� = 
0��� − i	2�inel�T�
−1. �25�

Comparison of the inelastic scattering rate of Fig. 3 with the
impurity self-energy of Fig. 2 shows that for small tempera-
tures the contribution of inelastic scattering to the total self-
energy is negligible, whereas for high temperatures the op-
posite is the case and the impurity self-energy becomes
unimportant. Because the microwave conductivity is domi-
nated by inelastic scattering at high temperatures we con-
sider the small inaccuracies in the single-particle dispersion
caused by the inappropriateness of the nodal approximation
at high temperatures as irrelevant and display the microwave
conductivity in the whole temperature range, where the tem-
perature dependence of the superconducting gap is param-
etrized in the following way:26

	0�T� = 	0 tanh���Tc/T − 1� �26�

using �=3.0.
Note that our simplified treatment of �inel

−1 �T� completely
neglects the frequency dependence of inelastic scattering and
therefore limits our approach to small frequencies in the mi-
crowave regime, and prevents us from calculating the con-
ductivity in the THz range.

III. COMPARISON WITH EXPERIMENTAL
SPECTRA OF YBCO

The microwave conductivity has been investigated in de-
tail for pointlike scatterers within the self-consistent T-matrix
approximation2 and good agreement with the experimental
data of YBCO has been found. The temperature dependence
of the microwave conductivity for pointlike scatterers, see
also Fig. 4, can be summarized in the following way. For
zero temperature and zero frequency the conductivity ap-
proaches a universal value8 �0=e2v f / ���2v2� due to the fact
that at zero temperature impurities give rise to a finite qua-
siparticle density of states while at the same time they reduce
the quasiparticle lifetime. At low temperatures the conduc-
tivity rises with increasing T due to an increase in the num-

ber of excited quasiparticles. The exact temperature depen-
dence is determined by the density of states in a d-wave
superconductor and the frequency dependence of the impu-
rity scattering rate. Starting from the opposite side, i.e., de-
creasing the temperature below Tc, the conductivity also in-
creases rapidly because inelastic scattering is suppressed
below Tc due to the opening of the superconducting gap in
the quasiparticle excitation spectrum. This leads to the for-
mation of a peak at intermediate temperatures, whose posi-
tion is determined by the microwave frequency and the im-
purity scattering strength. This peak moves to higher
temperatures and its amplitude decreases with increasing mi-
crowave frequency and impurity concentration.

Our best fit to the experimental spectra of YBCO �Ref.
11� using pointlike strong scatterers is displayed in Fig. 4.
Commonly used parameters for YBCO are 	0=400 K for
the gap maximum, v f /v2=14 for the anisotropy of the Dirac
cone and Tc=88.7 K.9,11 In order to compare our theoretical
curves to the experimental data the value of the universal
conductivity �0=e2v f / ���2v2� must be translated into a
three-dimensional conductivity which can be done via �0

3D

=�0
2Dnc, where nc is the number of CuO2 planes per unit

length in the c direction with nc=1/ �5.9 Å� for YBCO. Be-
cause ���−3 the conductivity � is very sensitive to the
value of the penetration depth �, which has recently been
claimed29 as considerably smaller than previously published
in the literature,28 i.e., �=1030±80 Å instead of �

1550 Å. This would increase the published values11 of the
microwave conductivity by a factor of 4. Indeed, it turns out
that we obtain the best fit to the microwave conductivity of
YBCO when we assume the absolute values of the conduc-
tivity to be roughly twice the previously published data,11

which would correspond to a penetration depth of approxi-
mately 1200 Å. Therefore we allow ourselves the freedom to
scale our calculated curves by roughly a factor of 1 /2 when
comparing to the experimental published values �exact scal-
ing factor is stated in the figure captions�.

As can be seen from Fig. 4 the assumption of pointlike
scatterers can reproduce the temperature and frequency de-

FIG. 3. Temperature dependence of the inelastic scattering rate
�2�inel�−1�T� used for the calculation of the microwave conductivity.
This form has been obtained by Duffy et al. in Ref. 26 by extracting
the Umklapp scattering processes from scattering of quasiparticles
off spin fluctuations.

FIG. 4. Fit to the experimental spectra of YBCO �reproduced
from Ref. 11� using pointlike strong scatterers with V=100t and a
concentration of ni=0.000 035. The magnitude of the conductivity
has been scaled by a factor of 0.42, which corresponds to assuming
a penetration depth of 1200 Å.
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pendence of the microwave conductivity of YBCO quite well
�see Refs. 2–4�. The largest discrepancy arises for low tem-
peratures and low frequencies, where experimentally a nearly
linear increase of the conductivity with temperature is found
whereas the theory based on pointlike scatterers predicts a
quadratic temperature dependence.2 It has been suggested by
Hettler and Hirschfeld30 that the theoretical line shape be-
comes more linear at low temperatures when the suppression
of the order parameter surrounding a strong pointlike scat-
terer is taken into account. This low temperature behavior
has been attributed to the formation of a second resonance in
the self-energy 
0 at low frequencies. It is intriguing to note
that we find a similar resonance in the self-energy for slightly
extended strong potential scatterers, see Fig. 2, and therefore
it is interesting to investigate whether the presence of slightly
extended potential scatterers can also explain the linear T
dependence of the microwave conductivity for low tempera-
tures. Our best fit to the experimental spectra of YBCO using
slightly extended potential scatterers is displayed in Fig. 5.
Obviously the consideration of extended scatterers consider-
ably improves the agreement with the experimental data at
low temperatures.

Surprisingly, the concentration of extended scatterers used
for the fit in Fig. 5 is even lower than the concentration of
pointlike scatterers we have used for the fit in Fig. 4. Gen-
erally one would assume that due to the forward scattering
character of extended impurities a larger concentration is
necessary to obtain a similar scattering rate as for pointlike
impurities. To gain more insight into this unexpected behav-
ior we show in Fig. 6 the microwave conductivity for differ-
ent spatial extensions of the scattering potential at two of the
experimentally measured frequencies, i.e., 1.14 GHz and
13.4 GHz. Increasing the forward scattering character of the
impurity potential slightly from V1=V2=V3=100t to V1
=100t, V2=85t, and V3=70t essentially reduces the height of
the peak in the conductivity at 1.14 GHz and makes the low

temperature increase more linear. For this small deviation
from isotropic scattering, vertex corrections are small and the
variation of the conductivity can be attributed to the forma-
tion of a second resonance in the self-energy at intermediate
frequencies, see inset in Fig. 6 �see also discussion in Sec.
II A�. The nearly linear increase of the self-energy below the
second resonance causes the more linear T dependence of the
conductivity at low temperatures. Only when the forward
scattering character of the impurity potential is further en-
hanced, the vertex corrections begin to outweigh the growing
self-energy and the conductivity rises above the values ob-
tained for isotropic scattering. For these more extended scat-
tering potentials the second resonance in the self-energy
moves to lower frequencies until it merges with first reso-
nance. For the larger microwave frequency of 13.4 GHz, see
right-hand panel of Fig. 6, the anisotropy of the impurity
potential has less effect. This implies that for slightly ex-
tended impurity potentials as considered for YBCO in Fig. 5
the frequency dependence becomes much weaker and there-
fore a smaller concentration than in the case of pointlike
impurities is necessary to reproduce the experimentally ob-
served frequency dependence. We emphasize that this analy-
sis, while establishing the relevance of extended nature of
dopant impurities to this problem, cannot rule out other
explanations30–32 for the quasilinear in T behavior observed
at low frequencies.

IV. COMPARISON WITH EXPERIMENTAL
SPECTRA OF BSCCO

In this section we want to explore what can be learned
about the type of disorder contained in the BSCCO com-
pounds by analyzing its microwave conductivity which was
measured by Lee et al.12 The temperature and frequency de-
pendence of the microwave conductivity in BSCCO �see
symbols in Fig. 7� is quite different than in YBCO. The
absolute value of the microwave conductivity is smaller by
almost a factor of 10 indicating that BSCCO is a dirtier
compound than YBCO. This agrees well with the observa-
tion that the conductivity of BSCCO changes noticeably only
in the THz regime,13 i.e., at much higher frequencies than in
YBCO. The characteristic peak in the microwave conductiv-

FIG. 5. Fit to the experimental spectra of YBCO �reproduced
from Ref. 11� using slightly extended strong scatterers with V1

=100t , V2=85t , V3=70t and a concentration of ni=0.000 014. The
inelastic scattering rate has been slightly reduced by a factor of 0.8
with respect to Ref. 26 and the magnitude of the conductivity has
been scaled by a factor of 0.34 which corresponds to assuming a
penetration depth of 1100 Å.

FIG. 6. Microwave conductivity for strong scatterers with
varying degree of forward scattering. Impurity concentration, ni

=0.000 035; maximum gap, 	0=0.29t. Left panel, �=1.14 GHz;
right panel, �=13.4 GHz. Inset, self-energy for the respective scat-
tering potentials.
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ity, however, occurs at lower temperatures than in the cleaner
system YBCO contrary to predictions for strong pointlike
scatterers.2 Furthermore this peak is much less pronounced
and resembles more a plateau, suggestive of the weak scat-
tering limit.2 Finally, the conductivity does not apparently
approach the universal value �0 for the lowest temperatures
and frequencies measured. This might indicate the presence
of extended scatterers, which enhance the zero-temperature
and zero-frequency limit of the conductivity as has been
pointed out by Durst and Lee.22

In order to check the applicability of these scenarios for
BSCCO we compare in Fig. 7 respective fits to the micro-
wave conductivity using �i� only pointlike weak scatterers
	Fig. 7�a�
 and �ii� only extended weak scatterers 	Fig. 7�b�
.
For the inelastic scattering rate �inel

−1 �T� we assume the same
temperature dependence as for YBCO �Ref. 26� but we allow
for a different prefactor in order to account for discrepancies
between YBCO and BSCCO �the exact prefactor is stated in
the figure captions�. Obviously both disorder models �i� and
�ii� result in very good fits of the experimental microwave
conductivity of BSCCO. The main difference is that the con-
ductivity for isotropic scatterers approaches the universal
value �0 for T→0 whereas the conductivity for extended
scatterers 	Fig. 7�b�
 with the potential parameters V1 / t=2,

V2 / t=0.8, and V3 / t=0.4 approaches an enhanced value. Un-
fortunately, it is not possible to distinguish between these
two different scenarios from the microwave conductivity
alone, because there is no experimental data available below
T=5 K.

Further insight could be gained by comparing the fre-
quency dependence of these two models. Impurity scattering
alone would predict a different frequency dependence for
isotropic and extended scatterers, as illustrated in Fig. 8.
Whereas the magnitude of the conductivity remains rather
large at low temperatures in the case of extended scatterers
even for high frequencies, it almost vanishes in the case of
pointlike impurities. Due to the large impurity concentration
this frequency dependence is most pronounced in the THz
regime as observed experimentally.13 In the THz range, how-
ever, a more refined treatment of inelastic scattering than Eq.
�25� is indispensable, including, e.g., its frequency depen-
dence and possibly an explicit evaluation of inelastic vertex
corrections. Thus, the THz data present not only a probe of
elastic impurity scattering but also of inelastic scattering pro-
cesses and are therefore not directly suitable to distinguish
between pointlike and extended impurities.

The only way we can proceed now is try to exclude one of
the two models indirectly via analyzing an additional observ-
able. Thus we will argue in the following that disorder model
�i� containing 4.9% weak isotropic scatterers with a scatter-
ing strength of V=1t would yield an unrealistically large

FIG. 7. Fit to the experimental microwave conductivity of
BSCCO �reproduced from Ref. 12� using weak scatterers, �a� point-
like scatterers with V / t=1 and n=0.049, �b� weak extended scatter-
ers with V1 / t=2, V2 / t=0.8, V3 / t=0.4, and n=0.145. 	The inelastic
scattering rate has been increased by a factor of 2.6 in �a� and 3 in
�b� with respect to Ref. 26.


FIG. 8. Higher frequency conductivity for the disorder models
of Fig. 7, �a� pointlike scatterers with V / t=1 and n=0.049, �b� weak
extended scatterers with V1 / t=2, V2 / t=0.8, V3 / t=0.4, and n
=0.145.
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normal state scattering rate. Assuming a normal state density
of states of 1 /8t yields a normal state scattering rate of �−1

�0.6Tc for t=120 meV. According to Abrikosov-Gorkov’s
scaling law this would reduce Tc by 25%, which we consider
as an unreasonably large suppression because Tc�93 K in
the samples used for microwave conductivity in Ref. 12,
which is close to the highest values of Tc measured for the
BSCCO compounds. Extended impurities, on the other hand,
act mainly as small angle scatterers and affect Tc much less
than isotropic scatterers.34,35 This allows us to assess model
�i�, which consists only of weak pointlike scatterers, as very
unlikely and to conclude that at least a large fraction of the
disorder in the BSCCO compounds should be attributed to
extended scatterers. This could be confirmed by microwave
experiments on crystals at lower T.

So far we have focused on the effect of weak scatterers
which we attribute to the out-of plane disorder introduced by
doping. Defects within the CuO2 planes, on the other hand,
are generally considered to act as strong pointlike scatterers.
These strong scattering defects have been observed in STM
experiments33 on BSCCO compounds and are often assumed
to be the main source of disorder in the YBCO compounds
although their concentration is very low. We therefore now
address the question of whether our model for the microwave
conductivity in BSCCO is compatible with an additional
small concentration of strong pointlike impurities, which are
most likely also present in the compound used for measure-
ments of the microwave conductivity of BSCCO in Ref. 12.

We incorporate this realistic disorder model, which con-
sists of weak extended and strong pointlike scatterers, by
calculating the diagrams depicted in Fig. 9. The weak ex-
tended scatterers are treated in Born approximation and the
strong pointlike impurities in T-matrix approximation. Be-
cause vertex corrections vanish for pointlike scatterers, only
the weak extended scatterers contribute and the vertex cor-
rections can be calculated in Born approximation. Thus, the
microwave conductivity ���� is still given by Eq. �22� with
the bubble JBorn�� ,�� as in Eq. �23� and the vertex function
�Born given in Eq. �24�. Only the self-energy 
0 must be
calculated self-consistently as the sum of Eq. �12�, Eq. �15�,
and the inelastic scattering rate


0��,T� =
ns4g0���Vs

2

	1 − 4g3���Vs
2 − 	4g0���Vs
2

− nw�V1
2 + 2V2

2 + V3
2�g0��� − i	2�inel�T�
−1.

�27�

Here, ns is the concentration of strong pointlike impurities

with a scattering potential Vs , nw is the concentration of
weak extended scatterers characterized by the potential pa-
rameters V1,V2,V3, and g0���,g3��� are the Nambu compo-
nents of the momentum integrated single particle Green’s
function as defined in Eq. �8�. Note that “strong impurity”
implies a potential Vs chosen so that the 1-impurity reso-
nance lies essentially at the Fermi level. For our purposes,
this means any value Vs�20t could be chosen, and changing
Vs does not change the results for the conductivity in this
limit.

The effect of adding a small concentration of strong point-
like scatterers to the extended weak scatterers used in Fig.
7�b� is illustrated in Fig. 10. Additional strong pointlike scat-
terers mainly reduce the conductivity as can be seen in Fig.
10�a�. In order to raise the conductivity to its previous values
the forward scattering character of the weak impurities must
therefore be enhanced. On the other hand, this increases the
difference between the zero-temperature value and the maxi-
mum value of the conductivity 	see dashed line in Fig. 10�b�

and necessitates a larger concentration of weak extended
scatterers. Finally the line shape of the conductivity 	solid
line in Fig. 10�b�
 looks similar to the one without strong
pointlike impurities but it is flatter at low temperatures than
before. This poses an upper limit for the concentration of

FIG. 9. Diagrams for the self-energy 
 and microwave conduc-
tivity � considered in the realistic disorder model for BSCCO.
Circles denote the pointlike strong impurities, which are treated in
the T-matrix approximation. Crosses denote the weak extended
scatterers, which are treated in the Born approximation. Only the
extended, i.e., only the weak scatterers contribute to the vertex
corrections.

FIG. 10. Effect of adding strong pointlike scatterers for the mi-
crowave conductivity at 14.4 GHz. �a� Weak extended scatterers
with parameters of Fig. 7�b�, i.e., nw=0.145 and V1 / t=2, V2 / t
=0.8, V3 / t=0.4, and additional strong pointlike scatterers with
V / t=100 and different concentrations ns. �b� Fixed concentration
ns=0.001 of strong pointlike impurities for varying concentration
and forward scattering potential of the weak scatterers.
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strong scatterers compatible with the experimental micro-
wave conductivity of BSCCO.

A fit to the experimental microwave conductivity of
BSCCO containing 0.05% pointlike strong scatterers and
10% weak extended scatterers is shown in Fig. 11. This is
about the largest concentration of pointlike strong scatterers
still compatible with our fit to the microwave conductivity.
This concentration is smaller than the 0.2% observed in STM
experiments33 on BSCCO but it is very plausible that the
number of in-plane defects varies between bulk and surface.

V. CONCLUSIONS

In summary, we have investigated the influence of ex-
tended scatterers on the microwave conductivity of d-wave
superconductors by extending the approach of Durst and
Lee,22 which is based on a nodal approximation for the qua-
siparticle spectrum and the impurity potential, to finite tem-
peratures and frequencies. Self-energy and vertex corrections
are calculated within the self-consistent T-matrix approxima-
tion.

The effect of extended scatterers on the temperature and
frequency dependence of the microwave conductivity can be

summarized as follows: for a small concentration of slightly
extended strong scatterers a second resonance forms in the
self-energy at intermediate frequencies similar to treatments
which consider the suppression of the order parameter sur-
rounding a strong pointlike impurity.30 This results in a more
linear temperature dependence of the conductivity at low
temperatures and therefore improves the agreement with ex-
perimental spectra of YBCO at low temperatures. For more
extended scatterers the vertex corrections begin to dominate
over the self-energy and the magnitude of the conductivity
increases.

The microwave conductivity of BSCCO is very different
compared to YBCO and cannot be understood even qualita-
tively in terms of only strong scattering pointlike impurities.
We find that a large concentration of weak extended scatter-
ers is necessary to explain the observed temperature and fre-
quency dependence of the microwave conductivity in
BSCCO, where �i� the impurity concentration must be large
to explain the small magnitude of the conductivity and the
negligible frequency dependence in the microwave range,
�ii� the scattering strength must be small to account for the
plateaulike line shape of the conductivity at small tempera-
tures, and �iii� the range of the scattering potential must be
spatially extended in order to keep the Tc suppression rea-
sonably small.34 Finally, we have shown that adding a small
concentration of pointlike strong scatterers, which have been
observed in STM experiments,33 to the weak extended scat-
tering potential, which we attribute to the out-of-plane disor-
der introduced by doping, is still compatible with the micro-
wave conductivity of BSCCO. Although it would be
necessary to refine our treatment of inelastic scattering by
accounting for its frequency dependence and its contribution
to vertex corrections in order to address the conductivity in
the THz range,13 it is interesting to note that elastic scattering
alone would predict a very different frequency dependence
for pointlike and extended scatterers.
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