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Thermal rectification in nonlinear quantum circuits
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We present a theoretical study of radiative heat transport in nonlinear solid-state quantum cir-
cuits. We give a detailed account of heat rectification effects, i.e. the asymmetry of heat current
with respect to a reversal of the thermal gradient, in a system consisting of two reservoirs at fi-
nite temperatures coupled through a nonlinear resonator. We suggest an experimentally feasible
superconducting circuit employing the Josephson nonlinearity to realize a controllable low temper-
ature heat rectifier with a maximal asymmetry of the order of 10%. Strikingly, we discover that
rectification can change sign as a function of temperature.

Heat transport in nanoscale structures has become an
active and rapidly growing research area. Progress in
experimental methods has enabled the study of funda-
mental issues, and lately the field has seen major break-
throughs, such as the measurement of quantized heat
transport [1], and manipulation of thermal currents us-
ing external control fields [2, 3]. In solid-state systems
electron–electron and electron–phonon scattering are the
most important channels for small systems to exchange
energy with the environment. However, recently it was
understood that at low temperatures one needs to take
into account the radiative channel which becomes the
dominant relaxation method in mesoscopic samples be-
low the phonon–photon crossover [2, 4, 5].

In this paper we study rectification effects in thermal
transport mediated by electromagnetic fluctuations in
solid-state nanostructures. In a two-terminal geometry
a finite rectification means that heat current is not sim-
ply reversed when the thermal gradient changes sign, but
also the absolute magnitude of the current changes. We
define the rectification R as

R = (J+ − J−)/ max{J+, J−}, (1)

where J+ and J− are the magnitudes of the heat currents
in forward and reverse bias configurations, respectively
(see Fig. 1). Previously rectification has been shown to
take place in systems where a classical [6, 7, 8] or quan-
tized [9, 10] nonlinear chain is coupled asymmetrically to
linear reservoirs, or when nonlinear reservoirs are coupled
through a harmonic oscillator [11]. Here we demonstrate
rectification in a fully quantum-mechanical and exper-
imentally realizable model where photon-mediated heat
current flows between two linear reservoirs coupled asym-
metrically to a nonlinear resonator.

Our analysis is based on a nonequilibrium Green’s
function method developed in Ref. [14], and the non-
linear transport problem is solved with a self-consistent
mean-field approximation. Rectification is studied as a
function of the operating temperatures, reservoir cou-
pling strengths and admittances, and the strength of the

forward bias reverse bias

FIG. 1: In a heat transport experiment, thermal energy flows
from a hot reservoir (temperature T1) to a cold reservoir (tem-
perature T2). To obtain the rectification R one must measure
the current for both thermal bias directions. In our model the
heat is transported by inductive magnetic coupling between
the reservoirs and the central nonlinear resonator.

nonlinearity. We also propose a concrete setup based on a
Superconducting QUantum Interference Device (SQUID)
where the rectification effects can be realized within
current experimental technology at sub-Kelvin temper-
atures. A similar circuit, operated in the linear regime,
was employed in the pioneering experiment demonstrat-
ing photonic heat transport [2]. By adjusting the ex-
ternal magnetic flux through the circuit it is possible to
tune the rectification continuously between zero and the
maximum value. Using realistic parameters we find a
rectification of over 10%, and identify a regime where R
changes sign as a function of temperature. Experimen-
tally rectification has been observed in phonon transport
through a nanotube at room temperature with R = 7%
[12] and in electron transport through a quantum dot at
80 mK with R up to 10% [13].

The thermal transport setup is depicted in Fig. 1. It
consists of two linear reservoir circuits with admittances
YL(ω) and YR(ω). Temperatures of the left and right
reservoirs are T1 and T2 < T1 in the forward bias setting,
and vice versa for reverse bias. We assume that heat
can flow between the reservoirs only through a mediat-
ing nonlinear resonator circuit. The couplings between
the reservoirs and the resonator are taken to be induc-
tive with mutual inductances ML and MR. Using the
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Caldeira–Leggett mapping between linear admittances
and bosonic reservoir modes the total Hamiltonian takes
the form H = HL + HR + HM + HC , where the middle
circuit and reservoir terms are

HM = ~ω0(b̂
†b̂ +

1

2
) +

~ǫ

2
(b̂ + b̂†)4, (2)

HL/R =
∑

j∈L/R

~ωj(â
†
j âj +

1

2
), (3)

and the inductive coupling term is

HC = Î
(

MLîL + MRîR

)

, (4)

which involves the current operators for the central de-
vice Î and for the reservoirs îL/R =

∑

j∈L/R gj(âj + â†
j),

respectively. The electric current operator for the cen-
tral device can be expressed as Î = I0(b̂ + b̂†) with
I0 =

√

~ω0/2L and ω0 = 1/
√

LC where L and C are
the linear inductance and capacitance of the resonator;
b̂, b̂† and reservoir operators are bosonic creation and an-
nihilation operators, [b̂, b̂†] = 1. The nonlinearity of the
central circuit is characterized by the the second term
in Eq. (2), corresponding to a quartic potential whose
strength is controlled by the parameter ǫ. It must be
emphasized that Eq. (4) has a generic bilinear form and
therefore the results are relevant for other types of sys-
tems beyond the studied realization.

The basis of our analysis is provided by the Meir–
Wingreen formula for the heat current [14, 15]

J =

∫ ∞

0

dωω2M2
L

2π
{2 [SI(−ω) − SI(ω)] Re[YL(ω)]nL(ω)

+ SI(−ω)2Re[YL(ω)]} . (5)

Here nL(ω) is the Bose function of the left reservoir and
SI(ω) =

∫ ∞

−∞
dt eiω(t−t′)〈Î(t)Î(t′)〉 is the current noise

power of the central circuit. The admittances YL/R(ω)
are related to the current correlation functions of the
free reservoirs [14]. In the absence of the nonlinear term
(ǫ = 0) the transport problem can be solved exactly for
arbitrary couplings and reservoir admittances [14]. No
rectification takes place in this regime. In the follow-
ing we solve the nonlinear transport problem in a self-
consistent mean-field approximation, which is expected
to be accurate for small values of the nonlinearity. This
approach does not fully account for the correlation ef-
fects due to the interplay of nonlinearity and tunneling
which are potentially important in the ultra-low temper-
ature regime T1, T2 ≪ ~ω0/kB. However, analogously to
interacting electron transport problems, the mean-field
approach is accurate in the sequential tunneling regime
when the temperatures are of the order of ~ω0/kB.

As a first step we approximate the resonator Hamilto-
nian as

HM ≈ ~ω0(b̂
†b̂ +

1

2
) + ~ǫΦ(b̂† + b̂)2, (6)

where we have defined the mean field Φ = 〈(b̂† + b̂)2〉.
Because Eq. (6) is again quadratic in bosonic operators,
it is possible to bring it to a diagonal form by a canonical
transformation. However, now we have the added com-
plication of an a priori unknown mean field, which has to
be evaluated self-consistently in a nonequilibrium state.
The transformed Hamiltonian and current operators are

HM = ~ω̃0(b̃
†b̃ +

1

2
), Î = Ĩ0(b̃ + b̃†), (7)

where ω̃0 = ω0

√

1 + 4ǫΦ
ω0

and Ĩ0 =
√

ω0

ω̃0

I0. Thus the ef-

fect of the nonlinear term is incorporated by a mean-field
dependent renormalization of the resonance frequency
of the oscillator and its current operator. For further
development it is convenient to introduce the correla-
tion functions 〈Î(t)Î(t′)〉r = −iθ(t − t′)〈[Î(t), Î(t′)]〉 and
〈Î(t)Î(t′)〉< = −i〈Î(t′)Î(t)〉. A nonequilibrium equation-
of-motion analysis [17], similar to the one presented in
Ref. [14], reveals that the current correlators are given
by

〈Î Î〉r(ω) =
1

(

〈Î Î〉r0(ω)
)−1

− Ĩ−2
0 Σr(ω)

,

〈Î Î〉<(ω) = Ĩ−2
0 |〈Î Î〉r(ω)|2Σ<(ω)

(8)

where 〈Î Î〉r0(ω) = 2Ĩ2
0 ω̃0/(ω2 − ω̃2

0) arises from the un-
coupled oscillator. The self-energies

Σr(ω) = − iĨ2
0ω

~

[

M2
LYL(ω) + M2

RYR(ω)
]

Σ<(ω) = − iĨ2
0ω

~

[

M2
LRe(YL(ω))nL(ω)

+ M2
RRe(YR(ω))nR(ω)

]

,

(9)

take into account the presence of reservoirs. Further-
more, the mean field Φ is related to the lesser correlator
via

Φ = 〈(b̂† + b̂)2〉 = −I−2
0

∫ ∞

−∞

dω

2πi
〈Î Î〉<(ω). (10)

Equations (8)–(10) form a closed set of equations which
needs to be solved to find the current correlation func-
tions. The self-consistent solution proceeds by making
an initial guess for the mean field, calculating the cor-
relation functions (8) corresponding to the initial value
and calculating the updated value of the mean field by
evaluating the integral in Eq. (10). The procedure is
repeated until convergence is achieved. The current
noise then follows immediately from the lesser function
SI(ω) = −Im〈Î Î〉<(−ω) which yields the heat current af-
ter evaluating Eq. (5). In the case of a vanishing nonlin-
earity (ǫ = 0) this procedure recovers the exact solution
of the linear problem.

For numerical calculations explicit expressions for the
admittances YL/R(ω) are needed. Here we assume that
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the reservoir circuits effectively consist of a resistor, a ca-
pacitor, and an inductor in series, resulting in YL/R(ω) =

R−1
L/R[1 − iQL/R( ω

ωL/R
− ωL/R

ω )]−1, where RL/R, QL/R,

and ωL/R are the resistance, quality factor and resonance
frequency of the left and right reservoir, respectively.
The behavior of the system is now uniquely determined
by nine dimensionless parameters: ǫ/ω0, kBT1/2/~ω0,
M2

L/RI2
0/~RL/R, QL/R, and ωL/R/ω0. Rectification can

then be calculated from Eq. (1), by computing the for-
ward and reverse bias currents, J+/−, with the above
prescription.

Let us illustrate some generic features of the model
with the simple setup of two purely dissipative reser-
voirs, QL = QR = 0, in which case the frequencies ωL

and ωR are irrelevant. In Fig. 2 we plot the rectification
against three different variables. First, from Fig. 2(a) we
see that already at moderate values of the nonlinearity,
ǫ ∼ 0.2 ω0, the rectification has essentially reached its
maximum value. Such values for ǫ are well within the
regime of validity of our approximations and should also
be easily achieved in the experimental setup proposed
below. Next, Fig. 2(b) exemplifies a very generic feature:
having M2

L/RL < M2
R/RR tends to produce J+ > J−,

and vice versa. Finally Fig. 2(c) shows that the recti-
fication increases logarithmically with the temperature
ratio T1/T2. Therefore, to see an appreciable effect, the
temperature difference T1 −T2 should be of the same or-
der of magnitude as the temperatures themselves. For
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FIG. 2: Rectification with purely resistive reservoirs, QL =
QR = 0, as a function of (a) nonlinearity ǫ, (b) coupling ML,
and (c) temperature ratio T1/T2. In all panels we have ǫ/ω0 =
0.2, kBT1/~ω0 = 0.2, kBT2/~ω0 = 0.1, M2

LI2

0/~RL = 0.2, and
M2

RI2

0/~RR = 1, except for the variable on the horizontal axis.
In panel (c) T1 is varied.

purely resistive reservoirs maximal value for the recti-
fication is about 2% (Fig. 2(a)). Larger values can be
obtained by adding a reactive part to one of the reservoir
circuits. Then, as Fig. 3 shows, R can be made an order
of magnitude higher. The inset shows the current J+,
normalized with respect to the universal single-channel

maximum heat current Jmax =
πk2

B

3~
(T 2

1 − T 2
2 ) [16]. Ac-

cording to Fig. 3, the highest values for R are obtained
for high temperatures, where J+ tends to zero. High rec-
tification and large current are thus competing effects,
and the optimal operating point depends on the experi-
mental constraints. In any case, it is possible to obtain a

rectification of ∼ 5% with J ∼ 0.1 Jmax and up to ∼ 15%
with J ∼ 0.01 Jmax.
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FIG. 3: Rectification with one reactive reservoir (QL = 0.1).
Here T1/T2 = 2 and the different curves correspond to
ωL/ω0 = 0.2 (solid), 0.1 (dashed), 0.05 (dash-dotted), 0.02
(dotted). Other parameters as in Fig. 2.

From Fig. 3 we also see that decreasing ωL increases
the rectification, so both small ωL and the condition
M2

L/RL < M2
R/RR favor the direction J+ > J−. We can

also combine these two trends in an opposing manner by
making ωL large. This way one can produce a system
where the direction of rectification changes as a function
of temperature (see Fig. 4). It is especially noteworthy
that in this case the extrema of rectification coincide with
reasonably high current levels, J ∼ 0.1 Jmax, i.e., at cur-
rent levels which should be detectable in experiments.
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FIG. 4: Rectification as a function of temperature. Here
QL = 0.1, ωL = 10 ω0 and the curves correspond to T1/T2 =
1.2 (solid), 1.5 (dashed), 2 (dash-dotted), 3 (dotted). Other
parameters as in Fig. 2.

For low operating temperatures, with T1, T2 approxi-
mately in the range 100 mK–1 K, the studied model can
be realized by the setup shown in Fig. 5. The system
consists of a superconducting loop containing a Joseph-
son junction characterized by its Josephson energy EJ



4

and shunt capacitance C. The loop itself is assumed to
have a finite inductance dominating the potential land-
scape. The Hamiltonian of the system is [18]

HM = EC q̂2 + EL(φ̂ − φx)2 − EJ cos φ̂, (11)

where the charging and inductive energies are EC =
e2/2C, EL = (~/2e)2/2L, and φx denotes the exter-
nal magnetic flux through the loop (in units of ~/2e).

The superconducting phase across the junction φ̂ and the
charge at the capacitor q̂ (in units of electron charge) are

treated as conjugate observables [φ̂, q̂] = 2i. The charg-
ing term can be thought of as the kinetic energy and
the φ-dependent terms as an effective potential energy
of a fictitious particle. In the following we assume that
φx ≈ π and EJ < 2EL so that the potential has a single
minimum at φ̂ = φ0, with φ0 ≈ π. With these assump-
tions the phase is bound close to the minimum so that we
can approximate the potential accurately by expanding
the cosine term to the 4th order:

HM = EC q̂2 + (EL +
1

2
EJ cosφ0)φ̂

2 − 1

24
EJ cosφ0 φ̂4

≡ EC q̂2 + E2φ̂
2 + E4φ̂

4, (12)

the second line defining the quantities E2 and E4. In
general there should also be a φ̂3 term, but with φ0 ≈ π
this is small. Further, within the mean-field approxi-
mation one has φ̂3 ∼ φ̂〈φ̂2〉, producing just a shift in
the origin. Writing the charge and phase in terms of
bosonic creation and annihilation operators we recover
exactly Eq. (2) with parameters ~ω0 = 4

√
ECE2 and

~ǫ = 2ECE4

E2

. The current operator of the circuit is given

by Î = I0(b̂ + b̂†), where I0 = 4e(ECE3
2)1/4/~. Thus, in

the parameter regime E2 ≫ E4 we have effectively re-
alized the previously studied weakly nonlinear resonator
model.
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FIG. 5: Rectification and heat current through the SQUID
system as a function of the control flux φx. Parameter val-
ues at φx = π as in Fig. 2, except T1 = 2 T2 = 0.4~ω0/kB .
Inset: Schematic of the SQUID setup with two linear reser-
voir circuits inductively coupled to a superconducting loop
containing one Josephson junction.

As the above considerations show, varying the exter-
nally applied field φx about π moves the potential min-
imun φ0 which in turn changes the values of the pa-
rameters ω0 and ǫ. In particular, ǫ is maximized at
φx = φ0 = π and vanishes when φ0 → π ± π/2. Fig-
ure 5 demonstrates the resulting continuous tuning of
the rectification performance.

In conclusion, we have analyzed heat rectification ef-
fects in radiative heat transport through a nonlinear
quantum resonator. This system is particularly inter-
esting because it can be realized by an experimentally
feasible superconducting circuit. The proposed system is
operated in a low-temperature regime and is, as far as we
know, the first suggestion for controllable heat rectifica-
tion not based on electron transport. Despite its simplic-
ity, the system is capable of producing a rectification of
over 10%. We have also discovered an unexpected effect
where the direction of rectification changes as a function
of temperature.
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