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Universal renormalization of saddle-point integrals for condensed Bose gases

Martin Holthaus* and Eva Kalinowski
Fachbereich Physik der Philipps-Universita¨t, Renthof 6, D-35032 Marburg, Germany

~Received 2 March 1999!

When treating the ground-state contribution exactly, a variant of the saddle-point method emerges that works
even for condensed Bose gases. Results thus obtained, such as canonical partition functions, differ by universal
renormalization factors from those provided by the conventional but incorrect scheme. The amended method
yields the statistical properties of ideal and very weakly interacting Bose gases with a fixed number of particles
with particular simplicity.@S1063-651X~99!13012-5#

PACS number~s!: 05.30.Ch, 05.30.Jp, 03.75.Fi
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The saddle-point method@1# is one of the true work
horses of statistical mechanics. Greatly promoted by Sc¨-
dinger’s lucid discussion@2#, it serves asthe essential tool
for the comparison of different statistical ensembles. In
field of Bose-Einstein condensation, however, this wo
horse shows signs of illness, which already thwarts the
tempt to compute canonical partition functions of ideal Bo
gases@3#. As detailed below, the usual answer to this te
book problem@4#, probably given by generations of phys
cists, turns out to beincorrect in the condensate regime
moreover, the standard saddle-point approximation does
yield the correct fluctuation of the number of condens
particles@5,6#. This shortcoming is particularly painful sinc
there is now, in the wake of the impressive series of succ
ful experiments on atomic Bose-Einstein condensates@7#,
enhanced interest in the statistical mechanics of mesosc
cally small, isolated samples of Bosons@8–11# which cannot
be described by the customary grand canonical ensemb

In this paper we discuss the reason for the failure of
standard approach, and modify the saddle-point approxi
tion such that it works forall temperatures. The correct ca
nonical N-particle partition functions will then allow us to
demonstrate the large-N equality of grand canonical and ca
nonical occupation numbers also in the condensate reg
and to assess the sharpness of the onset of Bose-Ein
condensation in a gas with a fixed, finite number of partic
Comparing the results of the standard saddle-point schem
those provided by the properly amended one, it is found
the error of the former isuniversal, that is, independent o
the system’s single-particle spectrum, so that correct res
can be obtained even from the standard scheme by mea
a simple, multiplicative renormalization.

We start from the familiar expansion@4# of the grand
canonical partition functionJ(b,z) of an ideal Bose gas
with single-particle energies«n (n50,1,2, . . . ) in terms of
the canonical partition functionsZN(b),

J~b,z!5 )
n50

`
1

12z exp~2b«n!
5 (

N50

`

zNZN~b!, ~1!
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whereb51/(kBT) is the inverse temperature. Hence, writin
J(b,z)/zN11[exp@2F̄1(z)#, or

F̄1~z!5~N11!ln z1 (
n50

`

ln~12ze2b«n!,

the desiredN-particle partition functionZN(b) is extracted
from this series~1! by means of a contour integral

ZN~b!5
1

2p i R dzexp@2F̄1~z!#, ~2!

where the path of integration encircles the origin of the co
plex z plane counterclockwise. The saddle pointz1 is then
determined from the requirement that the logarithm of
integrand becomes stationary, i.e., from]F̄1(z)/]zuz5z1

50.
This yields the relation

N115 (
n50

`
1

z1
21eb«n21

, ~3!

which looks like a grand canonical equation for the fugac
z1 in a gas withN11 bosons. Now one relies on the fact th
for large N the main contribution to the integral~2! is col-
lected in the neighborhood of the saddle point@2#, leads the
contour parallel to the imaginary axis over the saddle, a
usually employs the Gaussian approximation

Z̃N~b!5
1

2p i Ez12 i`

z11 i`

dzexpF2F̄1
(0)2

1

2
F̄1

(2)~z2z1!2G
5~22pF̄1

(2)!21/2exp~2F̄1
(0)!, ~4!

whereF̄1
(n) is thenth derivative ofF̄1 at z1, so that

F̄1
(2)52 (

n50

` z1
21e2b«n

~12z1e2b«n!2
. ~5!

Within this approximation~4!, the logarithm of the canonica
N-particle partition function reads
6534 © 1999 The American Physical Society
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ln Z̃N~b!52~N11!ln z12 (
n50

`

ln~12z1e2b«n!2
1

2
ln 2p

2
1

2
ln(

n50

` z1
21e2b«n

~12z1e2b«n!2
, ~6!

from which the canonical occupation number^na&cn of the
single-particle state with energy«a is obtained by differen-
tiating once with respect to2b«a ,

^na&cn5
] ln Z̃N

]~2b«a!
1

] ln Z̃N

]z1

]z1

]~2b«a!
. ~7!

For temperatures above the onset of Bose condensation
second sum on the right-hand side of Eq.~6! can be ne-
glected against the first. Then] ln Z̃N /]z1 vanishes as a con
sequence of the saddle-point equation~3!, so that

^na&cn5
] ln Z̃N

]~2b«a!
5

1

z1
21eb«a21

. ~8!

Thus, for the largeN considered these occupation numbe
equal their grand canonical counterparts@4#.

However, in the condensate regime the situation is q
different, since there the sum in Eq.~3! is dominated by the
ground-state contribution, so thatz1

21eb«021 is on the order
of 1/N. Then both sums in Eq.~6! are of thesameorder
O(ln N), and the neglect of the second is no longer justifi
Even worse, the entire saddle-point approximation~4! breaks
down @3#. The Gaussian integral~4! can capture the behavio
of the exact partition function~2! only if F̄1(z) is free of
singularities in those intervals where the approximation ga
ers its major contributions, that is, for thosez whereF̄1

(2)(z

2z1)2 is on the order of unity. SinceF̄1
(2)5O(N2) by Eq.

~5!, the familiar saddle-point scheme~4! can produce correc
resultsonly if F̄1(z) remains regular at least in an interval
orderO(1/N) aroundz1. But it does not: Again by Eq.~3!, it
is just the very hallmark of Bose-Einstein condensation t
the saddle-pointz1 approaches the ground-state singularity
z5eb«0 within orderO(1/N). With this diagnosis, the work
horse really is seriously ill.

Fortunately, there is a cure which almost suggests its
Since it is only the ground state which is causing the troub
one has to exempt the ground-state contribution toF̄1(z)
from the Gaussian approximation, and to treat that contri
tion exactly. More precisely, defining

F1~z!5F̄1~z!2 ln~12ze2b«0!, ~9!

the partition functions~2! acquire the still exact form

ZN~b!5
1

2p i R dz
exp@2F1~z!#

12ze2b«0
.

If one now lets the dangerous denominator stand as it is,
expands only the ground-state-amputated functionF1(z)
quadratically aroundz1, then the singular point produced b
the first excited state atz5eb«1 decides the fate of this ap
the
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proximation. Since the saddle point remains pinned be
eb«0, there is a gap wider than eb«12eb«0'
(«12«0)/(kBT) betweenz1 and the decisive singularity. Fo
sufficiently largeN, this gap hosts an interval on the order
the inverse square root of2F1

(2) aroundz1, which is what is
required to validate the approximation. Doing the integ
@12,13#, one arrives at

ZN~b!5expS b«02F1
(0)211

1

2
h2D1

2
erfcS h̄

A2
D ~10!

with h5(eb«02z1)A2F1
(2) and h̄5h21/h. This approxi-

mation to the canonical partition functions holds forall tem-
peratures. The special treatment of the ground-state contr
tion is essential in the condensate regime, but for highT,
wherez1 stays away fromeb«0, it does not matter whether o
not it is included in the Gaussian approximation. Inde
since bothh and h̄ are large for highT, Eq. ~10! then actu-
ally reduces to the familiar result~4!, ZN(b);Z̃N(b) in the
high-T domain @13#. The most characteristic feature of th
partition function~10! now is the appearance of the compl
mentary error function erfc: Its argument drops from lar
positive numbers at highT to large negative numbers in th
condensate regime, so that the steepness of this func
quantifies the sharpness of the onset of Bose-Einstein
densation within the canonical ensemble. This finding is
lustrated in Fig. 1 for idealN-particle Bose gases with
‘‘small’’ and ‘‘large’’ N in a three-dimensional isotropic ha
monic oscillator potential. In this and the following figure
the reference temperatureskBT05\v@N/z(3)#1/3 corre-
spond to the condensation temperatures in the large-N limit;
v is the oscillator frequency.

In the condensate regime, whereh'0, one finds

ZN~b!5exp~b«02F1
(0)21!, ~11!

so that the treacherous Eq.~6! is replaced by

ln ZN~b!5b«0212~N11!ln z12 (
n51

`

ln~12z1e2b«n!.

Evaluating] ln ZN /]z1, the amended Eq.~7! then reads

FIG. 1. Complementary error function erfc(h̄/A2) appearing in
the canonical partition function~10!, for gases of 102 ~short dashes!,
103 ~long dashes!, and 106 ~full line! ideal Bosons in a three
dimensional isotropic harmonic trap.
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^na&cn5
] ln ZN

]~2b«a!
2

z1
21

z1
21eb«021

]z1

]~2b«a!
.

Now one has to distinguish two cases: Sincez15eb«0

1O(1/N), one may justly neglect the second term on t
right-hand side, as one did in the incorrect reasoning ba
on Eq.~7!, only for aÞ0, and then recovers, and thus va
dates, Eq.~8!. In the case of the ground state, however,
second term isessential, yielding

^n0&cn5212
z1

21~2eb«0!

z1
21eb«021

5
1

z1
21eb«021

. ~12!

This is, of course, an expected result — large-N equality of
grand canonical and canonical occupation numbers h
also for the ground state — but it is enlightening to see h
the previously ill-famed saddle-point method, if execut
properly, manages to do the job: Although the result o
tained in Eq.~12! looks similar to Eq.~8! with a50, the
underlying reasoning is distinctly different.

A surprising discovery is made upon trying to reconc
the proper approximation~11! with the standard formula~4!.
Utilizing the definition ~9!, and exploiting that F̄1

(2)'
2(eb«02z1)22 in the condensate regime, the right-hand s
of Eq. ~11! becomes

ZN~b!5~eb«02z1!exp~2F̄1
(0)21!'

A2p

e
Z̃N~b!,

so that that the standard formula~4!, while correct at highT,
fails in the condensate regime by merely the temperat
independent factorR15A2p/e'0.92214, regardless of th
system’s single-particle spectrum, that is, of the trapping
tential which confines the gas. This finding, verified in Fig
for N51000 ideal Bosons in an isotropic harmonic trap, e
plains why — fortuitously — correct results can be obtain
by taking derivatives of the incorrect lnZ̃N(b): The error,
committed unknowingly, drops out whenN is large enough.

FIG. 2. Ratio of the proper saddle-point approximation~10!
~heavy full line! and of the standard ‘‘approximation’’~4! ~dashed
line! to the exact partition functions, for 103 ideal Bosons in a
three-dimensional isotropic harmonic trap. The thin line indica
the universal factor 1/R1'1.08444, by which the standard formu
fails in the condensate regime. The approximations are denote
ZN

~s.p.! ; the exact data forZN have been computed recursive
@8–10#.
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Generalizing, we now introduce the quantities

I s5
1

2p i R dz
exp@2Fs~z!2~s21!b«0#

~12ze2b«0!s

with positive integers, and

Fs~z!5~N122s!ln z1 (
n51

`

ln~12ze2b«n!,

so that ZN(b)[I 1; moreover, ^n0&cn is exactly equal to
I 2 /I 1. The corresponding saddle-point equations

N122s5
s

zs
21eb«021

1 (
n51

`
1

zs
21eb«n21

, ~13!

mimic grand canonical systems withN122s particles and
s-fold degenerate ground states: The best possible sad
point calculation of̂ n0&cn, more accurate than the approx
mation ~12!, formally involves ground-state doubling@13#.

The mean-square condensate fluctuations then becom

^d2n0&cn5I 2 /I 12~ I 2 /I 1!212I 3 /I 1 . ~14!

Here, the third term acts as a switch:I 3 /I 1;^n0&cn
2 for tem-

peratures above the condensation point, so that t
^d2n0&cn5^n0&cn1^n0&cn

2 , as in the grand canonical en
semble @4#. In contrast, 2I 3 /I 1→N22N, and therefore
^d2n0&cn→0, for T→0. Following the same amende
saddle-point strategy that has already led to the canon
partition function~10!, the integralsI s can be expressed in
terms of parabolic cylinder functions@12,13#. In the conden-
sate regime, we find

I s5S s

eb«02zs
D s21

exp~b«02Fs
(0)2s!

~s21!!
,

differing again by universal renormalization factors

Rs5A2psss21e2s/~s21!!

from the results provided by the standard saddle-po
scheme. Stirling’s formula for (s21)! now impliesRs→1
for large s: The incorrect standard scheme becomesbetter
when the orders of the ground-state pole isincreased. This
seemingly paradoxical result — after all, it is the groun
state pole which spoils the standard scheme — finds its
planation in the saddle-point equation~13!: In a system with
a s-fold degenerate ground state, each individual state ta
only (1/s)-th of the population that a non-degenerate st
would have to carry. Therefore, the distance fromeb«0 to the
saddle pointzs is of the orderO(s/N), so that increasings
driveszs away from the singular point, thereby lessening t
error.

If one naively uses the standard scheme for evalua
condensate fluctuations, disaster strikes: Then the ‘‘appr
mations’’ to the three terms on the right-hand side of E
~14! are off by factorsR1 /R2 , (R1 /R2)2, and R1 /R3, re-
spectively, wrongly suggesting that^d2n0&cn does not vanish
properly for T→0, but rather approaches 0.02438N2 —
which, for largeN, is huge. In contrast, our amended sche
works with utmost accuracy. Figure 3 shows the rms fluct

s
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tion ^dn0&cn[^d2n0&cn
1/2 for 106 ideal Bosons in an isotropic

trap, and compares the saddle-point result to the approx
tion

^d2n0&cn5t3z~2!1t2~1.5 lnt13.7608!20.5t ~15!

FIG. 3. Heavy full line: Canonical rms fluctuation of th
ground-state occupation number for a gas of 106 ideal Bosons in an
isotropic harmonic trap, computed with the amended saddle-p
method. The dashed line corresponds to only the leading term o
approximation~15!; the thin line, visible only in the upper righ
corner, to the full Eq.~15!. Even in the inset, the heavy and the th
line remain indistinguishable.
oc
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with t5kBT/(\v)@1, which can be derived under the a
sumption of an infinite reservoir of condensate particles
this particularly simple trap@6,14#. The strength of the
saddle-point approach, of course, lies in the fact that it wo
with the same simplicity also for every other trap geomet
and that it can easily be adapted to the microcanonical
semble@13#.

Experimentally realized condensates in harmonic traps
weakly interacting, i.e., they satisfyN(a/L)3!1, wherea is
thes-wave scattering length of the atomic species with m
m and L5A\/(mv). In addition, one usually hasNa/L
@1, placing the system in the Bogoliubov regime@15#. Spin-
polarized hydrogen atoms@16#, with their rather low scatter-
ing length a50.0648 nm @17#, form an exception that
comes closer to the ideal gas: Taking a shallow trap w
v5100 s21, one hasNa/L'1 even forN5400 000. Thus,
it is possible to prepare systems intermediate between
ideal gas and the Bogoliubov gas. If one assumes the vali
of first-order perturbation theory, the partition function
such a very weakly interacting gas can be expressed in te
of partition functions of ideal gases@4,18#. Hence, for ex-
ploring the non-trivial crossover@15# from the ideal gas to
the Bogoliubov gas, the techniques sketched here sh
prove invaluable.
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@5# M. Gajda and K. Rza¸żewski, Phys. Rev. Lett.78, 2686~1997!.
@6# P. Navezet al., Phys. Rev. Lett.79, 1789~1997!.
@7# For a review, see W. Ketterle, D. S. Durfee, and D.

Stamper-Kurn, e-print cond-mat/9904034.
@8# F. Brosens, J. T. Devreese, and L. F. Lemmens, Solid S

Commun.100, 123 ~1996!.
@9# C. Weiss and M. Wilkens, Opt. Express1, 272 ~1997!.
.

te

@10# N. L. Balazs and T. Bergeman, Phys. Rev. A58, 2359~1998!.
@11# M. O. Scully, Phys. Rev. Lett.82, 3927~1999!.
@12# R. B. Dingle, Asymptotic Expansions: Their Derivation an

Interpretation~Academic Press, New York, 1973!, Chap. XI.
@13# M. Holthaus and E. Kalinowski, Ann. Phys.~N.Y.! 276, 321

~1999!.
@14# M. Holthaus, E. Kalinowski, and K. Kirsten, Ann. Phys

~N.Y.! 270, 198 ~1998!.
@15# S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Le

80, 5040~1998!.
@16# D. G. Friedet al., Phys. Rev. Lett.81, 3811~1998!.
@17# M. J. Jamieson, A. Dalgarno, and M. Kimura, Phys. Rev.

51, 2626~1995!.
@18# Z. Idziaszeket al., Phys. Rev. Lett.82, 4376~1999!.


