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Chapter 1

Introduction

1.1 History and Motivation

The phenomenon of Bose-Einstein condensation (BEC) was first predicted by A. Einstein in 1924

[1,2] when he reviewed a work of S.N. Bose [3] about the statistics of photons and applied it

to massive bosonic particles. He found out that, when a gas of indistinguishable bosonic atoms

is cooled below a critical temperature Tc, a macroscopic fraction of the bosons condenses into the

quantum mechanical ground state. Einstein interpreted this condensation as a phase transition since

the condensed particles no longer contribute to the entropy. Similar to the optical field of a laser

with many photons in a single mode the matter wave of N0 condensed bosons, called the condensate

wave function, is the superposition of N0 single-particle ground-state wave functions which can serve

as a source of a coherent matter beam, i.e. an atom laser. The macroscopic occupation of the ground

state with massive bosons is possible due to the particle number conservation. Contrary to that a

nonequilibrium process in the laser is necessary to achieve a macroscopic photon population in a

single mode of the electromagnetic field. As photons have no mass, their number in a black-body

cavity is not conserved. Thus, photons do not condense into the lowest mode, but are absorbed

by the walls of the black-body cavity, when the latter is cooled. It took until 1995 when BEC was

observed experimentally in 4He by momentum distribution measurements [4], in semiconductors,

where paraexcitons were found to condense [5], and in dilute alkali gases, namely in 87Rb [6], in 7Li

[7], and in 23Na [8]. The BEC in the alkali gases were only possible due to trapping and cooling

techniques, which had been developed the decade before, and can be created in an almost pure form.

BEC’s have been realized with all alkali gases, except francium, and with hydrogen and chromium

[9] as well. The latter interacts in addition to the isotropic short-range atomic interaction by an

anisotropic long-range magnetic dipole-dipole interaction due to six unpaired electrons inducing a

strong magnetic moment. In the case of 41K the difficulties in direct forced evaporative cooling,

due to limitations in the temperature and density ranges achievable by laser cooling, were overcome

by thermalization through evaporatively cooled 87Rb [10]. Thus, the bosons are used as a coolant

being in thermal equilibrium with the fermions through interspecies interaction to bring them into

the quantum degenerate regime. This method is called sympathetic cooling.

Six years after the first experimental achievement of BEC of trapped atomic gases in 1995 fermionic

atomic gases were brought together with bosonic atoms to quantum degeneracy in a 7Li–6Li mixture

[11,12], 23Na–6Li mixture [13], and 87Rb–40K mixture [14], as shown in Figure 1.1. In contrast to
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Figure 1.1: False-color reconstruction of the density distributions of a gas with fermionic
40K (front) and bosonic 87Rb (back) during the evaporative cooling process, as detected

after a ballistic expansion of the mixture [19]. The left picture shows how the BEC starts

to form out of the thermal cloud while coexisting with the fermion gas. In the middle

picture the BEC grows whereas the fermion gas is slightly depleted by inelastic collisions.

When an almost pure condensate of 105 atoms has formed, the fermion gas has practically

collapsed, as shown in the right picture.

the BEC in a Bose system, quantum degeneracy in a Fermi system with only one spin component

means that all energy states below the Fermi energy EF are occupied with one fermion each,

whereas all states above EF remain empty, which happens when T ≪ TF = EF /kB . The main

problem to achieve quantum degeneracy in a Fermi gas is the inability of fermions to be directly

evaporatively cooled. This is because fermions obey the Pauli exclusion principle, which forbids

fermions in the same spin polarized hyperfine state to be close together, so that they can not

collide via short range δ-interaction to rethermalize the gas during the evaporative cooling. This

handicap was circumvented before in the experiment of DeMarco and Jin [15], where a mixture with

two different spin states of 40K was simultaneously evaporated by mutual cooling. It turned out

there as a disadvantage that rethermalizing collisions were suppressed by the decreasing fraction of

available unoccupied states when the gas became sufficiently quantum degenerate. This process is

known as Pauli blocking. In combination with a Bose gas the fermions are sympathetically cooled

by elastic interactions with the bosons in the overlapping region whereby the Pauli blocking effects

are minimized [14,16].

Beside the exploration of quantum degeneracy, one is also interested in studying how the two-

particle interaction influences the system properties. This opens a huge range of experimental

regimes to be explored from noninteracting to strongly scattered. In the first case, pure quan-

tum statistical effects, such as the consequences of the Pauli exclusion principle on the scattering

properties of the system, can be investigated. The other extreme, with the prominent example of
4He–3He liquid [17,18], leads to new phenomena like phase separation or BEC-induced interactions

between fermions. Depending on the nature of the interspecies interaction, a repulsion between

bosons and fermions tends to a demixing in order to minimize the overlapping region, whereas in

the case of an attraction the mixture can collapse, as shown in Figure 1.1, as long as the particle

numbers are sufficiently large [16,19]. The possibility of superfluidity in a Fermi gas, especially the

predicted BEC-BCS crossover between BCS-type superfluidity of Cooper pairs of fermionic atoms
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Figure 1.2: Example of a Feshbach resonance for 85Rb in the state |F = 2, mF = −2〉,
taken from [22], shows the scattering length a in units of the Bohr radius a0 as a function

of the magnetic field B. The position of the resonance is marked by the vertical dashed

line. A repulsive (attractive) interaction of arbitrary strength can be adjusted by a slight

detuning from the resonance to stronger (weaker) magnetic fields.

and BEC of molecules was probed recently [20,21]. A magnetic-field Feshbach resonance was used

to tune the interaction strength between fermionic atoms of two different spin states, characterized

by the s-wave scattering length a, from effectively repulsive (a > 0) to attractive (a < 0), see

Figure 1.2. On the a > 0, or BEC, side of the magnetic field, there exists a weakly bound molecu-

lar state whose binding energy and life time depends strongly on the detuning from the Feshbach

resonance. Fermionic atoms are bound into bosonic molecules which can condense at sufficient low

temperatures. On the other a < 0, or BCS, side of the resonance two fermions each of different

spin states form a loosely bounded Cooper pair. The condensate of Cooper pairs, where the under-

lying role of Fermi statistics of the paired particles plays an essential role, is distinct from that of

molecules where no fermionic degree of freedom remains. In the experiments [20,21] condensation

of fermionic atom pairs was observed on both the BEC and BCS side of the Feshbach resonance.

Furthermore, the system was observed to vary smoothly in the BEC-BCS crossover regime. An

alternative and complementary access to Fermi superfluidity is expected from quantum degenerate

Bose-Fermi mixtures where an effective interaction between fermions is mediated by the bosons

[23,24], similarly to the role of phonons in a solid state superconductor.

Another recent and fast growing field is the investigation of ultracold boson-fermion mixtures

trapped in an optical lattice which is created by standing waves of the electric field of counterprop-

agating laser beams. When atoms or molecules are loaded into an optical lattice with a total filling

factor less than unity, the undesirable inelastic collisions, which usually occur in experiments with

optical or magnetic traps, are reduced whereby the lifetime of the particles is significantly enhanced

[25]. With the periodicity of the optical lattice the conditions in a solid body with crystalline struc-

ture can be simulated where the lattice constant and the potential-well depth can be varied with

great precision by the wavelength and the intensity of the laser light, respectively. This opens the

way to simulate complex quantum systems, traditionally associated with condensed matter physics,

by means of atomic systems with perfectly controllable parameters. The atoms can be confined

to different lattice sites and, by varying the laser intensity, the tunneling of them to neighbouring

sites as well as the strength of their on-site repulsive interactions can be controlled. In the case of
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a pure ultracold Bose-Einstein condensate with repulsive interaction, held in a three-dimensional

optical lattice potential, a quantum phase transition from a superfluid to a Mott insulator phase

was observed as the depth of the lattice is increased leading to a suppression of the tunneling

between neighbouring lattice sites [26]. Within the Bose-Hubbard model [27] superfluidity means

that each atom is spread out over the entire lattice with long-range phase coherence, whereas in

the insulating phase a certain number of atoms is localized at each individual lattice site with no

phase coherence across the lattice. The presence of fermionic atoms together with the Bose-Einstein

condensate makes the system more complex and richer in its behavior at low temperatures. It has

been predicted that novel quantum phases in the strong coupling regime occur which involve the

pairing of fermions with one or more bosons or bosonic holes respectively, when the boson-fermion

interaction is attractive or repulsive [28]. Depending on the physical parameters of the system

these composite fermions may appear as a normal Fermi liquid, a density wave, a superfluid, or an

insulator with fermionic domains. In the limit of very large lattice potential strength the mixture

in an one-dimensional lattice passes through a disordered phase which possess many degenerate

or quasidegenerate ground states separated by very high potential energy barriers [27]. Such a

disordered phase is related to a breaking of the mirror symmetry in the lattice. Instead of varying

the lattice potential depth the transition from a superfluid to a Mott insulator in bosonic 87Rb can

be shifted towards larger lattice depth by adding of fermionic 40K which interacts attractively with

rubidium and therefore increases the effective lattice depth [29]. On the way from the single super-

fluid phase without fermions in the three-dimensional optical lattice to the single Mott insulator

phase with uniform distributed fermions one observes also localized bosonic ensembles or domains

in superfluid “islands” due to percolation by a random fermion distribution, where the fermions

act as impurities.

1.2 Experiment

Atoms are composite particles and consist of protons, neutrons, and electrons which all are fermions.

An isotope of an element is a boson (fermion) if its spin is integer (half-integer), or equivalently,

if the number of neutrons it contains is even (odd) since, roughly spoken, each proton is paired

with an electron to form a boson. The question whether these composite particles can be regarded

as pointlike depends on the occurrence of internal excitations within the atoms. If the energy

needed for an internal excitation is much larger than kBT , then all internal degrees of freedom are

frozen out and have no consequences for the thermodynamics at temperature T [30]. The energy

of the first electronic excitation state of an atom of size a is not larger than ~
2/mea

2 due to the

uncertainty principle, where me is the electron mass. As the thermal de Broglie wavelength

λT =

√

2π~2

mkBT
, (1.1)

which is comparable with the mean interatomic separation in a quantum degenerate gas, is much

larger than the size a of an atom, it is obviously that

~
2

mea2
≫ kBT =

2π~
2

mλ2
T

. (1.2)

The choice of elements for bosons and for fermions to be trapped and cooled to quantum degen-

eracy is mainly determined by the trapping and cooling techniques. Magnetic traps require atoms



1.2 Experiment 9

with strong magnetic fields. The alkali gases with an unpaired electron are suitable candidates.

Atoms with strong transition in the spectrum of the applied laser are useful for laser cooling.

The sympathetic cooling of fermions by evaporatively cooled bosons requires a large ratio between

“good” elastic collisions leading to a quick thermalization and “bad” inelastic collisions resulting

in a loss of particles mainly by three-body recombination. A large intraspecies scattering length

is therefore essential. Furthermore, a short thermalization time during the cooling, enabling the

cooling process to be shorter than the formation time for molecules and clusters, is also necessary

in order to prevent that the ultracold gas makes a transition into the more stable solid or liquid

phase which is natural at these low temperatures. A first step towards the transition into the solid

state is the recombination of two atoms to a molecule. This process is forbidden for two particles

due to energy and momentum conservation and requires a third atom to take the surplus energy

away. It is now clear that the gas must be dilute to maintain the metastable gaseous phase by

reducing the three-body recombination rate.

The necessary temperature T for achieving quantum degeneracy in dilute bosonic and fermionic

gases depends in homogeneous gases on the respective particle densities nB, nF and in trapped

gases on the particle numbers NB , NF and on the trap frequencies. Here we assume that the trap

potential is described by a three-dimensional harmonic oscillator with the frequencies ωx, ωy, and

ωz. The critical temperature Tc for the onset of the BEC is given for a homogeneous boson gas by

Tc,homog =
2π~

2

mBkB

[

nB
ζ(3/2)

]2/3

≈ 3.312
~

2n
2/3
B

mBkB
, (1.3)

and for a trapped boson gas by [31]

Tc,trap =
~ω̃B
kB

[

NB

ζ(3)

]1/3

≈ 0.9405
~ω̃BN

1/3
B

kB
, (1.4)

where ζ(3/2) ≈ 2.612 and ζ(3) ≈ 1.202 as defined in Eq. (D.19). Furthermore mB is the mass of

a bosonic atom and ω̃ = (ωxωyωz)
1/3 denotes the geometrical average of the trap frequencies. On

the other hand, the Fermi temperature TF of a homogeneous spin polarized fermion gas reads

TF,homog =
62/3π4/3

~
2n

2/3
F

2mF kB
≈ 7.596

~
2n

2/3
F

mF kB
, (1.5)

and for a trapped spin polarized fermion gas [32]

TF,trap =
61/3

~ω̃FN
1/3
F

kB
≈ 1.817

~ω̃FN
1/3
F

kB
, (1.6)

where mF denotes the mass of a fermionic atom. A high density or a large number of fermions is

needed to attain proper quantum degeneracy in the fermion gas with T < 0.2TF , where only a few

states above the Fermi energy EF are occupied.

In the following we briefly describe the experiments with a 87Rb–40K boson-fermion mixture which

were performed by the Sengstock group in Hamburg [16] and by the Inguscio group in Florence

[14,19] as the theoretical investigation of this thesis is based on these experiments. The vapor of

both 87Rb and 40K is generated by an oven or a dispenser and confined in a two-species magneto-

optical trap (MOT). Because of the requirement of simultaneous trapping of two different atomic

species, these traps are more complex compared to traps for a single boson gas. There, the vapor
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is precooled by resonant laser beams to about 100 µK within 10 s. Precooling is necessary as the

energy depth of the following magnetic trap is much less than 1 K if we assume that the magnetic

moments µ of the atoms due to their unpaired electron are of the order of the Bohr magneton

µB = e~/2me and the magnetic fields B in the laboratory are far below 1 T resulting in a Zeeman

energy µB ≈ 0.67K/T [33]. The mixture consisting of 1010 (5·108) 87Rb and 2·108 (105) 40K atoms

in the Hamburg (Florence) experiment is prepared in the doubly polarized state |F = 2, mF = 2〉
for 87Rb and the state |F = 9/2, mF = 9/2〉 for 40K and loaded in a Ioffe-Pritchard-type magnetic

trap for the evaporative cooling. In a doubly polarized state the nuclear spin I = 3/2 for 87Rb

and I = 4 for 40K and the electron spin J = 1/2 for both have the largest possible projection on

the axis of the magnetic field B and point to the same direction maximizing the total atomic spin

F = I + J and its magnetic quantum number mF being the projection of F on the axis of B. If

an atom in the hyperfine state mF with a magnetic moment µµµm experiences an external magnetic

field B, its energy Em is shifted by

∆Em = −µm ·B = gµBmFB, (1.7)

where g is the Landé g factor of the atom. Thus, atoms in a state with gmF > 0 (gmF < 0)

experience in an inhomogeneous field a spatially varying potential and are driven towards the

minimum (maximum) of the magnetic field to minimize the energy and are therefore called low-

field seekers (high-field seekers). The latter possibility is ruled out since a local maximum of the

magnitude B = |B| is impossible due to Maxwell’s equations in regions of magnetic fields where

no electrical currents occur. So atom traps have to generate magnetic fields with a local minimum

and may be realized by a pair of Helmholtz coils with identical currents in the coils in opposite

directions producing a quadrupolar field. The trap can confine atoms without losses only if the

atoms remain in the same quantum state m relative to the instantaneous direction of the magnetic

field and hence follow the variation of the magnetic field adiabatically [33]. This is ensured if the

magnetic field experienced by an atom changes slower than the precession frequency ωLarmor of the

magnetic moment around the axis of B

dθ

dt
<
gµBmFB

~
= ωLarmor, θ = W(B,µµµm), (1.8)

which is equal to the transition frequency between magnetic sublevels mF .

The magnetic field of the trap is rotationally symmetric and can be well approximated in the

vicinity of the trap center by

B(x) = B0 +Brr
2 +Bzz

2, (1.9)

using cylindrical coordinates {r, φ, z}. Due to Eq. (1.7) both atom species experience an external

potential in the form of an anisotropic harmonic oscillator

Vi(x) = V0 +
mi

2

(

ω2
i,rr

2 + ω2
i,zz

2
)

, i = B,F. (1.10)

As a boson and a fermion at the same position within the trap feel forces of equal size, the trap

frequencies for bosons and fermions are related by their masses

ωF,k =

√

mB

mF
ωB,k, k = r, z, (1.11)

and are listed in Table 1.1. The main tasks of the magnetic trap are to confine and compress the
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Hamburg Experiment Florence Experiment

mass of 87Rb atom mB = 14.43 · 10−26 kg

mass of 40K atom mF = 6.636 · 10−26 kg

s-wave scattering length

(bosons ↔ bosons)

aBB = (5.238 ± 0.002) nm

s-wave scattering length

(bosons ↔ fermions)

aBF = −15.0 nm aBF = (−20.9 ± 0.8) nm

radial trap frequency (bosons) ωB,r = 2π · 257 Hz ωB,r = 2π · 215 Hz

axial trap frequency (bosons) ωB,z = 2π · 11.3 Hz ωB,z = 2π · 16.3 Hz

radial trap frequency (fermions) ωF,r = 2π · 379 Hz ωF,r = 2π · 317 Hz

axial trap frequency (fermions) ωF,z = 2π · 16.7 Hz ωF,z = 2π · 24.0 Hz

number of bosons NB = 106 NB = 2 · 105

number of fermions NF = 7.5 · 105 NF = 3 · 104

Table 1.1: List of parameters of the experiments with a 87Rb–40K boson-fermion mixture.

The values are taken from the experiments of the Sengstock group in Hamburg [16] and of

the Inguscio group in Florence [14,19,35].

mixture to particle densities around 1014 cm−3 whereby the collision rate is increased to make the

evaporative cooling more efficient. Radio-frequency evaporative cooling is performed selectively

on the Rb sample where the most energetic atoms can escape from the trap and carry more than

the average energy per atom away, leading to a decrease of the temperature in the mixture. This

process is very similar to a steaming cup of hot coffee where the cooling can be speed up by

blowing over the coffee. Thermal equilibrium in the sample is kept by thermalization through

elastic collision between the atoms. The K atoms are sympathetically cooled by the Rb atoms with

high efficiency due to the large intraspecies scattering length and large ratio between elastic and

inelastic collisions. At the final stage after 25 s of evaporative cooling below 1 µK a condensate of

106 (2 · 105) 87Rb atoms coexisting with 7.5 · 105 (3 · 104) 40K atoms with a quantum degeneracy

of T/TF = 0.1 (T/TF = 0.3) is achieved in the Hamburg (Florence) experiment. One uses a false-

color coding of the optical density of both components, which are taken after a ballistic expansion

for 4 ms time of flight (TOF) for 40K and 19 ms TOF for 87Rb by using two short, delayed light

pulses, after the trap potential is suddenly switched off. This false-color coding makes the density

distribution visible and allows to draw conclusions from the momentum distribution of the gas in

the trap. The density distribution of the BEC sample and of the thermal boson cloud can be fitted

by expected theoretical curves, which allow to estimate the condensed fraction n0 = N0/NB and

the temperature T , where N0 denotes the number of condensed bosons.
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aBF /aBohr Method of determination Reference (year)

−261+170
−159

measurement of the elastic cross section for colli-

sions between 41K and 87Rb in different temperature

regimes and following mass scaling to the fermionic
40K isotope

[34] (2002)

−330+160
−100

measurement of the rethermalization time in the

mixture in [14,19] after a selectively heating of 87Rb
[14] (2002)

−410+81
−91

measurement of the damping of the relative oscilla-

tions of 40K and 87Rb in a magnetic trap
[19] (2002)

−395 ± 15 mean-field analysis of the stability of the mixture in

[14,19]
[35] (2003)

−281 ± 15 magnetic Feshbach spectroscopy of an ultracold mix-

ture of 40K and 87Rb atoms
[36] (2004)

250 ± 30
cross dimensional thermal relaxation in a mixture

of 40K and 87Rb atoms after a increase of the radial

confinement of the magnetic trap, here only |aBF /a0|
[37] (2004)

−284 mean-field analysis of the stability, based on [38], of

the mixture in [16]
[16] (2006)

−205 ± 5 extensive magnetic Feshbach spectroscopy of an ul-

tracold mixture of 40K and 87Rb atoms
[39] (2006)

Table 1.2: List of several published values of the s-wave scattering length between 87Rb

and 40K including their determination method and their references.

The experimental parameters of both experiments are summarized in Table 1.1. The distinct

values for the interspecies s-wave scattering length aBF for each experiment are worth a detailed

explanation since this parameter is of great importance for the system, especially for the stability

of the mixture against collapsing. An overview of different values for aBF and their determination

method along with a reference are shown in Table 1.2. A comparison of the incompatible values

for aBF shows the need of further investigation in this field.

1.3 Outline of this Thesis

After this overview over the fascinating field of boson-fermion mixtures we sketch what we inves-

tigate in the present thesis.

The aim of Chapter 2 is to derive the Gross-Pitaevskii equation for an ultracold dilute boson-fermion
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mixture in D dimensions. For that purpose we describe a dilute gaseous boson-fermion mixture

in a grand-canonical ensemble within the functional integral representation. For more generality

we include the time dependence in the formulas, so that also the dynamics of the mixture could

be described at a later date beyond this thesis. By splitting the Bose fields into background fields

and fluctuation fields and integrating out the Fermi fields, we derive an effective action of the

Bose subsystem within the semiclassical Thomas-Fermi approximation. Its extremization at zero

temperature yields the Gross-Pitaevskii equation for the condensate wave function where besides

the conventional form for a BEC an additional nonlinear term occurs due to the interaction with

the fermions. A modified effective action without integrating out the fermionic degrees of freedom

is used to get two coupled equations of motion, one for the condensate wave function and another

one for the Green function of the fermions.

In Chapter 3 we apply the Thomas-Fermi approximation again by neglecting the kinetic energy of

the bosons and obtain an algebraic Gross-Pitaevskii equation, which can be easily solved. With the

help of this solution we determine the density profiles of both components in a 87Rb–40K mixture

where the δ-interaction is repulsive between the bosons and attractive between both components.

Furthermore, we investigate the stability of the Bose-Fermi mixture with respect to collapse by

evaluating numerically the effective action for a trial Gaussian density profile of the condensate.

We compare our results, which strongly depend on the value of the Bose-Fermi s-wave scattering

length, with the experiments on 87Rb–40K mixtures in Hamburg and Florence.

Finally, in Chapter 4 we present our conclusions and give suggestions for further investigations.
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Chapter 2

Derivation of Gross-Pitaevskii

Equation

A many-body system is described within the grand-canonical ensemble by assuming that it is

connected with its environment so that an exchange of both energy and particles is allowed. Fur-

thermore, the system is in thermodynamic equilibrium with its environment sharing with it a

temperature T and a chemical potential µ. The environment as a heat and particle reservoir is

assumed to be much larger than the system, so that the exchange of energy and particles with the

system does not alter its energy and particle number significantly.

2.1 Grand-Canonical Partition Function

We consider a dilute gaseous mixture of ultracold bosonic and fermionic atoms. In order to obtain

statistical quantities for such a Bose-Fermi mixture, we use the grand-canonical partition function

in the functional integral formalism. Thus, we integrate over all possible Bose fields ψ∗
B(x, τ),

ψB(x, τ) and Fermi fields ψ∗
F (x, τ), ψF (x, τ), which are weighted by a Boltzmann factor with the

euclidean action A:

Z =

∮

Dψ∗
B

∮

DψB
∮

Dψ∗
F

∮

DψF e−A[ψ∗

B
,ψB,ψ

∗

F
,ψF ]/~. (2.1)

The complex fields ψ∗
B(x, τ), ψB(x, τ) represent the bosons and are periodic on the imaginary

time interval [0,~β], whereas the fermions are described by Grassmann fields ψ∗
F (x, τ), ψF (x, τ),

explained briefly in Appendix A, which are antiperiodic on this interval:

ψ∗(x,~β) = ǫ ψ∗(x, 0), ψ(x,~β) = ǫ ψ(x, 0). (2.2)

Here ǫ = ±1 holds for bosons and fermions, respectively. These fields are nonrelativistic Schrödinger

fields and are not second quantized in accordance with the classical field theory of the nonrelativistic

quantum mechanics. In this thesis the second quantization is taken into account by using the

functional integral (2.1). The euclidean action A in Eq. (2.1) follows from the quantum-mechanical

action AQM via a Wick rotation t = −iτ . The quantum-mechanical action AQM is the space-time

integral

AQM[ψ∗
B , ψB , ψ

∗
F , ψF ] =

∫

dt

∫

dDxL(ψ∗
B , ψB , ψ

∗
F , ψF ), (2.3)
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where the Lagrange density consists of three terms

L(ψ∗
B , ψB , ψ

∗
F , ψF ) = LB(ψ∗

B , ψB) + LF (ψ∗
F , ψF ) + LBF (ψ∗

B , ψB , ψ
∗
F , ψF ). (2.4)

The first term describes the bosonic component of the mixture:

LB(ψ∗
B , ψB) = i~ψ∗

B(x, t)
∂ψB(x, t)

∂t
− ~

2

2mB
|∇ψB(x, t)|2

−
{

VB(x) +
1

2

∫

dDx′ V
(int)
BB (x,x′) |ψB(x′, t)|2

}

|ψB(x, t)|2. (2.5)

It contains the Legendre transform, the kinetic energy, the external trap potential VB(x), and the

two-particle interaction potential V
(int)
BB (x,x′) between two bosons. As we deal with a dilute gas,

collisions of three and more particles at the same time occur very rarely compared to two-particle

collisions, so that an interaction between more than two particles is negligible. Since the Pauli

principle forbids fermions in the same hyperfine state to be close together and therefore to collide

via δ-interaction, we can write the action term for the fermionic component of the mixture as

LF (ψ∗
F , ψF ) = i~ψ∗

F (x, t)
∂ψF (x, t)

∂t
− ~

2

2mF
|∇ψF (x, t)|2 − VF (x) |ψF (x, t)|2, (2.6)

where VF (x) represents an external trap potential for fermions. The last term in Eq. (2.4)

LBF (ψ∗
B , ψB , ψ

∗
F , ψF ) = −

∫

dDx′ V
(int)
BF (x,x′) |ψB(x′, t)|2 |ψF (x, t)|2 (2.7)

describes the interaction between bosons and fermions. Since the energy in a grand-canonical

ensemble is reduced by a contribution describing the exchange of a particle with the environment,

we must subtract the respective chemical potentials µB and µF multiplied with the corresponding

particle density. As we assume a situation, where the bosonic and fermionic atoms cannot be

transformed into each other, each of both species has its own chemical potential. Furthermore,

we have to transform Eqs. (2.3) and (2.4) from the real time t to the imaginary time τ via Wick

rotation t = −iτ . Thus, the total euclidean action of a Bose-Fermi mixture has the form

A[ψ∗
B , ψB , ψ

∗
F , ψF ] = AB[ψ∗

B , ψB ] + AF [ψ∗
F , ψF ] + ABF [ψ∗

B , ψB , ψ
∗
F , ψF ], (2.8)

where all three terms correspond to the Lagrange densities (2.5)–(2.7). The bosonic action reads

AB [ψ∗
B , ψB ] =

~β
∫

0

dτ

∫

dDxψ∗
B(x, τ)

[

~
∂

∂τ
− ~

2

2mB
∆ + VB(x) − µB

+
1

2

∫

dDx′ V
(int)
BB (x,x′) |ψB(x′, τ)|2

]

ψB(x, τ), (2.9)

the fermionic action is given by

AF [ψ∗
F , ψF ] =

~β
∫

0

dτ

∫

dDxψ∗
F (x, τ)

[

~
∂

∂τ
− ~

2

2mF
∆ + VF (x) − µF

]

ψF (x, τ), (2.10)

and the interspecies interaction is described by

ABF [ψ∗
B , ψB , ψ

∗
F , ψF ] =

~β
∫

0

dτ

∫

dDx

∫

dDx′ V
(int)
BF (x,x′) |ψB(x′, τ)|2 |ψF (x, τ)|2. (2.11)
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2.2 Background Method

In order to account for the fact that the bosons in the mixture can condense, we apply the back-

ground method of field theory [40–43] and split the bosonic Schrödinger fields ψ∗
B(x, τ), ψB(x, τ)

into two parts

ψ∗
B(x, τ) = Ψ∗

B(x, τ) + δψ∗
B(x, τ), ψB(x, τ) = ΨB(x, τ) + δψB(x, τ). (2.12)

The first part represents the background fields Ψ∗
B(x, τ), ΨB(x, τ). Their absolute square is identi-

fied with the density of the condensed bosons. The second part are the fluctuation fields δψ∗
B(x, τ),

δψB(x, τ) of the Bose gas describing the excited bosons, which are not in the ground state. Note

that the background field is equipped with a time dependence in order to maintain the possibility

for a later description of the dynamics in the mixture. Expanding the euclidean action (2.8) in a

functional Taylor series with respect to the Bose fields ψ∗
B(x, τ), ψB(x, τ) around the background

fields Ψ∗
B(x, τ), ΨB(x, τ) up to the second order yields

A[Ψ∗
B + δψ∗

B ,ΨB + δψB , ψ
∗
F , ψF ] = A[Ψ∗

B ,ΨB, ψ
∗
F , ψF ]

+

~β
∫

0

dτ

∫

dDx

{

δA[ψ∗
B , ψB , ψ

∗
F , ψF ]

δψ∗
B(x, τ)

∣

∣

∣

∣

ψ∗

B(x,τ)=Ψ∗

B(x,τ)

ψB(x,τ)=ΨB(x,τ)

δψ∗
B(x, τ) + c.c.

}

+
1

2

~β
∫

0

dτ

~β
∫

0

dτ ′
∫

dDx

∫

dDx′

×
{

δ2A[ψ∗
B , ψB , ψ

∗
F , ψF ]

δψ∗
B(x, τ) δψ∗

B(x′, τ ′)

∣

∣

∣

∣

ψ∗

B
(x,τ)=Ψ∗

B
(x,τ)

ψB(x,τ)=ΨB(x,τ)

δψ∗
B(x′, τ ′) δψ∗

B(x, τ) + c.c.

+
δ2A[ψ∗

B , ψB , ψ
∗
F , ψF ]

δψB(x, τ) δψ∗
B(x′, τ ′)

∣

∣

∣

∣

ψ∗

B(x,τ)=Ψ∗

B(x,τ)

ψB(x,τ)=ΨB(x,τ)

δψ∗
B(x′, τ ′) δψB(x, τ) + c.c.

}

. (2.13)

Eq. (2.13) can be written in terms with respect to the order in the fluctuation fields δψ∗
B(x, τ),

δψB(x, τ):

A[Ψ∗
B + δψ∗

B ,ΨB + δψB , ψ
∗
F , ψF ] = A(0)(δψ∗

B , δψB) + A(1)(δψ∗
B , δψB) + A(2)(δψ∗

B , δψB). (2.14)

The zeroth order term does not contain the fluctuation fields δψ∗
B(x, τ), δψB(x, τ) and is equivalent

to the euclidean action (2.8) evaluated at the background fields Ψ∗
B(x, τ), ΨB(x, τ):

A(0)(δψ∗
B , δψB) = A[Ψ∗

B,ΨB , ψ
∗
F , ψF ] =

~β
∫

0

dτ

∫

dDx

{

Ψ∗
B(x, τ)

[

~
∂

∂τ
− ~

2

2mB
∆ + VB(x) − µB

+
1

2

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′, τ)|2

]

ΨB(x, τ) + ψ∗
F (x, τ)

[

~
∂

∂τ
− ~

2

2mF
∆ + VF (x) − µF

+

∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′, τ)|2

]

ψF (x, τ)

}

. (2.15)

The first order term being linear with respect to δψ∗
B(x, τ), δψB(x, τ) vanishes as we require the

background fields Ψ∗
B(x, τ), ΨB(x, τ) to extremize the euclidean action (2.8) within the background

method:

A(1)(δψ∗
B , δψB) = 0. (2.16)
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The second order term is quadratically in δψ∗
B(x, τ), δψB(x, τ) and would lead to the Bogoliubov

theory:

A(2)(δψ∗
B , δψB) =

~β
∫

0

dτ

∫

dDx

{

δψ∗
B(x, τ)

[

~
∂

∂τ
− ~

2

2mB
∆ + VB(x) − µB

+

∫

dDx′ V
(int)
BF (x,x′) |ψF (x′, τ)|2

]

δψB(x, τ) +
1

2

∫

dDx′ V
(int)
BB (x,x′)

×
[

ΨB(x, τ)ΨB(x′, τ) δψ∗
B(x′, τ) δψ∗

B(x, τ) + Ψ∗
B(x, τ)Ψ∗

B(x′, τ) δψB(x′, τ) δψB(x, τ)

+2ΨB(x′, τ)Ψ∗
B(x, τ) δψ∗

B(x′, τ) δψB(x, τ) + 2|ΨB(x′, τ)|2 δψ∗
B(x, τ) δψB(x, τ)

]

}

. (2.17)

In the present thesis we restrict ourselves to the Gross-Pitaevskii theory, i.e. we consider only the

euclidean action A up to the zeroth order in the fluctuation fields δψ∗
B(x, τ), δψB(x, τ):

A[Ψ∗
B + δψ∗

B ,ΨB + δψB , ψ
∗
F , ψF ] = A(0)(δψ∗

B , δψB). (2.18)

Thus, the bosonic functional integration in Eq. (2.1), whose integration measure transforms ac-

cording

Dψ∗
B(x, τ) = Dδψ∗

B(x, τ), DψB(x, τ) = DδψB(x, τ), (2.19)

can be dropped. Since the Fermi fields ψ∗
F (x, τ), ψF (x, τ) occur only quadratically in the euclidean

action A due to the absent fermion-fermion interaction, the fermionic functional integral in Eq. (2.1)

can be carried out. In this way we obtain

Z[Ψ∗
B ,ΨB] = e−AB [Ψ∗

B
,ΨB ]/~ZF [Ψ∗

B,ΨB ], (2.20)

where

ZF [Ψ∗
B,ΨB ] =

∮

Dψ∗
F

∮

DψF e−(AF [ψ∗

F ,ψF ]+ABF [Ψ∗

B,ΨB,ψ
∗

F ,ψF ])/~ (2.21)

represents the functional integral over the Fermi fields resulting in a pure functional of the Bose

background fields Ψ∗
B(x, τ), ΨB(x, τ). The euclidean actions depending on the Fermi fields ψ∗

F (x, τ),

ψF (x, τ) are summarized to

AF [ψ∗
F , ψF ] + ABF [Ψ∗

B ,ΨB , ψ
∗
F , ψF ] =

~β
∫

0

dτ

∫

dDxψ∗
F (x, τ)

[

~
∂

∂τ
+ ĤF (x, τ) − µF

]

ψF (x, τ).

(2.22)

Here ĤF (x, τ) denotes the effective one-particle Hamilton operator for fermions

ĤF (x, τ) = − ~
2

2mF
∆ + Veff(x, τ), (2.23)

with the effective potential

Veff(x, τ) = VF (x) +

∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′, τ)|2. (2.24)

In the following we evaluate the fermionic functional integral (2.21) within the semiclassical ap-

proximation since we are interested only in the lowest-order term in the gradient expansion of

the tracelog. Thus, we neglect for the time being the spatio-temporal dependence of the effective

potential:

Veff(x, τ) = Veff . (2.25)
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2.3 Fermionic Functional Integral

In general, the functional integration in Eq. (2.21) amounts to sum over all fermionic fields which

are antiperiodic in the imaginary time according to Eq. (2.2). These fields can be decomposed into

one-particle wave functions depending on the space coordinate x and in a Fourier expansion in the

form of Matsubara functions depending on the imaginary time τ :

ψ∗
F (x, τ) =

∑

n

∞
∑

m=−∞

c∗nm ψ
∗
n(x) eiωmτ , ψF (x, τ) =

∑

n

∞
∑

m=−∞

cnm ψn(x) e−iωmτ . (2.26)

Here the fermionic Matsubara frequencies ωm are half-integer multiples of the Matsubara ground

frequency 2π/~β:

ωm =
2π

~β
m, m = ±1

2
,±3

2
,±5

2
. . . (2.27)

and the coefficients c∗nm, cnm are complex Grassmann numbers. The one-particle wave functions

being periodic in Li

ψn(x) =
eikn·x

√
V
, kn =

(

2π

L1
n1,

2π

L2
n2, . . . ,

2π

LD
nD

)

, V =

D
∏

i=1

Li (2.28)

are the eigenfunctions of the Hamilton operator (2.23) with a homogeneous and constant potential

(2.25)

ĤF (x, τ)ψn(x) = En ψn(x), En =
~

2kn
2

2mF
+ Veff , (2.29)

and they fulfill the orthonormality relation
∫

dDxψn(x)ψ∗
n′(x) = δnn′ , (2.30)

as well as the completeness relation
∑

n

ψn(x)ψ∗
n(x′) = δ(x − x′). (2.31)

Because of the decomposition in Eq. (2.26), the functional integration can be expressed as a sum-

mation over all possible coefficients c∗nm, cnm

∮

Dψ∗
F

∮

DψF =
∏

n

∞
∏

m=−∞

∫

dc∗nm

∫

dcnm. (2.32)

Inserting Eq. (2.26) into Eq. (2.22), we use Eqs. (2.23), (2.25), (2.29), and the orthonormality

relation (2.30) of the one-particle wave functions and the corresponding one

1

~β

~β
∫

0

dτ e−iωmτ eiωm′τ = δmm′ (2.33)

for the Matsubara functions to obtain

AF [ψ∗
F , ψF ] + ABF [Ψ∗

B ,ΨB, ψ
∗
F , ψF ] =

∑

n

∞
∑

m=−∞

~β(−i~ωm + En − µF )c∗nmcnm. (2.34)
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Therefore, the functional integral over the fermionic fields in Eq. (2.21) factorizes into ordinary

integrals over the Grassmann numbers c∗nm, cnm

ZF [Ψ∗
B ,ΨB ] =

∏

n

∞
∏

m=−∞

∫

dc∗nm

∫

dcnm e
−β(−i~ωm+En−µF )c∗n mcn m. (2.35)

Using Eqs. (A.1) and (A.11) in Appendix A, the functional integral over fermionic fields (2.35)

results in

ZF [Ψ∗
B ,ΨB ] =

∏

n

∞
∏

m=−∞

β(−i~ωm + En − µF ). (2.36)

2.4 Tracelog

The factors λnm ≡ β(−i~ωm + En − µF ) in Eq. (2.36) belong to the eigenvalues of the eigenvalue

problem

~β
∫

0

dτ ′
∫

dDx′ ÔF (x, τ ;x′, τ ′)ψnm(x′, τ ′) =
λnm

~β
ψnm(x, τ) (2.37)

with the kernel of the integral equation

ÔF (x, τ ;x′, τ ′) =
1

~
δ(x − x′) δ(τ − τ ′)

[

~
∂

∂τ ′
+ ĤF (x′, τ ′) − µF

]

, (2.38)

which occurs in the euclidean action (2.22):

AF + ABF = ~

~β
∫

0

dτ

~β
∫

0

dτ ′
∫

dDx

∫

dDx′ ψ∗
F (x, τ) ÔF (x, τ ;x′, τ ′)ψF (x′, τ ′). (2.39)

Because of Eqs. (2.23) and (2.25), the eigenfunctions in Eq. (2.37) are obviously given by

ψnm(x, τ) = ψn(x) e−iωmτ . (2.40)

With respect to these eigenfunctions the kernel (2.38) is diagonal as all nondiagonal elements vanish:

(ÔF )nm,n′m′ =

~β
∫

0

dτ

~β
∫

0

dτ ′
∫

dDx

∫

dDx′ ψ∗
nm(x, τ) ÔF (x, τ ;x′, τ ′)ψn′m′(x′, τ ′)

= δnn′ δmm′ λn′m′ . (2.41)

Here we used the orthonormality relations (2.30) and (2.33) of the eigenfunctions (2.40). Thus,

the diagonal elements represent the eigenvalues of the kernel ÔF . Hence we conclude that the

functional integral over fermionic fields (2.36) is the determinant of the kernel

ZF [Ψ∗
B ,ΨB ] =

∏

n

∞
∏

m=−∞

λnm = det ÔF . (2.42)
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Now we define the tracelog of the kernel ÔF as the trace of its logarithm or, equivalent, as the

logarithm of its determinant

Tr ln ÔF ≡
∑

n

∞
∑

m=−∞

ln(λnm) = ln det ÔF , (2.43)

where the kernel in the matrix representation (2.41) is used. With this definition we can express

Eq. (2.36) as

ZF [Ψ∗
B ,ΨB ] = eTr ln ÔF (2.44)

and the grand-canonical partition function (2.20) as

Z[Ψ∗
B,ΨB ] = e−AB [Ψ∗

B,ΨB]/~+Tr ln ÔF . (2.45)

Thus, the grand-canonical free energy F ≡ −(lnZ)/β results in

F [Ψ∗
B ,ΨB ] =

1

~β
AB[Ψ∗

B ,ΨB ] − 1

β
Tr ln ÔF . (2.46)

Inserting Eq. (2.43), the grand-canonical free energy has the form

F [Ψ∗
B ,ΨB ] =

1

~β
AB[Ψ∗

B ,ΨB] − 1

β

∑

n

∞
∑

m=−∞

ln [β(−i~ωm +En − µF )] . (2.47)

The calculation of the last sum, as shown in detail in Appendices B and C, yields

F [Ψ∗
B ,ΨB ] =

1

~β
AB[Ψ∗

B,ΨB ] − 1

β

∑

n

ln
[

1 + e−β(En−µF )
]

. (2.48)

2.5 Semiclassical Approximation

In order to evaluate the remaining sum over the quantum numbers n in the grand-canonical free

energy (2.48), we use the energy eigenvalues En of the effective one-particle Hamilton operator

(2.23) corresponding to the wave functions (2.28). But instead of continuing with a homogeneous

and constant potential (2.25) in the effective Hamilton operator, we return to the spatio-temporal

dependent effective Hamilton operator (2.23) and apply the semiclassical approximation, also called

local density approximation (LDA). Using the one-particle wave function (2.28), Eq. (2.29) can be

written as
[

ĤF (x, τ) − En

] eikn·x/~

V
= 0. (2.49)

As the expression inside the brackets must be zero, the eigenvalues En of the effective fermionic

Hamilton operator (2.23) depend on the space coordinate x and the imaginary time τ as follows:

En(x, τ) =
~

2kn
2

2mF
+ VF (x) +

∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′, τ)|2. (2.50)

Within the semiclassical approximation the quantum numbers n are regarded as narrow neigh-

bouring so that the energy values become continuous in momentum p = ~k and represent the

quasi-classical energy spectrum:

En(x, τ) → E(p,x, τ) =
p2

2mF
+ VF (x) +

∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′, τ)|2. (2.51)
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This is justified if the energy difference ∆E between neighbouring one-particle eigenstates is small

in comparison with the thermal energy kBT . Consequently, the sum
∑

n is replaced within the

semiclassical approximation by a phase space integral
∫

dDx
∫

dDp/(2π~)D and an imaginary time

integral
∫

~β
0 dτ/(~β). Applying this to the grand-canonical free energy (2.48) leads to

F [Ψ∗
B ,ΨB ] =

1

~β
AB[Ψ∗

B ,ΨB ]− 1

~β2

~β
∫

0

dτ

∫

dDx dDp

(2π~)D
ln

[

1 + exp

{

−β
(

p2

2mF
− µ̃F (x, τ)

)}]

,

(2.52)

where we have introduced the local chemical potential for fermions

µ̃F (x, τ) = µF − VF (x) −
∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′, τ)|2, (2.53)

giving the kinetic energy of the fermion in the highest energetic state, when it is located at the

space point x at the imaginary time τ . The momentum integral of the logarithm has the general

form

I =

∫

dDp

(2π~)D
f

(

p2

2mF

)

. (2.54)

As the function f(p) is spherically symmetric with p = |p|, we use spherical coordinates:

I =
OD

(2π~)D

∞
∫

0

dp pD−1 f

(

p2

2mF

)

(2.55)

with the area of the D-dimensional unit sphere

OD =
2πD/2

Γ(D/2)
. (2.56)

The substitution ε(p) = p2/2mF leads to

I =
1

Γ(D/2)

( mF

2π~2

)D/2
∞
∫

0

dε εD/2−1 f(ε). (2.57)

Applying Eqs. (2.54) and (2.57) to Eq. (2.52) yields

F [Ψ∗
B ,ΨB ] =

1

~β
AB [Ψ∗

B,ΨB ] − DκD
2~β2

~β
∫

0

dτ

∫

dDx

∞
∫

0

dε εD/2−1 ln
[

1 + e−β[ε−µ̃F (x,τ)]
]

, (2.58)

where we have introduced the abbreviation:

κD ≡ 2

D Γ(D/2)

( mF

2π~2

)D/2
. (2.59)

An integration by parts in the last term of Eq. (2.58), where the boundary terms vanish, leads to

F [Ψ∗
B ,ΨB ] =

1

~β
AB[Ψ∗

B,ΨB ] − κD
~β

~β
∫

0

dτ

∫

dDx

∞
∫

0

dε
εD/2

eβ[ε−µ̃F (x,τ)] + 1
. (2.60)
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2.6 Low-Temperature Limit

In order to evaluate the integral over ε in Eq. (2.60) for low temperatures, we perform the Som-

merfeld expansion, which is explained in detail in Appendix D. Within the framework of the

Gross-Pitaevskii theory we consider the zero-temperature limit T ↓ 0, where not only all bosonic

atoms condense into the lowest energy state, but also the fermion gas becomes quantum degenerate.

As mentioned in Chapter 1, a quantum degeneracy of T/TF = 0.1 (T/TF = 0.3) is achieved in the

Hamburg (Florence) experiment. Due to the strong attraction between bosons and fermions the

local chemical potential (2.53) is inside the overlapping region of bosons and fermions mostly larger

than the Fermi energy µF = EF = kBTF . Thus, only the zeroth order of the Sommerfeld expansion

(D.26) in the smallness parameter [kBT/µ̃F (x, τ)]2 ≈ 0.01 (0.09) ≪ 1 contributes significantly:

F [Ψ∗
B ,ΨB ] =

1

~β

~β
∫

0

dτ

∫

dDxΨ∗
B(x, τ)

[

~
∂

∂τ
− ~

2

2mB
∆ + VB(x) − µB

+
1

2

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′, τ)|2

]

ΨB(x, τ)

− 2κD
(D + 2)~β

~β
∫

0

dτ

∫

dDxΘ(µ̃F (x, τ )) µ̃
D/2+1
F (x, τ ). (2.61)

Here the Heaviside function takes into account that the integrand in Eq. (2.60) vanishes for

µ̃F (x, τ) < 0. This is obvious as the denominator in this integrand becomes infinity (one) with a

positive (negative) exponent in the zero-temperature limit β ↑ ∞. Thus, it is allowed to replace it

by a Heaviside function:

∞
∫

0

dε
εD/2

eβ[ε−µ̃F (x,τ)] + 1
=

∞
∫

0

dεΘ(µ̃F (x, τ ) − ε) εD/2 =

∞
∫

−∞

dεΘ(ε)Θ(µ̃F (x, τ ) − ε) εD/2, (2.62)

where the first Heaviside function replaces the lower integration limit. Note that an integration by

parts, where the boundary terms vanish, yields the above result in a more simple way:

∞
∫

0

dε
εD/2

eβ[ε−µ̃F (x,τ)] + 1
= − 2

D + 2

∞
∫

−∞

dε [δ(ε)Θ(µ̃F (x, τ ) − ε) − Θ(ε) δ(ε − µ̃F (x, τ ))] εD/2+1

=
2

D + 2
Θ(µ̃F (x, τ )) µ̃

D/2+1
F (x, τ ). (2.63)

2.7 Validity of Approximations

One may argue that the zero-temperature limit T ↓ 0 contradicts the validity of the semiclassical

approximation as the thermal energy kBT tends also to zero instead of being much larger than the

energy difference ∆E between neighbouring eigenstates of the Fermi gas. Indeed, the temperature

T , achieved in the Hamburg (Florence) experiment, is of the order of 0.1TF (0.3TF ). As the density

of states g(ε) dε gives the number dn of states within the energy interval dε at the energy value ε,

its inverse

dε = g(n)−1 dn (2.64)
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can be identified with the energy difference ∆E between neighbouring eigenstates, when we set

heuristically dn = 1. The fermion number NF is related to the number N of states in the harmonic

trap VF (x), confining the quantum degenerated Fermi gas, as follows:

NF =

∞
∫

0

dε
g(ε)

eβ[ε−EF ] + 1
≈

EF
∫

0

dε g(ε), (2.65)

This stems from the fact that, at zero temperature, each one-particle state up to the Fermi energy

EF is occupied with a fermion when we assume, for simplicity, an ideal Fermi gas without interaction

with the bosons. The energy difference (E.9) between neighbouring eigenstates of an ideal Fermi

gas in a D-dimensional trap VF (x) at the energy level, which is filled up with N fermions reads

∆E = g(N)−1 =
(D!)1/D ~ω̃F

DN1−1/D
. (2.66)

Inserting the number of fermions (E.7) in a D-dimensional harmonic oscillator up to the Fermi

energy EF into Eq. (E.9 leads to

∆E =
1

DN
EF . (2.67)

Thus, we can compare the energy difference (2.67) with the thermal energy kBT = 0.1EF (0.3EF )

for the Hamburg (Florence) experiment. This shows that the criterion ∆E ≪ kBT for applying

the semiclassical approximation for D = 3 is fulfilled for more than N = 10 fermions. Hence, as

the experiments deals with at least 104 fermions, replacing the sum over all eigenstates with a

phase space integral within the semiclassical approximation is justified for almost the entire range

of states.

2.8 Time-Dependent Gross-Pitaevskii Equation

The grand-canonical free energy F is obtained as the extremum of the effective action Γ with

respect to the fields Ψ∗
e(x, τ), Ψe(x, τ):

F [Ψ∗
B ,ΨB ] ≡ Γ[Ψ∗

e,Ψe]. (2.68)

This means that the effective action is a functional of those fields which extremize it according to

[47]

δΓ[Ψ∗,Ψ]

δΨ∗(x, τ)

∣

∣

∣

∣

Ψ∗=Ψ∗
e

Ψ=Ψe

= 0,
δΓ[Ψ∗,Ψ]

δΨ(x, τ)

∣

∣

∣

∣

Ψ∗=Ψ∗
e

Ψ=Ψe

= 0. (2.69)

Applying Eqs. (2.68) and (2.69) to the grand-canonical free energy (2.61) leads to the Gross-

Pitaevskii equation of a trapped ultracold Bose-Fermi mixture with arbitrary boson-boson and

boson-fermion interactions and with imaginary time dependence:

δF [Ψ∗
B ,ΨB ]

δΨ∗
B(x, τ)

=

[

~
∂

∂τ
− ~

2

2mB
∆ + VB(x) − µB +

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′, τ)|2

+ κD

∫

dDx′′ Θ(µ̃F (x′′, τ))V
(int)
BF (x,x′′) µ̃

D/2
F (x′′, τ)

]

ΨB(x, τ) = 0. (2.70)
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This time-dependent nonlinear Schrödinger equation of the condensate wave function ΨB(x, τ)

has the form of a partial integrodifferential equation, where the nonlinear terms are due to both

interactions. The last term results from the boson-fermion interaction, whereas the other terms have

the conventional Gross-Pitaevskii form for a condensate [45,46]. This equation can be transformed

back to the real time via a Wick rotation τ = it to obtain an equation of motion for the condensate

wave function:

i~
∂

∂t
ΨB(x, t) =

[

− ~
2

2mB
∆ + VB(x) +

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′, t)|2

+ κD

∫

dDx′′ Θ(µ̃F (x′′, t))V
(int)
BF (x,x′′) µ̃

D/2
F (x′′, t)

]

ΨB(x, t). (2.71)

It allows to study the dynamics of the BEC at zero temperature T = 0. Note that the bosonic

chemical potential µB has to be omitted since it was introduced in the euclidean action (2.8) in order

to describe the thermodynamics in a grand-canonical ensemble with the help of the grand-canonical

partition function (2.1). On the other hand the fermionic chemical potential µF is identified with

the Fermi energy EF in the local chemical potential

µ̃F (x, t) = EF − VF (x) −
∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′, t)|2. (2.72)

However the time-dependent Gross-Pitaevskii equation (2.71) has the disadvantage of an absent

independent dynamics of the fermions as their degrees of freedom are already integrated out in

Section 2.3, so that the time dependence in their particle density

nF (x, t) = κD Θ(µ̃F (x, t)) µ̃
D/2
F (x, t) (2.73)

arises only from the condensate wave function.

2.9 Coupled Equations of Motions

In order to include the dynamics of the fermions within a more detailed mean-field description, we go

back to the grand-canonical partition function (2.20) and express it in form of the grand-canonical

free energy without integrating out the Fermi fields in the fermionic functional integral:

F [Ψ∗
B ,ΨB] =

1

~β
AB [Ψ∗

B,ΨB ] − 1

β
lnZF [Ψ∗

B ,ΨB]. (2.74)

Extremizing the effective action (2.74) according to Eq. (2.69) yields for the bosonic action the first

five terms of the Gross-Pitaevskii equation (2.70) and for the fermionic functional integral (2.21)

we obtain

δ lnZF [Ψ∗
B,ΨB ]

δΨ∗
B(x, τ)

=
1

ZF [Ψ∗
B,ΨB ]

∮

Dψ∗
F

∮

DψF e−(AF [ψ∗

F
,ψF ]+ABF [Ψ∗

B
,ΨB,ψ

∗

F
,ψF ])/~

×−1

~

δ

δΨ∗
B(x, τ)

~β
∫

0

dτ ′
∫

dDx′
∫

dDx′′ V
(int)
BF (x′,x′′) |ΨB(x′′, τ ′)|2 |ψF (x′, τ ′)|2

=
1

~

∫

dDx′ V
(int)
BF (x,x′)

〈

ψF (x′, τ)ψ∗
F (x′, τ)

〉

ΨB(x, τ). (2.75)
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Here we used the anticommutation rule (A.2) for the Fermi fields and the definition of the two-point

function

〈ψ(x1, τ1)ψ
∗(x2, τ2)〉 ≡

1

Z

∮

Dψ∗

∮

Dψ ψ(x1, τ1)ψ
∗(x2, τ2) e

−A[ψ∗,ψ]/~. (2.76)

Thus, the functional differentiation of the effective action (2.74) leads to

[

~
∂

∂τ
− ~

2

2mB
∆ + VB(x) − µB +

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′, τ)|2

−
∫

dDx′ V
(int)
BF (x,x′)

〈

ψF (x′, τ)ψ∗
F (x′, τ)

〉

]

ΨB(x, τ) = 0. (2.77)

The two-point function of the Fermi fields can be evaluated using the decomposition (2.26) of the

Fermi fields and the effective one-particle Hamilton operator (2.23) for fermions with the effective

potential (2.24) in the semiclassical approximation according to Eq. (2.25):

〈ψF (x1, τ1)ψ
∗
F (x2, τ2)〉 =

1

ZF
∑

p

∑

q

∞
∑

k=−∞

∞
∑

l=−∞

ψp(x1)ψ
∗
q(x2) e

−iωkτ1 eiωlτ2

×
{

∏

n

∞
∏

m=−∞

∫

dc∗nm

∫

dcnm [1 + β(−i~ωm + En − µF )cnmc
∗
nm]

}

cp k c
∗
q l. (2.78)

Furthermore, we used the procedure in Section 2.3 and the Taylor expansion (A.10) of the expo-

nential function. Each of the coefficients cp k and c∗q l can be placed within the product over all

eigenstates n and Matsubara modes m to the factors with the same indices. Applying the integra-

tion rules (A.8) and (A.9) for Grassmann numbers, one sees that the first term within the bracket

contributes only if both coefficients match their indices, whereas the second term contributes only

without these coefficients due to Eq. (A.4). Thus, we obtain

〈ψF (x1, τ1)ψ
∗
F (x2, τ2)〉 =

∑

p

∑

q

∞
∑

k=−∞

∞
∑

l=−∞

δpq δk l ψp(x1)ψ
∗
q(x2) e

−iωkτ1 eiωlτ2

β(−i~ωk + Ep − µF )

× 1

ZF
∏

n

∞
∏

m=−∞

β(−i~ωm + En − µF ), (2.79)

which reduces due Eq. (2.36) to

〈ψF (x1, τ1)ψ
∗
F (x2, τ2)〉 =

∑

n

∞
∑

m=−∞

ψn(x1)ψ
∗
n(x2) e

−iωm(τ1−τ2)

β(−i~ωm + En − µF )
. (2.80)

This two-point function is at the same time a Green function for the fermion fields:

GF (x, τ ;x′, τ ′) = 〈ψF (x, τ)ψ∗
F (x′, τ ′)〉, (2.81)

obeying the linear inhomogeneous Schrödinger equation for fermions with the delta function in

space and the antiperiodic repetitive one (B.11) in imaginary time as the inhomogeneity:

[

~
∂

∂τ
+ ĤF (x, τ) − µF

]

GF (x, τ ;x′, τ ′) = ~ δ(x − x′) δ(a)(τ − τ ′). (2.82)
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Moreover, the kernel (2.38) in Section 2.4 is just the inverse Green function

Ĝ−1
F (x, τ ;x′, τ ′) = ÔF (x, τ ;x′, τ ′) =

1

~
δ(x − x′) δ(τ − τ ′)

[

~
∂

∂τ ′
+ ĤF (x′, τ ′) − µF

]

, (2.83)

since it acts on the Green function (2.80) as follows

~β
∫

0

dτ ′′
∫

dDx′′ Ĝ−1
F (x, τ ;x′′, τ ′′)GF (x′′, τ ′′;x′, τ ′) =

1

~β

∑

n

∞
∑

m=−∞

ψn(x)ψ∗
n(x′) e−iωm(τ−τ ′)

= δ(x − x′) δ(a)(τ − τ ′). (2.84)

Here the completeness relations (2.31) for the one-particle wave functions and (B.9) and (B.11) for

the Matsubara functions were used.

A Wick rotation τ = it and the omission of the chemical potentials in Eqs. (2.77) and (2.82) leads

to two coupled equations of motions, namely one for the condensate wave function:

i~
∂

∂t
ΨB(x, t) =

[

− ~
2

2mB
∆ + VB(x) +

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′, t)|2

−
∫

dDx′ V
(int)
BF (x,x′)GF (x′, t;x′, t)

]

ΨB(x, t), (2.85)

and another one for the fermionic Green function:

i~
∂

∂t
GF (x, t;x′, t′) =

[

− ~
2

2mF
∆ + VF (x) +

∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′, t)|2

]

GF (x, t;x′, t′)

+ i~ δ(x − x′) δ(t − t′). (2.86)

This set of coupled equations of motions describes the dynamics in the mixture. Therein the con-

densate wave function ΨB(x, t) in the Gross-Pitaevskii equation (2.85) is modified by the fermionic

Green function GF (x, t;x, t) and, vice versa, the condensate wave function ΨB(x, t) influences the

fermionic Green function GF (x, t;x′, t′) in the Schrödinger equation (2.86). In Section 2.10 we show

that the fermionic Green function GF (x, t;x, t), which is local in space and time, turns out to be

the fermionic particle density nF (x, t).

2.10 Fermionic Green Function

In this section we evaluate the Green function for a Fermi gas interacting with a stationary BEC in

a common trap and insert it into the imaginary time dependent Gross-Pitaevskii equation (2.77).

To this end the Green function has to obey the inhomogeneous linear Schrödinger equation (2.82)

with the time-independent Hamilton operator

ĤF (x) = − ~
2

2mF
∆ + VF (x) +

∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′)|2, (2.87)

leading to the eigenvalue problem

ĤF (x)ψn(x) = En ψn(x). (2.88)
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This eigenvalue problem corresponds to the homogeneous boundary-value problem

−
[

p(x) y(x)′
]′

+ q(x) y(x) − λ y(x) = 0, x ∈ [a, b] (2.89)

with the Dirichlet boundary condition

y(a) = y(b) = 0, (2.90)

where p(x), p′(x), and q(x) are real and continuous functions and p(x) ≥ 0. From the mathematics

we know that all eigenvalues λ are real numbers and form a monotone series λ1 < λ2 < . . . < λn <

. . . so that there is no need to treat the trap potential and interaction potential in the Hamilton op-

erator (2.87) as spatial-independent as in the event of the time-dependent Hamilton operator (2.23).

Now we evaluate the Green function (2.80) without restricting to fermions. The bosonic Green

function has to obey a linear inhomogeneous Schrödinger equation and describes therefore bosons

interacting only with other species, but not with itself. Indeed it has the same form as in Eq. (2.80),

but with Matsubara frequencies as in Eq. (B.1). First we replace the sum over the Matsubara

frequencies ωm by an integral with the help of the Poisson sum formula (B.8):

G(x, τ ;x′, τ ′) = lim
η↓0

i

2π

∑

n

ψn(x)ψ∗
n(x′)

∞
∑

n=−∞

(ǫ)n
∞
∫

−∞

dω
e−iω[τ−τ ′+(n−η)~β]

ω − i(µ− En)/~
. (2.91)

Here we have introduced, as in Appendix C, the additional factor exp{i~βωη} with η as an in-

finitesimal positive number to achieve the normal-ordering. The integral can be performed with the

help of Cauchy’s residue theorem where we assume µ ≥ En without loss of generality. Indeed the

opposite assumption µ ≤ En leads also to the same result. For τ − τ ′ + (n− η)~β < 0 the contour

of integration can be closed by a semicircle in the upper half of the complex ω-plane without extra

contribution where the integrand possess a pole at ω = i(µF −En). For τ − τ ′ + (n− η)~β > 0, on

the other hand, the contour is closed by a semicircle in the lower half-plane where the integrand

has no poles. Both cases are summarized to

G(x, τ ;x′, τ ′) = − lim
η↓0

∑

n

ψn(x)ψ∗
n(x′)

×
∞
∑

n=−∞

(ǫ)n Θ
(

τ ′ − τ − (n− η)~β
)

e−(En−µ)[τ−τ ′+(n−η)~β]/~. (2.92)

Now we perform the periodic and antiperiodic repetition, respectively, where the meaning of η

becomes apparently. For the imaginary time interval τ − τ ′ ∈ [0,~β) the sum over n runs from

−∞ to −1 whereas the sum for τ − τ ′ ∈ [−~β, 0) runs from −∞ to 0. Thus, using the geometrical

series, the result reads

G(x, τ ;x′, τ ′) = lim
η↓0

∑

n

ψn(x)ψ∗
n(x′) e−(En−µ)(τ−τ ′−η~β)/~

×
[

Θ (τ − τ ′ − η~β)

1 − ǫ e−β(En−µ)
+ ǫ

Θ (τ ′ − τ + η~β)

eβ(En−µ) − ǫ

]

. (2.93)

The left term within the brackets represents the retarded solution whereas the right term stands for

the advanced solution. The physics behind the Green function means that the retarded (advanced)
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solution creates at the space-time point (x′, τ ′) ((x, τ)) a particle, which then propagates to the

space-time point (x, τ) ((x′, τ ′)), where it is annihilated. In the equal time limit only one of the

two mathematical possible limits τ ′ ↑ τ and τ ′ ↓ τ can contribute. Due to η > 0 it turns out to be

the last limit which contributes in the Green function (2.93):

G(x, τ ;x′, τ) = lim
τ ′↓τ

G(x, τ ;x′, τ ′) = ǫ
∑

n

ψn(x)ψ∗
n(x′)

eβ(En−µ) − ǫ
. (2.94)

The number of particles is related with the grand-canonical free energy F = ǫTr ln ÔF /β via

N = −∂F
∂µ

=
∑

n

1

eβ(En−µ) − ǫ
, (2.95)

where we used Eq. (C.17). Because of the normalization condition (2.106) and the orthonormality

relation (2.30) for the one-particle wave functions the particle density reads

n(x) =
∑

n

|ψn(x)|2
eβ(En−µ) − ǫ

= ǫG(x, τ ;x, τ). (2.96)

Evaluating the sum over all eigenstates n requires to know the energy eigenvalues En of the effective

Hamilton operator (2.87). Because of the yet unknown condensate wave function ΨB(x) in the

effective Hamilton operator these energy eigenvalues are indetermined. We avoid this difficulty

by applying the semiclassical approximation analogous to the procedure in Section 2.5. Due to

Eq. (2.49) the quasi-classical energy spectrum reads:

E(k,x) =
~

2k2

2mF
+ VF (x) +

∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′)|2. (2.97)

Using plane waves for the one-particle wave functions (2.28) and replacing the sum
∑

n in the

fermionic particle density (2.96) by the phase space integral V
∫

dDk/(2π)D leads to

nF (x) =

∫

dDk

(2π)D
1

eβ[~2k2/2mF −µ̃F (x)] + 1
(2.98)

with the local chemical potential

µ̃F (x) = µF − VF (x) −
∫

dDx′ V
(int)
BF (x,x′) |ΨB(x′)|2. (2.99)

With the help of spherical coordinates according to Eqs. (2.54)–(2.56) and the substitution ε(k) =

~
2k2/2mF we obtain

nF (x) =
1

Γ(D/2)

( mF

2π~2

)D/2
∞
∫

0

dε εD/2−1

eβ[ε−µ̃F (x)] + 1
. (2.100)

We apply analogous to the procedure in Section 2.6 the low-temperature limit, where the Sommer-

feld expansion (D.26) up to the zeroth order in 1/(βµ̃(x))2 yields

nF (x) = κD Θ (µ̃F (x)) µ̃
D/2
F (x) (2.101)
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with the abbreviation (2.59). Finally, we insert the result for the fermionic particle density (2.101)

into the imaginary time dependent Gross-Pitaevskii equation (2.77) with a stationary condensate

ΨB(x, τ) → ΨB(x):

[

− ~
2

2mB
∆ + VB(x) − µB +

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′)|2

+ κD

∫

dDx′ Θ
(

µ̃F (x′)
)

V
(int)
BF (x′,x) µ̃

D/2
F (x′)

]

ΨB(x) = 0. (2.102)

Now we show that the results for the fermionic particle density (2.101) as well as the Gross-

Pitaevskii equation (2.102) can also be derived following a different reasoning.

2.11 Stationary Gross-Pitaevskii Equation

Apart from the method with the fermionic Green function in the previous section the stationary

Gross-Pitaevskii equation of a trapped ultracold Bose-Fermi mixture with arbitrary boson-boson

and boson-fermion interactions can be obtained in two other ways. In the first way we modify

the grand-canonical free energy (2.61) so that it becomes time-independent. For that purpose the

grand-canonical free energy is derived by the same procedure as for the time-dependent one (2.61)

except that the time dependences are dropped and in Section 2.5 the sum
∑

n is replaced by a

phase space integral
∫

dDx
∫

dDp/(2π~)D:

F [Ψ∗
B ,ΨB ] =

∫

dDxΨ∗
B(x)

[

− ~
2

2mB
∆ + VB(x) − µB +

1

2

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′)|2

]

ΨB(x)

− 2

D + 2
κD

∫

dDxΘ(µ̃F (x)) µ̃
D/2+1
F (x), (2.103)

Extremizing the grand-canonical free energy (2.103) with respect to Ψ∗
B(x) yields the stationary

Gross-Pitaevskii equation:

0 =

[

− ~
2

2mB
∆ + VB(x) − µB +

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′)|2

+ κD

∫

dDx′ Θ
(

µ̃F (x′)
)

V
(int)
BF (x,x′) µ̃

D/2
F (x′)

]

ΨB(x). (2.104)

This time-independent nonlinear Schrödinger equation with respect to the condensate wave function

ΨB(x) also follows by omitting the time dependences in the imaginary time-dependent Gross-

Pitaevskii equation (2.70) or by inserting the solution for a stationary condensate

ΨB(x, t) = ΨB(x) e−iµB t/~ (2.105)

with µB as the total energy of a boson into the time-dependent Gross-Pitaevskii equation (2.71).

The latter possibility justifies the omission of the chemical potential µB at the Wick rotation from

the imaginary to the real time in Section 2.8. The number of bosons and fermions are obtained

from the free energy (2.61) via the normalization condition

Nj = − ∂F
∂µj

=

∫

dDxnj(x), j = B,F, (2.106)
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from which the particle densities of bosons and fermions result in

nB(x) = |ΨB(x)|2, (2.107)

nF (x) = κD Θ (µ̃F (x)) µ̃
D/2
F (x). (2.108)

From Eqs. (2.106) and (2.107) follows that all bosons are condensed, as we would expect it within

the Gross-Pitaevskii theory. The particle density of the fermions depends on that of the bosons:

nF (x) = κD Θ(µ̃F (x))

[

µF − VF (x) −
∫

dDx′ V
(int)
BF (x,x′)nB(x′)

]D/2

. (2.109)

The condensate wave function ΨB(x) is determined by the Gross-Pitaevskii equation (2.104) for

chemical potentials µB and µF , which have to be fixed by the normalization conditions (2.106) to

obtain the desired particle numbers NB and NF .



32 Derivation of Gross-Pitaevskii Equation



Chapter 3

Solution of Gross-Pitaevskii Equation

In this chapter we solve at first the stationary Gross-Pitaevskii equation in the Thomas-Fermi

approximation in order to calculate the boson and the fermion density distribution for the param-

eters of the 87Rb–40K experiment in Hamburg and Florence. For a critical number of bosons and

fermions the resulting density profiles become complex which indicates the emergence of collapse of

the Bose-Fermi mixture. We determine the stability border both within the Thomas-Fermi approx-

imation and, in a separate variational calculation, beyond the Thomas-Fermi approximation. The

stability border turns out to depend strongly on the value of the s-wave scattering length between
87Rb and 40K. Therefore, comparing our theoretical results with the experimental measurements

allows to extract a trustworthy value for this s-wave scattering length.

3.1 Homogeneous Bose-Fermi Mixture with Arbitrary Interac-

tions

In a homogeneous mixture the external potentials are absent and therefore the mixture is uniformly

distributed. Due to the translational invariance of the system, the condensate wave function ΨB(x)

is a superposition of NB plane waves (2.28) in the ground state with vanishing wave number k = 0:

ΨB(x) =

√

NB

V
, (3.1)

so that the particle density (2.107) becomes homogeneous. Therefore, the stationary Gross-

Pitaevskii equation (2.104) reads

Ṽ
(int)
BB, 0 nB − µB + Ṽ

(int)
BF, 0 κD Θ

(

µF − Ṽ
(int)
BF,0 nB

) [

µF − Ṽ
(int)
BF,0 nB

]D/2
= 0

(3.2)

with the Fourier transform of the interaction potential

Ṽ
(int)
ij,k =

∫

dDxV
(int)
ij (x,x′) e−ik·(x−x′), i, j = B,F. (3.3)

This equation is fulfilled for arbitrary densities for bosons and fermions, which can be chosen

independently from each other, provided that µF > V
(int)
BF 0 nB for a nonvanishing density of fermions.
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3.2 Trapped Bose-Fermi Mixture without Interspecies Interaction

Here we consider a mixture in D dimensions without interspecies interaction, which is confined in

a trap described by an arbitrary power-law potential

Vi(x) =
D
∑

k=1

~ωi,k
2

∣

∣

∣

∣

xk
Li,k

∣

∣

∣

∣

nk

, Li,k ≡
√

~

mi ωi,k
, nk ≥ 0, i = B,F. (3.4)

Bose-Einstein condensation in such a power-law potential can be achieved if

D

2
+

D
∑

k=1

1

nk
> 1, (3.5)

from which follows immediately, that for systems withD > 1 a BEC is possible at finite temperature

Tc > 0 for all potential powers nk whereas it is for D = 1 only achievable for nk < 2. A detailed

calculation shows the possibility of a one-dimensional BEC at finite temperature even in a harmonic

trap with n = 2 [31,48]. If the interaction V
(int)
BF (x,x′) vanishes, the stationary Gross-Pitaevskii

equation (2.104) is reduced to
[

− ~
2

2mB
∆ + VB(x) − µB +

∫

dDx′ V
(int)
BB (x,x′) |ΨB(x′)|2

]

ΨB(x) = 0, (3.6)

having the conventional form for a pure Bose condensate. The density profile of the bosons is

determined by Eqs. (2.107) and (3.6) whereas that of the fermions reads according to Eq. (2.109)

nF (x) = κD Θ (µF − VF (x)) [µF − VF (x)]D/2 . (3.7)

We see that the density profiles of both components are not influenced by each other and depend

only on their intraspecies interaction, so far as it exists, and on the form of the corresponding trap.

Hence bosons and fermions coexist independently from each other.

3.3 Bose-Fermi Mixture with δ- Interactions in a Harmonic Trap

In this section we refer to the experiments in Hamburg and Florence dealing with a 87Rb–40K boson-

fermion mixture. Therefore, we restrict our formulas to three spatial dimensions. In general the

trap potential in the experiments is well approximated by a three-dimensional harmonic oscillator

Vi(x) =
mi

2

3
∑

k=1

ω2
i,kx

2
k, i = B,F. (3.8)

In most relevant experiments there are either anisotropic harmonic traps with oscillation frequencies

ωi,r = ωi,1 = ωi,2 and ωi,z = ωi,3 leading to a rotationally symmetric cigar shaped condensate cloud,

or isotropic traps are used with ωi,r = ωi,k, k = 1, 2, 3 leading to a spherical condensate cloud. Using

cylindrical coordinates {r, φ, z} for the first case, the potential (3.8) takes the form

Vi(x) =
mi

2

(

ω2
i,rr

2 + ω2
i,zz

2
)

, (3.9)

whereas it reads in the latter case with the help of spherical coordinates {r, φ, θ}

Vi(x) =
mi

2
ω2
i,rr

2. (3.10)
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As mentioned in Section 1.2, bosons and fermions at the same space point experience forces of

equal size caused by the traps, whose harmonic potentials have equal spring stiffnesses mB ω
2
B,k =

mF ω
2
F,k, so that the frequencies for both species are related by ωF,k =

√

mB/mF ωB,k for k = r, z.

In the following we assume that the short-range contact interaction between the atoms is idealized

by the Dirac delta function

V
(int)
ij (x,x′) = gij δ(x − x′), i, j = B,F, (3.11)

where the interaction strength gij is related to the s- wave scattering length aij via [47]

gij = 2π~
2aij

mi +mj

mimj
. (3.12)

With the latter specification the Gross-Pitaevskii equation (2.104) becomes now a local nonlinear

partial differential equation:
[

− ~
2

2mB
∆ + VB(x) − µB + gBB |ΨB(x)|2 + gBF κ3 Θ(µ̃F (x)) µ̃

3/2
F (x)

]

ΨB(x) = 0 (3.13)

with the local chemical potential

µ̃F (x) = µF − VF (x) − gBF |ΨB(x)|2 (3.14)

and the value for the abbreviation

κ3 =
(2mF )3/2

6π2~3
. (3.15)

3.4 Density Profiles

3.4.1 Thomas-Fermi approximation

Now we assume that the interaction dominates energetically, so that we can use the Thomas-Fermi

approximation, where the kinetic term in the Gross-Pitaevskii equation can be neglected, . With

this approximation the Gross-Pitaevskii equation (3.13) reduces with the help of Eqs. (2.107) and

(2.108) to an algebraic equation with respect to the bosonic particle density nB(x):

VB(x) − µB + gBB nB(x) + gBF nF (x) = 0. (3.16)

The last term in Eqs. (3.16) stands for the fermionic particle density

nF (x) = κ3 Θ (µF − VF (x) − gBF nB(x)) [µF − VF (x) − gBF nB(x)]3/2 (3.17)

modulating the bosonic density profile nB(x) and vice versa.

3.4.2 Vanishing Boson-Fermion Interaction

Now we discuss the case of vanishing boson-fermion interaction gBF → 0, where we can derive from

Eq. (3.16) the well-known particle density of a pure BEC in the Thomas-Fermi approximation

n
(0)
B (x) =

µ
(0)
B − VB(x)

gBB
, (3.18)
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provided that gBB > 0. Note that the quantities, marked with the upper index (0), represent

the respective values for an undisturbed BEC and an undisturbed Fermi gas, respectively, with

gBF → 0. In case of an attractive interacting BEC with negative gBB the third term in Eq. (3.16)

cannot be balanced in the trap center at x = 0 by the remaining chemical potential µ
(0)
B leading

to a collapse of the BEC. As the particle density of bosons (3.18) must be positive, the Thomas-

Fermi-radii are obtained from Eqs. (3.8) and (3.18) to

R
(0)
B,k =

√

√

√

√

2µ
(0)
B

mB ω2
B,k

. (3.19)

The chemical potential µ
(0)
B is determined by the number of bosons via the normalization (2.106):

NB =
1

gBB

∫

d3xΘ



1 −
3
∑

k=1

x2
k

(R
(0)
B,k)

2





[

µ
(0)
B − mB

2

3
∑

k=1

ω2
B,kx

2
k

]

. (3.20)

The substitution xk =
√

2µ
(0)
B /(mB ω2

B,k) yk deforms the shape of the condensate cloud from an

ellipsoid to an unit sphere:

NB =

(

2µ
(0)
B

mB

)3/2
µ

(0)
B

gBB ω̃3
B

∫

d3yΘ(1 − y2)
[

1 − y2
]

. (3.21)

Any physical quantity A with a tilde stands for the geometrical average of its components along

the respective axes:

Ã = (A1A2A3)
1/3. (3.22)

Applying spherical coordinates reduces Eq. (3.21) to the elementary integral

NB =

(

2µ
(0)
B

mB

)3/2
4πµ

(0)
B

gBB ω̃3
B

1
∫

0

dr
(

r2 − r4
)

, (3.23)

which leads to

NB =

(

2µ
(0)
B

mB

)3/2
8πµ

(0)
B

15gBB ω̃
3
B

. (3.24)

Using Eq. (3.12), the chemical potential reads

µ
(0)
B =

(

15aBBNB

L̃B

)2/5
~ω̃B
2
, (3.25)

where

L̃B =

√

~

mB ω̃B
(3.26)

denotes the geometrical average of the oscillator lengths

LB,k =

√

~

mB ωB,k
. (3.27)
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With the help of the chemical potential (3.25) the Thomas-Fermi radii (3.19) result in

R
(0)
B,k =

(

15aBBNB

L̃B

)1/5 L2
B,k

L̃B
, (3.28)

and their geometrical average as a measure for the spatial extension of the BEC cloud follows from

R̃
(0)
B =

(

15aBBNB

L̃B

)1/5

L̃B . (3.29)

Inserting the chemical potential (3.25) into the bosonic particle density (3.18) and using Eq. (3.12),

the density maximum in the trap center results in

n
(0)
B (0) =

(15NB)2/5

8πa
3/5
BB L̃

12/5
B

. (3.30)

In the Thomas-Fermi approximation the BEC needs at least a finite repulsion between the bosons

in order to prevent the density from becoming infinity or complex leading to a collapse of the BEC.

The particle density (3.17) of fermions, on the other hand, becomes independent of that of bosons:

n
(0)
F (x) = κ3 Θ

(

µ
(0)
F − VF (x)

) [

µ
(0)
F − VF (x)

]3/2
. (3.31)

The chemical potential µ
(0)
F is determined by the normalization (2.106) yielding with the trap

potential (3.9):

NF =

∫

d3xn
(0)
F (x) =

1

6

(

µ
(0)
F

~ω̃F

)3

, (3.32)

which agrees with the number of states (E.7) in a three-dimensional harmonic oscillator up to the

energy E = µ
(0)
F . The Thomas-Fermi radii of the undisturbed Fermi gas are immediately obtained

from the fermionic density (3.31) by setting the latter zero:

R
(0)
F,k =

√

√

√

√

2µ
(0)
F

mF ω2
F,k

. (3.33)

With the chemical potential in Eq. (3.32) the maximum of the fermionic particle density (3.31)

reads

n
(0)
F (0) = 61/2κ3(~ω̃F )3/2N

1/2
F =

2N
1/2
F

31/2π2 L̃3
F

, (3.34)

which increase faster with the particle number than the maximum of the bosonic particle density

(3.30) whereas the latter is apart from the oscillator length also determined by aBB as the parameter

for the two-particle interaction strength.

3.4.3 Discussion of Density Profiles

After reflecting on a undisturbed BEC in a trap, we discuss, for the time being, qualitatively the

algebraic equation (3.16) for a BEC coexisting with fermions. The particle density of the BEC in

the Thomas-Fermi approximation can be written in the implicit form:

nB(x) =
1

gBB
(µB − VB(x) − gBF nF (x)) (3.35)
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Figure 3.1: Comparison of the dimensionless particle densities for bosons and for fermions between

a disturbed mixture (thick lines) and an undisturbed BEC and Fermi gas (thin lines). The densities

are plotted versus the coordinates r at the plane z = 0 and z at the plane r = 0, respectively, in

units of the Thomas-Fermi radii of the undisturbed BEC. The densities of the disturbed mixture

are the solution of Eq. (3.16) whereas those of an undisturbed BEC and Fermi gas are given by

Eqs. (3.18) and (3.31), respectively, for an example of typical particle numbers NB , NF of the

Hamburg experiment (left picture) and of the Florence experiment (right picture).

From the fermionic particle density (3.17) we deduce that its maximum occurs in the trap center at

x = 0 due to the negative gBF . Thus, the BEC possesses its largest density also in the trap center.

In other words, the particle densities of both species intensify each other in the overlapping region

due to the strong attraction between bosons and fermions. With increasing distance from the trap

center both densities (3.17) and (3.35) decrease quickly within their overlap due to the interaction

terms with the other species and due to the increasing trap potentials, whereas outside of the

overlap only the latter reason is responsible for their decreasing. This behavior is shown in Figure

3.1 for the Hamburg and Florence experiments, respectively. Which of both clouds has the larger

extension depends on the particle numbers NB and NF and therefore on the chemical potentials

µB and µF . Usually, the BEC is surrounded with the Fermi gas unless NB ≫ NF . Both chemical

potentials as the total energy of a particle of the corresponding species are smaller compared with

µ
(0)
B and µ

(0)
F of the undisturbed BEC and Fermi gas, since the particles possess besides the neglected

kinetic energy, the potential energy due to the trap and the intraspecies interaction energy now

an additional negative interaction energy due to the interaction with the other species. Figure 3.4

shows these energies of a boson in units of VB(RB,r, 0) = VB(0, RB,z) = µ
(0)
B for both experiments,

where we see that µB ≈ 0.6µ
(0)
B . This reducing of the chemical potentials leads to a decreasing of

the Thomas-Fermi radii for both species. For the Fermi gas these radii are immediately obtained

from the fermionic density (3.17) by setting nB(RF,r, 0) = nF (RF,r, 0) = 0:

RF,k =

√

2µF
mF ω2

F,k

, k = r, z. (3.36)

Thus, RF,k < R
(0)
F,k becomes obvious by comparing the Thomas-Fermi radii (3.33) and (3.36) due to

µF < µ
(0)
F . Figure 3.1 shows a reduction of the Thomas-Fermi radii of the BEC to RB,k ≈ 0.8R

(0)
B,k.

Hence the attractive interaction between both species leads to an additional confinement of the
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Figure 3.2: Spatial particle density distribution for bosons (left picture) and for fermions (3.17)

(right picture) of the Hamburg experiment versus the radial coordinate r and the axial coordinate

z for the example of particle numbers NB and NF as shown in the left picture of Figure 3.1.

BEC and Fermi gas within their overlap. In Figures 3.2 and 3.3 the absolute particle densities

nB(x) and nF (x) are plotted versus the radial and the axial coordinates. Comparing the radial

with the axial extension of the BEC and of the Fermi gas shows the elongated or cigar-shaped

form of these clouds. This anisotropy of the shape is determined only by the ratio between the

corresponding radial and axial trap frequencies. We compare the density maxima in these figures

with the corresponding ones (3.30) and (3.34) of the undisturbed BEC and Fermi gas evaluated

with the particle numbers in Figure 3.1 to:

Hamburg experiment : n
(0)
B (0) = 6.4 · 1020 m−3, n

(0)
F (0) = 0.40 · 1020 m−3,

Florence experiment : n
(0)
B (0) = 1.9 · 1020 m−3, n

(0)
F (0) = 0.06 · 1020 m−3,

and find that in the Hamburg (Florence) experiment the bosonic density maximum is increased by

a factor of 1.8 (2.5) whereas the fermionic density maximum is enlarged by 4.4 (9.3) due to the

attraction between both species.

3.4.4 Solution Method

Now we sketch briefly how we have solved the algebraic equation (3.16) in order to plot the density

profiles in Figures 3.1, 3.2, and 3.3. First we bring the fermionic density (3.17) to the other side of

the algebraic equation (3.16) and square this equation to obtain a cubic equation with respect to
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Figure 3.3: Spatial particle density distribution for bosons (left picture) and for fermions (3.17)

(right picture) of the Florence experiment versus the radial coordinate r and the axial coordinate

z for the example of particle numbers NB and NF as shown in the right picture of Figure 3.1.

the condensate density nB(x):

n3
B(x) +

[

g2
BB

κ2
3 g

5
BF

− 3(µF − VF (x))

gBF

]

n2
B(x) +

[

2gBB(VB(x) − µB)

κ2
3 g

5
BF

+
3(µF − VF (x))2

g2
BF

]

nB(x)

+
(VB(x) − µB)2

κ2
3 g

5
BF

− (µF − VF (x))3

g3
BF

= 0. (3.37)

This cubic equation can be solved exactly with the help of the Cardanian formula [49]. A cubic

equation with real coefficients contains always three solutions, where at least one of them is real

and the others are complex conjugate. Although all three solutions obey the cubic equation (3.37),

only one of the solutions satisfies the algebraic equation (3.16), whereas inserting the two other

solutions into the algebraic equation yields the right value but opposite signs on both sides of the

algebraic equation

VB(x) − µB + gBB nB(x) = −gBF κ3 [µF − VF (x) − gBF nB(x)]3/2 . (3.38)

The reason is that the algebraic equation is the root of the cubic equation, therefore an equation

of the order 3/2, which reduces the number of possible solutions. The resulting particle densities

for both species for an example of typical particle numbers NB and NF are plotted in Figures 3.1,

3.2 and 3.3, using the experimental parameters in Table 1.1. In order to determine the solution

outside the BEC, especially the particle density of fermions, we must not forget the origin of the
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Figure 3.4: Comparison of the kinetic energy Ekin = −~
2∆ΨB(x)/(2mB ΨB(x)µ

(0)
B ) of a boson,

with its remaining energies, namely the intraspecies interaction energy Eint,BB = gBB nB(x)/µ
(0)
B ,

the interspecies interaction energy Eint,BF = |gBF |nF (x)/µ
(0)
B , the potential energy Epot =

VB(x)/µ
(0)
B due to the trap and the chemical potential Echem = µB/µ

(0)
B . All energies are re-

lated to the value µ
(0)
B of the potential energy at the boundary of the undisturbed BEC cloud and

are plotted versus the coordinates r and z within the BEC cloud for the situation in Figure 3.1.

The left (right) picture corresponds to the Hamburg (Florence) experiment.

algebraic equation (3.16) from the Gross-Pitaevskii equation (3.13). Although the solution nB(x)

becomes negative outside the BEC, we have to set it equal zero there, as the density must be

positive by definition. Thus, the condensate wave function ΨB(x) becomes also zero outside the

BEC and fulfills the Gross-Pitaevskii equation (3.13) in a trivial way regardless of the expression

inside the brackets, which is, apart from the kinetic energy term, the algebraic equation (3.16).

Hence the fermionic particle density outside the BEC is described by Eq. (3.17) with nB(x) = 0

without obeying the algebraic equation (3.16).

3.4.5 Validity of Thomas-Fermi approximation

In order to check the validity of the Thomas-Fermi approximation, we have plotted in Figure 3.4

the kinetic energy of a boson

Ekin =
−~

2∆ΨB(x)

2mB

1

ΨB(x)µ
(0)
B

(3.39)

in units of the value µ
(0)
B of the potential energy at the boundary of the undisturbed BEC allowing

a direct comparison with the other energies in the algebraic equation (3.16). The kinetic energy

is, indeed, negligible in a wide bulk range from the trap center to just before the boundary of

the disturbed BEC. Thus, the Thomas-Fermi approximation gives very accurate results except in

the outermost 10% of the Thomas-Fermi radii. At the BEC boundary the kinetic energy diverges

because the condensate wave function ΨB(x) as the square root of the particle density nB(x) occurs

due to the Laplacian derivative in Eq. (3.39) in the denominator, which becomes zero at the BEC

boundary. Its is obviously that the proper solution of the Gross-Pitaevskii equation (3.13) matches

the one of the algebraic equation (3.16) from the trap center to just before the BEC boundary,
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where it tends smoothly to zero improving the sharp bend in the graph of the fermionic particle

density there to be smooth.

3.4.6 Complex solutions

The solution nB(x) of the algebraic equation (3.16) doesn’t remain always real by varying the

particle numbers NB and NF , i.e. of the corresponding chemical potentials µB and µF . We extract

the condition for the chemical potentials as the straight line

µF =
4g2
BB

27κ2
3 g

4
BF

+
gBF
gBB

µB, (3.40)

which separates the half plane with pairs (µB , µF ) leading to a complex solution from that with

pairs having a real solution. This can be seen for the Hamburg experiment in part (a) of Figure 3.5.

By comparing with the results of Section 3.5, we can allocate the complex solution to a failure of

the stability in the mixture with respect to collapse. The parts (b) – (d) in Figure 3.5 demonstrate

the change of the density profiles nB(x) and nF (x) on the road from stability to instability by

increasing the particle numbers with ∆NB ≈ 1.8 · 105 and ∆NF ≈ 3 · 104 each. The respective

pairs (µB , µF ) lie on the dashed line, arranged perpendicular to the critical solid line in part (a),

so for part (b) just below the critical line, for part (c) on, and for part (d) just above. Part

(b) shows a stable configuration, part (c) is on the boundary between stable and unstable where

the density gathers at the trap center to a peak, and in part (d) the real part of the densities is

chopped off at the trap center and just there an imaginary part of both densities occurs. This

imaginary part starts to appear simultaneously for both components at the density maximum at

x = 0 and grows in magnitude and in extension out of the trap center with increasing NB and NF .

This behavior was observed in the Hamburg experiment, where the evolution of an overcritical

mixture is shown in Figure 3.6. The pictures in this figure were taken during the evaporation of an

overcritical mixture, where the density distributions should despite the dynamics in the mixture

due to the fast evaporation closely reflect the distribution inside the trap due to the relative short

time of flight (TOF) during the expansion of the mixture. Now we describe briefly the phenomenon

behind the pictures in Figure 3.6 as stated in Ref. [16]. Picture (a) shows the situation at the phase

transition point where the bosons start to condense. The small peak of the BEC in the left picture

is surrounded by thermal bosons. The peak on the top of the axial 40K density profile is ascribed to

the interaction with the bosonic component. When the BEC becomes large during the evaporative

cooling, the 40K density profile in picture (b) exhibits a pronounced hole in the trap center, which

is ascribed to a strong local loss process due to the interaction with the BEC. The strong depletion

of the Fermi cloud in the center, which is accompanied by a rapid particle loss of about two thirds

of the 40K atom number, is caused by a mean-field collapse of the mixture. The strong attraction

between bosons and fermions in the overlapping part of the mixture leads to a rapid contraction to

such large densities in the trap center, that enormous losses due to three-body Rb-K recombination

with each two Rb atoms and a K atom reduces the particle number in this region to an subcritical

number. After the sudden collapse the Fermi distribution, which is depleted in the center of the

cloud, is refilled from the outside parts of the sample on a time scale ∆t ≈ 2π/ωF,z, leading possibly

to renewed local collapses, until the mixture becomes subcritical in picture (c). The collapse and

the possibly following cascade of decays reveal a comlex dynamic in the mixture.
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Figure 3.5: Phase diagram with respect to the chemical potentials in part (a). The solid line

separates the stable phase on the left from the unstable phase on the right. The pictures on the

right show a sequence how the bosonic and fermionic particle densities versus the coordinates r

at the plane z = 0 and z at the plane r = 0, respectively, change on the road from stability to

instability. The (µB , µF )-pairs belonging to parts (b) – (d) are located on the dashed line in part

(a) and are equally spaced ∆µB = 5 ·10−32 apart giving rise to particle number differences of about

∆NB ≈ 1.8 · 105 and ∆NF ≈ 3 · 104.



44 Solution of Gross-Pitaevskii Equation

(a)

(b)

(c)

87
Rb

40
K

axial 
oordinate [arb. un.℄axialdire
tionradialdire
tion
verti
ally
integr.
o
lumnden
sity

Figure 3.6: Typical evolution of an overcritical mixture in the Hamburg

experiment [16]. Left hand side: 3D representation of absorption images

with false-color coding of the optical density. Right hand side: corre-

sponding 40K axial line profiles integrated the density along the vertical

direction.

3.5 Stability

3.5.1 Thomas Fermi Approximation

In Subsection 3.4.6 we described in detail the behavior of the particle densities nB(x) and nF (x) as

the solution of the stationary Gross-Pitaevskii equation within the Thomas-Fermi approximation

by varying the particle numbers NB and NF . We assigned the emergence of a complex density to

a loss of the stability against collapse and found a border in form of a line in the (µB , µF )-plane,

which separates the stable and unstable region as shown in part (a) of Figure 3.5. In order to

obtain a stability diagram in the (NB , NF )-plane, we evaluate the corresponding particle numbers

from the chemical potentials by integrating out the respective particle densities according to the

normalization condition (2.106). The result is given by the violet line in Figures 3.7 and 3.8.

Mixtures with particle number pairs (NB , NF ) below this line are stable whereas particle number

pairs above the line indicate an unstable mixture tending to collapse. The critical particle numbers

of both species behave, roughly spoken, inversely proportional to each other in a wide range.

Whereas the critical number of bosons NBcrit tends to zero when the number of fermions increases,

the critical number of fermions NF crit remains finite and constant when the number of bosons is

enlarged. This situation, where the line in the stability diagram becomes vertical, happens when

the BEC cloud becomes sufficient large to surround the Fermi gas.



3.5 Stability 45

0 2 4 6 8 10 12 14
0

2

4

6

8

10

NF / 106

N
B
/

1
0
6

– GP-Equation with

Thomas-Fermi Approx.

– Numerical Integration

– Expansion of µ̃F (x)

· Experiment

Figure 3.7: Stability diagram for the 87Rb–40K mixture of the Hamburg experiment.

The particle number pairs (NB , NF ) below a certain line belong to a stable mixture wheras

those above the line indicate an unstable mixture tending to collapse. The dashed lines

correspond to the quantum mechanical limit with the ratio λQM = ωz/ωr and the solid

lines represents the Thomas-Fermi limit with the ratio λTF = (ωz/ωr)
2. The green points

are obtained in the experiment by analyzing decay series in various particle number

regimes and are assigned to unstable mixtures [16].

3.5.2 Variational Method

Another approach to determine the stability border for a 87Rb–40K mixture is given by extremizing

the grand-canonical free energy (2.103) which reads with the delta interaction (3.11):

F [Ψ∗
B ,ΨB ] =

∫

d3x

[

~
2

2mB
|∇ΨB(x)|2 + (VB(x) − µB)|ΨB(x)|2

+
gBB
2

|ΨB(x)|4 − 2κ

5
Θ(µ̃F (x)) µ̃

5/2
F (x)

]

, (3.41)

where the local chemical potential has the form:

µ̃F (x) = µF − VF (x) − gBF |ΨB(x)|2. (3.42)

But instead of varying the condensate wave function ΨB(x), which leads to the Gross-Pitaevskii

equation as described in Section 2.11, we use for it the ground-state wave function of a three-

dimensional anisotropic harmonic oscillator

ΨB(x) =

√

NB

π3/2α3L̃3
B

exp

{

−
3
∑

k=1

x2
k

2α2L2
B,k

}

, (3.43)

as a test function with variational widths αLB,k. The dimensionless factor α serves as a variational

parameter by scaling the oscillator lengths (3.27) to optimize the width of the Gaussian function
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Figure 3.8: Stability diagram for the 87Rb–40K mixture of the Florence experiment. The

particle number pairs (NB , NF ) below a certain line belong to a stable mixture whereas

those above the line indicate an unstable mixture tending to collapse. The dashed lines

correspond to the quantum mechanical limit with the ratio λQM = ωz/ωr and the solid

lines represents the Thomas-Fermi limit with the ratio λTF = (ωz/ωr)
2. The green points

represent mixtures in the experiment which are found very close to the instability [35].

(3.43) with regard to extremizing the free energy (3.41). The test function is normalized to NB

bosons and obeys for α = 1 the Gross-Pitaevskii equation for a trapped noninteracting BEC:

[

− ~
2

2mB
∆ + VB(x) − µB

]

ΨB(x) = 0. (3.44)

Here we assume that the condensate wave function ΨB(x) also in case of intraspecies and inter-

species two-particle interactions has qualitative the shape of a Gaussian curve as one can convince

of it in Figure 3.1. Using cylindrical coordinates {r, φ, z}, the test function (3.43) reads

ΨB(x) =

√

NBλ1/2

π3/2α3L3
B,r

exp

{

−r
2 + λz2

2α2L2
B,r

}

, λ =

(

LB,r
LB,z

)2

(3.45)

Beside the uniform variation of the widths αLB,k by the factor α, we have to consider that the

ratio LB,z/LB,r also could be changed due to the interactions. In order to include this, we perform

the calculation with two ratios λ ≡ (LB,r/LB,z)
2. On the one hand with λQM = ωz/ωr which

stands for the limit of vanishing interactions gBB → 0 and gBF → 0 and reflects the proper ratio

of the oscillator lengths in the quantum-mechanical harmonic oscillator (3.44). On the other hand,

we set λTF = (ωz/ωr)
2, which represents the Thomas-Fermi limit of negligible kinetic energy due

to the strong intraspecies and interspecies interaction. Using the Thomas-Fermi radius (3.19), we

see that the ratio of the oscillator lengths in λTF reflects that of the Thomas-Fermi radii:

LB,r
LB,z

=
RB,r
RB,z

. (3.46)
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Inserting the test function (3.45) into the grand canonical free energy (3.41) reduces the latter from

the functional F [Ψ∗
B ,ΨB ] to a function F(α) with respect to the parameter α. As the test function

(3.45) is normalized independent of µB, the latter plays no longer a role in F(α) and shifts the free

energy only by a constant value. On the other hand, the fermionic chemical potential µF is needed

for evaluating the respective fermion number NF by integrating out the fermionic particle density

nF (x) = κ3 Θ
(

µF − VF (x) − gBF |ΨB(x)|2
) [

µF − VF (x) − gBF |ψB(x)|2
]3/2

(3.47)

according to the normalization (2.106). The dependence of the grand-canonical free energy F(α)

on α for given chemical potentials µB, µF is shown in Figure 3.9 for several boson numbers NB . For

NB < NBcrit the free energy F(α) possesses a local minimum which corresponds to a metastable

state of the mixture. The condensate wave function ΨF (x) has finite equilibrium widths αeqLB,k
with αeq as the parameter at the local minimum. When the boson number NB > NBcrit exceeds the

critical value, the local minimum disappears so that the widths tends to zero in order to minimize

F(α). Just this happens when the mixture collapse. Thus, the border between stable and unstable

is given by the condition

NB = NBcrit ⇔ dF(α)

dα

∣

∣

∣

∣

α=αcrit

=
d2F(α)

dα2

∣

∣

∣

∣

α=αcrit

= 0, (3.48)

where F(α) has a point of inflexion at α = αcrit. The appearance of the local minimum arises from

the competition between the positive first three terms of the grand-canonical free energy (3.41) and

the negative last term describing the influence of the fermions. We determined the stability border

within the variational method in two different ways.

Numerical Integration

The most accurate possibility is to perform the integration in Eq. (3.41) numerically. We evaluated

the critical boson numbers NBcrit for different values of µF in an iterative way until the condition
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(3.48) is achieved with sufficient accuracy. The result is the red line in the stability diagrams

for the Hamburg and Florence experiment as shown in Figures 3.7 and 3.8, where the resulting

particle number pairs (NB , NF ) are smoothly connected with each other. The red solid line of the

Thomas-Fermi limit with the ratio λTF = (ωz/ωr)
2 lie above, but close to the violet line from the

Gross-Pitaevskii equation in the Thomas-Fermi approximation in section 3.5.3. This is expected as

both the red solid line and the violet line are evaluated in the Thomas-Fermi limit with the same

ratio of the radial and axial extension of the BEC cloud. Furthermore they show the same behavior

for very large boson numbers as both lines become vertical so that the fermion number remains

constant. In the Florence experiment both lines lie very close to the green points of the experiment

where the red line fits them better. This is not surprising as the s-wave scattering length aBF
in Table 1.1 is determined with a meanfield analysis in the Florence experiment. The dashed red

line lie far below the solid red line and reflects a mixture in the quantum-mechanical limit with

the ratio λQM = ωz/ωr. This line, which is a good approximation for mixtures with vanishing

intraspecies and interspecies interactions, is less suitable for the 87Rb–40K mixture as Figure 3.4

reveals that the interaction dominates with respect to the energy. Hence the mixture can be well

described in the Thomas-Fermi limit. As the dashed red line doesn’t consider the proper ratio λ

of the oscillator lengths in the test function (3.43) and hence minimize the free energy less optimal

for a strong interacting mixture, this line allows much less particle numbers in a stable mixture

than the solid red line. In order to estimate the ratio λ, which yields the stability border with the

largest possible numbers for bosons and fermions, we evaluate two lines in the stability diagram for

ratios in the neighbourhood of λTF, where one λ is 30% smaller and the other one is 30% larger.

These lines for λ = 0.7λTF and λ = 1.3λTF are shown in Figure 3.10. Both lines lie throughout

below, but very close to the original one with λ = λTF. This indicates that the stability border

in the Thomas-Fermi limit is stationary at λ = λTF where it possesses a maximum. Hence, the

ratio λTF turns out to be the proper ratio for the 87Rb–40K mixture allowing the largest possible

numbers for bosons and fermions in a stable mixture.

Expansion of µ̃F (x)

Another approach was suggested and performed by Chui et al., where the local chemical potential

(3.42 in the grand-canonical free energy (3.41) is expanded up to the third order in gBF in order

to get rid off the power in the last term of the free energy [38]. This expansion leads to a Gaussian

integral with respect to the test function (3.45):

F [Ψ∗,Ψ] ≈
∫

d3x

[

~
2

2mB
|∇Ψ(x)|2 + Veff(x) |Ψ(x)|2 +

geff
2

|Ψ(x)|4 +
κg3

BF

8µ
1/2
F

|Ψ(x)|6
]

, (3.49)

where the terms with respect to the power of |Ψ(x)| are summarized in the factors

Veff(x) =

[

1 − 3

2
κ3 µ

1/2
F gBF

]

1

2
mBω

2
B,r(r

2 + λ2z2), (3.50)

geff = gBB − 3

2
κ3 µ

1/2
F g2

BF . (3.51)

Here we assume that the radius of the condensate is much less than the radius of the Fermi gas

cloud so that the remaining expressions (µF−VF (x))n/2, arising from the expansion, with n = 1, 3, 5

can be expanded in powers of VF (x)/µF as well. We consider therein only terms which depends
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on the parameter α. The last term in the free energy (3.49) corresponds to the elastic three-

particle collision induced by the interspecies interaction. This term for gBF < 0 is responsible

for increasing both the bosonic and the fermionic particle density in the trap center in order to

minimize the free energy. If the central condensate density |Ψ(0)|2 becomes large enough due

to large particle numbers, the positive first three terms in the free energy (3.49) cannot balance

the negative last term in order to stabilize the mixture and prevent the collapse. Performing the

integration in Eq. (3.49) leads to a algebraic equation with respect to the unknown quantities α

and NB :

F(α)

NB~ωB,r
=

2 + λ

4

1

α2
+ bα2 +

c1NB

α3
+
c2N

2
B

α6
(3.52)

with the factors

b =
3

4

[

1 − 3

2
κ3 µ

1/2
F gBF

]

,

c1 =
1

2

[

gBB − 3

2
κ3 µ

1/2
F g2

BF

]

λ1/2

(2π)3/2~ωB,rL3
B,r

,

c2 =
κ3g

3
BF

8µ
1/2
F

λ

33/2π3~ωB,rL6
B,r

. (3.53)

The condition (3.48) for the stability border provides two equations allowing to determine both

unknown quantities for different values of µF . The result is shown in Figures 3.7 and 3.8 by

the blue line for both limits. The dashed as well as the solid blue line converges with increasing

fermion number NF to the corresponding red line of the numerical integration. But for low NF

or, equivalent, large NB these blue lines stay below the red lines, where the discrepancy increases

with decreasing NF . Moreover for very small NF the blue lines show the opposite behavior of the

red lines as they tends to zero, which seems physical a bit strange. When the radius of the BEC

clouds increases with decreasing NF , the above mentioned expansion in powers of VF (x)/µF , which

is done up to the zeroth and first order, fails as VF (x) and µF becomes comparable at the BEC

cloud boundary. Thus, more orders of the expansion are needed to obtain more accurate results.

Another reason is the strong dependency of the stability border in the stability diagram on the

interspecies s-wave scattering wavelength aBF according to the scaling law for the critical numbers

of condensate atoms for a fixed ratio between NB and NF [35,51]:

NBcrit ≈
1

a12
BF

,
NB

NF
= const. (3.54)

The sensitivity of the critical boson number NBcrit with respect to aBF and also to gBF due

to Eq. (3.12) doesn’t justify a expansion of the local chemical potential µ̃F (x) in the smallness

parameter gBF

3.5.3 New Value of aBF

The above described strong dependence of NBcrit on aBF , on the other hand, can be used to extract

a value for aBF with great accuracy within a meanfield analysis of the stability as performed in this

section. Because of the scaling law (3.54) the relative uncertainty of aBF amounts to only a twelfth

of the relative uncertainty of the critical boson number NBcrit. As the violet and solid red line in



50 Solution of Gross-Pitaevskii Equation

0 0.5 1. 1.5 2. 2.5 3. 3.5 4.
0

0.5

1.

1.5

2.

2.5

3.

3.5

4.

NF / 106

N
B
/

1
0
6

– GP-Equation with

Thomas-Fermi Approx.

– Numerical Integration

· Experiment

Figure 3.11: Stability border for a new value aBF = 16.2 nm of the 87Rb–40K mixture

in the Hamburg experiment.

Figure 3.8 for the Florence experiment agrees with the green points of the experiments, we restrict

here to determine a new value for aBF of the Hamburg experiment without giving an uncertainty

for it. For that purpose we plotted the violet and solid red line in Figure 3.11 for a new value of

aBF so that the lines lie within the bulk of the green points. The new value aBF = 16.2 nm differs

by only 8% from the old value aBF = 15.0 nm whereas the critical numbers of the green points

are by a factor at least of 2 smaller than those of the violet line. The old value was determined by

the Sengstock group with the help of Eq. (3.52), but instead of evaluating the respective fermion

number NF by integrating the fermionic density, they used the relation

µF = µ
(0)
F − gBF

gBB
µ

(0)
B , (3.55)

where the noninteracting chemical potentials µ
(0)
B and µ

(0)
F are related to the respective particle

numbers by Eqs. (3.25) and (3.32). The above relation between disturbed and undisturbed chemical

potentials is not correct.



Chapter 4

Summary and Outlook

In Chapter 2 we derived the Gross-Pitaevskii equation for the condensate wave function of a Bose-

Fermi mixture within the functional integral formalism in a hierarchy of three different approxima-

tions . All approximations contain the same conventional terms for a BEC with intraspecies inter-

action, but differ in the way how the quantum degenerated Fermi gas enters in the Gross-Pitaevskii

equation. Most general is the result (2.85) where the dynamics of the condensate function is driven

by the fermionic Green function. It obeys the inhomogeneous Schrödinger equation (2.86) and

thus depends on the evolution of the condensate wave function. Thus, the complete dynamics of

the Bose-Fermi mixture consists of two coupled equations of motions whose solution could not be

further analyzed within this thesis. Less general is the Gross-Pitaevskii equation (2.71), (2.73) as

it follows from integrating out the fermionic degree of freedom within a semiclassical approxima-

tion. Consequently, the fermions have lost their independent dynamics and their time dependence

follows the condensate dynamics in a passive way. If we neglect all time dependences, we arrive

at the stationary Gross-Pitaevskii equation (2.104). Note that it also follows from the coupled

equations of motion (2.85), (2.86) by evaluating the fermionic Green function for a trapped Fermi

gas interacting with a stationary BEC in the semiclassical approximation. Further investigation

with respect to the dynamics can include the hydrodynamics and the variational method with a

time-dependent width of the Gaussian test function in order to obtain macroscopic excitations of

the BEC cloud. Furthermore, the influence of the Fermi gas on the superfluidity in the BEC can

be investigated.

In Chapter 3 we applied the stationary Gross-Pitaevskii equation in order to determine the density

profiles for an ultracold 87Rb–40K boson-fermion mixture realized by the Sengstock group in Ham-

burg and by the Inguscio group in Florence. For that purpose we neglected the kinetic energy of the

condensate corresponding to the Thomas-Fermi approximation, which reduces the Gross-Pitaevskii

equation to an algebraic equation. The exact solution of this algebraic equation for typical particle

numbers of bosons and fermions shows a strong modification of the density distribution of both

species within their overlap compared with the density distribution of a single trapped BEC and a

trapped Fermi gas. The strong attraction between bosons and fermions gives rise to an increase of

the particle densities within their overlap, accompanied by a shrinkage of the BEC and the Fermi

gas cloud. In order to test the validity of the Thomas-Fermi approximation, we have plotted the

kinetic energy of a boson together with its potential energy due to the trap, its intraspecies and

its interspecies interaction energy, and the chemical potential as the total energy of a boson. This
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reveals the Thomas-Fermi approximation to be very good over a wide bulk range of the condensate

cloud. The kinetic energy plays a significant role only in the outermost 10% of the BEC cloud.

Furthermore, we found that the particle densities for both species become complex at sufficiently

large particle numbers of bosons and fermions. We interpret this as a loss of the stability against

collapse. The imaginary part of the density can be regarded as the decay rate of the described

species and starts emerging in the trap center, where the densities have their maximum. We

extracted a condition in form of a line in the µB-µF -plane separating the stable and unstable

region. The transformation from chemical potentials to particle numbers then leads to a stability

diagram in the NB-NF -plane. We have plotted three density profiles for particle number pairs, one

just below, another on, and the third just above the critical line in the NB-NF -plane showing the

change of the density profiles on the road from stability to instability. This behavior of the density

distribution was, indeed, observed in the Hamburg experiment as shown in Figure 3.6.

Beside the stability diagram arising from the complex solution of the Gross-Pitaevskii equation in

the Thomas-Fermi approximation we evaluated the stability border within a variational method by

extremizing the grand-canonical free energy (3.41) for a 87Rb–40K mixture with a Gaussian test

function. It represents the ground-state wave function for a noninteracting BEC. In order to include

the influence of the intraspecies and interspecies interaction on the shape of the test function, the

radial and axial widths of the test function are scaled by a common variational parameter so that

the grand-canonical free energy becomes stationary. Additionally we performed the calculation

with two different ratios between the radial and the axial widths. On the one hand in the quantum

mechanical limit which stands for a mixture with vanishing interactions. On the other hand in

the Thomas-Fermi limit with negligible kinetic energy. The most accurate results are obtained by

integrating the grand-canonical free energy numerically. The resulting lines for the Thomas-Fermi

limit show the same behavior as the ones of the Gross-Pitaevskii equation. Both lines are located

close in the NB-NF -plane. Furthermore, by evaluating two lines with ratios of the radial and axial

width besides and in the vicinity of the ratio for the Thomas-Fermi limit, it turns out that the line

in the Thomas-Fermi limit yields the largest critical numbers. Thus, this limit reflects the proper

ratios of the widths for the 87Rb–40K mixture. This is in accordance with the fact that the density

profiles of the mixture are obtained with great accuracy within the Thomas-Fermi approximation.

Another approach in order to evaluate the grand-canonical free energy was suggested by Chui et. al

by expanding the local chemical potential in the free energy up to the third order in the smallness

parameter gBF . This approach suffers from low accuracy in the range of small fermion numbers

NF . Finally, by comparing the calculated stability borders with the experimental values, we found

that the for the Florence experiment the stability border of the Thomas-Fermi limit and of the

Gross-Pitaevskii equation is in good agreement with the experimental results. For the Hamburg

experiment we found a discrepancy between the calculated lines and the experimental results. We

extract a new value of the interspecies s-wave scatterin length to aBF = 16.2 nm.



Appendix A

Grassmann Numbers

In order to calculate the one-dimensional fermionic Gaussian integrals in Eq. (2.35) for each quan-

tum number n and each Matsubara mode m, we summarize here briefly the main properties of

Grassmann numbers [44]. We start with considering an integral over two fermionic variables

IF =

∫

dψ∗

∫

dψ e−ψ
∗Aψ, (A.1)

where A is a complex number. The fermionic variables ψ, ψ∗ are Grassmann numbers, so they

obey anticommutation relations

[

ψi, ψj
]

+
=
[

ψ∗
i , ψj

]

+
=
[

ψi, ψ
∗
j

]

+
= 0. (A.2)

Here ψ1, . . . , ψn and ψ∗
1 , . . . , ψ

∗
n are two disjoint sets of n Grassmann variables, which are connected

by the conjugation operation

(ψi)
∗ = ψ∗

i , (ψ∗
i )

∗ = ψi, (ψi1 ψi2 . . . ψin)∗ = ψ∗
in . . . ψ

∗
i2 ψ

∗
i1 , (λψi)

∗ = λ∗ ψ∗
i , (A.3)

with a complex number λ. From the anticommutation rules (A.2) follows immediately that the

square and all higher powers of a Grassmann number vanish:

ψni = 0, n ≥ 2. (A.4)

The differentiation rules are analogous to that of complex numbers

∂

∂ψi
1 = 0,

∂

∂ψi
ψj = δij , (A.5)

except that the order of differentiation plays a role:

∂

∂ψi
(ψj ψk) = δij ψk − δik ψj = − ∂

∂ψi
(ψk ψj). (A.6)

The integration over Grassmann variables differs from the ordinary one, as it can neither be defined

via a Riemannian sum nor via the inversion of the differentation since there exists no graphical

interpretation of an area below a curve and no integration limits. In order to define an integration

over Grassmann variables, one proceeds axiomatically and demands linearity and translation in-

variance. We consider the integral of the function f(ψ) = f1 +f2ψ, where linearity and translation
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invariance lead to
∫

dψ [f1 + f2 ψ] =

∫

dψ f(ψ) ≡
∫

dψ f (ψ + η) =

∫

dψ [f1 + f2 (ψ + η)]

=

∫

dψ [f1 + f2 ψ] +

(
∫

dψ 1

)

f2 η. (A.7)

Thus, we read off the integration rule

∫

dψ 1 = 0. (A.8)

This rule is completed by choosing an arbitrary normalization

∫

dψi ψj = δij . (A.9)

Thus, we see that differentiation and integration amount to the same operations in the space of

Grassmann numbers.

With these rules we are able to calculate the integral (A.1). Since quadratic and higher terms of

the same Grassmann variable vanish, the Taylor series of the integrand in Eq. (A.1) breaks down

after the first order

e−ψ
∗Aψ = 1 +Aψ ψ∗. (A.10)

Starting with the inner integral and applying the rules (A.8) and (A.9), we obtain

IF =

∫

dψ∗

∫

dψ (1 +Aψ ψ∗) =

∫

dψ∗ Aψ∗ = A. (A.11)



Appendix B

Poisson Sum Formula

In the following we derive the Poisson sum formula, which is useful for evaluating Matsubara series

for bosons and fermions, respectively [43]. It follows from the fact, that the comb function

C(x) =
∞
∑

m=−∞

δ(x−m), m =















0,±1,±2 . . . bosons,

±1

2
,±3

2
,±5

2
. . . fermions

(B.1)

has the property to be periodic:

C(x+ k) = C(x), k = 0,±1,±2, . . . . (B.2)

Therefore, the comb function can be Fourier expanded

C(x) =

∞
∑

n=−∞

Cn e
−i2πnx. (B.3)

The Fourier coefficients are obtained by integration over one period:

Cn =

a+1/2
∫

a−1/2

dxC(x) e−i2πnx = ǫn, a =















0 bosons,

1/2 fermions,

(B.4)

where ǫ = ±1 holds for bosons and fermions, respectively. Inserting Eq. (B.4) into Eq. (B.3) leads

to the distribution identity

∞
∑

m=−∞

δ(x−m) =
∞
∑

n=−∞

ǫn e−i2πnx. (B.5)

Multiplying with a function f(x) and integrating over the whole x-axis yields the desired Poisson

sum formula

∞
∑

m=−∞

f(m) =

∞
∑

n=−∞

ǫn
∞
∫

−∞

dx f(x) e−i2πnx. (B.6)
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In order to make this formula more applicable for Matsubara series with Matsubara frequencies

ωm =
2π

~β
m (B.7)

with m corresponding to Eq. (B.1), we specialize to a function f(m) = F (ωm):

∞
∑

m=−∞

F (ωm) =
~β

2π

∞
∑

n=−∞

ǫn
∞
∫

−∞

dω F (ω) e−in~βω. (B.8)

As a particular useful example we derive the completeness relation of the Matsubara functions

e−iωmτ . Using Eq. (B.6), we obtain

1

~β

∞
∑

m=−∞

e−iωmτ eiωmτ ′ =
1

~β

∞
∑

m=−∞

e−i2πm(τ−τ ′)/~β =
∞
∑

n=−∞

ǫn δ(τ − τ ′ + n~β). (B.9)

The right expression in Eq. (B.9) is also called the periodic repetitive delta function for bosons:

δ(p)(τ − τ ′) =

∞
∑

n=−∞

δ(τ − τ ′ + n~β) (B.10)

and the antiperiodic repetitive delta function for fermions:

δ(a)(τ − τ ′) =

∞
∑

n=−∞

(−1)n δ(τ − τ ′ + n~β). (B.11)

Thus, the Matsubara functions represent a basis in the space of the ~β–periodic functions and

~β–antiperiodic functions, respectively. This justifies the Fourier expansion (2.26) of the Grassmann

fields with fermionic Matsubara frequencies (2.27).



Appendix C

Tracelog Calculation

Here we evaluate the Matsubara sum of the tracelog Tr ln Ô, which reads for bosons and fermions

Tr ln Ô =
∑

n

∞
∑

m=−∞

ln [β(−i~ωm + En − µ)] , (C.1)

respectively, with the Matsubara frequencies (B.7) and m corresponding to Eq. (B.1). At first, we

replace the sum over the Masubara frequencies by an integral with the help of the Poisson sum

formula (B.8). Setting F (ωm) = ln [β(−i~ωm + En − µ)], the Poisson sum formula (B.8) leads to

Tr ln Ô = lim
η↓0

~β

2π

∑

n

∞
∑

n=−∞

ǫn
∞
∫

−∞

dω ln [β(−i~ωm + En − µ)] e−i~β(n−η)ω . (C.2)

Here the additional factor exp{i~βωη} with η as an infinitesimal positive number is introduced to

achieve the normal-ordering. In this way we avoid a divergent contribution which doesn’t play any

role within the nonrelativistic many-body theory. The logarithm in the integral can be replaced

with the help of the Schwinger trick:

ln a = − ∂

∂x

1

ax

∣

∣

∣

∣

x=0

= − ∂

∂x







1

Γ(x)

∞
∫

0

dλλx−1 e−λa







∣

∣

∣

∣

∣

∣

x=0

. (C.3)

Applying Eq. (C.3) to Eq. (C.2) yields

Tr ln Ô = − lim
η↓0

~β

2π

∑

n

∞
∑

n=−∞

ǫn
∂

∂x







1

Γ(x)

∞
∫

0

dλλx−1 e−λβ(En−µ)

∞
∫

−∞

dω ei~β(λ−n+η)ω







∣

∣

∣

∣

∣

∣

x=0

. (C.4)

The integral over ω can be directly performed:

∞
∫

−∞

dω ei~β(λ−n+η)ω =
2π

~β
δ(λ− n+ η). (C.5)

Inserting this into Eq. (C.4) leads to

Tr ln Ô = − lim
η↓0

∑

n

∞
∑

n=−∞

ǫn
∂

∂x







1

Γ(x)

∞
∫

0

dλλx−1 e−λβ(En−µ) δ(λ− n+ η)







∣

∣

∣

∣

∣

∣

x=0

. (C.6)
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As the integration is restricted to the positive λ-axis, only the terms with positive summation index

n contribute:

Tr ln Ô = − lim
η↓0

∑

n

∞
∑

n=1

ǫn
∂

∂x

{

1

Γ(x)
(n− η)x−1 e−(n−η)β(En−µ)

}∣

∣

∣

∣

x=0

. (C.7)

Performing the limit η ↓ 0 yields

Tr ln Ô = −
∑

n

∞
∑

n=1

ǫn
∂

∂x

{

1

Γ(x)
nx−1 e−nβ(En−µ)

}∣

∣

∣

∣

x=0

. (C.8)

In order to determine the derivative with respect to x in Eq. (C.8), we use the identity

Γ(x) =
1

x
Γ(x+ 1), (C.9)

and perform the Taylor expansion

Γ(x) =
1

x

[

Γ(1) + Γ′(1)x+ . . .
]

, (C.10)

in order to yield for small x

1

Γ(x)
=

x

1 + Γ′(1)x
= x− Γ′(1)x2 + Γ′(1)2 x3 − . . . . (C.11)

Finally, multiplying with a regular function f(x), which is expanded around x = 0, yields

1

Γ(x)
f(x) =

[

x− Γ′(1)x2 + Γ′(1)2 x3 − . . .
]

[

f(0) + f ′(0)x+
f ′′(0)

2
x2 + . . .

]

= f(0)x+
[

f ′(0) − Γ′(1)f(0)
]

x2 + . . . , (C.12)

so that the derivative with respect to x at x = 0 results in

∂

∂x

{

1

Γ(x)
f(x)

}∣

∣

∣

∣

x=0

= f(0). (C.13)

Applying Eq. (C.13) to Eq. (C.8), we obtain

Tr ln Ô = −
∑

n

∞
∑

n=1

ǫn

n
e−nβ(En−µ). (C.14)

With the help of the Taylor series

ln(1 − ǫ z) = −
∞
∑

n=1

ǫnzn

n
, |z| < 1, (C.15)

we replace the sum over n as follows

Tr ln Ô =
∑

n

ln
[

1 − ǫ e−β(En−µ)
]

. (C.16)

Thus, the result of the tracelog reads

Tr ln Ô =































∑

n

ln
[

1 − e−β(En−µ)
]

bosons,

∑

n

ln
[

1 + e−β(En−µ)
]

fermions.

(C.17)



Appendix D

Sommerfeld Expansion

In this appendix we follow [50] and evaluate the Sommerfeld expansion, which is applied in the

low-temperature limit kBT ≪ µ to integrals of the form

I(T ) =

∞
∫

−∞

dE g(E) f(E,T ), (D.1)

where the function f(E,T ) is the Fermi-Dirac distribution

f(E,T ) =
1

e(E−µ)/kBT + 1
(D.2)

with the Fermi energy µ. The other function g(E) can be expanded arround E = µ and has the

properties

lim
E→−∞

g(E) = 0, lim
E→∞

g(E) ∝ Eα. (D.3)

We consider the function

G(E) =

E
∫

−∞

dE′ g(E′), (D.4)

which has the properties

g(E) =
dG(E)

dE
, lim

E→−∞
G(E) = 0, lim

E→∞
G(E) ∝ Eα+1. (D.5)

We perform an integration by parts in Eq. (D.1):

I(T ) = G(E) f(E,T )
∣

∣

∣

∞

−∞
−

∞
∫

−∞

dE G(E)
df(E,T )

dE
, (D.6)

where the boundary terms vanish due to (D.2) and (D.5). In the low-temperature limit kBT ≪ µ

the Fermi-Dirac distribution f(E,T ) differs only slightly from the Heaviside function Θ(µ−E), so

that its derivative df(E,T )/dE represents approximately the delta function −δ(E − µ). Thus, it’s

useful to expand G(E) in a Taylor series around E = µ:

G(E) = G(µ) +

∞
∑

n=1

(E − µ)n

n!

dnG(E′)

dE′n

∣

∣

∣

∣

∣

E′=µ

, (D.7)
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which reduces due to (D.4) and (D.5) to

G(E) =

µ
∫

−∞

dE′ g(E′) +

∞
∑

n=1

(E − µ)n

n!

dn−1g(E′)

dE′n−1

∣

∣

∣

∣

∣

E′=µ

. (D.8)

Inserting Eq. (D.7) into Eq. (D.6) yields

I(T ) = −
µ
∫

−∞

dE′ g(E′)

∞
∫

−∞

dE
df(E,T )

dE

−
∞
∑

n=1

1

n!

dn−1g(E′)

dE′n−1

∣

∣

∣

∣

∣

E′=µ

∞
∫

−∞

dE (E − µ)n
df(E,T )

dE
. (D.9)

Since

df(E,T )

dE
= − 1

kBT

e(E−µ)/kBT

[

e(E−µ)/kBT + 1
]2 = − 1

kBT

1
[

e(E−µ)/2kBT + e−(E−µ)/2kBT
]2 (D.10)

is an even function with respect to E = µ, all odd powers n in Eq. (D.9) vanish while integrating.

Using this and the observation

∞
∫

−∞

dE
df(E,T )

dE
= lim

E→∞
f(E,T ) − lim

E→−∞
f(E,T ) = −1, (D.11)

Eq. (D.9) reads

I(T ) =

µ
∫

−∞

dE′ g(E′) +
∞
∑

n=1

an (kBT )2n
d2n−1g(E′)

dE′2n−1

∣

∣

∣

∣

∣

E′=µ

. (D.12)

With the substitution x(E) = (E − µ)/kBT in the last integral in Eq. (D.9) the coefficients an are

calculated as follows:

an = − 1

(2n)!

∞
∫

−∞

dxx2n d

dx

1

ex + 1
. (D.13)

As both factors of the integrand are even with respect to x = 0 due Eq. (D.10), we restrict the

integration to the positive x-axis. Moreover, an integration by parts leads to

an =
2

(2n − 1)!

∞
∫

0

dx
x2n−1 e−x

1 + e−x
. (D.14)

Expanding the denominator in a geometrical series and performing the integration yield the series

representation

an =
2

(2n− 1)!

∞
∑

k=0

(−1)k
(2n − 1)!

(k + 1)2n
= 2

∞
∑

k=1

(−1)k−1 1

k2n
. (D.15)
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We decompose the alternating series

an = 2

{

1

12n
− 1

22n
+

1

32n
− 1

42n
+ . . .

}

(D.16)

into two nonalternating series

an = 2

{[

1

12n
+

1

22n
+

1

32n
+

1

42n
+ . . .

]

− 2

22n

[

1

12n
+

1

22n
+ . . .

]}

. (D.17)

Summarizing these series results in

an = 2

{

1 − 1

22n−1

}

ζ(2n), (D.18)

where the Riemann zeta function is defined as

ζ(z) ≡
∞
∑

k=1

1

kz
. (D.19)

For the first even numbers it has the values

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, . . . . (D.20)

Thus, the Sommerfeld expansion (D.12) reads

I(T ) =

µ
∫

−∞

dE′ g(E′) + 2
∞
∑

n=1

(kBT )2n
{

1 − 1

22n−1

}

ζ(2n)
d2n−1g(E′)

dE′2n−1

∣

∣

∣

∣

∣

E′=µ

. (D.21)

Let us specialize the function g(E) to an arbitrary power ν:

g(E) = Θ(E)Eν−1, (D.22)

which fulfills the properties (D.3). Then its derivatives reads for µ > 0

d

dE
g(E)

∣

∣

∣

∣

E=µ

= (ν − 1)µν−2,
dn

dEn
g(E)

∣

∣

∣

∣

E=µ

=

{

n
∏

k=1

(ν − k)

}

µν−n−1. (D.23)

Furthermore, we obtain

µ
∫

−∞

dE′ g(E′) =
µν

ν
. (D.24)

Applying Eqs. (D.22), (D.23), and (D.24) to Eq. (D.21) leads to the special Sommerfeld expansion

∞
∫

0

dE
Eν−1

e(E−µ)/kBT + 1
=
µν

ν

{

1 + 2

∞
∑

n=1

(

kBT

µ

)2n [

1 − 1

22n−1

]

[

2n−1
∏

k=0

(ν − k)

]

ζ(2n)

}

. (D.25)

Its first three terms read explicitly

∞
∫

0

dE
Eν−1

e(E−µ)/kBT + 1
=

µν

ν
+
π2

6
(ν − 1)µν

(

kBT

µ

)2

+
7π4

360
(ν − 1) (ν − 2) (ν − 3)µν

(

kBT

µ

)4

+ . . . . (D.26)

Thus, the Sommerfeld expansion represents a low-temperature expansion of the Integral (D.1).
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Appendix E

Density of States in a Harmonic

Oscillator

The density of states g(ε) is defined as the number dn = g(ε) dε of states within the energy interval

dε at the energy value ε. Hence it can be calculated as the differentiation of the states number

N =

E
∫

0

dε g(ε) (E.1)

with respect to the energy E:

g(E) =
dN

dE
. (E.2)

The energy of a D-dimensional harmonic oscillator is given by

ε = ~

D
∑

i=1

ωi

(

ni +
1

2

)

, ni = 0, 1, 2, . . . , (E.3)

where ni is the occupation number of the one-dimensional oscillator along the i-axis. For D > 1

the energy values (E.3) are degenerate as the same energy can be obtained with different sets of

occupation numbers {n1, n2, . . . , nD}. Thus, to obtain the number N of all possible states up to

the energy E, we have to count the number of ~ωi spaced points in the Volume of the orthogonal

coordinate system, which is spanned by D positive axes εi = ~ωi xi and bounded by the (D − 1)-

dimensional plane hypersurface

E − ~

D
∑

i=1

ωi xi = 0, (E.4)

where xi is a continuous variable. As we consider harmonic oscillators with a very large number

of states, the number N of all points below E can be obtained by dividing the above described D-

dimensional volume by the product of D distances ∆εi = ~ωi between the points. This Volume can

be evaluated with a D-dimensional integral, which can be constructed for that purpose successively

as a product of D one-dimensional integrals. Starting with D = 1, we integrate from zero to E

and divide by the distance ∆ε1 = ~ω1. For D = 2 we calculate the area of the isosceles triangle in
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the first quadrant, which is bounded by the line ε2 = E − ε1, so that we only need to multiply the

first ε1-integral with a second one with the obove line as a variable upper integration limit. And

for D = 3 we calculate the volume of the tetrahedron in the first octant, which is bounded by the

plane ε3 = E− ε1− ε2, so that we multiply the two integrals in case of D = 2 with a third one with

the obove plane as a variable upper integration limit and so on. Thus, by iteration the number of

states is evaluated as follows:

N =
1

~Dω̃D

E
∫

0

dε1

E−ε1
∫

0

dε2 . . .

E−
PD−2

i=1 εi
∫

0

dεD−1

E−
PD−1

i=1 εi
∫

0

dεD, (E.5)

where ω̃ = (ω1ω2 . . . ωD)1/D denotes the geometrical average of the D oscillator frequencies. Start-

ing with the innermost integral, we obtain

N =
1

~Dω̃D

E
∫

0

dε1

E−ε1
∫

0

dε2 . . .

E−
PD−2

i=1 εi
∫

0

dεD−1 [E − ε1 − . . . − εD−2 − εD−1] . (E.6)

From now on the evaluation of each of the following integrals increases the exponent of the integrand

by one and divides the integrand by the new exponent, where the upper integration limit yields

zero and the lower one returns the expression inside the brackets without the latter variable. Thus,

performing the remaining integrations results in

N =
1

D!

(

E

~ω̃

)D

. (E.7)

Applying Eq. (E.2) yields for the density of states in a D-dimensional harmonic oscillator:

g(E) =
ED−1

(D − 1)! (~ω̃)D
. (E.8)

Its inverse

g−1(E) =
(D − 1)! (~ω̃)D

ED−1
, g−1(N) =

(D!)1/D ~ω̃

DN1−1/D
(E.9)

gives the energy difference dE between neighbouring states at the energy level E, which is filled up

with N states.
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