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Chapter 1

Introduction

When Max Planck introduced his famous quantum of action he could not possibly
foresee the impact this would have on the further developments in physics. This “act
of desperation“ as he put it, led to a completely new world view and subsequently
to quantum theory, the most effective and accurate physical theory ever formulated
by mankind. Although this theory describes an abstract subatomic world far from
every day experience, its impact on our daily life could hardly be any greater. In fact,
it enables and boosts spectacular advances in essentially every kind of science one
can think of, and its influence is still increasing.

1.1 Quantum Simulators

Especially in the fields of information processing, material science, superfluidity
and the relatively new field of quantum information theory, a profound understand-
ing of strongly correlated quantum many-body systems is of striking importance in
order to further improve existing applications and invent new ones [1–3]. This is due
to the fact that, these research fields mainly use solid state systems in which strongly
correlated systems appear quite naturally. However, it is experimentally very chal-
lenging to access the microscopic properties of such systems, due to the short time-
and length scales involved. Therefore, motivated by Feynman’s conjecture of the
quantum simulator [4], artificial structures have been considered to create effective
many-body systems, which can be investigated more easily. One of the most impor-
tant theoretical models for such systems is the Hubbard model proposed by John
Hubbard in 1963 for strongly correlated electronic lattice systems [5]. Subsequently,
this approach has been successfully applied to strongly correlated bosonic lattice
systems as well, leading to the seminal Bose-Hubbard theory [6]. In this theoret-
ical model, the bosonic many-particle system in the grand-canonical ensemble is
described by the Hamiltonian

ĤBH =
U

2

∑
i

b̂†i b̂i

(
b̂†i b̂i − 1

)
− µ

∑
i

b̂†i b̂i − κ
∑
〈i,j〉

b̂†i b̂j. (1.1)
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Chapter 1 Introduction

Here, the operators b̂†i , b̂i are bosonic creation and annihilation operators. The pa-
rameter U characterises the on-site interaction strength and µ is the grand-canoni-
cal chemical potential. The last term in equation (1.1) specifies the dynamics on the
lattice, since the notation 〈i, j〉 denotes a sum over next neighbouring lattice sites
and κ represents the required energy for a particle to hop from one site to a neigh-
bouring one. An interesting fact about this model is, that it includes a phase transi-
tion from a so called Mott insulator, where all particles are pinned to their respective
lattice site, to a superfluid phase. This transition arises from the competitive influ-
ence of the on-site interaction and the next-neighbour hopping term. Since this
kind of transition is driven by quantum fluctuations rather than thermal fluctua-
tions, it is fundamentally different from ordinary thermodynamic phase transitions
[7] and is, therefore, often referred to as a quantum phase transition [8].

1.2 Optical Lattices

The first attempts to build up artificial many-body structures used Josephson junc-
tion arrays [9, 10], which proved to be capable of simulating properties of the Bose-
Hubbard model [11]. Additionally, over the last two decades, the advances in pro-
ducing and controlling ultra cold atoms has presented a new experimental realiza-
tion, which has raised a huge amount of interest and research. Indeed, ultra cold
atoms are a very hot topic at the moment.
These new kind of systems are based on one of the most intriguing features of quan-
tum mechanics, which has been the abolition of the classical, distinct views of light
and matter in favour of a duality of both. This paradigm shift evolved to a whole
new understanding of the fundamental constituents of matter. In consequence of
this new theoretical insight Albert Einstein and Satyendranath Bose argued in 1924
that there exists a fourth state of matter [12, 13], which is significantly different to a
gas, a solid or a liquid that we can perceive in our every day life. In fact, they con-
jectured that, if a dilute gas of bosons is cooled down to temperatures very close to
absolute zero, all atoms condense into the same ground state and, thus, behave col-
lectively as if they were one particle. This new state of matter is, indeed, so exotic,
that it took 71 years before in 1995 the experimental groups of Eric Allin Cornell and
Carl Edwin Wiemann in Boulder, Colorado [14] and Wolfgang Ketterle at the Mas-
sachusetts Institute of Technology in Cambridge, Massachusetts [15] could create
such a so called Bose-Einstein-Condensate (BEC) for the first time. This fabulous
experimental success, which was honoured with a Nobel prize in 2001, has been
followed up by a variety of experiments investigating the properties of BEC’s under
different conditions. For example one investigated the interference of BEC clouds
[16, 17], studied rotating BEC’s [18, 19], observed spinor condensates [20], where
BEC occurs in different hyperfine states, analysed Bose-Fermi mixtures [21], where
a pure BEC is contaminated with fermions and, more recently, tried to probe the
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1.2 Optical Lattices

Figure 1.1: Lattice built up of optical micro cavities. In this special realization
each micro cavity contains one atom exhibiting a two-level energy struc-
ture (red lines). The inter-atomic transition is indicated by the green
lines. The blue lines correspond to the cavity light field coupled into the
system.

properties of BEC’s in zero gravity [22]. Of particular interest for the simulation of
strongly correlated quantum many body systems, has been the realization of BEC’s
trapped in optical lattices [23, 24]. Here, the BEC cloud is loaded into an optical
periodic potential created by standing laser fields. A non-vanishing probability for
each boson to hop from one lattice site to a neighbouring site establishes a strong
correlation throughout the lattice. This fact, together with a good experimental con-
trol of all important parameters, as well as the possibility to produce different lat-
tice geometries in 1D, 2D or 3D, makes this kind of systems an excellent candidate
for the simulation of strongly correlated bosonic systems [25]. Since their experi-
mental realization, optical-lattice systems have initiated intensive studies and led
to a multitude of new applications such as entanglement of atoms [26, 27], quan-
tum teleportation [28], Bell state experiments [29], disorder [30–33] and ultra cold
molecules [34, 35], to name but a few.

3



Chapter 1 Introduction

1.3 Cavity QED Lattices

Unfortunately, the experimental approaches discussed so far face some crucial lim-
itations. On the one hand, it is necessary to cool down the considered system to
some nano Kelvin above absolute zero and, on the other hand, it is experimentally
very challenging to control and access single sites individually. For example, in or-
der to obtain the information whether a BEC in an optical lattice is in the Mott or
in the superfluid phase, one normally switches off the trap and observes the ex-
pansion of the BEC cloud. This leads to the desired information but for the cost of
destroying the system under investigation. Recently, a new experimental approach
has been established, where fluorescence imaging techniques allow to directly ob-
serve atoms in the Mott phase [38]. However, this technique still leads to a depletion
of the cold atoms in the lattice and, thus, destroys the system.
These facts strongly restrict their utility as quantum simulators and their applica-
tion in quantum information technology [39–41]. Especially in the latter, local on-
site manipulation is absolutely necessary. For these reasons and encouraged by the
latest progress in the fabrication and manipulation of micro cavities [37, 42, 43],
Philippe Grangier and others [44–49] proposed a new experimental setup using cav-
ity quantum electrodynamics (QED) schemes.
The underlying idea behind this new approach is pictured in Figure 1.1. Basically,
one builds up a lattice from micro cavities and places some real or artificial atoms
in each cavity, for example Josephson junctions or quantum dots. Subsequently,
light is coupled into the system in such a way, that it can interact with the atoms.
As a result, the coupling between the light field and the atomic transitions leads
to the formation of bosonic quasi particles, so called polaritons. These quasi par-
ticles effectively behave just as real bosonic particles on the lattice. That means,
for each polariton there exists a non-vanishing hopping probability to tunnel from
one cavity to a neighbouring one, which is proportional to the wave function over-
lap between neighbouring sites. Furthermore, Kerr non-linearities, known in litera-

Figure 1.2: Possible experimental setups (1) from left to right: 1) – 2) photonic
band-gap cavity with quantum dot defect region in the centre [36], 3)
micro-sphere cavity filled with nano-crystal defect and coupled to an op-
tical fibre [37].
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1.3 Cavity QED Lattices

Figure 1.3: Possible experimental setups (2) from left to right: 1) array of micro-
pillar cavities with intrinsic quantum box defects [50], 2) micro-toroid
cavity coupled to optical fibre [37], 3) Fabry-Pérot cavity coupled to atom
on the flyby [37].

ture as photon blockade [52–56], effectively provide a repulsive or attractive on-site
interaction, which has intensively been studied in the context of electromagneti-
cally induced transparency (EIT) [57–61]. Therefore, these systems are also capable
to simulate the Bose-Hubbard model. In fact, Bose-Einstein condensation of po-
laritons was recently experimentally achieved in semi-conductor cavities filled with
quantum wells [62–64] and superfluidity could be observed [65, 66].
This new idea for a quantum simulator based on cavity QED does not share the lim-
itations of the optical lattice approach. On the contrary, due to relatively huge dis-
tances between the cavities, local control and accessibility emerges quite naturally
for these systems. Hence, it is possible to analyse these systems without destroying
them. Since the atoms are trapped inside the cavities right from the start and their
thermal motion does not quantitatively disturb the polariton dynamics [68, 69], BEC
experiments with cavity QED setups can be performed even at room temperatures
[70]. However, in order to facilitate stable experiments with this setup, there is a

Figure 1.4: Possible experimental setups (3) from left to right: 1) – 2) transmission
line cavity filled with Cooper-pair box [51].
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Chapter 1 Introduction

Figure 1.5: Possible experimental setups (4) from left to right: 1) micro-disc cavity
coupled to wave-guides [37], 2) single on-chip Fabry-Pérot cavity [67], 3)
corrie matrix for multiple on-chip Fabry-Pérot cavities [67].

major obstacle to overcome. Namely, it is necessary to minimize unwanted losses,
like spontaneous emission or photons leaking out of the cavity, in order to reach a
strong coupling between the atoms and the light field. Fortunately, over the past
few years, this so called strong-coupling regime [71–73] has become experimentally
accessible for a large number of different setups. For example, possible building
blocks for such a lattice could be: micro-wire cavities [70, 74], micro-pillar cavi-
ties [50, 75–79], micro-sphere cavities [80–82], photonic band-gap cavities [83–93],
transmission line cavities [51, 94–103], micro-disc and micro-toroid cavities [104–
111], photonic-crystal fibres [112, 113] or on-chip Fabry-Pérot cavities [114–118].
Proposals for atom-like defects, that could be injected into those cavities, reach
from real atoms or ions over quantum boxes, quantum dots and nano-crystals to
superconducting SQUID’s and Cooper-pair boxes. Some of these examples are il-
lustrated in the Figures 1.2–1.5.
Other parameters, which can be tuned by the experimentalist, are the number of
atom-like systems placed in each cavity and the spectrum of the light field cou-
pled to the lattice. Both parameters will qualitatively and quantitatively influence
the behaviour of the system. In general there are three popular theoretical mod-
els, describing their local effects on each lattice site. First, there is the so called
Dicke model [119–121], which describes the interaction of atom-like systems with
a multi-mode light field. Then, there is the Jaynes-Cummings model [122], which
describes the coupling of a single light mode with a two-level system. Generaliz-
ing this approach to cover situations, where N two-level systems couple to a single
field-mode, leads to the Tavis-Cummings model [123–127]. From the experimental
point of view it is favourable to work with more than one defect in the cavity. Raising
the number of atom-like systems increases the interaction possibility as well as the
coupling strength. On the other hand, even though the coupling to a multi-mode
field leads to interesting new phenomena, such as super-radiance [128–130], the
single field-mode implementation is probably the better choice in terms of control-
lability, which is especially desired for quantum information applications. Since the
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1.4 Outline of the Thesis

fundamental properties can be derived considering only a single two-level system
in the cavity, I focus on systems with Jaynes-Cummings-like on-site potentials in the
present diploma thesis.

1.4 Outline of the Thesis

The main goal of the present thesis is to derive the Jaynes-Cummings-Hubbard
model and to study its thermodynamic properties in the grand-canonical ensem-
ble. For this purpose this thesis is structured as follows.
In Chapter 2, I derive the Jaynes-Cummings (JC) model which provides the on-site
potential in the considered lattice model. Subsequently, I discuss the JC eigenstates
and their energy spectrum and introduce polaritons whose number is the conserved
quantity in this model.
In Chapter 3, I go ahead and generalize the JC model to the Jaynes-Cummings-
Hubbard (JCH) model describing a lattice of cavities, each filled with a single two-
level system. For a first rough analysis of this model, I subsequently consider the
limits of no dynamics at all and the opposite extreme of hopping domination. This
approximative treatment qualitatively shows the existence of a quantum phase tran-
sition from a Mott insulator to a superfluid phase in the considered model. Af-
terwards, in order to obtain a more quantitative description of this phase transi-
tion, I establish a mean-field theory, which eventually leads to the mean-field phase
boundary at zero temperature.
The investigation of temperature effects on the JCH model is then accomplished in
Chapter 4. To this end, I shortly review the Dirac interaction picture, in which the
partition function of the system is expressed. Using a current approach to break the
symmetry of the system, which is essential for describing a quantum phase transi-
tion, the partition function is then expanded in terms of cumulants. This procedure
yields a perturbative expansion of the grand-canonical free energy, which is then
Legendre-transformed to an effective Ginzburg-Landau action.
Finally, in Chapter 5, I derive the excitation spectra and effective masses of the po-
laritons in the Mott phase for finite temperature from this Ginzburg-Landau action.
A summary of this thesis and an outlook on further investigations is given in Chap-
ter 6.
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Chapter 2

Jaynes-Cummings Model

In 1963, the two American physicists Edwin Jaynes and Fred Cummings proposed a
theoretical model in order to investigate the relation between quantum theory and
the semi-classical theory of radiation. In fact, they were motivated by describing the
process of spontaneous emission [131]. Within their approach they analysed the
interaction of a monochromatic electromagnetic field mode with a quantum me-
chanical two-level system. Although this model is obviously an approximation, it
turned out to be of crucial importance for understanding the fundamental interac-
tion between light and matter. The fact that Jaynes and Cummings found a quantum
mechanical description of light-matter interaction that showed a very good quan-
titative agreement with experiments, strongly enhanced the progress in the field of
Quantum Optics and has been a corner stone especially of this field of physics ever
since. In the following years and decades the further developments, based on their
model, led to multiple applications and improvements such as masers, lasers and
optical trapping and cooling techniques [132–134].
A derivation of this model can be found in almost every physics book concerning
quantum optics, see for instance the Refs. [122, 135–138]. Within this thesis the
Jaynes-Cummings model is fundamentally important because it describes the po-
tential energy of photons on each lattice site. As mentioned before, I assume this
model to be experimentally realized as an optical micro cavity, filled with a two-
level system and a monochromatic photon field. To find the quantum mechanical
description of this system, I start by deriving the Hamiltonian of the intra-cavity
photon field in the following section.

2.1 Quantization of the Free Electromagnetic Field

An electromagnetic field is classically described by a set of four equations named
after their discoverer James Clerk Maxwell. These Maxwell equations read in SI units
in the vacuum:

∇ ·B (r, t) = 0, (2.1a)

∇ ·D (r, t) = ρ (r, t) , (2.1b)

9



Chapter 2 Jaynes-Cummings Model

∇× E (r, t) = −∂B (r, t)

∂t
, (2.1c)

∇×H (r, t) = j (r, t) +
∂D (r, t)

∂t
, (2.1d)

where the respective electric and magnetic fields are linked via the relations

B (r, t) = µ0 H (r, t) , D (r, t) = ε0 E (r, t) . (2.2)

Considering equation (2.1a), one uses the fact that the divergence of a rotation al-
ways vanishes to define the magnetic induction B (r, t) as the rotation of a vector
potential A (r, t):

B (r, t) = ∇×A (r, t) . (2.3)

Plugging this ansatz into equation (2.1c) yields the following expression

∇×
(

E (r, t) +
∂A (r, t)

∂t

)
= 0 . (2.4)

This means that the quantity with vanishing curl in equation (2.4) can be written as
the gradient of some scalar function, namely, a scalar potential Φ (r, t):

E (r, t) +
∂A (r, t)

∂t
= −∇Φ (r, t) , (2.5)

which leads to the general formula for the electric field:

E (r, t) = −∇Φ (r, t)− ∂A (r, t)

∂t
. (2.6)

Plugging these results into the inhomogeneous Maxwell equations (2.1b) and (2.1d)
yields the following coupled differential equations

−ρ (r, t)

ε0
= ∇2Φ (r, t) +

∂

∂t
∇ ·A (r, t) , (2.7)

−µ0 j (r, t) = ∇2A (r, t)− 1

c2

∂2A (r, t)

∂t2
−∇

[
∇ ·A (r, t) +

1

c2

∂2Φ (r, t)

∂t2

]
, (2.8)

where I used the fact that
√
ε0 µ0 = c−1. So far I reduced the four Maxwell equations

(2.1a) – (2.1d) to two equations. However, these equations are still coupled. In or-
der to uncouple them, one can use the arbitrariness involved in the definition of the
scalar and the vector potential. Since B (r, t) is defined via (2.3) in terms of A (r, t),
one can add the gradient of an arbitrary scalar function Λ(r, t) to the vector poten-
tial. Thus, one finds that the magnetic field as well as the electric field is unchanged
under simultaneous transformations of the form

A (r, t)→ A′ (r, t) +∇Λ(r, t) , (2.9)

Φ (r, t)→ Φ′ (r, t)− ∂Λ(r, t)

∂t
. (2.10)

10



2.1 Quantization of the Free Electromagnetic Field

These transformation are commonly referred to as gauge transformations. The re-
sulting freedom of choice allows to choose a set of potentials {A (r, t) ,Φ (r, t)} that
uncouple the equations (2.7) and (2.8). In the following calculations I explicitly
make use of the so called Coulomb gauge which reads

∇ ·A (r, t) = 0 . (2.11)

Using this ansatz together with equation (2.7) yields the Poisson equation

∇2Φ (r, t) = −ρ (r, t)

ε0
, (2.12)

with the general solution

Φ (r, t) =
1

4π ε0

∫
ρ (r′, t)

|r− r′|
d3r′ . (2.13)

In principle one can now explicitly determine the dynamics of the potentials ac-
cording to equations (2.7) and (2.8). However, for now I am just interested in the
free electromagnetic fields and, thus, I assume that no sources are present in the
system, i.e. ρ (r, t) = 0 and j (r, t) = 0. This assumption leads, according to equation
(2.13), to the statement

Φ (r, t) = 0 , (2.14)

and hence one finds from (2.6) for the free electromagnetic field the expression

E (r, t) = −∂A (r, t)

∂t
. (2.15)

All these assumptions simplify the differential equation (2.8) and result in a wave
equation for the vector potential:(

∇2 − 1

c2

∂2

∂t2

)
A (r, t) = 0. (2.16)

This is a homogeneous wave equation, where the general solution is known to be a
superposition of an in- and an outgoing plane wave. Taking this fact into consider-
ation, I choose the following ansatz for the vector potential

A(r, t) = A+(r, t) + A−(r, t), (2.17)

with the two terms representing in- and outgoing waves. Furthermore, the intro-
duced quantities fulfil the relation A−(r, t) = [(A+(r, t))]

∗. Therefore, I can focus my
analysis on one of the terms, i.e. A+(r, t), keeping in mind that the other is simply
the complex conjugate. Using a very general ansatz for the two components of the

11



Chapter 2 Jaynes-Cummings Model

vector potential, I express them as a discrete superposition of the respective mode
functions in the cavity volume

A+(r, t) =
∑
ρ

∑
σ=±1

aσ(kρ) uσ(kρ, r) e−iωρt. (2.18)

The index ρ = (ρx, ρy, ρz) is the mode index, which specifies the three components
of the wave vector kρ and the index σ labels the two possible polarizations of the
plane wave. The expressions uσ(kρ, r) are the respective mode functions, aσ(kρ) are
the mode amplitudes and ωρ is the mode frequency. Since the mode functions carry
the spatial character of plane waves, I assume them to have the form

uσ(kρ, r) =
1√
L3

eσ(kρ) e
ikρr, (2.19)

in which the unity vectors eσ(kρ) correspond to the two possible polarizations of a
wave with wave vector kρ. Note that, the pre-factor of these mode functions emerges
due to the normalization of the modes over the cavity volume, which is assumed to
be cubic and of length L. Thus I explicitly consider a finite volume which is neces-
sary in order to discretely label the electromagnetic wave modes.
Another important fact is, that since the mode functions inherited the whole spatial
character of the vector potential, they also have to fulfil the Coulomb gauge (2.11).
Demanding this special property, leads to the transversality relation between the
polarizations and the wave vector kρ:

eσ(kρ) kρ = 0. (2.20)

This equation describes a very important feature of electromagnetic waves, namely
that the wave vector, which corresponds to the direction of propagation of the wave,
is always orthogonal to the polarizations which are orthogonal to each other as well.
Hence, e+1(kρ), e−1(kρ),kρ are all orthogonal to each other and form a right hand-
system.
Inserting ansatz (2.17) and relation (2.18) in the wave equation (2.16), leads to a
homogeneous differential equation of second order for the mode function and its
complex conjugate. Both functions have to fulfil the same differential equation,
which reads for the mode function(

∇2 +
ω2
ρ

c2

)
uσ(kρ, r) = 0. (2.21)

Plugging expression (2.19) into this equation and assuming periodic boundary con-
ditions yields the relation

k2
ρ =

ω2
ρ

c2
, (2.22)

12



2.1 Quantization of the Free Electromagnetic Field

where the components of the wave vector are now quantized as follows

kρ,i =
2 π ρi
L

, i = x, y, z, ρi ∈ Z. (2.23)

Expression (2.22) can be transformed to give the dispersion relation of the mode
function

ωρ = c |kρ| . (2.24)

Thus, the mode frequency ωρ has the following property:

ω−ρ = c |k−ρ| = c | − kρ| = ωρ , (2.25)

where I introduced the convention, that a negative mode index −ρ corresponds to
the opposite wave vector k−ρ = −kρ.
In general, I have now determined the specific form of the vector potential following
from ansatz (2.18) and, thus, am also able to derive the electric field vector using
relation (2.15). However, in order to quantize the vector potential A(r, t), I want
to derive a more convenient form, where the respective amplitudes of the mode
functions aσ(kρ) are dimensionless. To find the appropriate pre-factors, I use the
definition of the energy of an electromagnetic field, which is defined as

E =
1

2

∫
dV

[
1

µ0

B2(r, t) + ε0 E2(r, t)

]
. (2.26)

In the following, I do not exactly solve this expression but rather estimate the emerg-
ing physical dimensions. Therefore, I neglect the specific r dependence of the vector
fields in the volume integral above. Hence, considering the physical dimension of
the field energy one can conclude

[E]Dim
∼=
L3

2

{
1

µ0

[
B2
]

Dim
+ ε0

[
E2
]

Dim

}
. (2.27)

Using the definition (2.2) – (2.15) leads to

[E]Dim
∼=
L3

2

{
1

µ0

[
(∇×A)2]

Dim
+

4 ε0
L3

[
a2

E

]
Dim

}
, (2.28)

where the index E indicates that the respective mode amplitude aE =̂ aσ(kρ) belongs
to the electric field. Note that, the denominator L3 in the second term of equation
(2.28) emerges from the normalization of the mode function. Furthermore, I do not
have to distinguish between aσ(kρ) and a∗σ(kρ), if I only consider the physical dimen-
sion of the amplitudes. Therefore, the pre-factor 4 of the last term corresponds to
the number of terms proportional to the square of the electric field amplitude. In-
serting ansatz (2.18) for the vector potential yields

[E]Dim
∼=
L3

2

{
4

µ0

[
(aA∇× u)2]

Dim
+

4 ε0
L3

[
a2

E

]
Dim

}
. (2.29)

13



Chapter 2 Jaynes-Cummings Model

Here, the index A indicates, analogue to the case considered before, the affiliation
of the amplitudes aA =̂ aσ(kρ) to the vector potential. This distinction is neces-
sary, since the physical dimension of the vector-potential amplitude differs from
the physical dimension of the electric-field amplitude according to relation (2.15).
For a more precise determination of the physical dimension of the magnetic contri-
bution to the energy, it is necessary to calculate the curl of the mode function. Using
definition (2.19) leads to the following relation

∇× uσ(kρ, r) =
1√
L3

[
(∇× eσ(kρ))e

ikρ·r +∇eikρ·r × eσ(kρ)
]

(2.30)

=
i√
L3

kρ × eσ(kρ) e
ikρ·r =

i kρ√
L3

e−σ(kρ) e
ikρ·r. (2.31)

Thus, the curl of the mode function essentially results in the same mode function.
Nevertheless, it differs in the opposite polarization and a pre-factor i kρ, where kρ =
|kρ| is the modulus of the wave vector. Thus, considering the physical dimension,
all one has to take into account is the pre-factor i kρ/

√
L3. As a result, one finds

[E]Dim
∼=

2

µ0

k2
ρ ([aA]Dim)2 + 2 ε0 ([aE]Dim)2 . (2.32)

In quantum mechanics the dimension of the energy of an electromagnetic wave is
of the order ~ωρ. Since the dimension of each of the two terms in the above equation
has to be the dimension of energy, one can derive the following expressions:

[aE]Dim =

√
~ωρ
2 ε0

, (2.33)

[aA]Dim =

√
~

2 ε0 ωρ
, (2.34)

where I additionally used relation (2.22). Thus, I reached the point where I can write
down the expressions for the vector potential and the electric field vector in the de-
sired dimensionless form:

A(r, t) =
∑
ρ

∑
σ=±1

(
~

2 ε0 ωρ

)1/2 [
aσ(kρ) uσ(kρ, r) e−iωρt + c.c.

]
, (2.35)

E(r, t) = i
∑
ρ

∑
σ=±1

(
~ωρ
2 ε0

)1/2 [
aσ(kρ) uσ(kρ, r) e−iωρt − c.c.

]
. (2.36)

Up till now, I have derived a semi-classical description of the intra-cavity field quan-
tities A (r, t) and E (r, t) for the general case of a multi-mode field with all polariza-
tions. I still need to fully quantize this expression. This last step is known in litera-
ture as the second quantization. This quantization is performed by simply mapping

14



2.1 Quantization of the Free Electromagnetic Field

the dimensionless mode amplitudes to quantum mechanical ladder operators, rais-
ing and lowering the number of excitations of a given field mode:

aσ(kρ) 7−→ âσ(kρ), (2.37a)

a∗σ(kρ) 7−→ â†σ(kρ). (2.37b)

Since these operators describe photons, which are bosonic particles, they satisfy the
bosonic commutation relations:

[âσ(kρ), â
†
σ′(kρ′)] = δρ,ρ′ δσ,σ′ , [âσ(kρ), âσ′(kρ′)] = [â†σ(kρ), â

†
σ′(kρ′)] = 0. (2.38)

The fully quantized field vectors are, therefore, given by

Â(r, t) =
∑
ρ

∑
σ=±1

(
~

2 ε0 ωρ

)1/2 [
âσ(kρ) uσ(kρ, r) e−iωρt + h.c.

]
, (2.39)

Ê(r, t) = i
∑
ρ

∑
σ=±1

(
~ωρ
2 ε0

)1/2 [
âσ(kρ) uσ(kρ, r) e−iωρt − h.c.

]
. (2.40)

In quantum mechanics, all dynamic properties of a system can be deduced from its
Hamiltonian. To find the respective Hamiltonian for the free electromagnetic field, I
follow equation (2.26). Therefore, I need the quantized expression for the magnetic
field B̂(r, t), which can be derived form equation (2.3) with the help of the relations
(2.39) and (2.31). This yields

B̂(r, t) = i
∑
ρ

∑
σ=±1

(
~

2 ε0 ωρ

)1/2

kρ
[
âσ(kρ) u−σ(kρ, r) e−iωρt − h.c.

]
. (2.41)

According to equation (2.26) the Hamiltonian can be calculated via the formula

Ĥ(t) =
1

2

∫
dV

[
ε0 Ê2(r, t) +

1

µ0

B̂2(r, t)

]
(2.42)

Inserting the expression (2.40) for the electric fields into the first term of definition
(2.42) and using of the definition of the mode function (2.19) leads to

ε0

∫
V

dV Ê
2
(r, t) = −

∑
ρ,ρ′

∑
σ,σ′=±1

~
2L3

(ωρ ωρ′)
1/2

∫
V

dV
[
âσ(kρ) eσ(kρ) e

ikρr e−iωρt − h.c.
]

×
[
âσ′(kρ′) eσ′(kρ′) e

ikρ′r e−iωρ′ t − h.c.
]

= −
∑
ρ,ρ′

∑
σ,σ′=±1

~
2L3

(ωρ ωρ′)
1/2

∫
V

dV

×
[
âσ(kρ) âσ′(kρ′) eσ(kρ) eσ′(kρ′) e

i(kρ′+kρ)r e−i(ωρ+ωρ′)t

15



Chapter 2 Jaynes-Cummings Model

− â†σ(kρ) âσ′(kρ′) e∗σ(kρ) eσ′(kρ′) e
i(kρ′−kρ)r ei(ωρ−ωρ′)t

+ â†σ(kρ) â
†
σ′(kρ′) e∗σ(kρ) e∗σ′(kρ′) e

−i(kρ+kρ′ )r ei(ωρ+ωρ′)t

− âσ(kρ) â
†
σ′(kρ′) eσ(kρ) e∗σ′(kρ′) e

i(kρ−kρ′ )r ei(ωρ′−ωρ)t
]
. (2.43)

The volume integral over the second and fourth term in the above expression can
be calculated straightforwardly to give

1

L3

∫
V

dV ei(kρ−kρ′ )r = δρ,ρ′ , (2.44)

and the occurring scalar products of the polarization unit vector become

e∗σ(kρ) eσ′(kρ) = δσ,σ′ . (2.45)

By shifting the mode index ρ→ −ρ and using the fact [139] that

eσ(k−ρ) = eσ(−kρ) = e−σ(kρ) = e∗σ(kρ), (2.46)

I find for the first term in (2.43) the following result

∫
V

dV âσ(k−ρ) âσ′(kρ′) eσ(k−ρ) eσ′(kρ′) e
i(kρ′−kρ)r = âσ(k−ρ) âσ′(kρ′) δσ,σ′ δρ,ρ′ . (2.47)

Following the same procedure for the third term in (2.43) yields

∫
V

dV â†σ(k−ρ) â
†
σ′(kρ′) e∗σ(k−ρ) e∗σ′(kρ′) e

−i(k−ρ+kρ′ )r = â†σ(k−ρ) â
†
σ′(kρ′) δσ,σ′ δρ,ρ′ . (2.48)

With these results and the invariance of the mode frequency under the transforma-
tion ρ→ −ρ from (2.24), equation (2.43) can be simplified to

ε0

∫
V

dV Ê2(r, t) =
∑
ρ

∑
σ=±1

~ωρ
2

[
âσ(kρ) â

†
σ(kρ) + â†σ(kρ) âσ(kρ)

− â†σ(k−ρ) â
†
σ(kρ) e

i 2ωρt − âσ(k−ρ) âσ(kρ) e
−i 2ωρt

]
. (2.49)
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2.1 Quantization of the Free Electromagnetic Field

Using the analogue procedure for the magnetic induction, yields the following ex-
pression:

1

µ0

∫
V

dV B̂2(r, t) =
∑
ρ,ρ′

∑
σ,σ′=±1

~(ωρ ωρ′)
1/2

2 ε0 µ0

∫
V

dV
{
âσ(kρ) [∇× uσ(kρ, r)] e−iωρt + h.c.

}
×
{
âσ′(kρ′) [∇× uσ′(kρ′ , r)] e−iωρ′ t + h.c.

}
= −

∑
ρ,ρ′

∑
σ,σ′=±1

~ kρ kρ′
2 ε0 µ0

(ωρ ωρ′)
1/2

∫
V

dV
[
âσ(kρ) u−σ(kρ, r) e−iωρt − h.c.

]
×
[
âσ′(kρ′) u−σ′(kρ′ , r) e−iωρ′ t − h.c.

]
=
∑
ρ,ρ′

∑
σ,σ′=±1

~ kρ kρ′
2 ε0 µ0

(ωρ ωρ′)
1/2

∫
V

dV
[
âσ(k−ρ) âσ′(kρ′) u−σ(k−ρ, r) u−σ′(kρ′ , r) e−i(ωρ+ωρ′ )t

+ âσ(kρ) â
†
σ′(kρ′) u−σ(kρ, r) u∗−σ′(kρ′ , r) e−i(ωρ−ωρ′ )t

+ â†σ(kρ) âσ′(kρ′) u∗−σ(kρ, r) u−σ′(kρ′ , r) ei(ωρ−ωρ′ )t

+ â†σ(k−ρ) â
†
σ′(kρ′) u∗−σ(k−ρ, r) u∗−σ′(kρ′ , r) ei(ωρ+ωρ′ )t

]
=
∑
ρ

∑
σ=±1

~ k2
ρ

2 ε0 µ0

ωρ
[
â†σ(kρ) âσ(kρ) + âσ(kρ) â

†
σ(kρ) + â†σ(k−ρ) â

†
σ(kρ) e

i 2ωρt

+ âσ(k−ρ) âσ(kρ) e
−i 2ωρt

]
. (2.50)

Hence, using equation (2.22) one finds that the contribution to the energy arising
from the magnetic induction is given as:∫

V

dV
1

µ0

B̂2(r, t) =
∑
ρ

∑
σ=±1

~ωρ
2

[
â†σ(kρ) âσ(kρ) + âσ(kρ) â

†
σ(kρ)

+ â†σ(k−ρ) â
†
σ(kρ) e

i 2ωρt + â†σ(k−ρ) â
†
σ(kρ) e

i 2ωρt
]

(2.51)

Now, one can establish the full Hamiltonian of the system by simply adding the two
contributions (2.49) and (2.51), resulting in

Ĥfield =
1

2

∑
ρ

∑
σ=±1

~ωρ
(
âσ(kρ) â

†
σ(kρ) + â†σ(kρ) âσ(kρ)

)
. (2.52)

Additionally, using the commutator relations for the bosonic ladder operators de-
fined in (2.38), I finally get the full Hamiltonian of the free electromagnetic field,
which reads for a fixed polarization σ:

Ĥfield =
∑
ρ

~ωρ
(
â†σ(kρ) âσ(kρ) +

1

2

)
=
∑
ρ

~ωρ
(
n̂σ(kρ) +

1

2

)
. (2.53)

Here, I defined the occupation number operator n̂σ(kρ) = â†σ(kρ) âσ(kρ) of the intra-
cavity field quantum state corresponding to the quantum number ρ and polariza-
tion σ. I can see from (2.53) that the full Hamiltonian is simply a composition of
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Chapter 2 Jaynes-Cummings Model

harmonic oscillators for each mode frequency and polarization. Hence, if I consider
a monochromatic field with fixed polarization, the Hamiltonian of the free electro-
magnetic field is just a harmonic oscillator of frequency ω:

Ĥosc = ~ω
(
â† â+

1

2

)
. (2.54)

The energy spectrum of such a system is well known. It consists of the ground state
with energy 1

2
~ω, which represents the zero-point energy of the system. All higher

energy levels correspond to increasing occupation numbers and are equally spaced
by the amount of ~ω. The occupation number operator n̂ counts the number of
excitations of the fundamental mode ω, known as photons, and can, therefore, take
on integer values between zero and infinity. Furthermore, it is easy to prove that the
photonic occupation number operator commutes with the full Hamiltonian (2.53)
and, therefore, in this system the number of photons is a conserved quantity.
The form of the Hamiltonian (2.53) is called the occupation number representation.
Naturally, the corresponding eigenstates are formed by the set of Fock states |nρ,σ〉
satisfying the eigenvalue equation

n̂σ(kρ) |nρ,σ〉 = nρ,σ |nρ,σ〉 , nρ,σ ∈ N ≥ 0 . (2.55)

Therefore, the Hamiltonian for the one-mode electromagnetic field with fixed po-
larization reads:

Ĥfield = ~ω
(
n̂+

1

2

)
, (2.56)

where I dropped the indexes ρ and σ as well. From this equation it is to see that, this
Hamiltonian is diagonal in the monochromatic Fock basis |n〉.

2.2 Hamiltonian of a Two-Level System

Having derived the full Hamiltonian of the free electromagnetic field within the pre-
vious section, I now consider the two-level system, placed in the micro cavity and
interacting with the intra-cavity field mode. I assume that, the two-level system has
an energy structure as depicted in Figure 2.1, consisting of a ground state, labelled
|g〉, with energyE0 = 0 and an excited state, labelled |e〉, with energyEe = ~ ε. Taking
this point of view, I make the most general ansatz to deal with this kind of system,
which is applicable to all experimental setups.
Since the energy eigenstates and their respective eigenvalues are known by defini-
tion, one can immediately write down the Hamiltonian of this system in the energy
representation:

Ĥatom = ~ ε |e〉 〈e|+ 0 |g〉 〈g| . (2.57)

By choosing a specific representation for the abstract eigenstates |e〉 , |g〉, one can
transform this Hamiltonian in a more convenient form. Obviously, there are quite a
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 e\

 g\

Ñ ¶

Figure 2.1: Energy structure of the two-level system. The two-level system consists
of a ground state |g〉 with energy E0 = 0 and an excited state |e〉 with
energy Ee = ~ ε.

lot of possible representations. I use the simplest representation and associate the
kets with the two dimensional Cartesian unit vectors as follows

|e〉 =

(
1
0

)
, |g〉 =

(
0
1

)
. (2.58)

Using this representation for the state vectors leads to a matrix representation for
the projection operators in the Hamiltonian (2.57). Inserting (2.58) into (2.57) yields

Ĥatom = ~ ε
(

1 0
0 0

)
+ 0

(
0 0
0 1

)
=

(
~ ε 0
0 0

)
. (2.59)

Furthermore, remembering the definition of the Pauli matrices:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
, (2.60)

and their combinations

σ̂+ =
1

2
(σ̂x + iσ̂y) =

(
0 1
0 0

)
(2.61a)

σ̂− =
1

2
(σ̂x − iσ̂y) =

(
0 0
1 0

)
, (2.61b)

one finds that, suitable combinations of the state vectors can be expressed in terms
of these matrices. In fact, it can be shown that, in this choice of representation, the
following relations hold

|e〉 〈g| =
(

0 1
0 0

)
= σ̂+, (2.62a)

|g〉 〈e| =
(

0 0
1 0

)
= σ̂−. (2.62b)
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Chapter 2 Jaynes-Cummings Model

From the above relations follows, that the operators σ̂+, σ̂− are the creation and an-
nihilation operators of the two-level system, i.e. σ̂+ creates an atomic excitation,
whereas σ̂− destroys it. With the help of these relations, one finds for the remaining
projection operators the following form

|e〉 〈e| = σ̂+σ̂−, (2.63)

|g〉 〈g| = σ̂−σ̂+. (2.64)

Hence, one can finally express the projection operators, occurring in the two-level
Hamiltonian, in terms of combinations of Pauli matrices. Inserting expressions
(2.63) and (2.64) in the Hamiltonian (2.57) yields the desired simplified form

Ĥatom = ~ ε σ̂+σ̂− = ~ ε n̂a , (2.65)

where I introduced the occupation number operator n̂a = σ̂+σ̂− for the two-level
system. Formally, this Hamiltonian shows quite similarities with the Hamiltonian
of the monochromatic free electromagnetic field (2.56). Namely, the Hamiltonian
takes on the form of a product of the occupation number of the excited level and the
energy of this level. Note that, in literature one often finds other notations for this
Hamiltonian corresponding to another choice of energies. Furthermore, one can
see that, the Hamiltonian (2.65) commutes with the occupation-number operator
n̂a and, therefore, the conserved quantities for this Hamiltonian are the excitations
of the two-level system.
After having derived the quantum mechanical description of the energy contribu-
tions of the intra-cavity photon field and the two-level system, I now investigate the
energy contribution arising from the interaction between those two, in the following
section.

2.3 Interaction Hamiltonian

In the previous section, I derived the Hamiltonian for a two-level system without
specifying the actual experimental setup. However, in order to derive the interac-
tion Hamiltonian in the following paragraph, I need to be more precise, since there
is a variety of possible realizations of this system, leading to very different interac-
tions. For example, one can implement the two-level system using the spin of an
electron, which could be manipulated by a magnetic field. Hence, the interaction
Hamiltonian for this case would be proportional to the magnetic field. On the other
hand, one can use the electronic transitions in an atom, to realize the system. In this
case the electron would couple to the electric field vector.
Within this thesis I focus on the latter case. Hence, the energy states |g〉 , |e〉 corre-
spond to electronic states. The transition between these states is characterized by
the electronic-transition dipole moment. In this case the interaction is mediated
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via the coupling of the electrical field to the transition dipole moment. Assuming
that the wavelength of the monochromatic electric field is large compared to the di-
mension of the atom, one can work in the so called dipole approximation. In this
approximation, one considers only the field strength at the centre-of-mass position
of the atom. Thus, using this approach, the classical interaction Hamilton function
takes on the form

Hint = −q r · E(R, t), (2.66)

where the vector R labels the centre-of-mass position of the atom and q r is the clas-
sical electronic dipole moment. Since I assume that the intra-cavity photon field is
monochromatic and has a fixed polarization, I drop the index ρ and σ in the electric
field and, thus, the explicit form of the quantized form of the electric field (2.40) is
given by

Ê(R, t) = i ξ
[
â(t) u(R)− â†(t) u∗(R)

]
, (2.67)

where I introduced the abbreviation

ξ =

(
~ω
2 ε0

)1/2

. (2.68)

Note that, the photonic ladder operators â(t), â†(t) in the above equation are now
formally time dependent. The reason for this is, that I absorbed the time depen-
dence of the mode function u(R) and defined

â(t) = â e−i ω t. (2.69)

To the end of this section, I drop the explicit time dependence for the sake of clarity.
In order to write down the fully quantized version of (2.66), one still needs to find
the quantum mechanical description of the dipole moment. Trying to use the same
procedure as in (2.57), I expand the dipole operator in the energy eigenbasis of the
two-level system. This approach leads to

q r =
∑
i,j

|i〉 〈i| q r |j〉 〈j| , (2.70)

where the indices i and j label the respective energy eigenstates |g〉 , |e〉. Since tran-
sition dipole moments can just arise from electronic transition from |g〉 to |e〉 or vice
versa, the terms corresponding to the even transitions q 〈e| r |e〉 and q 〈g| r |g〉, have
to be zero. Hence, I define

p := q 〈e| r |g〉 ,
p∗ := q 〈g| r |e〉 .

(2.71)

These results yield the following expression for the dipole operator expansion (2.70):

q r = p |e〉 〈g|+ p∗ |g〉 〈e| = p σ̂+ + p∗ σ̂−. (2.72)

21



Chapter 2 Jaynes-Cummings Model

For the last equivalence in (2.72), I used the relation of the state vectors to the Pauli
matrices, introduced in (2.62). Subsequently, one can combine expressions (2.67)
and (2.72) to give the quantized version of the interaction Hamiltonian (2.66), which
reads

Ĥint = −i ξ
[
âu(R)− â† u∗(R)

] (
p σ̂+ + p∗ σ̂−

)
. (2.73)

Expanding this expression yields

Ĥint =− i ξ
[
âu(R) · p σ̂+ + âu(R) · p∗ σ̂−

−â† u∗(R) · p σ̂+ − â† u∗(R) · p∗ σ̂−
]
. (2.74)

Having a closer look at the occurring terms, one can see that, two of them describe
rather unphysical processes, that violate conservation laws. In fact, the term pro-
portional to â σ̂− describes the decay of the excited atomic level together with the
annihilation of an intra-cavity field photon, whereas the term proportional to â† σ̂+

describes the excitation of the atom together with the creation of a photon. Both
processes obviously violate the conservation of energy and particle number in the
system and, hence, I neglect them in the further calculations. This approach is
known in the literature as the rotating wave approximation (RWA) [135, 137, 138]
and leads to a Hamiltonian of the form

Ĥint = −i~
(
g â σ̂+ − g∗ â† σ̂−

)
, (2.75)

where I introduced the complex coupling strength g defined by ~ g = ξ u(R) · p and
~ g∗ = ξu∗(R) ·p∗. Note that the implicit time dependence of the Hamiltonian (2.75)
due to relation (2.69) vanishes in a rotating frame and, thus, can be neglected in the
following considerations.
At first appearance it seems that, one has arrived at the simplest form for the in-
teraction Hamiltonian. However, I show within the next section that there exists a
property of the Hamiltonian (2.75), which leads to an even more compact form.

2.4 Symmetry of the Interaction Hamiltonian

Within this section I am going to examine the invariance of the Hamiltonian (2.75)
under global U(1) phase transformations. This symmetry offers the possibility to
restrict the complex coupling strength g to real values and, thus, leads to the final
form of the interaction part of the Jaynes-Cummings Hamiltonian.
The standard approach to analyse this property of the Hamiltonian is to apply a
global phase transformation to either the state vectors or the appearing operators.
I use the first method and perform the following transformation for the two-level
eigenstates

|e〉′ → eiα |e〉 , |g〉′ → eiβ |g〉 . (2.76)
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The introduced parameters α and β are global constants independent of space and
time. Using the relations (2.62) I see that this transformation immediately yields
new expressions for the annihilation and creation operators of the two-level system,
namely

σ̂+′ → ei(α−β) σ̂+, σ̂−′ → e−i(α−β) σ̂−. (2.77)

By inserting these expressions into (2.65), it is easy to see that the performed phase
transformation leaves the Hamiltonian invariant.

Ĥ ′atom = ~ ε σ̂+′ σ̂−′ = ~ ε ei(α−β)σ̂+e−i(α−β)σ̂− = ~ ε σ̂+σ̂− = Ĥatom . (2.78)

Following the same procedure, I analyse the symmetry of the Hamilton for the free
electromagnetic field (2.53), by performing a global phase transformation on the
photonic annihilation and creation operators as follows

â′ → eiφ â, â†′ → e−iφ â†, (2.79)

with the global constant φ. An investigation of the effect of this transformation on
equation (2.53) immediately shows that the Hamiltonian of the intra-cavity photon
field stays invariant:

Ĥ ′field = ~ω
(
â†′ â′ +

1

2

)
= ~ω

(
e−iφ â† eiφ â+

1

2

)
= ~ω

(
â† â+

1

2

)
= Ĥfield. (2.80)

Therefore, both the intra-cavity field Hamiltonian as well as the two-level system
Hamiltonian, remain invariant under some global phase transformation. The in-
teresting question is: what happens to the interaction part? This can be easily in-
vestigated by simultaneously performing both transformations (2.77) and (2.79) on
equation (2.75), which results in the modified interaction Hamiltonian:

Ĥint = −i~
[
g â σ̂+ei(φ+α−β) − g∗ â† σ̂−e−i(φ+α−β)

]
. (2.81)

Furthermore, using the fact that complex numbers can be separated into a real
modulus and a complex phase, equation (2.81) can be rewritten as

Ĥint = −i~|g|
[
â σ̂+ei(θ+φ+α−β) − â† σ̂−e−i(θ+φ+α−β)

]
, (2.82)

where I defined g = |g|eiθ. The arbitrariness of the introduced parameters α, β and
φ allows to choose their values in such a way as to compensate for the phases of the
coupling constant. For this reason, I demand that the following relation has to hold

θ + φ+ α− β !
=
π

2
. (2.83)

Here I choose π/2 because I want to use the over determination to get rid of the pre-
factor i in (2.82). With the phase parameters obeying equation (2.83), one finally ar-
rives at the most compact formulation of the interaction Hamiltonian, which reads

Ĥint = ~ g
(
â σ̂+ + â† σ̂−

)
, (2.84)

where the coupling constant g is now a real quantity defined as

~ g = ξ|u(R) · p|. (2.85)
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Chapter 2 Jaynes-Cummings Model

Figure 2.2: Two-level system in a micro cavity and the most important processes
in this system. Yellow arrows indicate the creation and annihilation of
cavity photons, green arrows indicate the excitation and relaxation of the
two-level system and the red arrows indicate the loss processes (~ = 1).

2.5 Jaynes-Cummings Hamiltonian

The Jaynes-Cummings (JC) system under consideration is depicted schematically
in Figure 2.2. In this picture I have indicated the main processes one has to deal
with in the further calculations. In specific there are: the creation and annihilation
of intra-cavity photons via the photonic operators â, â†, the excitation and relaxation
of the two-level system via the electronic operators σ+, σ− and two new processes,
that have not been discussed yet. These new processes, which are indicated by the
red waving arrows, correspond to loss processes in the cavity. In a real experiment,
there will be two main sources for energy dissipation out of the system. The first
one is simply due to the fact that, in general there is a non-vanishing probability for
spontaneous emission of a photon from the excited level of the atom. In my formu-
lation this probability is proportional to γ. The second process amounts for the fact,
that the cavity itself is not perfectly closed and, therefore, gives rise to the possibility
of a photon to leak out of the cavity at a rate λ. However, within the further calcula-
tions, I explicitly neglect these loss processes, assuming that the coupling g is much
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2.5 Jaynes-Cummings Hamiltonian

bigger than the dissipation, i.e.
g2

γ λ
� 1. (2.86)

This approach is known in the literature as working in the strong coupling regime.
This regime has already been shown to be experimentally feasible in many different
setups [66, 82, 83, 86, 93, 94, 102, 104, 106, 111, 117, 140, 141]. From equation (2.85), I
deduce that, this regime can be established by maximizing the electronic-transition
dipole moment and choosing a small cavity volume. For completeness, I mention
that there also exists some calculations [140, 142–145] and experiments [88, 115],
that explicitly describe and test the dissipative regime by taking loss processes into
account.
Hitherto, I thoroughly derived and justified the basic constituents of the form of
the Jaynes-Cummings Hamiltonian as I will consider it. Therefore, I can now write
down the full Hamiltonian, which reads

ĤJC = Ĥfield + Ĥatom + Ĥint. (2.87)

Shifting the energy of the system by 1
2
~ω in order to get rid of the zero-point en-

ergy contribution arising from the electromagnetic field Hamiltonian, one finds the
following form for the Jaynes-Cummings Hamiltonian in the rotating wave approx-
imation:

ĤJC = ~ω â†â+ ~ ε σ̂+σ̂− + ~ g
(
â σ̂+ + â† σ̂−

)
. (2.88)

One can further transform this expression to a more convenient form, by introduc-
ing the composed occupation number operator

n̂ = â†â+ σ̂+σ̂−, (2.89)

and the detuning parameter
∆ = ε− ω, (2.90)

which is a measure for the detuning between the monochromatic photon field fre-
quency and the two-level transition frequency. The resulting Hamiltonian reads

ĤJC = ~ω n̂+ ~∆ σ̂+σ̂− + ~ g
(
â σ̂+ + â† σ̂−

)
, (2.91)

which I will use within the further calculations.
First, I notice some general properties of this Hamiltonian. One thing I observe is
that in the case of resonant pumping, i.e. ∆ = 0 the second term vanishes, leaving
just the contribution proportional to ~ω and the interaction term, which is propor-
tional to g. Considering the latter, I place emphasis on the fact that, this term de-
scribes the conversion of atomic excitations to photonic excitations and vice versa.
The next step to analyse the Jaynes-Cummings model is to determine the eigen-
states and eigenvalues of the Hamiltonian (2.91). It turns out that to perform these
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Chapter 2 Jaynes-Cummings Model

calculations, the rotating wave approximation introduced in Section 2.3 is abso-
lutely crucial. Within this approximation it is possible to analytically diagonalize the
Hamiltonian. However, as proposed by Feranchuk et. al. [146] and others [122, 147–
150] it is also possible to analytically solve the Jaynes-Cummings model without the
RWA, but within this thesis, I explicitly make use of this simplification.
In order to diagonalize Hamiltonian (2.91), one has to investigate its commutator
with the occupation number operator n̂, which leads to[

n̂, ĤJC
]

= ~ω [n̂, n̂] + ~∆
[
n̂, σ̂+σ̂−

]
+ ~ g

([
n̂, â σ̂+

]
+
[
n̂, â†σ̂−

])
. (2.92)

Remembering that, each operator commutes with itself and noticing that the fol-
lowing relations have to hold[

â, σ̂+
]

=
[
â, σ̂−

]
=
[
â†, σ̂+

]
=
[
â†, σ̂−

]
= 0, (2.93)

since the appearing operators â†, â and σ̂+, σ̂− operate on independent subspaces,
one can immediately conclude that[

n̂, σ̂+σ̂−
]

=
[
n̂, â†â

]
= 0. (2.94)

Hence, the commutator (2.92) simplifies to[
n̂, ĤJC

]
= ~ g

([
n̂, â σ̂+

]
+
[
n̂, â†σ̂−

])
. (2.95)

Using the fundamental commutator relations for the photonic ladder operators de-
fined in (2.38), as well as the commutator relation of the Pauli matrices:[

σ̂+, σ̂−
]

= σ̂z , (2.96)

one can easily calculate the remaining commutators, which results in the following
relations

[σ̂+σ̂−, â σ̂+]= â σ̂+,
[
â†â, â σ̂+

]
= −σ̂+â,[

â†â, â†σ̂−
]
= â†σ̂−,

[
σ̂+σ̂−, â†σ̂−

]
= −σ̂−â†, (2.97)

which yields for the commutators in equation (2.95)[
n̂, â σ̂+

]
=
[
n̂, â†σ̂−

]
= 0. (2.98)

Thus, I found the very important property, that the Jaynes-Cummings Hamiltonian
ĤJC commutes with the bosonic occupation number operator n̂:[

n̂, ĤJC
]

= 0. (2.99)

This result has two essential implications. The first one is that n̂ obviously describes
a conserved quantity in the Jaynes-Cummings model. This quantity is the number
of so called polaritons in the system. In the present model, a polariton is basically a
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2.5 Jaynes-Cummings Hamiltonian

coupled excitation of the atomic and the photonic system.
The second important implication is, that ĤJC and n̂ share a common set of eigen-
states, in which both operators are diagonal. In order to find these states, it is ad-
visable to have a closer look at the occupation number operator. As introduced in
(2.89), this operator is the sum of the occupation number operators for the intra-
cavity photon field n̂p = â†â and the occupation number operator n̂a = σ̂+σ̂− of
the two-level system, respectively. Because these operators commute as well, they
also share a set of common eigenstates. Nevertheless, since they operate in different
subspaces and, therefore, have distinct sets of eigenvalues, the only possible candi-
date for a common set of eigenstates are the product states of the photonic Fock
states and the atomic two-level states. For this reason, I consider the ansatz

|np, s〉 = |np〉 ⊗ |s〉 , s ∈ {e, g} , (2.100)

where these new states have to satisfy the eigenvalue equations

n̂p |np, s〉 = np |np, s〉 ,
n̂a |np, s〉 = na |np, s〉 .

(2.101)

Furthermore, the new set of product states inherits the completeness and orthogo-
nality relations from the subspaces of its components yielding

∞∑
n=0

∑
s=e,g

|np, s〉 〈np, s| = 1, (2.102)

〈n′p, s′| · |np, s〉 = δnp,n′p δs,s′ . (2.103)

Throughout this thesis, I refer to this product states as the bare basis set of the
Jaynes-Cummings model. The presented set of states leads, according to equations
(2.100) and (2.101), to the following eigenvalue equation of the polariton occupation
number operator

n̂ |np, s〉 = (np + na) |np, s〉 = n |np, s〉 . (2.104)

Remembering form Section 2.2 that na can only take on the values 1 and 0, cor-
responding to the excitation states |e〉 and |g〉, one can immediately deduce from
(2.104) the important fact that for a fixed number n of polaritons there exist two
possible micro states.
Having found a set of eigenstates of the polariton occupation number operator, one
can now make use of this result and write down the representation of the Jaynes-
Cummings Hamilton operator with respect to the bare basis by using the complete-
ness relation (2.102):

ĤJC =
∞∑

np,n′p=0

∑
s,s′

|np, s〉 〈np, s| ĤJC |n′p, s′〉 〈n′p, s′| . (2.105)
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Arranging the occurring terms according to the number of polaritons and using the
orthogonality relation (2.103), leads to a block-diagonal form of the Hamilton oper-
ator. One can see that (2.105) separates into the ground-state contribution and an
infinite number of blocks of higher order contributions with fixed polariton number
n:

ĤJC = |0, g〉h0g,0g 〈0, g|
+ |1, g〉h1g,0e 〈0, e|+ |1, g〉h1g,1g 〈1, g|+ |0, e〉h0e,1g 〈1, g|+ |0, e〉h0e,0e 〈0, e|
+ |2, g〉h2 g,1e 〈1, e|+ |2, g〉h2 g,2 g 〈2, g|+ |1, e〉h1e,2 g 〈2, g|+ |1, e〉h1e,1e 〈1, e|
+ |3, g〉h3g,2e 〈2, e|+ |3, g〉h3g,3g 〈3, g|+ |2, e〉h2e,2e 〈2, e|+ |2, e〉h2e,3g 〈3, g|
+ . . . , (2.106)

where I used the abbreviation hn s,n′ s′ = 〈n, s| ĤJC |n′, s′〉 for the respective matrix
elements. This expression can be transformed to a simpler form by introducing (2×
2) matrices for each polariton number, leading to a Hamiltonian of the form

ĤJC = ĥ0 +
∞∑
n=1

ĥn, (2.107)

where n labels the number of polaritons and the operators ĥ0, ĥn are defined as

ĥ0 = |0, g〉 〈0, g| ĤJC |0, g〉 〈0, g| = 0, (2.108)

ĥn =

(
〈n, g| ĤJC |n, g〉 〈n, g| ĤJC |n− 1, e〉
〈n− 1, e| ĤJC |n, g〉 〈n− 1, e| ĤJC |n− 1, e〉

)
. (2.109)

Remembering the analysis of Sections 2.1 and 2.2, one can calculate the matrix en-
tries using the action of the ladder operators on their respective eigenstates. With
the properties

σ̂+σ̂− |n, g〉 = 0, σ̂+σ̂− |n− 1, e〉 = |n− 1, e〉 ,
â†â |n, g〉 = n |n, g〉 , â†â |n− 1, e〉 = (n− 1) |n− 1, e〉 ,
â σ̂+ |n, g〉 =

√
n |n− 1, e〉 , â σ̂+ |n− 1, e〉 = 0,

â†σ̂− |n, g〉 = 0, â†σ̂− |n− 1, e〉 =
√
n |n, g〉 ,

(2.110)

one finds, that the sub Hamiltonians (2.109) have the following representation in
the bare basis

ĥn =

(
~ω n ~ g

√
n

~ g
√
n ~ω n+ ~∆

)
. (2.111)

Thus, the problem of finding the eigenvalues of the potentially infinite Hamiltonian
(2.91) is reduced to the much simpler task of finding the two eigenvalues of ma-
trix (2.111). Mathematically this is a well known situation, which can be solved in

28



2.5 Jaynes-Cummings Hamiltonian

-4 -2 0 2 4
-6

-4

-2

0

2

4

6

D�g

HE
n±

-
Ω

nL
�g

È1,+\Èn,+\

È1,-\ Èn,-\

È0,g\

Figure 2.3: Plot of the energy eigenvalues (2.113) of the Jaynes-Cummings model
versus the detuning (~ = 1).

general by evaluating the characteristic polynomial of the respective matrix. In the
present case this approach yields the following equation

(~ω n− En)(~ω n+ ~∆− En)− ~2g2 n = 0, (2.112)

which immediately gives the eigenvalues as

En± = ~ω n+
1

2
~ (∆±Rn) , n > 1 and E0 = 0 . (2.113)

Here, I followed the conventional notation found in the literature (see for example
[122, 135–138]) and introduced the generalized Rabi frequency

Rn(∆) =
√

∆2 + 4 g2n . (2.114)

In Figure 2.3, I plot the energy eigenvalues (2.113) versus the detuning. One can see
from this picture that for a fixed polariton number n the spectrum contains a set of
two non-degenerated energy eigenvalues. One can see clearly that these eigenval-
ues naturally separate into so called upper and lower polariton branches, with the
vacuum state as the only eigenstate belonging to both of them. Furthermore, one
finds that the energy eigenvalues remain completely non-degenerated, even if the
system is not in resonance. This fact is quite important for the following Schrödinger
perturbation theory.
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The splitting between states with the same number of polaritons is, according to
equation (2.113), given by

δEn = En+ − En− = Rn(∆) =
√

∆2 + 4g2n. (2.115)

Notice, that this splitting does not only depend on the detuning ∆, which is ex-
pected, but also on the occupation number n in a non-linear way. This non-linearity
leads to some interesting phenomena, which will be discussed in a little bit more de-
tail within the next section.
Having obtained the energy eigenvalues, I can now calculate the respective eigen-
vectors by solving the eigenvalue equation(

~ωn ~ g
√
n

~ g
√
n ~ωn+ ~∆

)(
α±

β±

)
= En±

(
α±

β±

)
. (2.116)

To this end I additionally assume that the eigenvectors are normalized and therefore
their coefficients have to satisfy the relation(

α±
)2

+
(
β±
)2

= 1 . (2.117)

Hence, the coefficients α± and β± depend on each other. Because of that, I just have
to consider one of the equations described by (2.116). Choosing the first one, I find
that the coefficients have to satisfy the relation

~ωnα+ + ~ g
√
nβ+ = En+α

+. (2.118)

Inserting (2.117) yields:

(~ωn− En+)α++~ g
√
n

√
1− (α+)2 = 0 ,

1

2
~ (∆ +Rn)α+ = ~ g

√
n

√
1− (α+)2 ,

(∆ +Rn)2 (α+
)2

= 4 g2n
[
1−

(
α+
)2
]
. (2.119)

Hence, one finds for the first coefficient α+:

α+ =
2 g
√
n√

(∆ +Rn)2 + 4 g2n
. (2.120)

Applying (2.117) once more, the second coefficient β+ becomes:

β+ =
∆ +Rn√

(∆ +Rn)2 + 4 g2n
. (2.121)
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In principle, one could directly use these expressions. Yet, relation (2.117) impli-
cates, that there should also exist a mapping for the coefficients α+ and β+ onto the
unit circle. This observation justifies the parametrization

sin θn := α+, cos θn := β+. (2.122)

That does not look like a huge improvement, but using some trigonometric addition
theorems, one can show that this approach simplifies the form of the eigenstate
coefficients. Using an addition theorem for the cosine leads to:

cos (2 θn) = cos2 θn − sin2 θn =
(∆ +Rn)2 − 4 g2n

(∆ +Rn)2 + 4 g2n

=
∆

∆2+∆Rn+R2
n−∆2

(∆+Rn)

=
∆

(∆+Rn)Rn
(∆+Rn)

, (2.123)

which, in turn, leads to the neat relation:

cos (2 θn) =
∆

Rn

. (2.124)

A corresponding theorem for the sine yields:

sin (2 θn) = 2 sin θn cos θn =
4 g
√
n (∆ +Rn)

(∆ +Rn)2 + 4 g2n

=
4 g
√
n

∆2+2∆Rn+R2
n+R2

n−∆2

(∆+Rn)

=
4 g
√
n

2Rn(∆+Rn)
(∆+Rn)

, (2.125)

and, thus, one finds:

sin (2 θn) =
2 g
√
n

Rn

. (2.126)

The combination of equation (2.124) and equation (2.126) results in the concise ex-
pression

tan (2 θn) =
2 g
√
n

∆
. (2.127)

Performing the same calculations for the second set of probability amplitudes, one
finds the analogue relations:

α− =
2 g
√
n√

(∆−Rn)2 + 4 g2n
, (2.128)

β− =
∆−Rn√

(∆−Rn)2 + 4 g2n
. (2.129)
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In order to determine the corresponding expressions in the parametrized picture
introduced in relation (2.122), one needs to take a closer look at the squared ampli-
tudes. After some transformations:

(α−)2 =
4 g2n

(∆−Rn)2 + 4 g2n
=

4 g2n (∆ +Rn)2

(∆−Rn)2 (∆ +Rn)2 + 4 g2n (∆ +Rn)2

=
(∆ +Rn)2

(∆2−R2
n)2

4 g2n
+ (∆ +Rn)2

=
(∆ +Rn)2

4 g2n+ (∆ +Rn)2 , (2.130)

one gets the important relation:

(α−)2 = (β+)2. (2.131)

Following the same argumentation for β−, yields:

(β−)2 =
(∆−Rn)2

(∆−Rn)2 + 4 g2n
=

(∆−Rn)2 4 g2n

4 g2n (∆−Rn)2 + (4 g2n)2

=
(∆−Rn)2 4 g2n

4 g2n (∆−Rn)2 + (R2
n −∆2)2 =

4 g2n

4 g2n+ (R2
n−∆2)2

(∆−Rn)2

=
4 g2n

4 g2n+ (Rn−∆)2(Rn+∆)2

(∆−Rn)2

=
4 g2n

4 g2n+ (∆ +Rn)2 , (2.132)

which indicates that
(β−)2 = (α+)2. (2.133)

However, there is still an uncertainty left. The calculations of the squared ampli-
tudes (α±)2, (β±)2 harbour the risk to loose some signs. If I consider the case of zero
detuning, I find that β− indeed has to fulfil the relation β− = −α+. Now, I finally
arrive at the desired form of the Jaynes-Cummings eigenstates, that for n > 0 the
polariton eigenstates are given by

|n,+〉 := sin θn |n, g〉+ cos θn |n− 1, e〉 (2.134a)

|n,−〉 := cos θn |n, g〉 − sin θn |n− 1, e〉 , (2.134b)

whereas the vacuum state corresponding to n = 0 takes on the form

|0,±〉 ≡ |0, g〉 = |0〉 . (2.135)

According to (2.127) the occurring mixing angle θn is defined as:

θn =
1

2
arctan

(
2 g
√
n

∆

)
. (2.136)
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Figure 2.4: Energy structure of the Jaynes-Cummings model with the parameters:
∆ = 0.3 ε, g = 0.2 ε. a) Energy spectrum of the two-level system. b)
Energy spectrum of the harmonic oscillator corresponding to the intra-
cavity field. c) Jaynes-Cummings dressed state ladder. The non-linearity
indicated by the red arrows for the splitting as defined by (2.115).

Besides, using the orthogonality relation defined in (2.103), one can show that the
Jaynes-Cummings eigenstates are orthonormal and obey the relation

〈m,α|n, β〉 = δm,n δα,β. (2.137)

In the following, I refer to this eigenbasis as the dressed-state basis of the JC model.
Figure 2.4 shows the dressed state energy levels of the Jaynes-Cummings model in
comparison to the simple energy levels of the two-level system and the harmonic
oscillator levels, corresponding to the energies of the intra-cavity photon field. The
most striking difference is that the levels for the single atomic system, as well as for
the single photonic system are equally spaced, whereas they are not for the dressed-
state energy ladder of the Jaynes-Cummings system. This fact is the direct result of
the non-linear dependence of the energy eigenvalues on the polariton number op-
erator, found in (2.113).
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2.6 Polariton Mapping

Throughout the further calculations, one has to deal with expressions containing
expectation values of products of photonic ladder operators â and â†. Since these
expectation values have to be evaluated with respect to the dressed-state basis, the
question arises, how the photonic ladder operators act on the dressed states. All that
is known so far, is their action on the bare states. However, the analysis in Section
2.5 showed how the dressed states are connected to the bare states, namely(

|n,+〉
|n,−〉

)
= Rn

(
|n, g〉
|n− 1, e〉

)
, Rn =

(
a+
n b+

n

a−n b−n

)
, (2.138)

where I introduced the matrixRn with entries

aαn =

{
sin θn , α = +
cos θn , α = − , bαn =

{
cos θn , α = +
− sin θn , α = − . (2.139)

Applying a photonic annihilation operator on one of the dressed states, results in a
state vector, which is a superposition of the two dressed states corresponding to the
reduced photon number. Thus, in the end, the action of this ladder operator on the
dressed states is of the form

â

(
|n,+〉
|n,−〉

)
!

= Tn
(
|n− 1,+〉
|n− 1,−〉

)
=

(
tn++ tn+−
tn−+ tn−−

)(
|n− 1,+〉
|n− 1,−〉

)
, (2.140)

whit the transition matrix Tn. Using the definition (2.138) and the properties of the
annihilation operator on the bare states, one finds that equation (2.140) leads to the
following expression in the bare state representation:

â

(
|n,+〉
|n,−〉

)
= âRn

(
|n, g〉
|n− 1, e〉

)
, (2.141)

TnRn−1

(
|n− 1, g〉
|n− 2, e〉

)
= Rn

( √
n 0

0
√
n− 1

)(
|n− 1, g〉
|n− 2, e〉

)
. (2.142)

Therefore, one obtains the following definition of the transition matrix

Tn = Rn

( √
n 0

0
√
n− 1

)
R−1
n−1 , (2.143)

from which one can immediately deduce the respective transition amplitudes as

tn±− =
√
n a±n b

+
n−1 +

√
n− 1 b±n b

−
n−1 , (2.144a)

tn±+ =
√
n a±n a

+
n−1 +

√
n− 1 b±n a

−
n−1 . (2.144b)
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Thus, I find that the action of the photonic annihilation operator on the dressed
basis states is given by

â |m,β〉 =
∑
α′=±

tmβα′ |m− 1, α′〉 . (2.145)

In order to find a representation for â, one needs to rewrite the right-hand side of
equation (2.145) in such a way, that it yields an operator acting on |m,β〉. Therefore,
I insert a suitable identity and use the orthonormal properties of the dressed state
basis in (2.137), leading to

â |m,β〉 =

(
∞∑
n=1

∑
α,α′=±

tnαα′ |n− 1, α′〉 〈n, α|

)
|m,β〉 . (2.146)

In principle, one could now use this result to calculate each emerging action of a
photonic ladder operator on a dressed state in this matrix approach. However, I
would like to follow an approach suggested in Ref. [49] and introduce an operator
formalism to rewrite the projection operator in (2.146). Since I expand the model
onto a lattice in the next chapter, I introduce the lattice site index j at this point and
sum over all lattice sites. In order to get this polariton mapping, I start by looking for
some operator representation, in which the local Jaynes-Cummings Hamiltonian
becomes diagonal, i.e. takes on the form:

Ĥ JC =
∑
j

∞∑
n=0

∑
α=±

EnαP̂
†
jnαP̂jnα . (2.147)

In this notation the energy eigenvaluesEnα correspond to (2.113). Naturally, the first
candidates for such operators are simply the projection operators in the dressed
state basis, which are defined as

P̂ †jnα = |n, α〉j 〈0, g|j , P̂jnα = |0, g〉j 〈n, α|j , (2.148)

with their respective action on arbitrary dressed states

P̂ †jnαP̂jnα |m,β〉i = δn,m δα,β δi,j |n, α〉j ,
P̂jnαP̂

†
jnα |m,β〉i = δ0,m δi,j |0, g〉j .

(2.149)

Note that, both operators in (2.148) represent projections of an arbitrarily dressed
state with respect to the ground state. This is due to the fact, that the ground state
is the only singlet state in the Jaynes-Cummings ladder, which makes it unique and,
thus, a perfect candidate to define polariton creation with respect to it.
From the orthogonality relation of the dressed states (2.137) follows that these op-
erators fulfil bosonic commutation relations. In fact, one finds for the commutators
the following expressions [

P̂jnα, P̂inβ

]
= 0, (2.150)
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and [
P̂ †jnα, P̂inβ

]
= δi,j δα,β . (2.151)

Therefore these operators represent bosonic annihilation and creation operators.
Last but not least, I note that the ground-state projection operators obviously coin-
cide:

P̂ †j0 = P̂j0 = |0, g〉j 〈0, g|j . (2.152)

Since the introduced operators effectively create and annihilate polaritons from the
vacuum, the huge advantage of this mapping is that it allows to express the photonic
ladder operators in terms of these projection operators. Regarding equation (2.146)
once again and using the derived properties of the polariton projection operators,
one finds the following representation of the photonic ladder operators

âj =
∞∑
n=1

∑
α,α′=±

tnαα′ P̂
†
j(n−1)α′ P̂jnα , (2.153a)

â†j =
∞∑
n=0

∑
α,α′=±

t(n+1)α′α P̂
†
j(n+1)α′ P̂jnα. (2.153b)

Now the action of âj on an arbitrary polariton dressed state, according to equation
(2.153a), is to diminish the polariton number by one and perhaps alter the polariton
type. This derived representation of the photonic annihilation and creation opera-
tors will be used throughout the whole thesis to calculate expectation values in the
dressed-state basis.
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Chapter 3

Jaynes-Cummings-Hubbard Model

Having thoroughly investigated the physics of the on-site light-matter interaction
within the previous chapter, I am now going to expand this system on a D-dimen-
sional lattice. This transition is performed by making all operators in the Jaynes-
Cummings Hamiltonian (2.91) site dependent and sum over all lattice sites. To allow
for a photon dynamic on the lattice, an additional Hubbard-like hopping term is in-
cluded. This kind of approximation of dynamics on a lattice has first been proposed
by J. Hubbard [5] for strongly correlated fermionic systems. Later it has been suc-
cessfully applied to strongly interacting hardcore bosonic particle systems as well
[6]. Whereas in these fermionic and hardcore bosonic systems a strong interaction
occurs quite naturally, due to Coulomb or contact interaction respectively, the case
is not quite so simple for photonic systems. In fact, photons hardly interact with
each other and also their interaction with atoms is normally rather weak. As al-
ready outlined in the previous chapter, one can prevent the latter, by choosing a
micro cavity setup, which enhances the light-matter interaction and, thus, leads to
new bosonic quasi particles, the so called polaritons. Fortunately, the non-linearity
exhibited in their energy spectrum, provides a mechanism for strong photonic in-
teraction.
Suppose one has a Jaynes-Cummings system in its ground state, in which a cavity
photon with exact the right frequency is coupled in, in order to achieve a transition
form |0〉 → |1,−〉. Now, one climbed up the Jaynes-Cummings ladder, which leads,
due to the non-linearity, to a slightly shifted transition frequency for the next higher
transition. Hence, if a second photon, with the same frequency as the first one,
tries to enter the cavity, it is detuned from the available transitions. In effect, it can
not enter the cavity and gets reflected. This effect is known as the so called photon
blockade effect [52, 60, 151]. Recently, it could be shown experimentally, that this
effect leads, indeed, to the desired strong photonic interaction [55]. I give a short
derivation of the Hubbard-like hopping term for the Jaynes-Cummings model on a
lattice within the following section. Note that, in all following calculations I use the
convention ~ = 1.
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3.1 Coupled Cavity Lattice

Within this section I present the theoretical description of the coupling of optical
cavities in an array. To this end, I follow the ansatz proposed in Refs. [67, 152, 153].
As previously mentioned, I consider the Jaynes-Cummings-Hubbard model to be
experimentally realized by a lattice, which is built of coupled micro cavities. Each
of this cavities contains a two-level atom and, thus, matter is present in the system.
For these reason the Maxwell equations (2.1) have to be modified. The resulting set
of equations, for the case that no sources are present, reads

∇ ·B (r, t) = 0, (3.1a)

∇ ·D (r, t) = 0, (3.1b)

∇× E (r, t) = −∂B (r, t)

∂t
, (3.1c)

∇×H (r, t) =
∂D (r, t)

∂t
, (3.1d)

where now the fields E (r, t) and D (r, t) are linked via the relation

D (r, t) = ε0 ε (r) E (r, t) = ε0 ε (r)
∂A (r, t)

∂t
. (3.2)

Hence, this setup leads to an electrical permittivity ε (r), which now shares the peri-
odicity of the lattice. Thus, it has the property

ε (r) = ε (r + R) , (3.3)

where R is a lattice vector. The local permittivity centred at lattice site R is denoted
as εR (r). The appearance of the electrical permittivity in equation (3.2) leads to the
following explicit form of the Maxwell relation (3.1b):

∇ ·
[
ε (r)

∂A (r, t)

∂t

]
= 0 . (3.4)

It is too see that, in order to fulfil the above equation, one needs to modify the
Coulomb gauge (2.11), which in the presence of matter reads

∇ · [ε (r) A (r, t)] = 0. (3.5)

Following the usual procedure, one obtains the wave equation for the vector poten-
tial A (r, t), by inserting equation (3.2) and H (r, t) /µ0 = ∇×A (r, t) into the Maxwell
relation (3.1d), which yields

0 =
ε (r)

c2

∂2A (r, t)

∂t2
+∇×∇×A (r, t) . (3.6)
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3.1 Coupled Cavity Lattice

The periodicity of the permittivity as described by (3.3) leads to the fact that a pho-
ton moving in the lattice sees an effective potential with the periodicity of the lattice.
This situation is equivalent to an electron moving through a solid, feeling an atomic
potential with the periodicity of the crystal lattice. Inspired by this analogy, I apply a
tight-binding ansatz for the vector potential, which satisfies the Bloch theorem and,
hence, has the property

A (r + R, t) = eikRA (r, t) . (3.7)

Therefore, I expand A (r, t) in terms of local on-site mode functions. In specific, I
assume that these mode functions are given by Wannier functions wR (r), which are
localized around the centre R of a lattice site. On each lattice site, these Wannier
functions represent the spatial part of the high-Q cavity-mode and, thus, they are
characterized by the cavity resonance frequency ωc and the local permittivity εR (r).
Then, follows from the Maxwell equations (3.1) that these local Wannier functions
fulfil the eigenvalue equation

εR (r)
ω2

c

c2
wR (r) = ∇×∇× wR (r) . (3.8)

Additionally, these Wannier functions have to obey locally the normalization condi-
tion ∫

dr εR (r) w∗R (r) wR (r) = 1. (3.9)

The assumption of localized wave functions leads to an expansion of the vector po-
tential in terms of these Wannier functions. Therefore, in the case of a monochro-
matic field mode with fixed polarization, the vector potential takes on the following
form

A (r, t) =
∑
n

wR (r−Rn) ei(kRn−ω t) . (3.10)

Here, I introduced the lattice vectors Rn = Rn, where R is a constant and n a tupel
of integers. It is easy to prove that this ansatz, indeed, satisfies (3.7). Inserting the
approach (3.10) in the wave equation (3.6) yields∑

n

ε (r)
ω2

c2
wR (r−Rn) ei(kRn−ω t) =

∑
n

∇×∇× wR (r−Rn) ei(kRn−ω t). (3.11)

Using result (3.8), the right-hand side of this expression can further be transformed
into ∑

n

ε (r)
ω2

c2
wR (r−Rn) eikRn =

∑
n

εR (r−Rn)
ω2

c

c2
wR (r−Rn) eikRn . (3.12)

Now, multiplying both sides of this equation with w∗R (r) and performing a spatial
integration, one finds

ω2 = ω2
c

∑
n

∫
dr εR (r−Rn)w∗R (r)wR (r−Rn) eikRn∑
n

∫
dr ε (r)w∗R (r)wR (r−Rn) eikRn

. (3.13)
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Splitting the summation over the lattice sites n into a term for n = 0 and a sum over
n 6= 0 yields

ω2 = ω2
c

1 +
∑

n 6=0 e
ikRnβn

1 + γ +
∑

n6=0 e
ikRnαn

, (3.14)

where, for n 6= 0, the tight binding parameters are given by

αn =

∫
dr ε (r)w∗R (r)wR (r−Rn) , (3.15)

βn =

∫
dr εR (r−Rn)w∗R (r)wR (r−Rn) , (3.16)

γ =

∫
dr [ε (r)− εR (r)]w∗R (r)wR (r) . (3.17)

Here I used (3.9) in order to transform the denominator of equation (3.14).
Now, assuming that the Wannier functions decay sufficiently fast outside the cavity,
one can restrict the integrals (3.15) and (3.16) to next neighbouring sites, so that
the only surviving contributions belong to α±1 and β±1. Due to the symmetry of
the lattice, one furthermore finds that these integrals have to be invariant under a
change of sign of n i.e. α1 = α−1 and β1 = β−1. Under these assumptions expression
(3.14) becomes

ω2 = ω2
c

1 + 2 β1 cos (k R)

1 + γ + 2α1 cos (k R)
, (3.18)

which can be rewritten to the form

ω2 = ω2
c

[
−γ + 2κ cos (k R)

1 + γ + 2α1 cos (k R)
+ 1

]
. (3.19)

In the last equation I introduced the coupling strength κ = β1 − α1 as

κ =

∫
dr [εR (r−R)− ε (r)]w∗R (r)wR (r−R) . (3.20)

Using the fact that γ and α1 are small quantities, i.e. γ ≈ 0, α1 ≈ 0, one finds for the
field frequency the approximated expression

ω ≈ ωc

√
2κ cos (k R) + 1. (3.21)

Expanding the square root for small arguments yields the approximation

ω ≈ ωc [1 + κ cos (k R)] . (3.22)

Finally, in the large wave-length limit, i.e. k R ≈ 0, the cosine can be Taylor ex-
panded as well, leading to

ω ≈ ωc + ωc κ. (3.23)
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3.2 Jaynes-Cummings-Hubbard Hamiltonian

This result can be interpreted in the way, that the first term on the left-hand side de-
scribes the on-site contribution, whereas the second term estimates the correction
arising from next neighbour hopping processes. Thus, combining equation (3.23)
with expression (2.56) leads to

Ĥ JCH
field =

∑
i,j

(ω δi,j + ω κij) â
†
i âj, (3.24)

where I introduced the summation over all lattice sites i, j and shifted the energies
to compensate the ground-state energy of the photon field. Hence if only nearest
neighbour couplings are taken into account, one finds the expression

Ĥ JCH
field =

∑
i

ω â†i âi + κ
∑
〈i,j〉

ω â†i âj, (3.25)

with the coupling constant as defined in (3.20). Numerical calculations of this over-
lap integral for different models have been performed for example in Ref. [154].

3.2 Jaynes-Cummings-Hubbard Hamiltonian

Having justified the theoretical Hubbard approach in the previous section, I now
state another assumption for my calculations. Since I am going to perform the fur-
ther calculations for finite temperatures, I work in the grand-canonical ensemble.
Therefore, I include a chemical potential term (−µ N̂) in the Hamiltonian as well.
The chemical potential µ plays the usual role of a Lagrange multiplier, that fixes the
mean polariton number on the lattice. The complete Hamiltonian for this lattice
model, to which I refer in the following as the Jaynes-Cummings-Hubbard (JCH)
model, then takes on the general form

ĤJCH =
∑
j

ĤJC
j + Ĥhop − µN̂, (3.26)

where the sum runs over all lattice sites and the local Jaynes-Cummings Hamilto-
nian now reads

ĤJC
j = ω n̂j + ∆ σ̂+

j σ̂
−
j + g

(
â†j σ̂

−
j + âj σ̂

+
j

)
. (3.27)

As shown in the previous section, the hopping term in its standard form, in which it
is widely used throughout most Hubbard and Bose-Hubbard models, is given by

Ĥhop = −κ
∑
〈i,j〉

â†i âj = −κ
∑
i

∑
j ∈ nn(i)

â†i âj . (3.28)

This hopping term corresponds to the physical situation, that a photon might tun-
nel from one cavity to a neighbouring one. The probability for such a process is, ac-
cording to the results obtained in the previous section, proportional to the photon
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wave-function overlap between two neighbouring cavities. Within this approach,
the hopping probability is measured by the parameter κ. Though it is not explicitly
forbidden, it is mostly experimentally justified to restrict oneself to next-neighbour
hopping processes only. Therefore, the sum extends only over next neighbouring
sites, which is indicated by the expression 〈i, j〉. As shown in equation (3.28), this
sum can be decomposed into two sums, where the second summation runs over all
next neighbours i. Since the total polariton number operator is given by

N̂ =
∑
j

n̂j =
∑
j

(
â†j âj + σ̂+

j σ̂
−
j

)
, (3.29)

it is to see from (3.26) together with (2.99) that, the JCH Hamiltonian decomposes
into a diagonal on-site contribution and a non-diagonal hopping term contribution.
The diagonal term is easy to solve and essentially leads to the same energy eigenval-
ues as already found for the Jaynes-Cummings model in (2.113). Nevertheless, the
presence of the intra-cavity field mode lowers the chemical potential and, hence,
leads to a new effective potential µeff = µ− ω. Thus, one finds for each lattice site

E
(0)
n± =

1

2

(
∆±

√
∆2 + 4 g2 n

)
− µeff n, E

(0)
0 = 0 (3.30)

for the on-site potential energy. Unfortunately, the effect of the kinetic energy con-
tribution arising from the hopping term can not be read off right away. However, in
the following sections I consider some special limits in order to gain more physical
insight in the dynamics of the model described by (3.26).

3.3 Atomic Limit

The first limit I investigate within this section, is the so called weak-hopping limit,
were κ � g. Within this regime, the hopping may be treated perturbatively. Ex-
panding (3.26) for small κ and taking only the lowest order, i.e. O(κ0), into account,
completely decouples the Hamiltonian in the site index and, thus, reduces it to the
form

ĤJCH
atom =

∑
j

(
ĤJC
j − µ n̂j

)
. (3.31)

The corresponding local eigenvalues of this Hamiltonian are given by Eq. (3.30).
Obviously, this corresponds to the physical situation, where no hopping between
neighbouring cavities is allowed. In this case, all excitations remain at their respec-
tive lattice sites. For this reason, the ground-state wave function of the whole lattice
is simply given as a direct product of the local on-site ground-state wave functions:

|Ψlattice〉 = |Ψloc〉j=1 ⊗ |Ψloc〉j=2 ⊗ |Ψloc〉j=3 ⊗ . . . . (3.32)
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3.3 Atomic Limit

As derived in Section 2.5, the polariton eigenstates naturally separate into an upper
and a lower branch, where the lower-branch states are always lower in energy then
the upper-branch states. Thus, the local ground-state wave function for a given sys-
tem configuration corresponds either to one of the lower-branch states or the vac-
uum state itself. To specify the ground state of the system more precisely, I take a
look at some special limits of expression (3.30).
Let us first consider the case where (ω − µ) � g, |∆|. In this situation, the ground
state is obviously given by the vacuum state with n = 0. However, decreasing the
difference (ω − µ), one eventually reaches a point where adding an excitation to
the system becomes energetically favourable. This point is exactly reached when
E

(0)
0− = E

(0)
1− . A successive repetition of this argument leads to a whole set of such

degeneracy points, which are characterized by the condition

E
(0)
n− = E

(0)
(n+1)− . (3.33)

Using expression (3.30) yields the explicit relations

(µ− ω)

g
=

1

2 g
[Rn(∆)−Rn+1(∆)] , n > 1, (3.34)

(µ− ω)

g
=

1

2 g
[∆−R1(∆)] , n = 0, (3.35)

where the generalized Rabi frequency Rn(∆) is given by equation (2.114). The re-
sulting parameter curves for the critical effective chemical potential are shown in
Figure 3.1 for the first six polariton states (for comparison see Ref. [48]). One can
see from this picture that, in the considered limit the system is characterized by lo-
cal states with a fixed number of polaritons. When the polariton number equals an
integer multiple of the number of cavities, the local polariton number is the same for
each lattice site and it remains fixed for a specific set of parameters {∆/g, (µ− ω)/g}.
However, if the parameter set crosses one of the critical curves depicted in Figure
3.1, the local polariton number will increase or decrease by one. An analogue be-
haviour is known from the Bose-Hubbard model, where it leads to the emergence of
so called Mott-lobes, which border on a superfluid phase. I therefore conclude that
this critical curves mark the onset of superfluidity for very small hopping and repre-
sent the boundary between adjacent Mott lobes for zero hopping. Besides, I notice
that the regions of stability become significantly smaller with increasing polariton
number. It is easy to see that the states |0〉 and |1,−〉 are the most stable ones. The
size of this stability regions is linked to the width of the Mott lobes in the phase dia-
gram, which is why I expect the lobes for n = 0 and n = 1 to be the biggest, followed
by a progression of rapidly shrinking lobes for higher orders of n. Furthermore, it
is to see that all critical curves are symmetric with respect to the detuning, except
for the critical curve between |0〉 and |1,−〉. The reason for this behaviour lies in the
fact, that the ground-state energy is independent of the detuning parameter ∆.
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Figure 3.1: Degeneracy points in the atomic limit. Plot of the first six critical po-
tentials. The two lowest stable regions correspond to |1,−〉 on the left
and |0〉 on the right. The curve separating these two regions results from
equation (3.35). Higher stable regions corresponding to |2,−〉 , |3,−〉 , . . .,
are depicted in the central region with their respective critical curves ac-
cording to equation (3.34).

3.4 Hopping Limit

In this section I consider the limit of the JCH model, which corresponds to the situ-
ation that the photon hopping overwhelms the coupling between cavity mode and
two level atom, i.e. κ � g. Using this assumption one can neglect all terms propor-
tional to g in equation (3.26). This yields the simplified Hamilton operator

Ĥ JCH
hop = (ω − µ)

∑
i

(
â†i âi + σ+

i σ
−
i

)
+ ∆

∑
i

σ̂+
i σ̂
−
i − κ

∑
〈i,j〉

â†i âj. (3.36)

Following the procedure from the previous section, I determine the ground state
also for this limit and, thus, I am only interested in the energetically lowest state.
Keeping this in mind, I note that the energies, associated with the Hamiltonian
(3.36), can be minimized by assuming that no atomic excitations are present within
the system. Therefore, I additionally drop all atomic contributions in (3.36), This
results in the following hopping-limit ground-state Hamiltonian

Ĥ JCH
hop = (ω − µ)

∑
i

â†i âi − κ
∑
〈i,j〉

â†i âj. (3.37)
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Fortunately, this operator can be diagonalized by going into momentum space. For
this reason, I perform the following Fourier transformation of the annihilation and
creation operators:

âi =
1√
Ns

∑
k

âk e
−ik·ri , (3.38)

where Ns corresponds to the total number of cavities in the lattice. The sum runs
over all wave vectors in the first Brillouine zone. Inserting this expression into equa-
tion (3.37), one finds

Ĥ JCH
hop = (ω − µ)

∑
i

1

Ns

∑
k,k′

â†k âk′ e
i(k−k′)·ri − κ

∑
〈i,j〉

1

Ns

∑
k,k′

â†k âk′ e
i(k·ri−k′·rj). (3.39)

The calculation of the sum over all lattice sites i in the first term of the above relation,
simply yields a delta function for k and k′. In order too simplify the second term, I
introduce the decomposition rj = ri + G, where G is a lattice vector, connecting
the lattice site i with its next neighbour site j. Given that, throughout this thesis, I
assume a 3D simple cubic lattice, the lattice vectors G explicitly take on the form

G ∈


 ±a0

0

 ,

 0
±a
0

 ,

 0
0
±a

 , (3.40)

where a is the lattice constant. Inserting this ansatz into (3.39) leads to

Ĥ JCH
hop = (ω − µ)

∑
k

â†kâk − κ
∑
i

∑
G

1

Ns

∑
k,k′

â†k âk′ e
i(k−k′)·ri e−ik

′·G. (3.41)

Now, I can calculate the sum over all lattice sites in the second term as well, which
introduces another delta function for k and k′. Hence I get

Ĥ JCH
hop = (ω − µ)

∑
k

â†kâk − κ
∑
G

∑
k

â†kâke
−ik·G. (3.42)

Calculating the sum over G, by using definition (3.40), yields

Ĥ JCH
hop =

∑
k

[
(ω − µ)− 2κ

3∑
i=1

cos (ki a)

]
â†k âk . (3.43)

Here, the index i labels the three components of the wave vector k. From this Hamil-
ton operator, one can immediately read off its energy eigenvalues, which are given
by the expression

ε (k) = (ω − µ)− J(k) , (3.44)

where I defined

J(k) = 2κ
3∑
i=1

cos (ki a) . (3.45)
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Figure 3.2: Energy bands in the hopping limit. Contour plot of the dispersion re-
lation (3.44) for k = k ex. I plotted ε(k)/κ versus the wave vector in the
first Brillouin zone. The white inset boxes label the value of (ω − µ)/κ on
their respective red dashed contours.

Figure 3.2 shows a contour plot of the energy bands resulting from equation (3.44).
For this plot I assumed the wave vector to have only a non-vanishing component in
x-direction, i.e. k = k ex.
As a general statement for this consideration, it is to see that the Hamiltonian of
the hopping limit (3.43) is local in momentum space. Due to the relation between
momentum space and real space, this behaviour is usually accompanied by the fact
that the photons are completely delocalised over the lattice in real space. This situ-
ation corresponds to the superfluid phase of the system, which is also known from
the Bose-Hubbard model.
To sum up, I found within these last two sections that, for the limits of coupling
domination and hopping domination, the JCH system shows a completely different
behaviour. On the one hand, I observed a pinning of the system excitations to their
respective lattice sites in the case of vanishing hopping strength. This situation is
especially interesting when the total number of excitations in the system equals an
integer multiple of the total number of cavities, because then the excitations spread
equally over the lattice and one finds exactly the same number of excitations at each
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3.5 Mean-Field Theory

lattice site. This phase has already been observed in other bosonic many-particle
quantum systems and is widely known as Mott-insulator phase. On the other hand,
I found that, for the case that the photon hopping dominates the coupling to the
two level atom, the JCH ground state consists of photons, which are completely
delocalised over the whole lattice. This phase is also known from other bosonic
many-particle quantum systems as the superfluid phase. From this observation,
one can already deduce that the JCH system undergoes a phase transition from a
Mott-insulator to a superfluid, when continuously changing the ratio of hopping
strength to coupling strength. Since all considerations so far are completely inde-
pendent of the temperature, this implies that the occurring phase transition is not
driven by thermal fluctuations, but is purely a result of the quantum properties of
the system. Therefore, this kind of transition is known as a quantum phase transi-
tion [8]. However, up till now I did not develop a theory capable of describing this
phase transition properly. In order to derive such a theory from the Hamiltonian
(3.26), the easiest and most straightforward way is to calculate a so called mean-
field theory. This will be the aim of the next two sections.

3.5 Mean-Field Theory

To put it simple, the basic idea behind a mean-field theory is to artificially introduce
a so called order parameter, which equals to zero in the Mott-insulator phase and
takes on values different from zero, when the system is in the superfluid phase. This
order parameter provides a measure to investigate the second-order phase transi-
tion as suggested by Landau. The introduction of this order parameter has to be
done in a consistent way. Luckily, there exists a well known procedure to derive a
mean-field theory for Hamiltonians like the JCH Hamiltonian, where the only off-
diagonal contribution is given by the Hubbard hopping term. In order to analyt-
ically solve a given Hamiltonian, one has to diagonalize it, with respect to some
basis-vector set. To do this for the Hamiltonian of interest, I need to transform the
Hubbard-like hopping term to a diagonal form. This can be achieved by decom-
posing the photonic ladder operators into their respective expectation values plus
fluctuations around this mean value. Thus, I decompose the photonic ladder oper-
ators as follows

âi = 〈âi〉+ δâi, â†i = 〈â†i〉+ δâ†i . (3.46)

Using these decompositions and neglecting all terms proportional to higher than
first order in the fluctuations, I find the mean-field approximation

â†i âj ≈ 〈â
†
i〉 âj + â†i 〈âj〉 − 〈â

†
i〉 〈âj〉 . (3.47)

Due to the translational symmetry of the system, the expectation values of the lad-
der operators have to be site independent. Furthermore, these mean values are the
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Chapter 3 Jaynes-Cummings-Hubbard Model

perfect candidate for the order parameter, since they basically measure on-site fluc-
tuations of the photon number and, hence, are zero in the Mott phase and non zero
in the superfluid phase. Therefore, I define the following correspondence

〈âi〉 = 〈âj〉 = Ψ, 〈â†i〉 = 〈â†j〉 = Ψ∗ (3.48)

where Ψ is the complex mean-field order parameter. Inserting the above approxi-
mation into the Hubbard hopping term yields

ĤMF
1 = −κ

∑
〈i,j〉

(
Ψ∗âj + â†iΨ−Ψ2

)
, (3.49)

which can be further simplified by shifting the summation index. Furthermore, due
to the U(1) symmetry of the mean-field Hamiltonian, I can choose the order param-
eter Ψ to be a real quantity following an analogue argumentation as in Section 2.4
for the atom-photon coupling g. This leads to

ĤMF
1 = −κ zΨ

∑
j

(
âj + â†j −Ψ

)
, (3.50)

where z is the coordination number of the lattice. Now, following Ref. [155] this
mean-field Hamiltonian can consistently be included in the JCH Hamiltonian (3.26)
via a variational approach. To do this, one introduces the small parameter η and
considers the ansatz

ĤJCH(η) = Ĥ0 + ĤMF
1 + η

(
Ĥhop − ĤMF

1

)
. (3.51)

Here, the Hamiltonian of the unperturbed JCH system is given as

Ĥ0 =
∑
j

(
ĤJC
j − µ n̂j

)
, (3.52)

where ĤJC
j is defined in (3.27). The corresponding eigenvalues of the local Hamil-

tonian (3.52) are given by equation (3.30). The respective eigenstates are given by
the dressed polariton states of the lattice |i, n, α〉, which are given by the site depen-
dent form of equation (2.134). These state vectors obey the modified orthogonality
relation

〈n, α, i|m,β, j〉 = δi,j δn,m δα,β (3.53)

Note that, in the limit η = 1 this approach yields the JCH Hamiltonian from equation
(3.26). Furthermore, the order parameter Ψ is treated as a variational parameter, like
in a variational perturbation theory [7, 156]. Since, the mean-field approximation of
the hopping Hamiltonian ĤMF

1 is supposed to be close to the full expression Ĥhop,
one can Taylor expand expression (3.51) to leading order, which results in

ĤJCH(η) ≈ Ĥ0 + ĤMF
1 =: ĤMF. (3.54)
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In principle, this approach allows to calculate higher order corrections, but this ac-
curacy shall be sufficient for now.
Inserting the Hamiltonian of the unperturbed JCH system (3.52) and the mean-
field hopping Hamiltonian (3.50) into expression (3.54), leads to the JCH mean-field
Hamiltonian:

ĤMF =
∑
j

[
(ω − µ) n̂j + ∆ σ̂+

j σ̂
−
j + g

(
â†j σ̂

−
j + âj σ̂

+
j

)
− κ z

(
Ψ âj + â†j Ψ−Ψ2

)]
.

(3.55)
Unfortunately, one can not straightforwardly calculate the eigenvalues and eigen-
states of the JCH mean field Hamiltonian (3.55). However, one can immediately
incorporate the term proportional to Ψ2 into the on site JC eigenvalues, which leads
to the shifted energies

E
(0)
n± = (ω − µ)n+

1

2
(∆±Rn) + κ zΨ2, Rn(∆) =

√
∆2 + 4 g2n. (3.56)

For further calculations, one has to take into account that the mean-field theory
I derived is just capable of dealing with a small order parameter and, therefore, I
expect it to give reasonable results just in the Mott phase and within a small envi-
ronment of the phase border. This fact allows us, to treat all terms proportional to
Ψ perturbatively. For this reason I perform a Schrödinger perturbation theory of the
mean-field Hamiltonian (3.55) within the following section.

3.6 Schrödinger Perturbation Theory

Very often, it is not possible to solve the eigenvalue problem for a given Hamiltonian
exactly, even when its explicit form is known. However, if one can split this Hamil-
tonian into an exactly solvable contribution and a small correction, one might treat
this correction to the known problem perturbatively. A standard procedure for such
a perturbation calculation is the Schrödinger perturbation theory. In order to apply
this procedure, I decompose the mean-field Hamiltonian (3.55) as follows

ĤMF =
∑
j

(
Ĥ

(0)
j + Ĥ

(1)
j

)
. (3.57)

Here, the second term on the right hand site describes the small correction to the
known problem and is in my case explicitly given by

Ĥ(1) = −κ zΨ
(
â+ â†

)
(3.58)

where I dropped the site index j, as I will do for the rest of these calculations.
The first term on the right-hand side of equation (3.57) corresponds to the Hamilto-
nian of the exactly solvable problem. Dropping the site index j, this operator takes
on the form

Ĥ(0) = (ω − µ) n̂+ ∆σ̂+σ̂− + g
(
â†σ̂− + â σ̂+

)
+ κ zΨ2 (3.59)
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and its energy eigenvalues are given by

E
(0)
n± = (ω − µ)n+

1

2

(
∆±

√
∆2 + 4g2n

)
+ κ zΨ2, n > 1 (3.60a)

E
(0)
0 = κ zΨ2, n = 0. (3.60b)

Having found a suitable decomposition of the Hamiltonian of interest, I can now
calculate the eigenstate and eigenvalue corrections to the ground state of the known
problem up to arbitrary orders in Ψ. As already discussed within Section 3.3, the
ground state of the JCH system is either the vacuum state or one of the lower po-
lariton states. For this reason, I only consider corrections to the lower polariton
energies En− and their respective eigenstates. In the Schrödinger perturbation the-
ory, the p-th order correction to the energy eigenvalues can be calculated with the
following equation

E
(p)
n− =

〈
ψ

(0)
n−

∣∣∣ Ĥ(1)
∣∣∣ψ(p−1)

n−

〉
, (3.61)

whereas the p-th order state corrections can be calculated according to

∣∣∣ψ(p)
n−

〉
=

∑
{m,α}6={n,−}


〈
ψ

(0)
mα

∣∣∣ Ĥ(1)
∣∣∣ψ(p−1)

n−

〉
E

(0)
n− − E

(0)
mα

−
p∑
j=1

E
(j)
n−

〈
ψ

(0)
mα

∣∣∣ψ(p−j)
n−

〉
E

(0)
n− − E

(0)
mα

∣∣ψ(0)
mα

〉
. (3.62)

From the two equations above, one can see that the difficulty of calculating the per-
turbation corrections lies solely in the determination of expectation values of the
perturbation Hamiltonian Ĥ(1). For this purpose, I define the first-order perturba-
tion matrix Smn as follows:

Smn :=

(
Sm+
n+ Sm+

n−
Sm−n+ Sm−n−

)
=

(
〈m,+|Ĥ(1)|n,+〉 〈m,+|Ĥ(1)|n,−〉
〈m,−|Ĥ(1)|n,+〉 〈m,−|Ĥ(1)|n,−〉

)
. (3.63)

Using the results derived in Section 2.6, I can immediately calculate the perturba-
tion matrix elements to give

Smβnα = −κ zΨ
[
tnαβ δm,n−1 + t(n+1)αβ δm,n+1

]
, (3.64)

where the transition amplitudes are defined according to relation (2.144). Know-
ing the perturbation matrix, one can now go ahead and calculate the energy and
state corrections. Due to the U(1) symmetry of the Hamiltonian, I expect all odd
perturbation corrections in the energies to vanish. Indeed, using the orthogonality
relation for the polariton states (2.137), it is easy to see that the first-order eigenstate
correction is zero:

E
(1)
n± =

〈
ψ

(0)
n±

∣∣∣ Ĥ(1)
∣∣∣ψ(0)

n±

〉
= −κ zΨ

〈
ψ

(0)
n±

∣∣∣ (â+ â†
) ∣∣∣ψ(0)

n±

〉
= 0 . (3.65)
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3.6 Schrödinger Perturbation Theory

For the first-order state correction, I find, according to (3.62) and using the above
results, the following compact formula:

∣∣∣ψ(1)
n−

〉
= −κ zΨ

∑
α=±

[∣∣∣ψ(0)
(n−1)α

〉 tn−α

E
(0)
n− − E

(0)
(n−1)α

+
∣∣∣ψ(0)

(n+1)α

〉 t(n+1)−α

E
(0)
n− − E

(0)
(n+1)α

]
. (3.66)

Here, the first term in (3.66) only contributes to the state correction for the case that
n > 0. Thus, I find for the vacuum state correction

∣∣∣ψ(1)
0

〉
= −κ zΨ

{
cos θ0 cos θ1

E
(0)
0 − E

(0)
1−

∣∣∣ψ(0)
1−

〉
+

cos θ0 sin θ1

E
(0)
0 − E

(0)
1+

∣∣∣ψ(0)
1+

〉}
. (3.67)

With the first-order eigenstate correction, I can now calculate the second-order en-
ergy correction, following equation (3.61), which leads to

E
(2)
n− =

∑
α=±


∣∣∣Sn−(n−1)α

∣∣∣2
E

(0)
n− − E

(0)
(n−1)α

+

∣∣∣Sn−(n+1)α

∣∣∣2
E

(0)
n− − E

(0)
(n+1)α

 . (3.68)

Making use of the perturbation matrix elements Smβnα in (3.64) again, yields the gen-
eral result for n > 0:

E
(2)
n− = (κ z)2 Ψ2

∑
α=±

[
t2n−α

E
(0)
n− − E

(0)
(n−1)α

+
t2(n+1)α−

E
(0)
n− − E

(0)
(n+1)α

]
. (3.69)

I recognize that for n = 0 the first term in (3.68) vanishes. In result I find that, the
second-order vacuum energy correction takes on the explicit form

E
(2)
0− = (κ z)2 Ψ2

[
|cos θ1|2

E
(0)
0− − E

(0)
1−

+
|sin θ1|2

E
(0)
0− − E

(0)
1+

]
. (3.70)

The respective denominators can be determined by using the equations (3.60a) and
(3.60b), which leads to the following expressions

E
(0)
n− − E

(0)
(n+1)− = − (ω − µ)− 1

2
(Rn −Rn+1) , (3.71)

E
(0)
n− − E

(0)
(n+1)+ = − (ω − µ)− 1

2
(Rn +Rn+1) , (3.72)

E
(0)
n− − E

(0)
(n−1)− = (ω − µ)− 1

2
(Rn −Rn−1) , (3.73)

E
(0)
n− − E

(0)
(n−1)+ = (ω − µ)− 1

2
(Rn +Rn−1) . (3.74)
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At this point, I used the generalized Rabi frequency, as defined in (2.114). Proceed-
ing with the calculations according to (3.61) and (3.62), I notice that, for the second-
order state correction, the second sum in (3.62) vanishes:

∑
{m,α}6={n,−}

∣∣ψ(0)
mα

〉 〈ψ(0)
mα|ψ(0)

n−

〉
E

(0)
n− − E

(0)
mα

=
∑

{m,α}6={n,−}

∣∣ψ(0)
mα

〉 δmnδα−

E
(0)
n− − E

(0)
mα

= 0 . (3.75)

Therefore, this calculation is simplified to

∣∣∣ψ(2)
n−

〉
=

∑
{m,α}6={n,−}

∣∣ψ(0)
mα

〉 〈ψ(0)
mα

∣∣∣ Ĥ(1)
∣∣∣ψ(1)

n−

〉
E

(0)
n− − E

(0)
mα

. (3.76)

Using result (3.66), leads to the equation

∣∣∣ψ(2)
n−

〉
=

∑
{m,α}6={n,−}

∑
γ=±

∣∣ψ(0)
mα

〉 1

E
(0)
n− − E

(0)
mα

[
Smα(n−1)γS

(n−1)γ
n−

E
(0)
n− − E

(0)
(n−1)γ

+
Smα(n+1)γS

(n+1)γ
n−

E
(0)
n− − E

(0)
(n+1)γ

]
. (3.77)

Finally, performing the sum over m, yields the following expression for the second-
order eigenstate correction:

∣∣∣ψ(2)
n−

〉
=
∑
α,γ=±

∣∣∣ψ(0)
(n−2)α

〉 S
(n−2)α
(n−1)γ S

(n−1)γ
n−(

E
(0)
n− − E

(0)
(n−2)α

)(
E

(0)
n− − E

(0)
(n−1)γ

)
+
∣∣∣ψ(0)

(n+2)α

〉 S
(n+2)α
(n+1)γ S

(n+1)γ
n−(

E
(0)
n− − E

(0)
(n+2)α

)(
E

(0)
n− − E

(0)
(n+1)γ

)
+
δα,+ (1− δn,0)(
E

(0)
n− − E

(0)
nα

) ∣∣ψ(0)
nα

〉 Snα(n−1)γS
(n−1)γ
n−(

E
(0)
n− − E

(0)
(n−1)γ

) +
Snα(n+1)γS

(n+1)γ
n−(

E
(0)
n− − E

(0)
(n+1)γ

)
 . (3.78)

Again, due to the U(1) symmetry, I already know that, the third-order energy correc-
tion has to vanish, i.e.

E
(3)
n− =

〈
ψ

(0)
n−

∣∣∣ Ĥ(1)
∣∣∣ψ(2)

n−

〉
= 0. (3.79)

It is easy to proof that this is indeed the case. Thus, I immediately continue to derive
an expression for the third-order eigenstate correction. Following the same proce-
dure as before yields, according to (3.62), the general expression

∣∣∣ψ(3)
n−

〉
=
∑
α=±

∑
m 6=n

∣∣ψ(0)
mα

〉 〈ψ(0)
mα

∣∣∣ Ĥ(1)
∣∣∣ψ(2)

n−

〉
E

(0)
n− − E

(0)
mα

− E(2)
n−

∑
α=±

∑
m 6=n

∣∣ψ(0)
mα

〉 〈ψ(0)
mα|ψ(1)

n−

〉
E

(0)
n− − E

(0)
mα

. (3.80)
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Using equation (3.66) and the orthogonality relation (2.137), I get

〈
ψ(0)
mα|ψ

(1)
n−

〉
=
∑
γ=±

[
δm,n−1 δαγ

S
(n−1)γ
n−

E
(0)
n− − E

(0)
(n−1)γ

+ δm,n+1 δαγ
S

(n+1)γ
n−

E
(0)
n− − E

(0)
(n+1)γ

]
. (3.81)

Using this relation, one can derive the following formula

∑
α=±

∑
m 6=n

∣∣ψ(0)
mα

〉 〈ψ(0)
mα|ψ(1)

n−

〉
E

(0)
n− − E

(0)
mα

=
∑
m 6=n


∣∣∣ψ(0)

m−

〉
E

(0)
n− − E

(0)
m−

[
δm,n−1 S

(n−1)−
n−

E
(0)
n− − E

(0)
(n−1)−

+
δm,n+1 S

(n+1)−
n−

E
(0)
n− − E

(0)
(n+1)−

]

+
∣∣∣ψ(0)

m+

〉 1

E
(0)
n− − E

(0)
m+

[
δm,n−1

S
(n−1)+
n−

E
(0)
n− − E

(0)
(n−1)+

+ δm,n+1
S

(n+1)+
n−

E
(0)
n− − E

(0)
(n+1)+

])

=
∑
α=±

∣∣∣ψ(0)
(n−1)α

〉 S
(n−1)α
n−(

E
(0)
n− − E

(0)
(n−1)α

)2 +
∣∣∣ψ(0)

(n+1)α

〉 S
(n+1)α
n−(

E
(0)
n− − E

(0)
(n+1)α

)2

 . (3.82)

Hence, inserting this result in (3.80) yields

∣∣∣ψ(3)
n−

〉
=
∑
α=±

∑
m 6=n

∣∣ψ(0)
mα

〉 〈ψ(0)
mα

∣∣∣ Ĥ(1)
∣∣∣ψ(2)

n−

〉
E

(0)
n− − E

(0)
mα

−E(2)
n−

 S
(n−1)α
n−

∣∣∣ψ(0)
(n−1)α

〉
(
E

(0)
n− − E

(0)
(n−1)α

)2 +
S

(n+1)α
n−

∣∣∣ψ(0)
(n+1)α

〉
(
E

(0)
n− − E

(0)
(n+1)α

)2


 . (3.83)

Since I already calculated the second-order state correction, I can use expression
(3.78) and find

∣∣∣ψ(3)
n−

〉
=
∑

α,ν,γ=±

∑
m 6=n

∣∣ψ(0)
mα

〉 〈ψ(0)
mα

∣∣∣ Ĥ(1)

E
(0)
n− − E

(0)
mα

 S
(n−2)γ
(n−1)νS

(n−1)ν
n−

∣∣∣ψ(0)
(n−2)γ

〉
(
E

(0)
n− − E

(0)
(n−1)ν

)(
E

(0)
n− − E

(0)
(n−2)γ

)
+

S
(n+2)γ
(n+1)νS

(n+1)ν
n−

∣∣∣ψ(0)
(n+2)γ

〉
(
E

(0)
n− − E

(0)
(n+1)ν

)(
E

(0)
n− − E

(0)
(n+2)γ

)


− E(2)
n−

∑
α=±

 S
(n−1)α
n−

∣∣∣ψ(0)
(n−1)α

〉
(
E

(0)
n− − E

(0)
(n−1)α

)2 +
S

(n+1)α
n−

∣∣∣ψ(0)
(n+1)α

〉
(
E

(0)
n− − E

(0)
(n+1)α

)2

 . (3.84)
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Furthermore, inserting the second-order energy correction (3.68), one arrives at the
final result for the third-order state correction

∣∣∣ψ(3)
n−

〉
=
∑

α,ν,γ=±

∣∣∣ψ(0)
(n−3)α

〉 S
(n−1)ν
n− S

(n−2)γ
(n−1)νS

(n−3)α
(n−2)γ(

E
(0)
n− − E

(0)
(n−1)ν

)(
E

(0)
n− − E

(0)
(n−2)γ

)(
E

(0)
n− − E

(0)
(n−3)α

)
+
∣∣∣ψ(0)

(n+3)α

〉 S
(n+1)ν
n− S

(n+2)γ
(n+1)νS

(n+3)α
(n+2)γ(

E
(0)
n− − E

(0)
(n+1)ν

)(
E

(0)
n− − E

(0)
(n+2)γ

)(
E

(0)
n− − E

(0)
(n+3)α

)
+
∣∣∣ψ(0)

(n−1)α

〉 S
(n−1)α
(n−2)γ S

(n−2)γ
(n−1)νS

(n−1)ν
n−(

E
(0)
n− − E

(0)
(n−1)α

)(
E

(0)
n− − E

(0)
(n−1)ν

)(
E

(0)
n− − E

(0)
(n−2)γ

)
− 1(

E
(0)
n− − E

(0)
(n−1)α

)2

S(n−1)α
n−

∣∣∣Sn−(n−1)γ

∣∣∣2(
E

(0)
n− − E

(0)
(n−1)γ

) +
S

(n−1)α
n−

∣∣∣Sn−(n+1)γ

∣∣∣2(
E

(0)
n− − E

(0)
(n+1)γ

)



+
∣∣∣ψ(0)

(n+1)α

〉 S
(n+1)α
(n+2)γ S

(n+2)γ
(n+1)νS

(n+1)ν
n−(

E
(0)
n− − E

(0)
(n+1)α

)(
E

(0)
n− − E

(0)
(n+1)ν

)(
E

(0)
n− − E

(0)
(n+2)γ

)
− 1(

E
(0)
n− − E

(0)
(n+1)α

)2

S(n+1)α
n−

∣∣∣Sn−(n−1)γ

∣∣∣2(
E

(0)
n− − E

(0)
(n−1)γ

) +
S

(n+1)α
n−

∣∣∣Sn−(n+1)γ

∣∣∣2(
E

(0)
n− − E

(0)
(n+1)γ

)


 . (3.85)

Having found this result, I am now able to finally calculate the fourth-order energy
correction. Making use of equation (3.64) once more leads to

E
(4)
n− =

∑
α,ν,γ=±

 tnα−(
E

(0)
n− − E

(0)
(n−1)α

)(
E

(0)
n− − E

(0)
n+

)
×

 tn+α tnν+ tn−ν(
E

(0)
n− − E

(0)
(n−1)ν

) +
tn+α t(n+1)ν+ t(n+1)−ν(

E
(0)
n− − E

(0)
(n+1)ν

)


+
1(

E
(0)
n− − E

(0)
(n−1)α

)
 tnα− t(n−1)γα t(n−1)νγ tn−ν(

E
(0)
n− − E

(0)
(n−1)ν

)(
E

(0)
n− − E

(0)
(n−2)γ

)
−

t2nα−(
E

(0)
n− − E

(0)
(n−1)α

)
 t2nγ−(

E
(0)
n− − E

(0)
(n−1)γ

) +
t2(n+1)γ−(

E
(0)
n− − E

(0)
(n+1)γ

)



+

 t(n+1)α−(
E

(0)
n− − E

(0)
(n+1)α

)(
E

(0)
n− − E

(0)
n+

)
 t(n+1)+α tnν+ tn−ν(

E
(0)
n− − E

(0)
(n−1)ν

) +
t(n+1)+α t(n+1)ν+ t(n+1)−ν(

E
(0)
n− − E

(0)
(n+1)ν

)
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+
1(
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(0)
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(0)
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E

(0)
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(0)
(n+1)α

)
 t2nγ−(

E
(0)
n− − E

(0)
(n−1)γ

) +
t2(n+1)γ−(

E
(0)
n− − E
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(n+1)γ

)


 (κ z)4 Ψ4 , (3.86)

for n > 0.
In the case that n = 0, I conclude that the vacuum correction takes on the form

E
(4)
0− =

∑
α,ν,γ=±

(κ z)4 |Ψ|4(
E

(0)
0− − E

(0)
1α

)
 t1α− t2γα t2νγ t1−ν(

E
(0)
0− − E

(0)
1ν

)(
E

(0)
0− − E

(0)
2γ

)
−

t21α− t
2
1γ−(

E
(0)
0− − E

(0)
1α

)(
E

(0)
0− − E

(0)
1γ

)
 . (3.87)

Now, having found the energy corrections up to fourth order in the order parameter in the
framework of the Schrödinger perturbation theory, I can now extract the phase boundary
within the next section.

3.7 Phase Boundary at Zero Temperature
Up till now, I developed a mean-field theory and introduced an order parameter Ψ in order
to analyse the dynamics of the JCH model. This approach leads to an expression for the
energy of the system, which now depends on this order parameter:

Enα → Enα (Ψ) . (3.88)

Since the order parameter is small in the vicinity of the phase boundary, I successfully ap-
plied the Schrödinger perturbation theory, which eventually leads to the Landau expansion
of the ground-state energy:

En− (Ψ) ≈ A0 +A2 Ψ2 +A4 Ψ4 + . . . . (3.89)

Now, to extract the phase diagram for the JCH system, it is useful to visualize the behaviour
of the ground-state energy in dependence of the order parameter.
The ground-state energy corresponds to the global minimum of the energy perturbation
series (3.89). In order to find this extrema, one needs to calculate the first derivative with
respect to the order parameter and set it equal to zero. This leads to the equation

∂En−
∂Ψ

= Ψ
(
2A2 + 4A4 Ψ2

) !
= 0, (3.90)

which has the non-trivial solution

Ψ =

√
− A2

2A4
. (3.91)
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Figure 3.3: Energy landscape for a second-order phase transition. I plotted the
energy versus the order parameter for 3 different scenarios, following
the second-order phase transition. All pictures are projections of a 3D
paraboloid on the plane. a) Symmetry is unbroken. One single global
minimum corresponding to the Mott insulator ground state. b) Critical
point of the quantum phase transition. c) Symmetry is broken. There ex-
ists an infinite number of global minima corresponding to the superfluid
ground states.

To ensure that this solution describes a minimum, the second derivative with respect to Ψ
has to be positive. Thus, one demands

∂2En−
∂Ψ2

= 2A2 + 12A4 Ψ2 !
> 0 . (3.92)

Combining the two conditions (3.90) and (3.92), yields two possibilities for the ground-state
energy minimum. Demanding thatA4 is always positive, these two possibilities are given by

Ψ = 0 if A2 > 0, and Ψ =

√
− A2

2 A4
if A2 < 0 . (3.93)

A picture of this typical situation for a second-order phase transition is given in Figure 3.3.
The first picture a) corresponds to the situation that, the second-order expansion coefficient
A2 is positive. In this case, there exists one distinct minimum for the energy of the system
at Ψ = 0, which corresponds to the ground state of the Mott insulator. Picture c) shows the
situation, when the second-order expansion coefficient is negative. Here, there exists an in-
finite set of global minima for the energy at finite values of Ψ, corresponding to the ground
states in the superfluid phase. The critical point, when the ground-state symmetry is broken
and the transition from the Mott insulator to the superfluid occurs, is depicted in diagram
b). At this point, the second-order expansion coefficient exactly vanishes. A necessary con-
dition for the statements made above, is that the fourth-order expansion coefficient A4 is
always positive.
As a consequence, one has to ascertain, that the fourth-order energy correction is always
positive. In this case, the boundary of the quantum phase transition can be found, by deter-
mining the external parameters of the system from the condition

A2
!

= 0. (3.94)
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Figure 3.4: Logarithmic plot of the 4th order Landau coefficient versus the detun-
ing and the chemical potential for the first six polariton states.

From the results obtained in the previous section, I explicitly find that the Landau coeffi-
cients are given by

A2 = κ z + (κ z)2
∑
α=±

 t2n−α

E
(0)
n− − E

(0)
(n−1)α

+
t2(n+1)α−

E
(0)
n− − E

(0)
(n+1)α

 , (3.95)

and

A4 =
E

(4)
n−

Ψ4
. (3.96)

Now, the first step is to check whether A4 fulfils the necessary condition to be positive in
all situations. Therefore, I plot the corresponding expression versus the detuning and the
effective chemical potential. The resulting diagram is depicted in Figure 3.4. From this pic-
ture, one can clearly see that the fourth-order Landau coefficient is always positive, just as
expected for a second-order phase transition. Hence, I can go ahead and extract the phase
boundary from A2 according to condition (3.94). Inserting expression (3.95) leads to

κ z = −

∑
α=±

 t2n−α

E
(0)
n− − E

(0)
(n−1)α

+
t2(n+1)α−

E
(0)
n− − E

(0)
(n+1)α

−1

. (3.97)

To gain a more insight into the derived expressions, I consider the case of resonance, i.e.
∆ = 0. First, I notice that within this limit the mixing angle θn becomes a constant:

lim
∆→0

θn = lim
∆→0

[
1

2
arctan

(
2 g
√
n

∆

)]
=
π

4
. (3.98)
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Figure 3.5: JCH and BH mean-field phase boundary for T = 0 K. The left figure
shows a logarithmic plot of the hopping strength versus the effective
chemical potential, which corresponds to the phase border of the JCH
model at ∆ = 0 and T = 0 K. For comparison, the right figure shows
the mean-field phase diagram for the BH model at T = 0 K. In both sys-
tems, the shaded regions below the phase boundary correspond to the
Mott insulator and the white region above the lobes corresponds to the
superfluid phase.

Using this result in expression (3.95), yields the following equation for the phase boundary
at resonance

zκ

g
=

1

4

∑
α=±1

(√
n+ 1 + α

√
n
)2

− (µ−ω)
g +

(√
n− α

√
n+ 1

) +

(√
n+ α

√
n− 1

)2
(µ−ω)
g +

(√
n− α

√
n− 1

)
−1

, n > 0 (3.99a)

zκ

g
=

1

2

∑
α=±1

1
(µ−ω)
g + α

−1

, n = 0 . (3.99b)

The respective phase diagram is shown in Figure 3.5. For the purpose of comparison, I also
plotted the phase diagram for the hardcore Bose-Hubbard (BH) model [6]. The underlying
Hamiltonian of this system is given by equation (1.1), where U characterizes the particle
interaction and κ is the hopping strength. For more details on this system I refer to the
standard literature. Additionally, I want to recommend the diploma theses of A. Hoffmann
[157], M. Ohliger [158], and T. Grass [159]. In the Bose-Hubbard model, the phase boundary
is defined via the equation

z κ

U
=

[
n+ 1

n− µ
U

+
n

(n− 1) + µ
U

]−1

. (3.100)

At first sight, both diagrams in Figure 3.5 look quite different. However, one can see by di-
rect comparison, that the two plots share some common features. Obviously, both phase
diagrams consist of lobes, which describe the Mott insulator, and a superfluid phase, that
corresponds to the region above the Mott lobes. Furthermore, in both systems the size of
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3.7 Phase Boundary at Zero Temperature

Figure 3.6: JCH phase boundary for non-zero detuning. Plot of the logarithm of the
hopping strength κ versus the magnitude of the detuning parameter |∆|
and the effective chemical potential (µ−ω) according to equation (3.97).

the Mott lobes decreases with increasing particle number n, but, as indicated by the loga-
rithmic scale, this descend is much stronger in the JCH model. Additionally, another quite
striking difference is the fact that, the base widths of the Mott lobes remain constant in the
Bose-Hubbard model whereas they rapidly decrease in the JCH model. Worst affected by
this feature is the first lobe for n = 0 in the JCH model.
This behaviour can partly be understood by recalling that in the JCH model the effective
on-site interaction strength increases non-linear with the polariton number, whereas in the
BH case U is a constant. Note that, the obtained result is in agreement with calculation by
other groups, for example see Ref. [160].
For completeness, I also plotted the dependency of the JCH phase boundary from the de-
tuning parameter ∆ in Figure 3.6. From this plot, one can see the following important prop-
erties. First, the phase diagram is obviously symmetric in the detuning parameter, which
is why I plotted only |∆|/g. However, the main result, which can be seen in Figure 3.6, is
that the width of the Mott lobes, except for n = 0, shrinks when the detuning parameter in-
creases. Though this is hard to see from the plot, in fact the same thing happens to the height
of the lobes. Furthermore, these effects are obviously strongest for the Mott lobe with n = 1,
whereas the higher lobes seem almost unaffected. In contrast, one can see that the opposite
is true for the first Mott lobe with n = 0. This lobe actually increases in size, when the de-
tuning is raised. The shrinking of the Mott lobes is a quite expected behaviour, since getting
farther away from resonance, excitations become more and more unstable. This leaves the
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Chapter 3 Jaynes-Cummings-Hubbard Model

Mott state with n = 0 as the only stable one and causes Mott lobes with n > 0 to shrink in
size, whereas the lobe for n = 0 extends. The dependence of the phase boundary on the
detuning parameter, as depicted in Figure 3.6, is in agreement with investigations by other
groups [48, 160].
After this basic insight into the properties and dynamics of the JCH model, I continue and
develop a thermodynamic theory for this model within the following chapter.
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Chapter 4

Thermodynamic Properties
So far I analysed the JCH model by means of a mean-field theory in the zero-temperature
limit. Now, the aim of the present chapter is to derive a theoretical description capable to
exceed this limitation. In order to build up a theory for the JCH model at finite temper-
atures I already introduced, at the beginning of the previous chapter, the thermodynamic
potential I work with. Namely, I use the grand-canonical ensemble, which allows for energy
and particle exchange between the considered system and its environment. To fix the mean
polariton number in the system, I introduced the chemical potential µ in (3.26). Such a
modified Hamiltonian is a suitable starting point to derive a theory for finite temperatures.
In general all thermodynamic properties of a system can be derived from the thermody-
namic potential corresponding to the chosen statistical ensemble. In the case of the grand-
canonical ensemble the potential of choice is the free energy, which is defined as:

F (T, V, µ) = − 1

β
lnZ (T, V, µ) . (4.1)

Here T labels the temperature of the system, V corresponds to the volume, N is the particle
number and β is the reciprocal temperature defined by

β =
1

kB T
. (4.2)

It is clear from equation (4.1), that all thermodynamic information about the system under
consideration stems from the partition functionZ. Therefore, the main problem one always
faces in order to derive finite-temperature properties of a given system, is to find this func-
tion. In quantum statistics the partition function of a system, described by the Hamiltonian
Ĥ , is defined as

Z (T, V, µ) = Tr
{
e−βĤ(µ,V )

}
. (4.3)

At a first glance, calculating the above function does not look very difficult and, in fact, it
is not as long as the Hamiltonian is diagonal with respect to some suitable basis. However,
in almost all interesting physical situations this is not the case and calculating the partition
function (4.3) becomes quite challenging. In general, due to the hopping term in the system
Hamiltonian (3.26), there does not exist a basis in which the considered JCH Hamiltonian
becomes diagonal. For this reason I developed a mean-field theory at zero temperature in
Section 3.5. In this chapter I will at first generalize this mean-field theory to finite temper-
atures. Afterwards, I will work out a different ansatz to describe the quantum phase tran-
sition. Instead of applying a mean-field theory, I am going to use a perturbation approach,
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which eventually leads to an approximation of the grand-canonical partition function. To
this end I derive a Ginzburg-Landau theory for the JCH model which includes the mean-
field result for the phase boundary as a formal special case but allows, in principle, to calcu-
late the phase boundary more accurate. Therefore, the mean-field calculations obtained in
the first sections, will mainly serve as a reference for comparison with the Ginzburg-Landau
results. Before starting with the perturbation calculation for the partition function, I in-
troduce a reformulation of equation (4.3) in the following section, in order to simplify the
further computations.

4.1 Dirac Interaction Picture
One can see from equation (4.3) that the definition of the partition function involves the
full Hamiltonian of the system. However, as stated before, I do not know the eigenvalues of
the full Hamiltonian but instead I found that it is possible to split the full Hamiltonian into a
solvable part and a perturbing part. Now, I want to use this fact and switch to the imaginary-
time Dirac interaction picture, which will lead to a reformulation of the partition function
as a perturbation series, involving just the perturbation part of the full Hamiltonian of the
system.
The Dirac picture is, besides the Schrödinger and the Heisenberg picture, one of the three
most popular time evolution schemes in quantum mechanics. Their meaning stems from
the fact that in quantum mechanics the time evolution can be divided arbitrarily between
the states and the operators. In the Schrödinger picture the whole time dependence is as-
sociated with the state vectors, whereas all quantum mechanical operators in this picture
are time independent. The opposite is true for the Heisenberg picture, where all operators
are time dependent and the states are constant in time. The Dirac picture represents a mid-
dle course between the other two pictures and is commonly used in situations where the
full Hamiltonian can be split in a solvable and a perturbative part. In this picture the time
dependence is divided between the states and the operators in such a way, that the unper-
turbed Hamiltonian determines the time evolution of the operators, whereas the perturba-
tion Hamiltonian governs the time evolution of the state vectors. To see how the transition
from one picture into another is performed, I start with the Schrödinger equation in imagi-
nary time. This equation can be obtained from the real-time Schrödinger equation by a so
called Wick rotation t→ −i τ which yields with ~ = 1

− ∂

∂τ
|ψ (τ)〉 = Ĥ(τ) |ψ (τ)〉 . (4.4)

In this picture the time evolution of an initial state vector to a final state vector is mediated
via the imaginary-time evolution operator

|ψ(τ)〉 = Û(τ, τ0) |ψ(τ0)〉 . (4.5)

Substituting this new state into equation (4.4) one notices, that the imaginary-time evo-
lution operator has to satisfy the imaginary-time Schrödinger equation as well. Thus the
following relation has to hold

− ∂

∂τ
Û(τ, τ0) = Ĥ(τ) Û(τ, τ0). (4.6)
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Formally solving the differential equation yields, together with the initial condition Û(τ, τ) =
1, the following integral equation for the imaginary-time evolution operator

Û(τ, τ0) = 1−
τ∫

τ0

Ĥ(τ ′) Û(τ ′, τ) dτ ′. (4.7)

Solving this equation iteratively, leads to the Dyson series

Û(τ, τ0) = 1 +

∞∑
n=1

(−1)n
τ∫

τ0

dτ1

τ1∫
τ0

dτ2 . . .

τn−1∫
τ0

dτn Ĥ(τ1) Ĥ(τ2) . . . Ĥ(τn). (4.8)

Due to ambiguities in the time ordering it is convenient to rewrite this expression with the
help of the bosonic imaginary-time ordering operator T̂ which is defined according to

T̂ [A (τ1) B (τ2)] = Θ (τ1 − τ2) A (τ1) B (τ2) + Θ (τ2 − τ1) B (τ2) A (τ1) , (4.9)

where Θ is the Heaviside step function. Using this operator allows to rewrite equation (4.8)
as

ÛD(τ, τ0) = T̂

1 +

∞∑
n=1

(−1)n

n!

τ∫
τ0

dτ1

τ∫
τ0

dτ2 . . .

τ∫
τ0

dτn Ĥ(τ1) Ĥ(τ2) . . . Ĥ(τn)

 . (4.10)

Here I included an additional pre-factor 1/n! to cancel the imaginary-time variable permu-
tations introduced by the time ordering operator. Comparing this expression with the series
expansion of the exponential function, one notices that equation (4.10) can be transformed
in an even shorter form, reading

Û(τ, τ0) = T̂ e
−

∫ τ
τ0
dτ ′Ĥ(τ ′)

. (4.11)

It is easy to prove, that the so defined imaginary-time evolution operator has the properties

Û †(τ, τ0) Û(τ, τ0) = 1, (4.12)

and
Û †(τ, τ0) = Û−1(τ, τ0) = Û(τ0, τ). (4.13)

Now, as stated before, I will assume that the full Hamiltonian can be decomposed in the
following form

Ĥ(τ) = Ĥ0 + Ĥ1(τ), (4.14)

where Ĥ0 describes the exactly solvable part and Ĥ1(τ) can be treated as a perturbation to
the known problem. From this situation one can perform the transition to the Dirac picture,
denoted in the following by the label D, by conducting the following steps:

1. Synchronizing the two pictures at a fixed point in time

|ψD(τ0)〉 = |ψ(τ0)〉 . (4.15)
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2. Transition to the Dirac picture via

|ψD(τ)〉 = Û0(τ, τ0) |ψ(τ)〉 , (4.16)

where I have
Û0(τ, τ0) = e−Ĥ0(τ−τ0) . (4.17)

3. Time evolution for Dirac states via

|ψD〉 (τ) = ÛD(τ, τ ′)
∣∣ψD(τ ′)

〉
, (4.18)

and for Dirac operators via

ÂD = Û−1
0 (τ, τ0) Â Û0(τ, τ0). (4.19)

Subsequently, following these steps, it is easy to show that the imaginary-time evolution
operator in the Dirac interaction picture is given by

ÛD

(
τ, τ ′

)
= Û−1

0 (τ, τ0) Û
(
τ, τ ′

)
Û0

(
τ ′, τ0

)
, (4.20)

Note, that all physical quantities, i.e. all expectation values, are completely independent of
the choice of picture.
Using the results obtained above, I can derive the Schrödinger equation in the imaginary
Dirac interaction picture and obtain

∂

∂τ
|ψD(τ)〉 =

[
∂

∂τ
Û0(τ0, τ)

]
|ψ(τ)〉+ Û0(τ0, τ)

[
∂

∂τ
|ψ(τ)〉

]
=
[
Û0(τ0, τ) Ĥ0 − Û0(τ0, τ) Ĥ

]
|ψ(τ)〉 , (4.21)

which reduces to

− ∂

∂τ
|ψD(τ)〉 = Ĥ1D(τ) |ψD(τ)〉 . (4.22)

Analogous to the analysis of the imaginary-time Schrödinger picture, one can determine the
form of the imaginary-time Dirac evolution operator by considering its equation of motion:

− ∂

∂τ
ÛD(τ, τ0) = Ĥ1D(τ) ÛD(τ, τ0). (4.23)

Following the same steps as for equation (4.6), eventually leads to the expression

ÛD(τ, τ0) = T̂ e
−

∫ τ
τ0
dτ ′Ĥ1D(τ ′)

. (4.24)

Thus, I found that the Hamiltonian of the unperturbed system governs the time evolution
of the Dirac operators and the perturbation Hamiltonian determines the time evolution of
the Dirac state vectors.
In order to see how all the observations presented in this section are of any help for the task
of finding a thermodynamic description of the JCH model, I remark that the time-ordered
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imaginary Dyson series (4.10) naturally represents a power series with respect to the per-
turbation Hamiltonian. If one now considers the partition function (4.3) in the imaginary
Dirac picture, which takes on the form

Z = Tr
{
Û(β, 0)

}
, (4.25)

with the imaginary-time evolution operator according to equation (4.11) and uses relations
(4.17) and (4.20), one finds

Z = Tr
{
e−β Ĥ0 ÛD(β, 0)

}
. (4.26)

This can be further transformed using the definition of the thermal average with respect to
the unperturbed system which I introduce as

〈•〉0 =
1

Z0
Tr
{
• e−β Ĥ0

}
, (4.27)

where the partition function of the unperturbed system is given by

Z0 = Tr
{
e−β Ĥ0

}
. (4.28)

Thus, one finds for the grand-canonical partition function the relation

Z = Z0

〈
ÛD(β, 0)

〉
0
, (4.29)

where the imaginary-time evolution operator takes on the form

ÛD(β, 0) = T̂ exp

− β∫
0

dτ Ĥ1D(τ)

 . (4.30)

Hence, I showed that, within the Dirac interaction picture, the partition function can be
written as a product of the partition function of the unperturbed system Z0 and a ther-
mal average with respect to the unperturbed system over a power series of the perturbation
Hamiltonian. This allows for a perturbative calculation of the thermodynamic potential up
to arbitrary accuracy in the perturbation Hamiltonian. This result will be the corner stone
for the further calculations within this chapter.

4.2 Mean-Field Theory for Finite Temperatures
Having outlined the principle idea of a thermodynamic perturbation theory within the pre-
vious section, I can straightforwardly use the results obtained therein, as soon as I settle for
a specific Hamiltonian. As already shown in Section 3.5, within the mean-field approach
the JCH Hamiltonian becomes diagonal and splits locally into an unperturbed part Ĥ0 and
the term ĤMF

1 , which I treat as a perturbation. Therefore, I consider the Hamiltonian ĤMF

which decomposes as stated in equation (3.54). The Hamiltonian of the unperturbed sys-
tem is given according to equation (3.52). Note that there the sum runs over all lattice sites j,
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the on-site Hamiltonian ĤJC
j being defined by equation (3.27) and the perturbation Hamil-

tonian reads according to equation (3.50). Here, the appearing order parameter Ψ is defined
as stated in equation (3.48).
In order to investigate the thermodynamic properties of the JCH-Hamiltonian, I start with
the determination of the grand-canonical partition function. As outlined within the previ-
ous section, in the imaginary-time Dirac interaction picture the partition function is given
by (4.29), where the imaginary-time evolution operator now takes on the form

ÛD(β, 0) = T̂ exp

− β∫
0

dτ ĤMF
1D (τ)

 . (4.31)

The pre-factor Z0 in (4.29) is equivalent to the grand-canonical partition function of the
unperturbed system, which is given by

Z0 = Tr
{
e−βĤ0

}
=
∑
j

∞∑
n=0

∑
α=±
〈n, α, j| e−β Ĥ0 |n, α, j〉 =

∑
j

∞∑
n=0

∑
α=±

e−β Ejnα , (4.32)

where the local energy eigenvaluesEjnα correspond to (3.30). Expression (4.29) tells me that
I need to calculate the thermal average of the imaginary-time evolution operator in order to
obtain the partition function. For this reason, I make use of the series representation of the
exponential function to expand expression (4.29) in a power series. The expansion of the
imaginary-time evolution operator (4.31) leads to

ÛD(β, 0) =
∞∑
n=0

(−1)n

n!

β∫
0

dτ1 . . .

β∫
0

dτn T̂
[
ĤMF

1D (τ1) . . . ĤMF
1D (τn)

]
. (4.33)

Taking into account (3.50), this expression can be rewritten in the form

ÛD(β, 0) =
∞∑
n=0

Û
(n)
D (β, 0), (4.34)

with the coefficients

Û
(n)
D (β, 0) =

(κ z)n

n!

∑
j1...jn

β∫
0

dτ1 . . .

β∫
0

dτn T̂
{[

Ψ âj1(τ1) + â†j1(τ1) Ψ−Ψ2
]
. . .

×
[
Ψ âjn(τn) + â†jn(τn) Ψ−Ψ2

]}
. (4.35)

Note that, here and in the following calculations, I drop the Dirac index D for the ladder
operators, since their dependence on the imaginary-time variable τ already indicates that
they have to be taken in the imaginary-time Dirac interaction picture. The above expression
together with relation (4.29) allows to calculate the partition function up to arbitrary orders
in the order parameter. As discussed in Section 3.5 one needs to calculate this expansion to
at least second order in the order parameter in order to locate the boundary of the quantum
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phase transition. Thus, I focus on the first two terms of the expansion (4.35) leading to the
following contributions to the partition function

Z ≈ Z0

〈
Û

(0)
D (β, 0) + Û

(1)
D (β, 0) + Û

(2)
D (β, 0) + . . .

〉
0

= Z0 + Z0

〈
Û

(1)
D (β, 0)

〉
0

+ Z0

〈
Û

(2)
D (β, 0)

〉
0

+ . . .

= Z0 + Z1 + Z2 + . . . . (4.36)

Hence, the first-order correction to the grand-canonical partition function is given by

Z1 = Z0 κ z
∑
j

β∫
0

dτ1

〈
Ψ∗ âj(τ1) + â†j(τ1) Ψ−Ψ2

〉
0
, (4.37)

which can be evaluated to give
Z1 = −β κ z

∑
j

Ψ2. (4.38)

Here I used the fact, that all thermal average over photonic ladder operators, where the num-
ber of annihilation operators does not match the number creation operators, vanish due to
the orthogonality of the dressed states (2.137). In an analogue way one finds for the second-
order contribution

Z2 =Z0
(κ z)2

2

∑
j1j2

β∫
0

dτ1

β∫
0

dτ2

〈
T̂
{[

Ψ âj1(τ1) + â†j1(τ1) Ψ−Ψ2
]

×
[
Ψ∗ âj2(τ2) + â†j2(τ2) Ψ−Ψ2

]}〉
0
. (4.39)

Realizing that the action of the time ordering operator yields two expressions which are
identical when exchanging the imaginary-time variables τ1 ←→ τ2, I can just calculate one
of the terms, say for instance τ1 > τ2, but I have to include a pre-factor 2. Additionally,
making use of the orthogonality relation (2.137) again and dropping all terms of higher than
second order in the order parameter, yields the following form of the above expression

Z2 =Z0 (κ zΨ)2
∑
j1,j2

β∫
0

dτ1

β∫
0

dτ2 Θ (τ1 − τ2)
〈
âj1(τ1) â†j2(τ2) + â†j1(τ1) âj2(τ2)

〉
0
. (4.40)

Hence, to calculate this contribution to the partition function, one has to determine thermal
averages over products of photonic creation and annihilation operators. For this reason, I
will use the polariton mapping approach introduced in Section 2.6. The first thing to notice
is that, due to the orthogonality relation (2.137), these expectation values do not vanish,
only if both operators act on the same lattice side〈

âi(τ) â†j(τ
′)
〉

0
= δij

〈
âi(τ) â†i (τ

′)
〉

0
. (4.41)

Thus, I can rewrite expression (4.40) as a sum over local contributions

Z2 =
∑
j

[Z2]j , (4.42)
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where the respective coefficients are given by

[Z2]j = Z0 (κ zΨ)2

β∫
0

dτ1

β∫
0

dτ2 Θ (τ1 − τ2)
〈
â(τ1) â†(τ2) + â†(τ1) â(τ2)

〉
0
. (4.43)

Note that, here and in the following calculations of the local contribution [Z2]j , I explicitly
skip the site index j of the photonic ladder operators, as the expectation value is indepen-
dent of the individual site. The local thermal expectation values occurring in the above ex-
pression can be calculated according to (4.27), which yields〈

â(τ1) â†(τ2)
〉

0
=

1

Z0
Tr
{
â(τ1) â†(τ2)e−β Ĥ0

}
=

1

Z0

∞∑
n=0

∑
α=±
〈n, α| eτ1 Ĥ0 â e(τ2−τ1)Ĥ0 â† e−τ2 Ĥ0 e−β Ĥ0 |n, α〉 . (4.44)

Now, making use of the polariton mapping obtained in Section 2.6 and substituting expres-
sions (2.153) for the photonic annihilation and creation operators, leads to the following
calculation:

Z0

〈
â(τ1)â†(τ2)

〉
0

=
∞∑
n=0

∑
α=±

e−βEnαe(τ1−τ2)Enα 〈n, α| â e(τ2−τ1)Ĥ0

×
∞∑
m=0

∑
β,β′=±

t(m+1)β′βP̂
†
(m+1)β′P̂mβ |n, α〉

=
∞∑

n,m=0

∑
α,β,β′=±

e−βEnαe(τ1−τ2)Enα t(m+1)β′β δmn δαβ 〈n, α| â e(τ2−τ1)Ĥ0 |m+ 1, β′〉

=
∞∑

n,m=0

∞∑
k=1

∑
α,β,β′,γ,γ′=±

e−βEnαe(τ1−τ2)(Enα−E(m+1)β′) t(m+1)β′β δmn δαβ tkγγ′

× 〈n, α| P̂ †(k−1)γ′P̂kγ |m+ 1, β′〉

=
∞∑

n,m=0

∞∑
k=1

∑
α,β,β′,γ,γ′=±

e−βEnαe(τ1−τ2)(Enα−E(m+1)β′) t(m+1)β′β tkγγ′

× δmn δαβ δk(m+1) δγβ′ δn(k−1) δαγ′

=
∞∑
n=0

∞∑
k=1

∑
α,β′=±

e−βEnαe(τ1−τ2)(Enα−E(n+1)β′) t(n+1)β′α tkβ′α δn(k−1) , (4.45)

resulting in the final expression〈
â(τ1) â†(τ2)

〉
0

=
1

Z0

∞∑
n=0

∑
α,α′=±

e−β Enα e(Enα−E(n+1)α′)(τ1−τ2) (t(n+1)α′α

)2
. (4.46)

Performing the same calculations for the remaining expectation value yields〈
â†(τ1) â(τ2)

〉
0

=
1

Z0

∞∑
n=1

∑
α,α′=±

e−β Enα e(Enα−E(n−1)α′)(τ1−τ2) (tnαα′)
2 . (4.47)
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Reinserting these expressions into (4.43) results in the following form of the on-site second-
order contribution to the partition function

[Z2]j = (κ zΨ)2
∑

α,α′=±

β∫
0

dτ1

β∫
0

dτ2

{ ∞∑
n=0

e−β Enα eωn(n+1)αα′ (τ1−τ2) (t(n+1)α′α

)2
+
∞∑
m=1

e−β Emα eωm(m−1)αα′ (τ1−τ2) (tmαα′)
2

}
Θ (τ1 − τ2) , (4.48)

where I introduced the abbreviation

ωnmαα′ = Enα − Emα′ . (4.49)

After having determined the thermal expectation values, all that remains to do is to evaluate
the imaginary-time integrals in the above expression. These integrals pose no problems and
are easily calculated using the fact that

β∫
0

dτ1

τ1∫
0

dτ2 e
ωnmαα′ (τ1−τ2) =

[
eβ ωnmαα′ − 1

ω2
nmαα′

− β

ωnmαα′

]
. (4.50)

Note, that the integration limits have changed due to the Heaviside step function in expres-
sion (4.48). Thus, the expression for the local second-order contribution decomposes into
a sum of terms proportional to β and a sum over terms proportional to differences of ex-
ponential functions. By shifting the summation index, it can be shown that the latter sum
equals zero. Thus, only the terms proportional to β survive and equation (4.48) finally re-
sults in

[Z2]j = −β (κ zΨ)2
∑

α,α′=±

[ ∞∑
n=0

e−β Enα

(
t(n+1)α′α

)2
ωn(n+1)αα′

+

∞∑
n=1

e−β Enα
(tnαα′)

2

ωn(n−1)αα′

]
. (4.51)

Hence, eventually I obtained all necessary contributions to the partition function in order
to find the phase transition. Combining the result calculated above and inserting them to-
gether with relation (4.49) into equation (4.36), yields

Z ≈ Z0 − β
∑
j

(κ z) + (κ z)2
∑

α,α′=±

[ ∞∑
n=0

e−β Enα

(
t(n+1)α′α

)2
Enα − E(n+1)α′

+
∞∑
m=1

e−βEmα
(tmαα′)

2

Emα − E(m−1)α′

]}
Ψ2. (4.52)

This result allows me to give an approximate expression for the grand-canonical free energy
up to second order in the order parameter. Using definition (4.1) and inserting approxima-
tion (4.36) for the partition function leads to

F = − 1

β
ln (Z0 + Z1 + Z2 + . . .) = − 1

β
lnZ0 −

1

β
ln

(
1 +
Z1 + Z2

Z0
+ . . .

)
. (4.53)
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One can transform this expression even further, if one uses the Taylor expansion of the log-
arithm

ln (1 + x) =
∞∑
n=1

(−1)n+1

n
xn , (4.54)

which yields for equation (4.53) up to first order the expression

ln

(
1 +
Z1 + Z2

Z0

)
≈
Z1 + Z2

Z0
. (4.55)

Hence, the grand-canonical free energy is approximately given by

F = F0 −
1

β

(
Z1 + Z2

Z0
+ . . .

)
, (4.56)

where the free energy of the unperturbed system is defined as

F0 = − 1

β
lnZ0 . (4.57)

In order to finally get the phase boundary, I rearrange the terms in the free energy with
respect to the powers of the order parameter Ψ, resulting in an expansion of the form

F = F0 +
∑
j

aMF
2 Ψ2 +O(Ψ4) . (4.58)

As I have already reasoned in Section 3.7, one can obtain the phase boundary from the
second-order expansion coefficient in (4.58). Using the results (4.38) and (4.51) together
with the approximation (4.56), the Landau coefficient turns out to be site independent and
takes on the form

aMF
2 = κ z +

(κ z)2

Z0

∑
α,α′=±

[ ∞∑
n=0

e−β Enα

(
t(n+1)α′α

)2
ωn(n+1)αα′

+
∞∑
m=1

e−β Emα
(tmαα′)

2

ωm(m−1)αα′

]
. (4.59)

The phase border is defined via the condition

aMF
2

!
= 0 , (4.60)

which leads to the on-site equation

κ z = − Z0∑
α,α′=±

{
(t1α′−)

2

ω01−α′
+
∞∑
n=1

e−β Enα
[

(t(n+1)α′α)
2

ωn(n+1)αα′
+

(tnαα′ )
2

ωn(n−1)αα′

]} . (4.61)

I will now check, whether this result is consistent with the one obtained at zero temperature
from the Schrödinger perturbation theory in Section 3.6, I take a look at the ground-state
|n,−〉 of the system. To this end I consider the limit β →∞ for the above expression, which
immediately leads to

aκ z = −

[∑
α=±

(
t(n+1)α−

)2
En− − E(n+1)α

+
(tn−α)2

En− − E(n−1)α

]−1

, n > 0, (4.62)
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Figure 4.1: Mean-field phase boundary for finite temperatures in the case of reso-
nance ∆ = 0. Depicted are the critical values for the hopping amplitude
κ, scaling with the lattice coordination number z, with respect to the ef-
fective chemical potential µ− ω. The blue curve corresponds to T = 0 K,
the red curve to T = 0.005 g/kB, the green curve to T = 0.1 g/kB and the
black curve corresponds to T = 0.2 g/kB. All quantities are measured
in units of the coupling strength g. The area under the curve represents
the Mott-insulator phase, whereas the area above corresponds to the su-
perfluid phase. Note that the rapid decreasing of the phase border at
(µ − ω)/g ≈ −0.13 is a remnant resulting from the summation cut-off in
equation (4.64).

and

κ z = −

[
(t1−−)2

E0− − E1−
+

(t1+−)2

E0− − E1+

]−1

, n = 0 . (4.63)

Comparing these phase boundaries with equation (3.97) shows, that the two results are, in-
deed, identical. On top of simply having reproduced the mean-field phase border for zero
temperature, now I also obtained a formula giving the phase border at finite temperatures.
Specifically in the case of resonance ∆ = 0 I find for finite temperatures the explicit expres-
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Figure 4.2: Mean polariton occupation number for finite temperatures versus the
effective chemical potential, in the case of resonance. The black curve
corresponds to T = 0.001 g/kB, the red curve to T = 0.0125 g/kB and the
blue curve to T = 0.1 g/kB.

sion

κ z = −
4
∞∑
n=0

∑
α=±

e−β Enα

∑
α,α′=±1

{
1

E0−−E1α′
−
∞∑
n=1

e−β Enα
[

(
√
n+1+αα′

√
n)

2

Enα−E(n+1)α′
+

(
√
n+αα′

√
n−1)

2

Enα−E(n−1)α′

]} . (4.64)

In Figure 4.1 I plot the first 15 loops of the resulting phase boundary for a variety of temper-
atures at ∆ = 0. Analogue to the phase transition in the Bose-Hubbard model [157], one
finds that the phase border smears out with increasing temperature.
One might interpret this result as a decrease of the superfluid phase with increasing temper-
ature. To check whether this is really the case, I analyse the compressibility of the system in
the following, which should vanish for a genuine Mott insulator [33]. The isothermal com-
pressibility in the grand-canonical ensemble is defined as

κT =
1

Ns

∂ 〈n〉0
∂µeff

, (4.65)

with the effective chemical potential µeff = (µ − ω). The quantity 〈n〉0 appearing in the
numerator of (4.65) is the mean polariton number per lattice site. It is given as the thermal
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Figure 4.3: Plot of the isothermal compressibility κT at finite temperatures versus
the effective chemical potential µ − ω, without hopping (κ = 0) and in
case of resonance (∆ = 0). The curve in the left diagram corresponds
to T = 0.01 g/kB and the curve in the right diagram corresponds to T =
0.002 g/kB.

average

〈n〉0 =
1

Z0

∞∑
n=0

∑
α=±

n e−β Enα , (4.66)

where the index 0 denotes that I am calculating the thermal average with respect to the un-
perturbed system. Thus this result holds for each on-site Jaynes-Cummings system individ-
ually. First, I discuss the local mean polariton occupation number, for which the resulting
function in the case of resonance is plotted in Figure 4.2 for several temperatures. Here
one can observe that the curves are smeared out for increasing temperatures as well. In
the limit of vanishing temperature the function becomes a sequence of integer steps in the
occupation number. It is experimentally interesting to realise that with increasing occupa-
tion number the system becomes more and more sensitive to small changes in the effective
chemical potential. Furthermore, it is to see from Figure 4.2, that for high temperatures just
the lowest state can easily be fixed at an integer value, whereas for the higher states the func-
tion looses its step character and becomes an exponential.
Knowing the mean occupation number, one can go ahead and calculate the isothermal
compressibility according to equation (4.65). The resulting curve is plotted in Figure 4.3 for
different temperatures. Having a look at the compressibility of the system one finds, that it
does not vanish anymore in the smeared out regions but has positive finite values. Thus, one
can not interpret these new regions in the phase diagram as a pure Mott insulator. As shown
for example in Ref. [161, 162] the quantum phase transition between Mott-insulator and su-
perfluid phase occurs strictly only for T = 0. For finite temperatures one finds a “classical“
phase transition between the superfluid phase and a normal phase, driven by thermal fluc-
tuations. There is only a crossover between the normal phase and a Mott-insulator. One can
also see from Figure 4.3 that in the zero-temperature limit the compressibility becomes delta
function like and thus, is zero everywhere except at the border between neighbouring Mott
lobes, just as expected for a proper Mott insulator, which is incompressible by definition.
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However, as can be seen in Figure 4.3, even for finite temperatures there are regions with a
compressibility very close to zero, which justifies to call these regions a Mott-insulator for all
practical purposes. Furthermore, it can be seen that these Mott-insulator regions shrink in
size with increasing temperature and hence I conclude that, contrary to the first impression
mediated by the phase diagram 4.1, the Mott-lobes become smaller with increasing tem-
perature. This conclusion is in qualitative agreement with numerical results obtained for
1D and 2D systems [163].

4.3 Strong-Coupling Perturbation Theory
So far I successfully derived a mean-field theory for the JCH model for zero and finite tem-
peratures. I also showed that this approach leads to a Landau theory with a site-dependent
Landau order parameter Ψ. However, the focus of this thesis is a different approach which
will be presented within the following sections. Basically, instead of using a mean-field
theory in order to diagonalize the hopping term I will rather utilize a field-theoretic ap-
proach, which is well known in the investigation of thermal second-order phase transi-
tions [7]. Namely, I introduce additional source currents ji(τ), j∗i (τ) in the original Jaynes-
Cummings-Hubbard Hamiltonian, that break the global U(1) symmetry. This approach
eventually leads to a Ginzburg-Landau theory, where the order parameter Ψ(τ) now de-
pends on space as well as on imaginary time. The starting point to derive the Ginzburg-
Landau theory is the same as in the previous section. Thus, I first decompose the JCH
Hamiltonian into the following terms

ĤSC(τ) = Ĥ0 + ĤSC
1 (τ), (4.67)

with the Hamiltonian of the unperturbed system given by (3.52) and the perturbation Ha-
miltonian by

ĤSC
1D(τ) [j, j∗] = −

∑
ij

κij â
†
i (τ) âj(τ) +

∑
i

[
j∗i (τ) âi(τ) + ji(τ) â†i (τ)

]
. (4.68)

Note that, I dropped the Dirac index D again, using the convention that all operators, which
depend on imaginary-time variables, are implicitly given in the imaginary-time Dirac inter-
action picture. Furthermore, in the above equation, I rewrite the hopping constant in the
form

κij =

{
κ, if i, j are next neigbors
0, else

, (4.69)

and introduced an additional term over the symmetry-breaking source currents coupling to
the photonic creation and annihilation operators. Following the same procedure as in Sec-
tion 4.2, I insert the perturbation Hamiltonian (4.68) into (4.29), which yields the following
expression for the grand-canonical partition function

Z [j, j∗] = Z0

∞∑
n=0

(−1)n

n!

β∫
0

dτ1 . . .

β∫
0

dτn

〈
T̂
[
ĤSC

1D(τ1) [j, j∗] . . . ĤSC
1D(τn) [j, j∗]

]〉
0
, (4.70)
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where the partition function is now a functional of the currents j and j∗. Splitting the grand-
canonical partition functional into

Z [j, j∗] = Z0 + Z0

∞∑
n=1

Zn [j, j∗] , (4.71)

where the latter part is defined as

Zn [j, j∗] =
(−1)n

n!

β∫
0

dτ1 . . .

β∫
0

dτn

〈
T̂
[
ĤSC

1D(τ1) [j, j∗] . . . ĤSC
1D(τn) [j, j∗]

]〉
0
, (4.72)

the free energy becomes

F [j, j∗] = − 1

β
lnZ [j, j∗] = F0 −

1

β
ln

{
1 +

∞∑
n=1

Zn [j, j∗]

}
. (4.73)

Using the series expansion (4.54) for the logarithm, one can approximate the free energy up
to second order in Zn leading to

F [j, j∗] ≈ F0 −
1

β


∞∑
n=1

Zn [j, j∗]− 1

2

( ∞∑
n=1

Zn [j, j∗]

)2
 . (4.74)

For clarity, I will skip mentioning the explicit dependence of the perturbation Hamiltonian
ĤSC

1D(τ) [j, j∗] from the currents j, j∗ in the following, and rather use the shorter form ĤSC
1D(τ).

Collecting all terms up to fourth order in the currents and first order in the hopping in equa-
tion (4.74) leads to the following contribution from the second term

5∑
n=1

Zn [j, j∗] =

−
β∫

0

dτ1

〈
ĤSC

1D(τ1)
〉

0
+

1

2

β∫
0

dτ1

β∫
0

dτ2

〈
T̂
[
ĤSC

1D(τ1)ĤSC
1D(τ2)

]〉
0

− 1

6

β∫
0

dτ1 . . .

β∫
0

dτ3

〈
T̂
[
ĤSC

1D(τ1)ĤSC
1D(τ2)ĤSC

1D(τ3)
]〉

0

+
1

24

β∫
0

dτ1 . . .

β∫
0

dτ4

〈
T̂
[
ĤSC

1D(τ1)ĤSC
1D(τ2)ĤSC

1D(τ3)ĤSC
1D(τ4)

]〉
0

− 1

120

β∫
0

dτ1 . . .

β∫
0

dτ5

〈
T̂
[
ĤSC

1D(τ1)ĤSC
1D(τ2)ĤSC

1D(τ3)ĤSC
1D(τ4)ĤSC

1D(τ5)
]〉

0

 . (4.75)

Furthermore, for the third term in equation (4.74), the only contributing terms are given by(
3∑

n=1

Zn [j, j∗]

)2

=

−
β∫

0

dτ1

〈
ĤSC

1D(τ1)
〉

0
+

1

2

β∫
0

dτ1

β∫
0

dτ2

〈
T̂
[
ĤSC

1D(τ1)ĤSC
1D(τ2)

]〉
0

−1

6

β∫
0

dτ1 . . .

β∫
0

dτ3

〈
T̂
[
ĤSC

1D(τ1)ĤSC
1D(τ2)ĤSC

1D(τ3)
]〉

0


2

(4.76)
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Inserting the definition of the perturbation Hamiltonian (4.68) and making use of the or-
thonormality relation for the dressed state basis (2.137), one finds that the occurring ther-
mal averages become

5∑
n=1

Zn [j, j∗] =
∑
i1,i2

β∫
0

dτ1

β∫
0

dτ2

{
ji1(τ1) j∗i2(τ2)

〈
T̂
[
â†i1(τ1) âi2(τ2)

]〉
0

+
∑
i3,j3

κi3j3

β∫
0

dτ1 . . .

β∫
0

dτ3 ji1(τ1) j∗i2(τ2)
〈
T̂
[
â†i1(τ1) âi2(τ2) â†i3(τ3) âj3(τ3)

]〉
0

+
1

4

∑
i3,i4

β∫
0

dτ1 . . .

β∫
0

dτ4 ji1(τ1) j∗i2(τ2) ji3(τ3) j∗i4(τ4)
〈
T̂
[
â†i1(τ1) âi2(τ2) â†i3(τ3) âi4(τ4)

]〉
0

+
1

4

∑
i3,i4,i5,j5

κi5j5

β∫
0

dτ1 . . .

β∫
0

dτ5 ji1(τ1) j∗i2(τ2) ji3(τ3) j∗i4(τ4)

×
〈
T̂
[
â†i1(τ1) âi2(τ2) â†i3(τ3) âi4(τ4) â†i5(τ5) âj5(τ5)

]〉
0

+O
(
j6
)
O
(
κ2
)}

, (4.77)

and

(
3∑

n=1

Zn [j, j∗]

)2

=

∑
i1,i2

β∫
0

dτ1

β∫
0

dτ2 ji1(τ1) j∗i2(τ2)
〈
T̂
[
â†i1(τ1) âi2(τ2)

]〉
0

2

+

∑
i3,j3

κi3j3

β∫
0

dτ1 . . .

β∫
0

dτ3 ji1(τ1) j∗i2(τ2)
〈
T̂
[
â†i1(τ1) âi2(τ2) â†i3(τ3) âj3(τ3)

]〉
0


×

∑
i1,i2

β∫
0

dτ1

β∫
0

dτ2 ji1(τ1) j∗i2(τ2)
〈
T̂
[
â†i1(τ1) âi2(τ2)

]〉
0

 . (4.78)

Hence, the expansion of the grand-canonical partition functional leads to a sum of integrals
over n-particle thermal Green’s functions of the unperturbed system, which are defined as

G(0)
n

(
τ ′1, i

′
1; . . . ; τ ′n, i

′
n|τ1, i1; . . . ; τn, in

)
=
〈
T̂
[
â†
i′1

(τ ′1) âi1(τ1) . . . â†i′n
(τ ′n) âin(τn)

]〉
0
, (4.79)

where the upper index corresponds to the order in the hopping parameter κ and the lower
index corresponds to two times the order in the symmetry-breaking currents j.
Furthermore, I point out that one can see from (4.77) that the Ginzburg-Landau approach
(4.68) does not only lead to a perturbation series in the source currents j, j∗ but also in κ.
Thus, this ansatz is far more powerful then the mean-field approach, because it allows to
calculate corrections due to photon hopping up to arbitrary orders in κ. Inserting the results
(4.77) and (4.78) into the approximation (4.74) for the free energy, leads to the following
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relation for the free energy

F [j, j∗] = F0 −
1

β

∑
i1,i2

β∫
0

dτ1 dτ2


a(0)

2 (i1, τ1|i2, τ2) +
∑
i3,j3

κi3j3 a
(1)
2 (i1, τ1; i3|i2, τ2; j3)


× ji1(τ1) j∗i2(τ2) +

1

4

∑
i3,i4

β∫
0

dτ3 dτ4

[
a

(0)
4 (i1, τ1; i2, τ2|i3, τ3; i4, τ4)

+
∑
i5,j5

κi5j5 a
(1)
4 (i1, τ1; i2, τ2; i5|i3, τ3; i4, τ4; j5)

 ji1(τ1) ji2(τ2) j∗i3(τ3) j∗i4(τ4)

 , (4.80)

where the introduced expansion coefficients are defined as

a
(0)
2 (i1, τ1|i2, τ2) = G

(0)
1 (i1, τ1|i2, τ2) , (4.81)

a
(1)
2 (i1, τ1; i3|i2, τ2; j3) =

β∫
0

dτ3 G
(0)
2 (i1, τ1; i3, τ3|i2, τ2; j3, τ3) , (4.82)

a
(0)
4 (i1, τ1; i2, τ2|i3, τ3; i4, τ4) = G

(0)
2 (i1, τ1; i2, τ2|i3, τ3; i4, τ4)

− 2G
(0)
1 (i1, τ1|i3, τ3) G

(0)
1 (i2, τ2|i4, τ4) , (4.83)

a
(1)
4 (i1, τ1; i2, τ2; i5|i3, τ3; i4, τ4; j5) =

β∫
0

dτ5

[
G

(0)
3 (i1, τ1; i2, τ2; i5, τ5|i3, τ3; i4, τ4; j5, τ5)

−2G
(0)
2 (i1, τ1; i5, τ5|i3, τ3; j5, τ5) G

(0)
1 (i3, τ3|i4, τ4)

]
. (4.84)

In principle, one could now make use of the definition (4.79) and calculate the expansion
coefficients of the free energy straightforwardly. However, with increasing order of the ther-
mal Green’s function the calculation becomes more and more complex due to the increas-
ing number of space- and time-index permutations. Therefore, I want to introduce another
approach to calculate the thermal Green’s functions, which automatically takes care of the
emerging problems. Namely, I decompose the thermal Green’s functions into cumulants.

4.4 Cumulant Expansion
In the following I apply the approach proposed in reference [164] and expand the thermal
Green’s functions of the unperturbed system diagrammatically using cumulants. I will show
that each Green’s function decomposes into a sum of products of cumulants. Furthermore,
these cumulants can be mapped on suitably defined Feynman diagrams. This approach
allows to formulate some easy diagrammatic rules, to write down the correct cumulant de-
composition for every Green’s function without calculations.
To find these cumulants one needs to define a generating functional from which all higher
cumulants can be derived. Therefore, I consider a Hamiltonian of the form

Ĥ(τ) [j, j∗] = Ĥ0 −
∑
i

[
ji (τ) â†i + j∗i (τ) âi

]
, (4.85)

77



Chapter 4 Thermodynamic Properties

with the Hamiltonian Ĥ0 =
∑

i Ĥ0i of the unperturbed system, which decomposes into
a sum over local Hamiltonians Ĥ0i, and a perturbation arising form the currents j, j∗. I
showed in Section 4.1, that in the Dirac interaction picture the corresponding imaginary-
time evolution operator is given by

ÛD [j, j∗] (τ, τ0) = T̂ exp


τ∫

τ0

dτ1

∑
i

[
ji(τ1) â†i (τ1) + j∗i (τ1) âi(τ1)

] , (4.86)

and hence, the partition function becomes according to (4.29)

Z(0) [j, j∗] = Z0

〈
T̂ exp


β∫

0

dτ
∑
i

[
ji(τ) â†i (τ) + j∗i (τ) âi(τ)

]
〉

0

. (4.87)

Calculating the functional derivatives of the above expression, one finds

1

Z(0)

δ2Z0 [j, j∗]

δjn′(τ ′) δj∗n(τ)
=

〈
T̂

{
â†n′(τ

′) ân(τ) e
∫ β
0 dτ ′′

∑
i

[
ji(τ
′′) â†i (τ

′′)+j∗i (τ ′′) âi(τ ′′)
]}〉

0

, (4.88)

which, in the situation of vanishing currents, gives exactly the two-point thermal Green’s
function of the unperturbed system i.e.

1

Z(0)

δ2Z0 [j, j∗]

δjn′(τ ′) δj∗n(τ)

∣∣∣∣
j=j∗=0

=
〈
T̂
[
â†n′(τ

′) ân(τ)
]〉

0
= G

(0)
1

(
n′, τ ′|n, τ

)
. (4.89)

It is clear to see that, this procedure works as well for the higher Green’s functions and, thus,
one finds that all thermal n-point Green’s functions can be obtained from (4.87) by perform-
ing 2n functional derivatives with respect to the source currents. Therefore, the thermal
Green’s functions can be expressed by

G(0)
n

(
τ ′1, i

′
1; . . . ; τ ′n, i

′
n|τ1, i1; . . . ; τn, in

)
=

1

Z0

δ2nZ(0) [j, j∗]

δji′1(τ ′1) δj∗i1(τ1) . . . δji′n(τ ′n) δj∗in(τn)

∣∣∣∣∣
j=j∗=0

.

(4.90)
Normally one would apply Wick’s theorem to decompose the n-point correlation function
(4.90) into sums of products of 2-point correlation functions [165]. Unfortunately, this is
not possible for the considered system, since Wick’s theorem just holds for systems, where
the unperturbed Hamiltonian is linear in the occupation number operator. Instead, one
has to use the so called cluster expansion introduced by Metzner [166], which states that
the logarithm of the partition function is given by the sum of all connected Green’s. In fact
equation (4.90) leads to a decomposition into connected and disconnected diagrams. Using
the logarithm on this decomposition cancels all disconnected diagrams and leaves only the
connected ones. For this reason and inspired by the result (4.90), one defines the generating
functional as

C
(0)
0 [j, j∗] = log

(
Z(0) [j, j∗]

Z0

)

= log

〈
T̂ exp


β∫

0

dτ
∑
i

[
ji(τ) â†i (τ) + j∗i (τ) âi(τ)

]
〉

0

. (4.91)
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Due to the properties of the logarithm and the fact that the unperturbed Hamiltonian de-
composes into a sum over local contributions, the generating functional decomposes into a
sum over local cumulants as well

C
(0)
0 [j, j∗] =

∑
i

iC
(0)
0 [j, j∗] , (4.92)

where the local cumulants are defined via

iC
(0)
0 [j, j∗] = log

〈
T̂ exp


β∫

0

dτ
[
ji(τ)â†i (τ) + j∗i (τ)âi(τ)

]
〉

0,i

. (4.93)

Note, that the index i associated with the thermal average now indicates, that it has to be
calculated with respect to the local unperturbed Hamiltonian Ĥ0i. Since I work in a homo-
geneous system, where all lattice sites are equivalent, I drop the site index right away and
work in the following with local cumulants defined by the generating functional

C
(0)
0 [j, j∗] = log

〈
T̂ exp


β∫

0

dτ
[
j(τ) â†(τ) + j∗(τ) â(τ)

]
〉

0

. (4.94)

One finds the higher order cumulants from this expression by calculating the functional
derivatives with respect to the symmetry-breaking currents, just as I did in (4.90) for the
n-point Green’s functions. Thus, one finds

C(0)
n

(
i′1, τ

′
1; . . . ; i′n, τ

′
n|i1, τ1; . . . ; in, τn

)
=

δ2nC
(0)
0 [j, j∗]

δji′1 (τ ′1) . . . δji′n (τ ′n) δj∗i1 (τ1) . . . δj∗in (τn)

∣∣∣∣∣
j=j∗=0

.

(4.95)
Since according to equation (4.92) the cumulants are local quantities, I introduce a shorter
notation for the n-th order cumulant, which reads

C(0)
n

(
i′1, τ

′
1; . . . ; i′n, τ

′
n|i1, τ1; . . . ; in, τn

)
=C(0)

n

(
i1; τ ′1, . . . , τ

′
n|τ1, . . . , τn

)
δi1,i2 . . . δin−1,in

× δi′1,i′2 . . . δi′n−1,i
′
n
δi1,i′1 . (4.96)

Performing the calculations according to this formula, always leads to the thermal Green’s
function of the same order and a sum over products of lower order cumulants. Rearranging
the results from this calculations, one finds the respective cumulant decomposition for each
thermal Green’s function. For the Green’s functions up to 2nd order one finds explicitly

G
(0)
1 (i1, τ1|i2, τ2) =

1

Z(0) [j, j∗]

δ2Z(0) [j, j∗]

δji1(τ1)δj∗i2(τ2)

∣∣∣∣∣
j=j∗=0

=
δ2C

(0)
0 [j, j∗]

δji1(τ1)δj∗i2(τ2)

∣∣∣∣∣
j=j∗=0

= δi1,i2 C
(0)
1 (i1; τ1|τ2) , (4.97)

and

G
(0)
2 (i1, τ1; i2, τ2|i3, τ3; i4, τ4) = δi3i4 δi3i1 δi4i2 C

(0)
2 (i1; τ1, τ2|τ3, τ4)

+ δi3i1 δi4i2 C
(0)
1 (i1; τ1|τ3) C

(0)
1 (i2; τ2|τ4) + δi3i2 δi4i1 C

(0)
1 (i1; τ1|τ4) C

(0)
1 (i2; τ2|τ3) . (4.98)
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Comparing these results with the expansion (4.80) and expansion coefficients (4.81) – (4.84)
leads to the following important observation: The logarithm transforms the grand-cano-
nical partition function, which is sum over connected and disconnected thermal n-point
Green’s functions, into the grand-canoni_cal free energy, that turns out to be a sum over
cumulants representing the connected Green’s functions only. This is due to the fact that the
expansion of the logarithm introduces additional corrections to the expansion coefficients
(4.83) and (4.84) of the free energy, which exactly cancel the disconnected diagrams of the
thermal Green’s functions. However, the straightforward calculation according to equation
(4.95) is still rather tricky and the number of contributing terms rises very quickly with the
order of the considered Green’s function. Furthermore, many of the terms are identical due
to symmetry reasons or do not contribute to the free energy functional and, thus, these
calculations are not very efficient. For this reason, I will introduce some rules within the next
section, which will provide the basis for a diagrammatic expansion of the n-point Green’s
function. This approach will yield a much simpler access to the cumulant decomposition.

4.5 Diagrammatic Expansion
Within this section I introduce some diagrammatic rules in order to calculate the pertur-
bation series of the free energy. This approach will prove to be completely analogue to the
cumulant expansion, derived in the previous section, but much easier to calculate. The
rules for this decomposition are presented in the following subsection.

4.5.1 Diagrammatic Rules
The diagrammatic expansion can be obtained by applying the following rules:

1. A vertex with n ingoing and n outgoing lines corresponds to a n-th order cumulant
C

(0)
n .

C
(0)
1 (τ1|τ2) = τ1 τ2

i
, (4.99)

C
(0)
2 (τ1, τ2|τ3, τ4) = i

τ1

τ2

τ3

τ4
. (4.100)

2. Each vertex is labelled with a site index and each line with an imaginary-time index.

3. Each entering line is associated with a factor ji(τ) and each leaving line is associated
with a factor j∗i (τ):

τ

= ji(τ) ,
τ

= j∗i (τ) (4.101)
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4. All internal lines starting in one vertex and ending in another correspond to hopping
processes and are associated with a factor κij :

i jτ

= κij (4.102)

5. For a connected Green’s function of a given order draw all inequivalent connected
diagrams.

6. Integrate over all time variables and sum over all site indices.

The above rules allow to construct the diagram for each cumulant and Green’s function.
However, in order to get the correct expansion of the partition function the following addi-
tional rules are necessary

7. Multiply by the multiplicity and divide by the symmetry factor.

Following these rules, one does not need to calculate the cumulant decomposition but, in-
stead, one can just write down the necessary contributions right away.
Subsequently, one can deduce the thermal Green’s functions, which correspond to the ex-
pansion coefficients of the free energy defined in (4.81) – (4.84). Applying the diagrammatic
rules and afterwards rewriting the result in terms of cumulants yields:

a
(0)
2 (i, τ1|i2, τ2) = G

(0)
1 (i, τ1|i2, τ2) = τ1 τ2

i

= δi,i2 C
(0)
1 (i; τ1|τ2) , (4.103)

a
(1)
2 (i1, τ1; i|i2, τ2; j) =

β∫
0

dτ G
(0)
2 (i1, τ1; i, τ |i2, τ2; j, τ) =

i j
τ2τ1

τ

= δi1,j δi2,i

β∫
0

dτ C
(0)
1 (i; τ1|τ) C

(0)
1 (j; τ |τ2) , (4.104)

a
(0)
4 (i, τ1; i2, τ2|i3, τ3; i4, τ4) =

i
τ1

τ2

τ3

τ4

= δi,i2 δi2,i3 δi3,i4 C
(0)
2 (i; τ1, τ2|τ3, τ4) , (4.105)

a
(1)
4 (i1, τ1; i2, τ2; i|i3, τ3; i4, τ4; j)) =

i

j
ττ1

τ2

τ3

τ4

+

τ1

τ2

τ3

τ4
i

j
τ
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= δi1,j δi2,i δi3,i4 δi3,i

β∫
0

dτ C
(0)
2 (i; τ2, τ |τ3, τ4) C

(0)
1 (j, τ1|τ)

+ δi1,i2 δi4,i δi1,i δi3,j

β∫
0

dτ C
(0)
2 (i; τ1, τ2|τ, τ4) C

(0)
1 (j; τ |τ3) . (4.106)

Having found the diagrammatic expressions for the thermal connected Green’s functions up
to fourth order in the symmetry-breaking currents and first order in the hopping parameter,
one can proceed in deriving the diagrammatic expansion of the free energy.

4.5.2 Diagram Weights

As stated in Section 4.5.1 the results obtained in the previous subsection are not sufficient
to write down the diagrammatic expansion of the grand-canonical free energy. According to
rule 7, one needs to know the weights of the emerging diagrams in order to find the correct
decomposition. To calculate these weights is the aim of the present subsection.
The weight of a given diagram in the expansion basically consists of two contributions. On
the one side each diagram has a symmetry factor associated with it, which accounts for
the possible permutations of equal imaginary-time variables. This symmetry can be read
of each diagram simply be noticing that its form remains invariant when equal time labels
at the external in going and out going lines at hopping elements are interchanged respec-
tively. For example diagram (4.100) is obviously symmetric if one interchanges τ1 ←→ τ2

and τ3 ←→ τ4. In fact for each nth order cumulant of 0th order in the hopping parameter
there are n! of such permutations. On the other side, not all of these permutations might
contribute to the cumulant decomposition for higher hopping orders. Thus, one introduces
another quantity, called the symmetry factor, which counts all possible permutations of
equivalent time variables and equivalent vertex indices, which do not change the topologi-
cal structure of the diagram. Taking these observations into consideration and additionally
including the factor 1/n! from the Taylor series, one defines the weight of each diagram as
follows:

weight =
1

n!

n!

symmetry factor
. (4.107)

Since obviously the number of time variable permutations is cancelled by the Taylor expan-
sion coefficient, all that one needs to determine is the symmetry factor for a given diagram.

4.6 Expansion of the Free Energy

Applying the results obtained in the previous paragraphs, I am now able to write down the
diagrammatic expansion of the grand-canonical free energy. Up to first order in the hopping
parameter and the fourth order in the symmetry-breaking currents this yields
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F [j, j∗] = +

+
1

4
+

1

2

 +

 .
(4.108)

Here, I dropped all imaginary-time and vertex indices in order to indicate that, following
rule 6 from Section 4.5.1, all space-time variables have been integrated out. The appearing
pre-factors correspond to the symmetry factors of the respective diagrams as discussed in
the previous subsection. This diagrammatic expression can be translated into the respective
cumulants, which subsequently can be calculated according to equation (4.95).
In order to sketch how to derive these expressions explicitly, I will consider the local first
order cumulant. Using definition (4.87) together with (4.95) yields

C
(0)
1

(
τ ′1, i

′
1|τ1, i1

)
=

δ2C
(0)
0 [j, j∗]

δji′1(τ ′1)δj∗i1(τ1)

∣∣∣∣∣
j=j∗=0

(4.109)

=
δ

δji′1(τ ′1)

〈
T̂ âi(τ1) exp

[
−
∫ β

0 dτ ĤSC
1D(τ)

]〉
0〈

T̂ exp
[
−
∫ β

0 dτ ĤSC
1D(τ)

]〉
0

δii1

∣∣∣∣∣∣
j=j∗=0

(4.110)

=
[
−
〈
â†i (τ

′
1)
〉

0

〈
âi(τ

′
1)
〉

0
+
〈
T̂ âi(τ1) â†i (τ

′
1)
〉

0

]
δii′1 δii1 (4.111)

= δii′1 δii1

〈
T̂ âi(τ1) â†i (τ

′
1)
〉

0
= δii′1 δii1 C

(0)
1

(
i; τ ′1|τ1

)
. (4.112)

Using the definition of the time-ordering operator, the definition of the thermal average
(4.27) and the operator representation in the Dirac picture (4.19) yields

C
(0)
1

(
τ ′1|τ1

)
=

1

Z0

∞∑
n=0

∑
α=±

[
Θ(τ1 − τ2) 〈n, α| â†i e

Ĥ0(τ2−τ1) âi |n, α〉 e−Enα(τ2−τ1)

+ Θ(τ2 − τ1) 〈n, α| âi eĤ0(τ1−τ2) â†i |n, α〉 e
Enα(τ2−τ1)

]
e−β Enα . (4.113)

The further calculation of the above expression can be performed analogues to Section 4.2
by using the polariton mapping (2.153). However, one can further simplify these deriva-
tions by going into frequency space. Therefore, I use a Matsubara transformation, which is
defined as follows

g (ωm) =
1√
β

β∫
0

dτg (τ) ei ωmτ , (4.114)

g (τ) =
1√
β

∞∑
m=−∞

g (ωm) e−i ωmτ , (4.115)

with Matsubara frequencies

ωm =
2πm

β
, m ∈ Z. (4.116)
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Performing this transformation for the photonic annihilation and creation operators yields

âi(ωm) =
1√
β

β∫
0

dτ âi (τ) ei ωmτ , (4.117a)

â†i (ωm) =
1√
β

β∫
0

dτ â†i (τ) e−i ωmτ . (4.117b)

One can use these expressions in the further considerations to calculate all cumulants in the
free energy expansion (4.108) in Matsubara space. The resulting expansion coefficients are
explicitly derived within the following two subsections.

4.6.1 Second Order in the Currents

In the present subsection I derive the exact expression in frequency space for the second-
order contribution in the currents of equation (4.108). Therefore, I consider the grand-
canonical free energy in the form

F [j, j∗] =F0 −
1

β

∑
i1,i2

β∫
0

dτ1 dτ2

A2 (τ1|τ2) ji1(τ1) j∗i2(τ2)

+
1

4

∑
i3,i4

β∫
0

dτ3 dτ4A4 (τ1, τ3|τ2, τ4) ji1(τ1) j∗i2(τ2) ji3(τ3) j∗i4(τ4)

 , (4.118)

where I introduced the abbreviations

A2 (i1, τ1|i2, τ2) =a
(0)
2 (i1, τ1|i2, τ2) +

∑
i,j

κij a
(1)
2 (i1, τ1; i|i2, τ2; j) , (4.119)

A4 (i1, τ1; i2, τ2|i3, τ3; i4, τ4) =a
(0)
4 (i1, τ1; i2, τ2|i3, τ3; i4, τ4)

+
∑
i,j

κij a
(1)
4 (i1, τ1; i2, τ2; i|i3, τ3; i4, τ4; j) . (4.120)

First, I start by calculating the coefficient a(0)
2 (i1, ωm1|i2, ωm2) in Matsubara space. Due to

frequency conservation and the locality of the cumulants the following relation has to hold

a
(0)
2 (i1, ωm1|i2, ωm2) = a

(0)
2 (i1, ωm1) δi1,i2 δωm1ωm2 . (4.121)

This cumulant can be derived from the expression (4.103) with the help of relations (4.112)
and (4.9), by performing the Matsubara transformation according to equations (4.117). This

84



4.6 Expansion of the Free Energy

approach yields the following relation:

a
(0)
2 (i, ωm) =

1

β

β∫
0

dτ1

β∫
0

dτ2 a
(0)
2 (i, τ1|i, τ2) e−i ωm(τ1−τ2)

=
1

β

β∫
0

dτ1

β∫
0

dτ2

〈
T̂
[
â†i (τ1) âi(τ2)

]〉
0
e−i ωm(τ1−τ2)

=
1

β

β∫
0

dτ1

β∫
0

dτ2

[
Θ (τ1 − τ2)

〈
â†i (τ1) âi(τ2)

〉
0

+Θ (τ2 − τ1)
〈
âi(τ2) â†i (τ1)

〉
0

]
e−i ωm(τ1−τ2). (4.122)

The respective thermal averages occurring in the above equation have been already calcu-
lated in Section 4.2. Using the results (4.46) and (4.47) and dropping the site index again, the
second-order expansion coefficient a(0)

2 (i, ωm) from (4.122) reduces to

a
(0)
2 (i, ωm) =

1

β Z0

β∫
0

dτ1

 τ1∫
0

dτ2

∞∑
n=1

∑
α,α′=±

e−β Enα e(Enα−E(n−1)α′−i ωm)(τ1−τ2) (tnαα′)
2

+

β∫
τ1

dτ2

∞∑
n=0

∑
α,α′=±

e−β Enα e(Enα−E(n+1)α′+i ωm)(τ2−τ1) (t(n+1)α′α

)2 . (4.123)

Additionally, making use of the fact that the imaginary-time integrals have the general solu-
tion

β∫
0

dτ1

β∫
τ1

dτ2 e
(ωnmαα′±i ωp)(τ2−τ1) =

eβ(ωnmαα′±i ωp) − 1(
ωnmαα′ ± i ωp

)2 − β

ωnmαα′ ± i ωp
, (4.124)

with the abbreviation
ωnmαα′ = Enα − Emα′ , (4.125)

leads to the following expression

a
(0)
2 (i, ωp) =

1

β Z0

∑
α,α′=±

{ ∞∑
n=0

e−β Enα

[
eβ(ωn(n+1)αα′+i ωp) − 1(
ωn(n+1)αα′ + i ωp

)2 − β

ωn(n+1)αα′ + i ωp

]

×
(
t(n+1)α′α

)2
+
∞∑
m=1

e−β Emα

[
eβ(ωm(m−1)αα′−i ωp) − 1(
ωm(m−1)αα′ − i ωp

)2 − β

ωm(m−1)αα′ − i ωp

]
(tmαα′)

2

}

=
1

β Z0

∑
α,α′=±

{ ∞∑
n=0

[
e−β(E(n+1)α′−i ωp) − e−β Enα(

ωn(n+1)αα′ + i ωp
)2 +

e−β(Enα+i ωp) − e−β E(n+1)α′(
ω(n+1)nα′α − i ωp

)2
] (
t(n+1)α′α

)2
−

[ ∞∑
n=0

β e−β Enα

ωn(n+1)αα′ + i ωp

(
t(n+1)α′α

)2
+

∞∑
m=1

β e−β Emα(
ωm(m−1)αα′ − i ωp

) (tmαα′)
2

]}
. (4.126)
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Noticing that ωn(n+1)αα′ = −ω(n+1)nα′α and e±i β ωp = e
±i β 2π p

β = e±i 2π p = 1, due to the
definition of the Matsubara frequencies (4.116), the above expression can be simplified to

a
(0)
2 (i, ωp) = − 1

β Z0

∑
α,α′=±

[ ∞∑
n=0

β e−β Enα
(
t(n+1)α′α

)2
ωn(n+1)αα′ + i ωp

+

∞∑
m=1

β e−β Emα (tmαα′)
2

ωm(m−1)αα′ − i ωp

]

=
1

Z0

∑
α,α′=±

{
(t1α′−)2

E1α′ − i ωm
−
∞∑
n=1

[
e−β Enα

(
t(n+1)α′α

)2
Enα − E(n+1)α′ + i ωm

− e−β Enα (tnαα′)
2

E(n−1)α′ − Enα + i ωm

]}
.

(4.127)

Going ahead, one can calculate the first-order hopping correction for this expression

a
(1)
2 (i1, τ1; j|i2, τ2; i) = δi,i1 δi2,j

β∫
0

dτ3 C
(0)
1 (i; τ1|τ3) C

(0)
1 (j; τ3|τ2) , (4.128)

by using frequency conservation again and make use of the cumulant multiplicity proper-
ties in frequency space, which leads to the restriction

a
(1)
2 (i1, ωm1; j|i2, ωm2, i) = a

(0)
2 (i, ωm1) a

(0)
2 (j, ωm2) δi,i1 δi2,j δωm1,ωm2 . (4.129)

Thus, one finds that the expansion coefficient correction under consideration takes on the
form

a
(1)
2 (i1, ωm1; j|i2, ωm2, i) =

1

Z2
0

∑
α,α′=±

{
(t1α′α)2

E1α′ − i ωm1
−
∞∑
n=1

e−β Enα

[ (
t(n+1)α′α

)2
Enα − E(n+1)α′ + i ωm1

+
(tnαα′)

2

Enα − E(n−1)α′ − i ωm1

]}
i

×
∑

γ,γ′=±

{ (
t1γ′γ

)2
E1γ′ − i ωm2

−
∞∑
n=1

e−β Enγ

×

[ (
t(n+1)γ′γ

)2
Enγ − E(n+1)γ′ + i ωm2

+

(
tnγγ′

)2
Enγ − E(n−1)γ′ − i ωm2

]}
j

δi,i1 δi2,j δωm1,ωm2 . (4.130)

Hence, I derived the complete expression for the coefficient (4.119) in Matsubara space,
which now takes on the form

A2 (i1, ωm1|i2, ωm2) =

a(0)
2 (i1, ωm1) δi1,i2 +

∑
i,j

κij a
(0)
2 (i, ωm1) a

(0)
2 (j, ωm2) δi,i1 δi2,j

 δωm1,ωm2 .

(4.131)
Therefore, the second order in the symmetry-breaking currents is solely dependent on suit-
able combinations of expression (4.127). In the next subsection, I derive the analogue ex-
pression for A4(i1, τ1; i3, τ3|i2, τ2; i4, τ4) in frequency space.

4.6.2 Fourth Order in the Currents
To derive the contribution up to fourth order in the currents I will proceed analogously to the
previous subsection. First, I consider the zeroth order hopping term. Going into frequency

86



4.6 Expansion of the Free Energy

space again yields

a
(0)
4 (i1, ωm1; i3, ωm3|i2, ωm2; i4, ωm4) =

1

β2
δi1,i3 δi2,i4 δi1,i2

β∫
0

dτ1 . . . dτ4C
(0)
2 (i1; τ1, τ3|τ2, τ4)

× ei(−ωm1τ1+ωm2τ2−ωm3τ3+ωm4τ4). (4.132)

The combination of relation (4.132) it with the equation (4.98) leads to

a
(0)
4 (i1, ωm1; i3, ωm3|i2, ωm2; i4, ωm4) =

1

β2

β∫
0

dτ1 . . . dτ4

{〈
T̂
[
â†i1(τ1) â†i3(τ3) âi2(τ2) âi4(τ4)

]〉
0

− δi1,i2 δi3,i4 C
(0)
1 (i1; τ1|τ2)C

(0)
1 (i3; τ3|τ4)− δi1,i4 δi3,i2 C

(0)
1 (i1; τ1|τ4)C

(0)
1 (i3; τ3|τ2)

}
× ei(−ωm1τ1+ωm2τ2−ωm3τ3+ωm4τ4) . (4.133)

As seen in the previous paragraph the respective Matsubara frequencies are restricted by
frequency conservation. Therefore, the following relation has to be satisfied:

ωm1 + ωm3 = ωm2 + ωm4 (4.134)

Using the frequency conservation and the results from the previous subsection, leads to the
expression

a
(0)
4 (i1, ωm1; i3, ωm3|i2, ωm2; i4, ωm4) =

1

β2
δωm1+ωm3,ωm2+ωm4

− a(0)
2 (i1, ωm1)

× a
(0)
2 (i3, ωm3) [δi1,i2 δi3,i4 δω1,ω2 δω3,ω4 + δi1,i4 δi3,i2 δω1,ω4 δω3,ω2 ]

+

β∫
0

dτ1 . . . dτ4

〈
T̂
[
â†i1(τ1) â†i3(τ3) âi2(τ2) âi4(τ4)

]〉
0
ei(−ωm1τ1+ωm2τ2−ωm3τ3+ωm4τ4)

 . (4.135)

Since, the expressions in the first two terms have already been calculated, all one needs
to derive is the integral over the time-ordered thermal average. First I notice that, for the
time-ordered product of the annihilation and creation operators, there are 6 distinct per-
mutations leading to different expectation values. Each of these orderings itself has 4 time
variable permutations corresponding to τ1 ↔ τ2 and τ3 ↔ τ4. Thus, overall one finds 24
terms for the above expectation value. Luckily, the integrals over different time-variable
permutations yield the same result, and thus, they just lead to a fixed pre-factor 4. For this
reason, one just needs to determine the 6 different thermal averages for one specific time-
ordering. Furthermore, due to the orthogonality relation (3.53), these expectation values
are local quantities and, therefore, I drop the site indices in the following calculations. Thus,
one has to solve the following expressions:〈

â†(τ1) â†(τ3) â(τ2) â(τ4)
〉

0
,

〈
â†(τ1) â(τ2) â†(τ3) â(τ4)

〉
0
, (4.136)〈

â(τ4) â†(τ1) â†(τ3) â(τ2)
〉

0
,

〈
â(τ4) â(τ2) â†(τ1) â†(τ3)

〉
0
, (4.137)〈

â(τ4) â†(τ1) â(τ2) â†(τ3)
〉

0
,

〈
â†(τ1) â(τ4) â(τ2) â†(τ3)

〉
0
, (4.138)
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where I dropped here and in the following calculations the site indices of the photonic cre-
ation and annihilation operators, because these expectation values are all local quantities
due to the orthogonality of the dressed state basis (2.137). With the help of the polariton
mapping from Section 2.6, one can calculate these averages which yields:

〈
â†(τ1)â(τ2)â†(τ3)â(τ4)

〉
0

=
1

Z0

∞∑
n=1

∑
α

〈n, α| â†(τ1)â(τ2)â†(τ3)â(τ4)e−βĤ0 |n, α〉

=
1

Z0

∞∑
n=1

∑
α

e−βEnα 〈n, α| eτ1Ĥ0 â†e(τ2−τ1)Ĥ0 âe(τ3−τ2)Ĥ0 â†e(τ4−τ3)Ĥ0 âe−τ4Ĥ0 |n, α〉

=
1

Z0

∞∑
n,m=1

∑
αγγ′

e−βEnαe(τ1−τ4)Enα 〈n, α| â†e(τ2−τ1)Ĥ0 âe(τ3−τ2)Ĥ0 â† |m− 1, γ′〉

× e(τ4−τ3)Em−1γ′ tmγγ′δmnδαγ

=
1

Z0

∞∑
n,m=1

∞∑
p=0

∑
αγγ′νν′

e−βEnαe(τ1−τ4)Enα 〈n, α| â†e(τ2−τ1)Ĥ0 â |p+ 1, ν ′〉 e(τ3−τ2)E(p+1)ν′

× e(τ4−τ3)Em−1γ′ t(p+1)ν′νtmγγ′δmnδαγδp(m−1)δγ′ν

=
1

Z0

∞∑
n,m,r=1

∞∑
p=0

∑
αγγ′νν′ρρ′

e−βEnαe(τ1−τ4)Enα 〈n, α| â† |r − 1, ρ′〉 e(τ2−τ1)E(r−1)ρ′e(τ3−τ2)E(p+1)ν′

× e(τ4−τ3)Em−1γ′ trρρ′t(p+1)ν′νtmγγ′δmnδαγδp(m−1)δγ′νδ(p+1)rδρν′

=
1

Z0

∞∑
n,m,r=1

∞∑
p,q=0

∑
αγγ′νν′ρρ′ππ′

e−βEnα
[
e(τ1−τ4)Enαe(τ2−τ1)E(r−1)ρ′e(τ3−τ2)E(p+1)ν′e(τ4−τ3)Em−1γ′

]
×
[
t(q+1)π′πtrρρ′t(p+1)ν′νtmγγ′

]
×
[
δn(q+1)δq(r−1)δr(p+1)δp(m−1)δmn

]
×
[
δαπ′δρ′πδρν′δνγ′δγα

]
.

(4.139)

Hence, I find the following expectation value

〈
â†(τ1) â(τ2) â†(τ3) â(τ4)

〉
0

=
1

Z0

∞∑
n=1

∑
α,ν,ρ,π=±

e−β Enα e(Enα−E(n−1)π)τ1 e(E(n−1)π−Enρ)τ2

× e(Enρ−E(n−1)ν)τ3 e(E(n−1)ν−Enα)τ4 (tnαπ × tnρπ × tnρν × tnαν) . (4.140)

Subsequently performing the same procedure for the remaining expectation values, leads
to the following expressions:

〈
â(τ4) â†(τ1) â†(τ3) â(τ2)

〉
0

=
1

Z0

∞∑
n=1

∑
α,ν,ρ,π=±

e−β Enα e(E(n+1)π−Enρ)τ1 e(E(n−1)ν−Enα)τ2

× e(Enρ−E(n−1)ν)τ3 e(Enα−E(n+1)π)τ4 (t(n+1)απ × t(n+1)ρπ × tnρν × tnαν
)
, (4.141)

〈
â†(τ1) â(τ4) â(τ2) â†(τ3)

〉
0

=
1

Z0

∞∑
n=1

∑
α,ν,ρ,π=±

e−β Enα e(Enα−E(n−1)π)τ1 e(Enρ−E(n+1)ν)τ2
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× e(E(n+1)ν−Enα)τ3 e(E(n−1)π−Enρ)τ4
(
tnαπ × tnρπ × t(n+1)νρ × t(n+1)να

)
, (4.142)

〈
â(τ4) â(τ2) â†(τ1) â†(τ3)

〉
0

=
1

Z0

[ ∑
ν,ρ,π=±

e(E2ρ−E1ν)τ1 e(E1π−E2ρ)τ2 eE1ντ3 e−E1πτ4

× (t1π− × t2ρπ × t2ρν × t1ν−) +
∞∑
n=1

∑
α,ν,ρ,π=±

e−β Enα e(E(n+2)ρ−E(n+1)ν)τ1 e(E(n+1)π−E(n+2)ρ)τ2

× e(E(n+1)ν−Enα)τ3 e(Enα−E(n+1)π)τ4 (t(n+1)πα × t(n+2)ρπ × t(n+2)ρν × t(n+1)να

)]
, (4.143)

〈
â(τ4) â†(τ1) â(τ2) â†(τ3)

〉
0

=
1

Z0

[ ∑
ν,π=±

eE1πτ1 e−E1ντ2 eE1ντ3 e−E1πτ4
(
t21π− × t21ν−

)
+

∞∑
n=1

∑
α,ν,ρ,π=±

e−β Enα e(E(n+1)π−Enρ)τ1 e(Enρ−E(n+1)ν)τ2 e(E(n+1)ν−Enα)τ3

× e(Enα−E(n+1)π)τ4 (t(n+1)πα × t(n+1)πρ × t(n+1)νρ × t(n+1)να

)]
, (4.144)

〈
â†(τ1) â†(τ3) â(τ2) â(τ4)

〉
0

=
1

Z0

∞∑
n=2

∑
α,ν,ρ,π=±

e−β Enα e(Enα−E(n−1)π)τ1 e(E(n−2)ρ−E(n−1)ν)τ2

× e(E(n−1)π−E(n−2)ρ)τ3 e(E(n−1)ν−Enα)τ4 (tnαπ × t(n−1)πρ × t(n−1)νρ × tnαν
)
. (4.145)

Note, that due to the order in which the annihilation and creation operators act on the po-
lariton states, the polariton number has a minimum threshold for each average. Thus, ex-
pression (4.145) just contributes if n > 1, expressions (4.140) to (4.142) just contribute if
n > 0 and only the last two expression (4.143) and (4.144) contribute for every polariton
number.
Following the same procedure as for the second-order expansion coefficient, I now perform
a Matsubara transformation according to equations (4.117). For this purpose, I make use of
the fact that the elementary integral

I = γ

β∫
0

dt ea t
t∫

0

dt1 e
b t1

t1∫
0

dt2 e
c t2

t2∫
0

dt3 e
d t3 , (4.146)

has the general solution

I =γ

(
e(a+b+c+d)β − 1

(a+ b+ c+ d)(b+ c+ d)(c+ d)d
− e(a+b+c)β − 1

(a+ b+ c)(b+ c)cd

+
−1 + e(a+b)β

b(a+ b)c(c+ d)
− −1 + ea β

ab(b+ c)(b+ c+ d)

)
. (4.147)

Applying this result to the expressions (4.145) – (4.144), one finds that the variable combi-
nation corresponding to a+ b+ c+ d in (4.147) always vanishes. Therefore, one additionally
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needs the limit:

lim
a+b+c+d→0

e(a+b+c+d)β − 1

(a+ b+ c+ d)(b+ c+ d)(c+ d)d
=

β

(b+ c+ d)(c+ d)d
, (4.148)

leading to the adapted solution of (4.147), which reads

I =γ

(
β

(b+ c+ d)(c+ d)d
− e(a+b+c)β − 1

(a+ b+ c)(b+ c)cd

+
−1 + e(a+b)β

b(a+ b)c(c+ d)
− −1 + ea β

ab(b+ c)(b+ c+ d)

)
. (4.149)

Now, one can use this result to perform the Matsubara transformation leading to the follow-
ing expressions:〈

â†(ωm1) â†(ωm3) â(ωm2) â(ωm4)
〉

0
=

1

Z0 β2

∞∑
n=2

∑
α,ν,ρ,λ=±

(
tnαλ t(n−1)λρ t(n−1)νρ tnαν

)
×

{
1(

i (ωm1 + ωm3) + E(n−2)ρ − Enα
) [ β(

i ωm1 + E(n−1)λ − Enα
) (
i ωm4 + E(n−1)ν − Enα

)
− −1 + eβ(−i(ωm1+ωm3)−E(n−2)ρ+Enα)(
−i ωm3 − E(n−2)ρ + E(n−1)λ

) (
i (ωm1 + ωm3 − ωm4) + E(n−2)ρ − E(n−1)ν

)
× 1(

i (ωm1 + ωm3) + E(n−2)ρ − Enα
)]+

1(
i (ωm1 − ωm4) + E(n−1)λ − E(n−1)ν

)
×

[
−1 + eβ(−i ωm1−E(n−1)λ+Enα)(

−i ωm3 − E(n−2)ρ + E(n−1)λ

) (
i ωm1 + E(n−1)λ − Enα

)2 +

+
−1 + eβ(−i ωm4−E(n−1)ν+Enα)(

i (ωm1 + ωm3 − ωm4) + E(n−2)ρ − E(n−1)ν

) (
i ωm4 + E(n−1)ν − Enα

)2
]}

e−β Enα ,

(4.150)

〈
â†(ωm1) â(ωm2) â†(ωm3) â(ωm4)

〉
0

=
1

Z0 β2

∞∑
n=1

∑
α,ν,ρ,λ=±

e−β Enα (tnαλ tnρλ tnρν tnαν)

×

{
1(

i (ωm1 − ωm4) + E(n−1)λ − E(n−1)ν

) [ −1 + eβ(−i ωm1−E(n−1)λ+Enα)(
i (ωm1 + ωm3 − ωm4) + E(n−1)λ − Enρ

)
× 1(
−i ωm1 − E(n−1)λ + Enα

)2 +
−1 + eβ(−i ωm4−E(n−1)ν+Enα)(

i ωm4 + E(n−1)ν − Enα
)2 (−i ωm3 − E(n−1)ν + Enρ

)]

− 1

(i (ωm3 − ωm4) + Enα − Enρ)

[
−1 + eβ(i(ωm3−ωm4)+Enα−Enρ)

(i (ωm3 − ωm4) + Enα − Enρ)

× 1(
−i ωm3 − E(n−1)ν + Enρ

) (
i (ωm1 + ωm3 − ωm4) + E(n−1)λ − Enρ

)
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+
β(

i ωm1 + E(n−1)λ − Enα
) (
i ωm4 + E(n−1)ν − Enα

)]} , (4.151)

〈
â(ωm4) â†(ωm1) â†(ωm3) â(ωm2)

〉
0

=
1

Z0 β2

∞∑
n=1

∑
α,ν,ρ,λ=±

(
t(n+1)αλ t(n+1)ρλ tnρν tnαν

)
× e−β Enα

{
−1(

i (ωm1 + ωm3) + E(n−1)ν − E(n+1)λ

)
×

[
−1 + eβ(i ωm4+Enα−E(n+1)λ)(

i ωm4 + Enα − E(n+1)λ

)2 (−i ωm1 − Enρ + E(n+1)λ

)
+

−1 + eβ(−i(ωm1+ωm3−ωm4)−E(n−1)ν+Enα)(
i (ωm1 + ωm3 − ωm4) + E(n−1)ν − Enα

)2 (−i ωm3 − E(n−1)ν + Enρ
)]

+
1

(i (ωm1 − ωm4)− Enα + Enρ)

[
1− eβ(−i(ωm1−ωm4)+Enα−Enρ)(
−i ωm3 − E(n−1)ν + Enρ

)
× 1

(i (ωm1 − ωm4)− Enα + Enρ)
(
−i ωm1 − Enρ + E(n+1)λ

)
+

β(
i (ωm1 + ωm3 − ωm4) + E(n−1)ν − Enα

) (
−i ωm4 − Enα + E(n+1)λ

)]} , (4.152)

〈
â(ωm4) â(ωm2) â†(ωm1) â†(ωm3)

〉
0

=
1

Z0 β2

∞∑
n=0

∑
α,ν,ρ,λ=±

e−β Enα
(
t(n+1)λα t(n+2)ρλ

)
×
(
t(n+2)ρν t(n+1)να

){ 1(
i (ωm3 − ωm4) + E(n+1)λ − E(n+1)ν

)
×

[
1− eβ(i ωm3+Enα−E(n+1)ν)(

i ωm3 + Enα − E(n+1)ν

)2 (
i ωm1 + E(n+1)ν − E(n+2)ρ

)
+

−1 + eβ(i ωm4+Enα−E(n+1)λ)(
i ωm4 + Enα − E(n+1)λ

)2 (
i (ωm1 + ωm3 − ωm4) + E(n+1)λ − E(n+2)ρ

)]

− 1(
i (ωm1 + ωm3) + Enα − E(n+2)ρ

) [−1 + eβ(i(ωm1+ωm3)+Enα−E(n+2)ρ)(
−i ωm1 − E(n+1)ν + E(n+2)ρ

)
× 1(

i (ωm1 + ωm3 − ωm4) + E(n+1)λ − E(n+2)ρ

) (
i (ωm1 + ωm3) + Enα − E(n+2)ρ

)
+

β(
−i ωm4 − Enα + E(n+1)λ

) (
−i ωm3 − Enα + E(n+1)ν

)]} , (4.153)
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〈
â(ωm4) â†(ωm1) â(ωm2) â†(ωm3)

〉
0

=
1

Z0 β2

∞∑
n=0

∑
α,ν,ρ,λ=±

e−β Enα
(
t(n+1)λα t(n+1)λρ t(n+1)νρ

)
{

1

(i (ωm1 − ωm4)− Enα + Enρ)

[
β(

−i ωm4 − Enα + E(n+1)λ

) (
−i ωm3 − Enα + E(n+1)ν

)
+

−1 + eβ(−i(ωm1−ωm4)+Enα−Enρ)

(−i (ωm1 − ωm4) + Enα − Enρ)
(
i (ωm1 + ωm3 − ωm4) + Enρ − E(n+1)ν

)]
× 1(
−i ωm1 − Enρ + E(n+1)λ

) +
1(

i (ωm3 − ωm4) + E(n+1)λ − E(n+1)ν

)
×

[
−1 + eβ(i ωm4+Enα−E(n+1)λ)(

i ωm4 + Enα − E(n+1)λ

)2 (−i ωm1 − Enρ + E(n+1)λ

)+

+
−1 + eβ(i ωm3+Enα−E(n+1)ν)(

i ωm3 + Enα − E(n+1)ν

)2 (
i (ωm1 + ωm3 − ωm4) + Enρ − E(n+1)ν

)]}(t(n+1)να

)
, (4.154)

〈
â†(ωm1) â(ωm4) â(ωm2) â†(ωm3)

〉
0

=
1

Z0 β2

∞∑
n=0

∑
α,ν,ρ,λ=±

e−β Enα
(
tnαλ tnρλ t(n+1)νρ t(n+1)να

)
{

1(
i (ωm1 + ωm3) + E(n−1)λ − E(n+1)ν

) [ −1 + eβ(−i ωm1−E(n−1)λ+Enα)(
i ωm1 + E(n−1)λ − Enα

)2 (
i ωm4 + E(n−1)λ − Enρ

)
+

−1 + eβ(i ωm3+Enα−E(n+1)ν)(
i ωm3 + Enα − E(n+1)ν

)2 (
i (ωm1 + ωm3 − ωm4) + Enρ − E(n+1)ν

)]

+
1

(i (ωm1 − ωm4)− Enα + Enρ)

[
β(

i ωm1 + E(n−1)λ − Enα
) (
−i ωm3 − Enα + E(n+1)ν

)
− −1 + eβ(−i(ωm1−ωm4)+Enα−Enρ)(

i ωm4 + E(n−1)λ − Enρ
)

(i (ωm1 − ωm4)− Enα + Enρ)

× 1(
i (ωm1 + ωm3 − ωm4) + Enρ − E(n+1)ν

)]} . (4.155)

Using these results together with the definition (4.135), one finally finds the following ex-
pression for the 4th order coefficient

a
(0)
4 (ωm1, ωm3|ωm2, ωm4) =

1

β Z0

∞∑
n=0

∑
α,ν,ρ,λ=±

e−β Enα
({

t(n−1)λρ t(n−1)νρ tnαλ tnαν

i (ωm1 − ωm4) + E(n−1)λ − E(n−1)ν

×

[
eβ(−i ωm4−E(n−1)ν+Enα) − 1(

i (ωm1 + ωm3 − ωm4) + E(n−2)ρ − E(n−1)ν

) (
i ωm4 + E(n−1)ν − Enα

)2
− eβ(−i ωm1−E(n−1)λ+Enα) − 1(

i ωm3 + E(n−2)ρ − E(n−1)λ

) (
i ωm1 + E(n−1)λ − Enα

)2
]
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+
t(n−1)λρ t(n−1)νρ tnαλ tnαν

i (ωm1 + ωm3) + E(n−2)ρ − Enα

[
β(

i ωm1 + E(n−1)λ − Enα
) (
i ωm4 + E(n−1)ν − Enα

)
+

eβ(−i(ωm1+ωm3)−E(n−2)ρ+Enα) − 1(
i ωm3 + E(n−2)ρ − E(n−1)λ

) (
i (ωm1 + ωm3) + E(n−2)ρ − Enα

)
× 1(

i (ωm1 + ωm3 − ωm4) + E(n−2)ρ − E(n−1)ν

)]} (1− δn,0) (1− δn,1)

+ (1− δn,0)

{
− β(

i ωm1 + E(n−1)λ − Enα
)

(i (ωm3 − ωm4) + Enα − Enρ)

× 1(
i ωm4 + E(n−1)ν − Enα

) +
−1 + eβ(i(ωm3−ωm4)+Enα−Enρ)

(i (ωm3 − ωm4) + Enα − Enρ) (i (ωm3 − ωm4) + Enα − Enρ)

× 1(
i (ωm1 + ωm3 − ωm4) + E(n−1)λ − Enρ

) (
i ωm3 + E(n−1)ν − Enρ

)
+

1

i (ωm1 − ωm4) + E(n−1)λ − E(n−1)ν

[
− eβ(−i ωm4−E(n−1)ν+Enα) − 1(

i ωm4 + E(n−1)ν − Enα
)2 (

i ωm3 + E(n−1)ν − Enρ
)

+
eβ(−i ωm1−E(n−1)λ+Enα) − 1(

i ωm1 + E(n−1)λ − Enα
)2 (

i (ωm1 + ωm3 − ωm4) + E(n−1)λ − Enρ
)]} tnαλ tnαν tnρλ tnρν

+ (1− δn,0)

{
− β(

i ωm1 + E(n−1)λ − Enα
)

(i (ωm1 − ωm4)− Enα + Enρ)

× 1(
i ωm3 + Enα − E(n+1)ν

) +
1− eβ(−i(ωm1+ωm4)+Enα−Enρ)(

i ωm4 + E(n−1)λ − Enρ
)

(i (ωm1 − ωm4)− Enα + Enρ)

× 1

(i (ωm1 − ωm4)− Enα + Enρ)
(
i (ωm1 + ωm3 − ωm4) + Enρ − E(n+1)ν

)
+

1

i (ωm1 + ωm3) + E(n−1)λ − E(n+1)ν

[
eβ(−i ωm1−E(n−1)λ+Enα) − 1(

i ωm1 + E(n−1)λ − Enα
)2 (

i ωm4 + E(n−1)λ − Enρ
)

+
eβ(i ωm3+Enα−E(n+1)ν) − 1(

i ωm3 + Enα − E(n+1)ν

)2 (
i (ωm1 + ωm3 − ωm4) + Enρ − E(n+1)ν

)]} tnαλ tnρλ t(n+1)να t(n+1)νρ

+ (1− δn,0)

{
− β(

i (ωm1 + ωm3 − ωm4) + E(n−1)ν − Enα
) (
i ωm4 + Enα − E(n+1)λ

)
× 1

(i (ωm1 − ωm4)− Enα + Enρ)
− −1 + eβ(−i(ωm1−ωm4)+Enα−Enρ)(

i ωm3 + E(n−1)ν − Enρ
)

× 1

(i (ωm1 − ωm4)− Enα + Enρ) (i (ωm1 − ωm4)− Enα + Enρ)
(
i ωm1 + Enρ − E(n+1)λ

)
+

1

i (ωm1 + ωm3) + E(n−1)ν − E(n+1)λ

[
eβ(i ωm4+Enα−E(n+1)λ) − 1(

i ωm4 + Enα − E(n+1)λ

)2 (
i ωm1 + Enρ − E(n+1)λ

)
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+
eβ(−i ωm1−i ωm3+i ωm4−E(n−1)ν+Enα) − 1(

i (ωm1 + ωm3 − ωm4) + E(n−1)ν − Enα
)2 (

i ωm3 + E(n−1)ν − Enρ
)]} tnαν tnρν t(n+1)αλ t(n+1)νρ

+

{
β(

i ωm4 + Enα − E(n+1)λ

)
(i (ωm1 − ωm4)− Enα + Enρ)

(
i ωm3 + Enα − E(n+1)ν

)
+

eβ(−i ωm1+i ωm4+Enα−Enρ) − 1

(i (ωm1 − ωm4)− Enα + Enρ)
(
i ωm1 + Enρ − E(n+1)λ

)
1

(i (ωm1 − ωm4)− Enα + Enρ)
(
i (ωm1 + ωm3 − ωm4) + Enρ − E(n+1)ν

)
− eβ(i ωm4+Enα−E(n+1)λ) − 1(

i ωm4 + Enα − E(n+1)λ

)2 (
i ωm1 + Enρ − E(n+1)λ

) (
i (ωm3 − ωm4) + E(n+1)λ − E(n+1)ν

)
+

eβ(i ωm3+Enα−E(n+1)ν) − 1(
i (ωm3 − ωm4) + E(n+1)λ − E(n+1)ν

) (
i (ωm1 + ωm3 − ωm4) + Enρ − E(n+1)ν

)
× 1(

i ωm3 + Enα − E(n+1)ν

)2
]}

t(n+1)λα t(n+1)λρ t(n+1)να t(n+1)νρ

+

{
−β(

i ωm4 + Enα − E(n+1)λ

) (
i (ωm1 + ωm3) + Enα − E(n+2)ρ

) (
i ωm3 + Enα − E(n+1)ν

)
+

eβ(i ωm1+i ωm3+Enα−E(n+2)ρ) − 1(
i (ωm1 + ωm3) + Enα − E(n+2)ρ

) (
i ωm1 + E(n+1)ν − E(n+2)ρ

)
× 1(

i (ωm1 + ωm3) + Enα − E(n+2)ρ

) (
i (ωm1 + ωm3 − ωm4) + E(n+1)λ − E(n+2)ρ

)
+

1(
i (ωm3 − ωm4) + E(n+1)λ − E(n+1)ν

)
 i
(
−1 + eβ(i ωm4+Enα−E(n+1)λ)

)
(
ωm4 − iEnα + iE(n+1)λ

)2
× 1(

ωm1 + ωm3 − ωm4 − iE(n+1)λ + iE(n+2)ρ

) +
1(

i ωm1 + E(n+1)ν − E(n+2)ρ

)
× eβ(i ωm3+Enα−E(n+1)ν) − 1(

ωm3 − iEnα + iE(n+1)ν

)2
]}

t(n+1)λα t(n+1)να t(n+2)ρλ t(n+2)ρν

}
ωm1↔ωm3

−
{
a

(0)
2 (ωm1|ωm2) a

(0)
2 (ωm3|ωm4)

}
ωm1↔ωm3

, (4.156)

where the label ωm1 ↔ ωm3 means a symmetrisation with respect to the respective Matsub-
ara frequencies. Note, that the above expression for a(0)

4 (ωm1, ωm3|ωm2, ωm4) only holds in
case that ωm1, ωm3, ωm4 6= 0 because otherwise new poles arise for suitable polariton-index
combinations.
In order to validate the correctness of the above result, I consider the mean-field approach
(3.54) again. Comparing equations (3.54) and (3.50) with expressions (4.67) and (4.68), one
finds that the mean-field Hamiltonian can be rewritten in the form

ĤMF = Ĥ0 + ĤSC
1 |κij=0 + κ z

∑
i

|Ψi|2 , (4.157)
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when using the formal identification

ji(τ) = −κ zΨi . (4.158)

Now, one can use the approach introduced in Section 4.4 to perform an expansion of F
to leading order. This ansatz leads to an expansion of the mean-field free energy FMF in
powers of the order parameter Ψi, provided one notices that the term proportional to |Ψi|
in equation (4.157) contributes only a constant term to FMF . With these considerations in
mind, one finds the explicit result

FMF = F0 −
∑
i

(
aMF

2 |Ψi|2 +
1

4
β aMF

4 |Ψi|4
)
, (4.159)

where the mean-field Landau coefficients are defined via the relations

aMF
2 = a

(0)
2 (0|0) (κ z)2 − κ z , (4.160)

aMF
4 = a

(0)
4 (0, 0|0, 0) (κ z)4 . (4.161)

Hence, the mean-field result can directly be obtained from the free energy expansion co-
efficients a(0)

2 and a
(0)
4 . Thus, in order to check if the result derived for a(0)

4 is correct, I will
first calculate the low-temperature limit, which should coincide with the mean-field result
for ωm1 = ωm2 = ωm3 = ωm4 = 0 according to equation (4.161). Thus, calculating the limits
for frequencies equal to zero and rearranging the terms in an analogous way as I did for the
second-order coefficient, I find the following limit

lim
β→∞

a
(0)
4 (0, 0|0, 0) = 4

∞∑
n=0

∑
α,ν,ρ=±

[
(1− δn,0) tn−α(

E(n−1)α − En−
)

(En− − En+)

×

(
tn−ν tn+α tn+ν(
En− − E(n−1)ν

) +
tn+α t(n+1)ν− t(n+1)ν+(

En− − E(n+1)ν

) )
−

(1− δn,0) t(n+1)−α(
En− − E(n+1)α

)
(En− − En+)

×

(
t(n+1)α+ t(n+1)ν− t(n+1)ν+(

En− − E(n+1)ν

) +
tn−ν tn+ν t(n+1)+α(
En− − E(n−1)ν

) )

−
t(n+1)−α t(n+1)ν− t(n+1)+α t(n+2)ρν(

En− − E(n+1)α

) (
En− − E(n+1)ν

) (
En− − E(n+2)ρ

)
+

(1− δn,0) (1− δn,1) t(n−1)−ρ t(n−1)νρ tn−α tn−ν(
E(n−1)ν − En−

) (
−E(n−2)ρ + En−

) (
−E(n−1)α + En−

)]− lim
β→∞

[
2 a

(0)
2 (0|0) a

(0)
2 (0|0)

]
.

(4.162)

Calculating the remaining limit yields

lim
β→∞

a
(0)
2 (0|0)a

(0)
2 (0|0) = 2

∞∑
n=0

∑
α,λ,ν,ρ=±

[
−

(1− δn,0) t2nαρ t
2
nαρ(

−E(n−1)ρ + Enα
)2 (

E(n−1)ν − Enλ
)

−
(1− δn,0) t2nλν t

2
nλν(

E(n−1)ν − Enλ
) (
Enα − E(n+1)ρ

)2 +
t2(n+1)νλ t

2
nλν(

Enλ − E(n+1)ν

) (
Enα − E(n+1)ρ

)2
+

(1− δn,0) t2nαρ t
2
(n+1)νλ(

−E(n−1)ρ + Enα
)2 (

Enλ − E(n+1)ν

)] . (4.163)
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Inserting this result into equation (4.162) leads to the final result for the zero-temperature
limit

a
(0)
4 (0, 0|0, 0) = 4

∞∑
n=0

∑
α,ν,ρ=±

[
(1− δn,0) (1− δn,1) t(n−1)−ρ t(n−1)νρ tn−α tn−ν(

E(n−1)ν − En−
) (
−E(n−2)ρ + En−

) (
−E(n−1)α + En−

)]

−
t(n+1)−α t(n+1)ν− t(n+1)+α t(n+2)ρν(

En− − E(n+1)α

) (
En− − E(n+1)ν

) (
En− − E(n+2)ρ

)
+

(1− δn,0) tn−α(
E(n−1)α − En−

)
(En− − En+)

(
tn−ν tn+α tn+ν(
En− − E(n−1)ν

) +
tn+α t(n+1)ν− t(n+1)ν+(

En− − E(n+1)ν

) )

−
(1− δn,0) t(n+1)−α(

En− − E(n+1)α

)
(En− − En+)

(
t(n+1)α+ t(n+1)ν− t(n+1)ν+(

En− − E(n+1)ν

) +
tn−ν tn+ν t(n+1)+α(
En− − E(n−1)ν

) )

−
(1− δn,0) t2n−ρ(
En− − E(n−1)ρ

)2
{

t2n−ν(
En− − E(n−1)ν

) +
t2(n+1)ν−(

En− − E(n+1)ν

)}

−
t2(n+1)ρ−(

En− − E(n+1)ρ

)2
{

(1− δn,0) t2n−ν(
En− − E(n−1)ν

) +
t2(n+1)ν−(

En− − E(n+1)ν

)}] . (4.164)

If one now compares this result with expressions (3.96) and (3.86) obtained from Rayleigh-
Schrödinger perturbation theory, one finds the correspondence

aMF
4 = a

(0)
4 (0, 0|0, 0) (κ z)4 , (4.165)

and thus I confirmed that the calculated fourth-order contribution is consistent within the
zero-temperature limit. Next, I determine the first-order hopping correction a

(1)
4 . In order

to determine this correction in Matsubara space, I can use the integral properties and fre-
quency conservation again, which leads to the relation

a
(1)
4 (i, ωm1; i, ωm3|j, ωm2; i, ωm4) = a

(0)
4 (i, ωm1; i, ωm3|i, ωm4) a

(0)
2 (j, ωm2) δωm1+ωm3,ωm2+ωm4 .

(4.166)
Hence the first-order hopping correction for the fourth-order current coefficient is given by
expressions I already calculated and can therefore be included right away.
Finally, I derived the complete equation for the grand-canonical free energy in Matsubara
space up to fourth order in the symmetry-breaking currents and first order in the hopping
strength. However, this still is not the desired Ginzburg-Landau theory. Since the free en-
ergy is a functional of the currents j, j∗, which are no physical quantities, it is not a proper
thermodynamic potential. Fortunately, there exists a well-known mathematical procedure
to map this functional into a genuine thermodynamic potential. This procedure will be pre-
sented within the next section.

4.7 Ginzburg-Landau Action
Within this section I finally derive the Ginzburg-Landau action for the JCH model, which
is the proper thermodynamic potential for this system. Since the symmetry-breaking cur-
rents j, j∗ are no physical quantities, one has to transform them into physical fields. This
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transformation can be accomplished by means of a Legendre transformation of the free-
energy functional to an effective action. In order to do this in a neat way, I first rewrite the
grand-canonical free energy in Matsubara space in the following form

F [j, j∗] = F0 −
1

β

∑
i,j

∑
ωm1,ωm2

{
Mij (ωm1, ωm2) ji (ωm1) j∗j (ωm2)

+
∑
k,l

∑
ωm3,ωm4

Nijkl (ωm1, ωm2, ωm3, ωm4) ji(ωm1)jj(ωm2)j∗k(ωm3)j∗l (ωm4)

 , (4.167)

where the new introduced coefficients are defined as

Mij(ωm1, ωm2) =
[
a

(0)
2 (i, ωm1) δi,j + κij a

(0)
2 (i, ωm1) a

(0)
2 (j, ωm2)

]
δωm1,ωm2 , (4.168)

and

Nijkl (ωm1, ωm2, ωm3, ωm4) =
1

4
a

(0)
4 (i, ωm1; i, ωm3|i, ωm4)

[
δi,j δk,l δi,k

+ κik a
(0)
2 (k, ωm2) δi,j δi,l + κij a

(0)
2 (j, ωm3) δi,k δk,l

]
δωm1+ωm3,ωm2+ωm4 . (4.169)

Now I define the Legendre transformation by self-consistently introducing the order param-
eter field ψi(ωm) according to

ψi (ωm) = 〈âi(ωm)〉0 = β
δF

δj∗i (ωm)
. (4.170)

Note, that this Ginzburg-Landau order parameter field differs from the Landau order param-
eter (3.48) by being space and time dependend. Inserting expression (4.167) into equation
(4.170) yields the following relation for the Ginzburg-Landau order parameter field

ψi (ωm) =−
∑
p

∑
ωm1

{
Mpi (ωm1, ωm) jp (ωm1)

−2
∑
k,l

∑
ωm2,ωm3

Nlpki (ωm1, ωm2, ωm3, ωm) jl(ωm1)jp(ωm2)j∗k(ωm3)

 . (4.171)

The Legendre transformation (4.170) defines the new Ginzburg-Landau action Γ, which
takes on the following form

Γ [ψi (ωm) , ψ∗i (ωm)] = F [j, j∗]− 1

β

∑
i

∑
ωm

[ψi (ωm) j∗i (ωm) + ψ∗i (ωm) ji(ωm)] , (4.172)

where ψ and j are conjugate variables satisfying the Legendre relations

ji(ωm) = −β δΓ

δψ∗i (ωm)
, j∗i (ωm) = −β δΓ

δψi (ωm)
. (4.173)
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Using the fact, that physical situations correspond to j = j∗ = 0, together with the above
relations, defines the following equations of motion

δΓ

δψ∗i (ωm)
=

δΓ

δψi (ωm)
= 0 . (4.174)

Thus, the equilibrium order parameter ψeq is defined by the condition that the Ginzburg-
Landau action is stationary with respect to fluctuations around it. Furthermore, comparing
with equation (4.172) it is clear to see that, evaluating the effective action for the equilibrium
field ψeq yields the physical grand-canonical free energy:

Γ|ψ=ψeq = lim
j→0
F . (4.175)

Since I want the effective action to be a functional only of the order parameter field I still
need to get rid of residual currents. In order to achieve this, I can use expression (4.171) to
define the currents as functionals of the order parameter field . Eventually, this relation can
be recursively inserted to obtain the thermodynamic potential as a functional of only the or-
der parameter field . Unfortunately this is quite complicated because of the inner structure
of the coefficients Mpi and Nlpki. However, if one knows the inverse matrix M−1

qi (ωm1, ωm)
one can determine an expression for j in dependence of Ψ recursively. Therefore, I first
consider expression (4.168) and calculate its inverse using the ansatz

M−1
ij (ωm1, ωm2) = m

(0)
ij +m

(1)
ij κij +O

(
κ2
ij

)
, (4.176)

and demand that the following relation has to be satisfied∑
k

M−1
ik (ωm1, ωm2)Mkj(ωm1, ωm2)

!
= δi,j . (4.177)

Using definition (4.168) this ansatz leads to

δi,j =

[
m

(0)
ij a

(0)
2 (j, ωm1) +

∑
k

m
(0)
ik κkj a

(0)
2 (k, ωm1) a

(0)
2 (j, ωm2)

+m
(1)
ij κij a

(0)
2 (j, ωm1)

]
δωm1,ωm2 . (4.178)

Since this relation has to be true for all possible values of κ, I find the condition

δij = m
(0)
ij a

(0)
2 (j, ωm1) δωm1,ωm2 , (4.179)

from which follows that

m
(0)
ij =

δi,j δωm1,ωm2

a
(0)
2 (j, ωm1)

. (4.180)

Furthermore, one finds the condition

0 =

[∑
k

m
(0)
ik κkj a

(0)
2 (k, ωm1) a

(0)
2 (j, ωm2) +m

(1)
ij κij a

(0)
2 (j, ωm1)

]
δωm1,ωm2 , (4.181)
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which is solved by

m
(1)
ij = −a

(0)
2 (j, ωm2)

a
(0)
2 (j, ωm1)

δωm1,ωm2 . (4.182)

Combining result (4.180) and equation (4.182) leads to the following relation for the inverse
matrix M−1

ij :

M−1
ij (ωm1, ωm2) =

1

a
(0)
2 (j, ωm1)

[
δi,j − a(0)

2 (j, ωm2)κij

]
δωm1,ωm2 . (4.183)

Having obtained this inverse matrix, I can use it to transform equation (4.171) into recur-
sive equation for the currents j, j∗. Simply rearranging the terms in equation (4.171) and
multiplying with the inverse matrix M−1

ip yields

ji (ωm) =−
∑
p

∑
ωm1

M−1
ip (ωm, ωm1)

[
ψp (ωm1)

−2
∑
q,k,l

∑
ωm2,ωm3

Nlqkp (ωm1, ωm2, ωm3, ωm) jl(ωm1)jq(ωm2)j∗k(ωm3)

 . (4.184)

Reinserting expression (4.184) into itself and keeping just contributions up to first order in
the hopping leads to the relation

ji (ωm) =−
∑
p

∑
ωm1

M−1
ip (ωm, ωm1)

[
ψp (ωm1)

−2
∑
q,k,l

∑
ωm2,ωm3

Nlqkp (ωm1, ωm2, ωm3, ωm) Jl(ωm1)Jq(ωm2)J∗k (ωm3)

 , (4.185)

where I defined the abbreviation

Ji (ωm) = −
∑
p

∑
ωm1

M−1
ip (ωm1, ωm)ψp (ωm1) . (4.186)

Using result (4.185) and inserting it into equation (4.172) leads to the expression

Γ [ψi (ωm) , ψ∗i (ωm)] = F [J, J∗] +
1

β

∑
i,p

∑
ωm,ωm1

ψi (ωm)M−1
ip (ωm, ωm1)

[
ψ∗p (ωm1)

−2
∑
q,k,l

∑
ωm2,ωm3

Nlqkp (ωm1, ωm2, ωm3, ωm) J∗l (ωm1)J∗q (ωm2)Jk(ωm3)

+ c.c. (4.187)

The next step is to insert expansion (4.167) for the free energy into equation (4.187). Us-
ing equation (4.185) once again and keeping just the contributions up to first order in the
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hopping strength, one arrives at the final expression for the Ginzburg-landau action which
reads

Γ [ψi (ωm) , ψ∗i (ωm)] ≈ F0 +
1

β

∑
i

∑
ωm1

 |ψi (ωm1)|2

a
(0)
2 (i, ωm1)

−
∑
j

κij ψj (ωm1)ψ∗i (ωm1)

−
∑

ωm2,ωm3,ωm4

a
(0)
4 (i;ωm1, ωm3|ωm2, ωm4)ψi (ωm1)ψi (ωm3)ψ∗i (ωm2)ψ∗i (ωm4)

4 a
(0)
2 (i, ωm1) a

(0)
2 (i, ωm2) a

(0)
2 (i, ωm3) a

(0)
2 (i, ωm4)

}
. (4.188)

Formally comparing this result with the expansion of the free energy (4.108) it is to see that
the two terms in the Ginzburg-Landau action corresponding to the coefficient a(1)

4 of the
free energy expansion vanish. Considering the diagrammatic expansion, this result means,
that the one-particle reducible diagrams vanish. Thus, it is to see that the Legendre trans-
formation of the grand-canonical free energy, which is given by the sum over all connected
diagrams, leads to an effective action, which is given by the sum over all one-particle irre-
ducible diagrams.
In order to obtain physical results from equation (4.188), I insert this expression in the sta-
tionary condition (4.174), which then takes on the following form

0 =

 1

a
(0)
2 (i, ωm)

−
∑
j

κij

ψi (ωm)

−
∑

ωm1,ωm2,ωm3

a
(0)
4 (i, ωm1; i, ωm3|i, ωm2; i, ωm)ψi (ωm1) ψi (ωm3) ψ∗i (ωm2)

2 a
(0)
2 (i, ωm1) a

(0)
2 (i, ωm2) a

(0)
2 (i, ωm3) a

(0)
2 (i, ωm)

(4.189)

Equation (4.188) is in fact the proper thermodynamic potential for the JCH model up to the
desired accuracy in the order parameter and the hopping parameter. However, as should be
clear from the approximations performed so far, this expression can be extended to include
higher order corrections. In the next chapter this result is used to analyse the thermody-
namic properties of the considered system.
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Chapter 5

Results from Ginzburg-Landau Action
Having derived the Ginzburg-Landau action in the previous chapter, I now use this result
to extract some thermodynamic properties of the JCH model. The starting point for these
calculations is the physical stationarity condition defined in equation (4.189). The results
following from this ansatz are examined in the following sections for both static and dy-
namic order fields ψi (ωm).

5.1 Static Case
First, I consider an equilibrium situation, where the order parameter field is constant in
space and time

ψi (ωm) =
√
β ψeq δωm,0 . (5.1)

Inserting this ansatz in the stationarity condition (4.189) yields for the equilibrium order
parameter the following relation

|ψ|2eq =
2

β

[
a

(0)
2 (0|0)

]3

a
(0)
4 (0, 0|0, 0)

[
1− a(0)

2 (0|0) κ z
]
. (5.2)

Note that this expression is strictly local and site independent. For this reason I dropped the
site index i of the coefficients a(0)

2 (i; 0|0) and a(0)
4 (i; 0, 0|0, 0).

On the one hand, this expression is an estimate for the condensate density in the static case.
On the other side, it is to see that, according to relation (4.175), all physical quantities can be
obtained by calculating the derivatives of the effective Ginzburg-Landau action evaluated at
the equilibrium field ψeq. Thus, for example the average polariton number per lattice site
and the compressibility can be calculated following the relations

〈n〉 = − 1

Ns

∂Γ

∂µ

∣∣∣∣
ψ=ψeq

, (5.3)

and

κT = − 1

Ns

∂2Γ

∂µ2

∣∣∣∣
ψ=ψeq

. (5.4)

Note that, due to relation (4.175), all relations which normally can be derived from the
grand-canonical free energy F , can analogously be calculated from the Ginzburg-Landau
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Chapter 5 Results from Ginzburg-Landau Action

action Γ, if evaluated at ψeq in the end.
Furthermore, one can read off from equation (5.2) the location of the quantum phase tran-
sition. The condition that the equilibrium order parameter vanishes, yields

0=
1

a
(0)
2 (0|0)

− κ z . (5.5)

Inserting equation (4.127) and comparing this with formula (4.61) one finds that expression
(5.5) is exactly the mean-field result for finite temperatures.

5.2 Dynamic Case
Within this section I analyse the 2-point Matsubara Green’s function for the case of a dy-
namic order field ψi (ωm) in the Mott phase. In particular, I determine the dispersion rela-
tions for this correlation function in the Mott phase. These correlation functions describe
the system response to an external disturbance. It is well known from the studies of critical
phenomena that correlation functions become arbitrarily strong at the critical values [7].
Thus, the dispersion relations can be obtained from the poles of the real-time Green’s func-
tions [165].
In Section 4.4 I showed that the imaginary-time Green’s functions can be obtained from the
grand-canonical free energy by means of functional derivatives with respect to the symme-
try-breaking currents. For example the 2-point Green’s function reads

δ2F [ji (ωm) , j∗i (ωm)]

δji1 (ωm1) δj∗i2 (ωm2)

∣∣∣∣∣
j=j∗=0

= G
(0)
1 (i1, ωm1|i2, ωm2) . (5.6)

In a similar manner one can obtain the inverse Green’s function in the Mott phase [159] from
the effective action Γ given in (4.172) via

δ2Γ [ψi (ωm) , ψ∗i (ψm)]

δψi1 (ωm1) δψ∗i2 (ωm2)

∣∣∣∣∣
ψ=ψ∗=0

=
[
G

(0)
1 (i1, ωm1|i2, ωm2)

]−1
. (5.7)

From equation (4.188) I see that this yields the following expression

[
G

(0)
1 (i1, ωm1|i2, ωm2)

]−1
≡ 1

β

[
δi1,i2

a
(0)
2 (i1, ωm1)

− κi1,i2

]
δωm1,ωm2 . (5.8)

This inverse Green’s function obviously depends just on one Matsubara frequency and, due
to the definition of κi,j in (4.69), on the distance between the lattice sites i1, i2. Therefore,
one can rewrite this functions as follows:[

G
(0)
1 (i1, ωm1|i2, ωm2)

]−1
=
[
G

(0)
1 (i1 − i2, ωm1)

]−1
δωm1,ωm2 . (5.9)

The property, that this function only depends on the distance between neighbouring sites,
suggests to further evaluate it in Fourier space. Thus, I perform a Fourier transformation
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which reads [
G̃

(0)
1 (ωm1,k)

]−1
=

1

Ns

∑
i1,i2

[
G

(0)
1 (i1 − i2, ωm1)

]−1
e−ik(ri1−ri2)

=
1

β Ns

∑
i1,i2

[
δi1,i2

a
(0)
2 (i1, ωm1)

− κi1,i2

]
e−ik(ri1−ri2)

=
1

β

 1

a
(0)
2 (ωm1)

− 1

Ns

∑
i1,i2

κi1,i2 e
−ik(ri1−ri2)

 . (5.10)

Here I dropped the site index of the coefficient a(0)
2 (i1, ωm1) in the last equivalence because

this coefficient is a local and site independent quantity and, thus, the sum over the lattice
sites simply yields ∑

i1

1

a
(0)
2 (i1, ωm1)

=
Ns

a
(0)
2 (ωm1)

. (5.11)

In order to further calculate the expression (5.10) I make use of the definition (4.69) again
and introduce the relation

ri2 = ri1 + G , (5.12)

where the lattice vector G is defined by equation (3.40). Inserting this relation into (5.10)
leads to [

G̃
(0)
1 (ωm1,k)

]−1
=

1

β

[
1

a
(0)
2 (ωm1)

− κ
∑
G

eikG

]

=
1

β

[
1

a
(0)
2 (ωm1)

− J(k)

]
, (5.13)

where J(k) is defined according to equation (3.45) as

J (k) = 2κ

3∑
i=1

cos (ki a) . (5.14)

Rearranging the terms in relation (5.13) and renaming the occurring Matsubara frequency
ωm1 → ωm leads to the following expression for the 2-point Green’s function in Fourier space:

G̃
(0)
1 (ωm,k) =

β a
(0)
2 (ωm)

1− J(k) a
(0)
2 (ωm)

, (5.15)

However, since one needs the real-time Green’s function in order to extract the dispersion
relations, I furthermore perform an analytic continuation to real frequencies

i ωm → ω + i 0+ . (5.16)

Using the above transformation and multiplying with a factor −i leads to the real-time 2-
point Green’s function [158] which then takes on the form

G̃
(0)
1 (ω,k) =

−i β a(0)
2 (ω)

1− J (k) a
(0)
2 (ω)

. (5.17)
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The pole of this function is obviously given by the relation

1 = J (k) a
(0)
2 (ω) . (5.18)

Inserting equation (4.127) leads to the following, explicit form for this pole:

1
!

=
J (k)

Z0

∑
α,α′

{
t21α′−

E1α′ − ω
−
∞∑
n=1

e−βEnα

[
t2(n+1)α′α

Enα − E(n+1)α′ + ω
+

t2nαα′

Enα − E(n−1)α′ − ω

]}
.

(5.19)
Thus, I successfully derived the pole of the 2-point correlation function. The further inves-
tigation of this equation leads to polariton excitation spectra and will be performed in the
next section.

5.3 Excitation Spectra in the Mott Phase
To gain more insight into expression (5.19), I first consider the special limit for zero tem-
perature T = 0. Therefore, I consider just the lowest excitations and thus fix the polariton
species to α = −. Using these assumptions one finds that, for polariton numbers n > 0,
equation (5.19) reduces to the simplified formula

1 = J (k)
∑
α′

[
t2(n+1)α′−

E(n+1)α′ − En− − ω
−

t2n−α′

En− − E(n−1)α′ − ω

]
. (5.20)

Solving this equation for ω yields the following two dispersion relations

ω1 =
1

2

[
E(n+1)− − E(n−1)− + J(k)

(
t2n−− − t2(n+1)−−

)
−
({
E(n−1)− − E(n+1)−

−J(k)
[
t2n−− − t2(n+1)−−

]}2
− 4

{
J(k)E(n+1)−t

2
n−− − E2

n− + E(n−1)−
(
En− − E(n+1)−

+J(k) t2(n+1)−−

)
+ En−

[
E(n+1)− − J(k)

(
t2n−− + t2(n+1)−−

)]} 1
2

)]
, (5.21)

and

ω2 =
1

2

[
E(n+1)− − E(n−1)− + J(k)

(
t2n−− − t2(n+1)−−

)
+
({
E(n−1)− − E(n+1)−

−J(k)
[
t2n−− + t2(n+1)−−

]}2
− 4

{
J(k)E(n+1)−t

2
n−− − E2

n− + E(n−1)−
(
En− − E(n+1)−

+J(k) t2(n+1)−−

)
+ En−

[
E(n+1)− − J(k)

(
t2n−− + t2(n+1)−−

)]} 1
2

)]
. (5.22)

Putting now J(k) = 0 in order to clarify the physical meaning of the equations (5.21) and
(5.22), yields the very simple relations:

ω
(0)
h− := ω1 = En− − E(n−1)− , (5.23)

ω
(0)
p− := ω2 = E(n+1)− − En− . (5.24)
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Figure 5.1: Excitation spectra at T = 0 K, ∆ = 0 for n = 1, µeff = µcrit ≈ −0.78 g,

κ = κcrit ≈ 0.16 g/z. The left figure shows particle- (solid line) and hole
excitations (dashed line) corresponding to ω−−p =̂ E2− − E1− and ω−−h =̂
E1− − E0−. The right figure shows the particle excitation spectrum for
ω+−
p =̂ E2+ − E1− .
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Figure 5.2: Excitation spectra at T = 0 K, ∆ = 0 for n = 1, µeff = µcrit ≈ −0.78 g,
κ z/g = 0.1. The left figure shows the lower-polariton particle- (solid line)
and hole excitations (dashed line). The right figure shows mixed-particle
excitation spectrum for ω+−

p .

From these relations it is clear to see that ωh− is the energy needed to remove a lower-branch
polariton from a lattice site occupied by n lower-branch polaritons. For this reason I refer
to this energy as a lower-branch-hole excitation. In contrast the frequency ωp− describes
the energy required to add a lower-branch polariton to a site that is already occupied by n
lower-branch polaritons. Therefore, I refer to it as a lower-branch-particle excitation. With
this result in mind one can interpret the relations which I subsequently derive.
Note that, the dispersion relations (5.21) and (5.22) are not exact, since the terms with α =
+ in (5.19) significantly contribute to the excitation spectrum as well. In order to get the
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Figure 5.3: Excitation spectra at T = 0 K, ∆ = 0 for n = 2, µeff = µcrit ≈ −0.37 g,
κ = κcrit ≈ 0.0125 g/z. The left figure shows particle- (solid line) and hole
excitations (dashed line) corresponding to ω−−p =̂ E3− − E2− and ω−−h =̂
E2− − E1−. The right figure shows particle- (solid line) and hole (dashed
line) excitations corresponding to ω+−

p =̂ E3+−E2− and ω−+
h =̂ E2−−E1+ .
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Figure 5.4: Excitation spectra at T = 0 K, ∆ = 0 for n = 2, µeff = µcrit ≈ −0.37 g,
κ z/g = 0.1. The left figure shows the lower-polariton particle- (solid
line) and hole excitations (dashed line). The right figure shows the mixed
particle- (solid line) and hole (dashed line) excitations.

correct dispersion relations for the case of vanishing temperature and n > 0 one needs to
analyse the full expression

1 = −J(k)
∑
α,α′

[
t2(n+1)α′α

Enα − E(n+1)α′ + ω
+

t2nαα′

Enα − E(n−1)α′ − ω

]
. (5.25)

The dispersion relations resulting from this equation have been calculated numerically. For
the case of resonance (∆ = 0) the spectra are depicted in the Figures 5.1 – 5.4 for differ-
ent sets of parameters. All these pictures show the dispersion ω(k) divided by the coupling
strength g in the first Brillouin zone.
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In Figure 5.1 I plot the spectra for n = 1 at the tip of the lobe. For the case of n = 1 one
always finds three excitation branches due to the involvement of the ground state. Two of
these branches, depicted in the left diagram of Figure 5.1, lie significantly lower in energy
then the third branch depicted in the right diagram. These two branches describe particle-
(solid line) and hole excitations (dashed line) between lower-polariton states corresponding
toω−−p =̂ E2−−E1− andω−−h =̂ E1−−E0−. In contrast, the single branch in the right diagram
in Figure 5.1 describes a mixed particle excitation between a lower- and an upper-polariton
state corresponding to ω+−

p =̂ E2+ −E1−. Comparing Figure 5.1 and Figure 5.2 one finds an
additional property of this mixed state particle excitation, which is, that it remains almost
constant at ω(k)/g ≈ 3.2 over the whole Brillouin zone.
Figure 5.3 shows the same relations as Figure 5.1 but for the polariton number n = 2. It
is clear to see that in this case the particle excitations ω−−p =̂ E3− − E2− and hole excita-
tions ω−−h =̂ E2− − E1−, depicted in the left diagram, formally show the same behaviour
as for n = 1, but at much lower energies. The right diagram in Figure 5.3 shows the mixed
particle- and hole excitations. By comparison one finds that here the particle excitation
ω+−
p =̂ E3+ − E2− have higher energies than ω+−

p =̂ E2+ − E1− in the case of n = 1.
The changes, which the excitation spectra experience inside the Mott lobes, can be observed
in the Figures 5.2 and 5.4. These diagrams show the same situation as Figures 5.1 and 5.3 but
for κ < κcrit. In general, this results in a shift to higher energies for small values of k a ≈ 0
and a shift to lower energies for high values of k a ≈ π. This effect is almost negligible for the
mixed excitations but quite strong for the lower-polariton excitations. Considering the lat-
ter, one can see from Figures 5.2 and 5.4 that, a lower-polariton particle- or hole excitation
needs a finite amount of energy even in the long-wavelength limit, i.e. k = 0. Furthermore,
one can see that within the Mott lobe, i.e. for κ < κcrit, the lower-polariton particle- and
hole excitations are always gaped in the whole Brioullin zone. This situation is opposite to
the one found at the tip of the lobe, i.e. µeff = µcrit, κ = κcrit, where the gap between the two
branches vanishes for k a = 0.
At this point it is worth noticing that the excitation spectra discussed so far can, in princi-
ple, be experimentally observed using photoluminescence spectroscopy [63, 89, 167]. How-
ever, in the considered system the number of excitations is conserved, but this condition
is violated by the fact, that the above excitation spectra describe the addition or removal of
particles and holes from the outside, which is why they still depend on the chemical po-
tential µ. Therefore, it is convenient to consider the simultaneous creation of particle-hole
pairs, which can be detected by means of transmission spectroscopy [97, 168, 169]. Their
respective dispersion relations are given by relations of the form

ωαα
′

pair = ωαγp − ω
γα′

h . (5.26)

Since these pair-excitations do not change the number of polaritons in the system, they
do not depend on the chemical potential anymore. The resulting dispersion relations have
been obtained numerically and are depicted in the Figures 5.5 – 5.7 in the case of resonance
(∆ = 0) for zero temperature (T = 0 K) and various values for κ. For each polariton number
I plot all possible particle-hole excitations, which leads in general to four different disper-
sion relations, except for n = 1, where, due to the involved ground state, only two dispersion
relations emerge. All particle-hole excitations share the common property, that, for vanish-
ing hopping strength, their dispersion relation is constant over the first Brillouin zone. This
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Figure 5.5: Pair excitation at T = 0 K, ∆ = 0 for n = 1, µeff = µcrit and different val-
ues for κ. The green line corresponds to κ = 0, the red line corresponds
to κ z/g = 0.1 and the blue line corresponds to κ = κcrit.
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Figure 5.6: Pair excitation at T = 0 K, ∆ = 0 for n = 2, µeff = µcrit ≈ −0.37 g and
different values for κ. The green line corresponds to κ = 0, the red line
corresponds to κ z/g = 0.1 and the blue line corresponds to κ = κcrit ≈
0.0125 g/z.
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Figure 5.7: All pair excitations at T = 0 K, ∆ = 0 for n = 2, µeff = µcrit and κ = κcrit.

reflects the fact that, in this deep Mott limit, a constant finite energy is necessary to over-
come the pinning of a particle on one site and a different finite energy is needed to create
a hole on another site. The sum of these energies for the different particle and hole species
defines the energy of the green line in Figures 5.5 – 5.7. Increasing the parameter κ, and
therefore enabling photons to move on the lattice, allows to diminish the pair-excitation
energy. This situation corresponds to the red line in these figures. However, it also can be
seen that, as long as one remains in the Mott phase, a finite energy is necessary in order to
create particle-hole pairs. This situation changes only for the lower-polariton-pair excita-
tions, when the tip of the lobe is reached, corresponding to the blue lines in Figure 5.5 and
Figure 5.6. At this point the creation of particle and hole excitations does not cost any en-
ergy anymore and, thus, this point marks the onset of superfluidity. In fact one often makes
use of this property to define a Mott insulator via the energy gap in the excitation spectra.
From this approach follows that the phase boundary can be defined as the points where
this excitation gap vanishes for the first time. Therefore, regarding the above diagrams, it
becomes also evident that only the lower polaritons undergo a quantum phase transition
from a Mott insulator to a superfluid, whereas all other polariton species excitations remain
gaped. This fact becomes even more obvious in Figure 5.7, where I plot all pair excitation for
n = 2 and κ = κcrit in one diagram. From this graphic it is clear to see that ω−−pair lies lowest in
energy and all other excitations need considerably more energy. This observation justifies
a posteriori that the Schrödinger perturbation theory was only investigated for the lowest
polariton branch within Section 3.6 and Section 3.7. As a result I will henceforth focus my
considerations on the lower polaritons, as they have the most physical impact in this model.
Finally, I evaluate equation (5.19) numerically, in order to obtain the temperature depended
dispersion relations. The resulting diagrams are depicted in Figure 5.8 at different fractional
fillings µeff for three different temperatures. In general, temperature fluctuations increase
the particle-hole excitation energies. This effect is larger near the chemical potential that
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Figure 5.8: Pair excitations at T > 0 K for ∆ = 0, κ = κcrit|T=0 and n = 1. Left dia-
gram at µeff/g = −0.8, right diagram at µeff/g = −0.98 for T = 0 K (black
curve), T = 0.01 kB/g (blue curve) and T = 0.1 kB/g (red curve).

determines the deep Mott boundaries of the lobe and weaker at the tip of the lobe, which is
in agreement with the behaviour of the phase boundary at finite temperatures 4.1.
Note that the results obtained within this section are in good qualitative agreement with
recent numerical simulations in 1D based on Monte-Carlo simulations [170], variational-
cluster approaches [163, 171] and density-matrix-renormalization-group appraoches [172]
and have been also obtained in Ref. [173].

5.4 Energy Gap
In the previous section I found that the energy gap in the excitation spectrum of polariton
particle-hole pairs is an intrinsic property of the Mott insulator can be used to define this
phase and the transition to the superfluid phase. For this reason I investigate this excitation
gap at k = 0 more thoroughly within the present section. The easiest way to derive an ana-
lytic expression for this gap from the dispersion relations obtained in the previous section,
is a Taylor expansion up to zeroth order in k with respect to k0 = 0. This approach directly
yields the energy gap:

ωp,h(k) ≈ Egap +O(k2) . (5.27)

The resulting dependencies for the energy gap found from the numerical evaluation are pre-
sented in Figures 5.9 and 5.10. In the left diagram of Figure 5.9 one can compare the excita-
tion gaps for the different Mott lobes n = 1 and n = 2 at zero temperature. Corresponding
to the size of their respective Mott lobes the energy gap for n = 2 is much smaller and closes
much faster than for n = 1 and thus the superfluid phase is reached at much smaller values
of the hopping strength. Note that, both curves for n = 1 and n = 2 are plotted for their
respective critical chemical potential µeff = µcrit. These results are in agreement with the
energy gap as found by Ref. [173]. Note, choosing a different chemical potential only leads
to a homogeneous linear shift of the curves along the y-axis. In order to observe when the
pair excitation gap vanishes, it is therefore recommendable to investigate rather the pair ex-
citation energy gap Epair

gap = Ep
gap − Eh

gap. For zero temperature the resulting gap for the first
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Figure 5.9: Energy gap for T = 0 K. The left diagram shows Egap for n = 1 (red
curve) and n = 2 (blue curve) at their respective critical chemical poten-
tials µcrit. The gap of lower-polariton particle excitation corresponds to
the solid lines and the hole excitation corresponds to the dashed lines.
The right diagram shows the dependence of the lower-polariton pair-
excitation gap Epair

gap for n = 1 from the detuning for different hopping
parameters κ z. The red curve corresponds to κ = κcrit, the blue curve
corresponds to κ z/g = 0.1 and the black curve to κ = 0.

lobe n = 1 is depicted in the the right diagram in Figure 5.9 in dependence of the detuning
and for different values of the hopping strength κ. As expected, the system always remains
in the Mott phase if hopping is forbidden, i.e. κ = 0. On the other hand, for a finite hopping
probability the energy gap can also vanish depending on the detuning ∆. From this fact it
is clear to see that the detuning between cavity mode frequency and atomic transition fre-
quency provides a perfect experimental knob to tune the system from the superfluid to Mott
phase.
The temperature dependence of the particle-hole pair excitation gap is depicted in Figure
5.10. The general tendency is obviously that the energy gap for a fixed hopping strength in-
creases with temperature. It can be seen that this effect is strongest at the tip of the Mott
lobe, i.e. κ = κcrit, and that it decreases when the hopping gets smaller. If hopping is strictly
forbidden, the energy gap is not altered by temperature at all. Now, at a first glance, the fact
that the energy gap increases with rising temperature, seems counter-intuitive. However, as
shown in Section 3.7, one can not conclude from this fact that the Mott phase is increasing.
Strictly speaking, there is no proper Mott insulator at finite temperature but a crossover be-
tween a phase with very small compressibility and a normal phase. Nevertheless, this effect
is also known from ultra-cold atoms in optical lattices [161] and is interpreted as thermal
tunnelling blockade. This would also explain why the energy gap remains unaffected for
vanishing hopping strength κ = 0.
Furthermore, since the energy gap of lower-polariton particle-hole excitation is experimen-
tally accessible via transmission spectroscopy, one might use this effect as a thermometer
to determine the temperature of the system.
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Figure 5.10: Temperature dependence of the energy gap for n = 1 and ∆ = 0. The
black line corresponds to κ = 0, the blue line corresponds to κ z/g = 0.1
and the red line corresponds to the critical value κcrit ≈ 0.16 g/z.

5.5 Effective Mass
From the study of electronic bands in solid-state systems it is known that excitations of the
system form quasi-particles, which can freely move through the solid with a motion gov-
erned by their effective mass. This effective mass is proportional to the respective energy
band curvature. Motivated by this analogy, one can further investigate the dispersion rela-
tions of the polariton-holes and -particles in order to extract their effective masses. There-
fore, I extend the expansion (5.27) to second order in k. This yields

ωp,h(k) ≈ Egap +
k2

2Mp,h
+O(k4) . (5.28)

Hence, it is to see that the introduced effective mass for particle and holes is given by

Mp,h =

(
∂2ωp,h(k)

∂k2

∣∣∣∣
k=0

)−1

(5.29)

The numerically obtained results for the effective masses are presented in the Figures 5.11
and 5.12, respectively. In the left diagram in Figure 5.11 it can be seen that, the effective
mass of the polariton-hole excitations is always higher than for the particle excitations. For
both species the effective mass is maximal if the tunnel probability vanishes, i.e. κ = 0. With
increasing hopping strength the effective mass of both excitations decreases almost linear.
At the tip of the lobe, i.e. at κ = κcrit, the effective mass for particle and hole excitations
vanish simultaneously. This result is quite expected since it is a consequence of the Nambu-
Goldstone theorem [174, 175]. So called Goldstone bosons naturally emerge in systems that
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Figure 5.11: Effective mass at T = 0 K for µeff = µcrit. The left diagram shows the
effective mass for n = 1 (red) and n = 2 (blue). The dashed lines cor-
respond to the effective mass of the hole excitations and the solid lines
correspond to the effective mass of the particle excitations. The right
diagram shows the effective mass for n = 1 at different detuning: black
lines correspond to ∆/g = 0, blue lines correspond to ∆/g = 0.1 and red
lines correspond to ∆/g = 0.5.
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Figure 5.12: Effective mass for finite temperatures at ∆ = 0 and n = 1. Plotted
are the effective masses of particle (solid lines) and hole-excitations
(dashed lines). The left diagram shows the effective masses for T = 0
corresponding to the black lines, T = 0.1 kB/g corresponding to the
blue lines and T ≈ 0.167 (kB/g) corresponding to the red lines. The
right diagram shows the effective masses in dependence of the temper-
ature for different values of the hopping strength: red lines correspond
to κ = κcrit, blue lines correspond to κ z/g = 0.1 and black lines corre-
spond to κ z/g = 0.00001.
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exhibit a spontaneous symmetry breakdown. These spin- and massless quasi particles cor-
respond to the generators of the spontaneously broken symmetry. As shown so far, the JCH
model undergoes a spontaneous symmetry breakdown during the quantum phase transi-
tion from a Mott insulator to a superfluid and, thus, lead to the Goldstone modes. These
results are in agreement with the effective mass as found in Ref. [176].
In the right diagram in Figure 5.11 one can observe that non-vanishing detuning reduces the
effective masses. The temperature dependence for the effective masses is shown in Figure
5.12. From the left diagram in Figure 5.12 it is to see that a rise in temperature causes an
increase of the effective masses and shifts the critical hopping strength, where the masses
vanishes, to higher values. The right diagram shows the exact temperature dependence for
different hopping probabilities. Obviously, in general the effective masses increase with ris-
ing temperature for a fixed hopping strength, quite similar to the energy gap. Note that the
effective mass of the holes is stronger affected and increases much faster with temperature
than the mass of the particle excitations. For hopping probabilities beyond the critical value
κcrit the effective masses are always finite and the particle- and hole-masses are gaped. Fur-
thermore, the gap between the particle and the hole branch increases with temperature as
well, though this effect becomes weaker the smaller κ gets.
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Chapter 6

Summary and Outlook
In the present thesis I investigated the thermodynamic properties of polaritons in a lattice
of micro cavities filled with two-level atoms. Contrary to Bose-Einstein condensed ultra-
cold atoms in optical lattices, these polaritons are quasi-particles corresponding to com-
bined excitations of the electromagnetic cavity mode and the two-level atom. The theoret-
ical model describing this local on-site interaction is the Jaynes-Cummings model, which
I derived and discussed within the second chapter of this thesis. By showing that a non-
vanishing overlap of the cavity-photon wave function leads to a Hubbard-like hopping of
the photons between neighbouring cavities and encouraged by the photon blockade effect,
which provides an repulsive on-site interaction, I subsequently expanded this model to the
Jayne-Cummings-Hubbard model in Chapter 3. This JCH model provides the theoretical
basis for the considered lattice system.
Investigating the respective Hamiltonian for the limits of on-site pinning and hopping dom-
ination, I could show qualitatively, that the examined system exhibits a quantum phase tran-
sition from a Mott insulator to a superfluid, similar to the one known for the Bose-Hubbard
model. In the following, I applied two different theoretical approaches in order to analyse
the thermodynamic properties of this model. On the one side, I used a standard mean-field
ansatz which enabled me to extract the mean-field phase boundary for both zero and fi-
nite temperatures. The resulting phase diagram turned out to be qualitatively similar to the
one found for Bose-Hubbard systems and is in agreement with results obtained by other
groups [48, 160, 163]. It shows an analogue Mott-lobe structure that mainly deviates from
the Bose-Hubbard case by the exponentially shrinking size of the Mott-lobes with increas-
ing polariton number and the fact that their width depends on the mean polariton number
per lattice site.
For finite temperatures, I find that the phase border is shifted to higher values of the hop-
ping strength. This effect of finite temperatures turned out be strongest at the borders of
the Mott lobes and weakest at their tip. However, investigating the compressibility at finite
temperatures, I also argued that this effective reduction of the superfluid phase cannot be
interpreted as a growth of the Mott-phase regime. In fact for finite temperatures there does
not exist a genuine Mott insulator but instead a mixture of a Mott-like phase with an expo-
nentially small compressibility and a normal phase with finite compressibility.
In Chapter 4 I introduced another theoretical approach. Following the procedure outlined
in Reference [164], I applied an effective action ansatz, which is well-known in the investi-
gation of classical thermodynamic phase transitions of second order. Introducing artificial
symmetry-breaking currents in the JCH Hamiltonian and using the linked-cluster theorem
[166] eventually led to a diagrammatic expansion of the grand-canonical free energy of the
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system. I explicitly calculated this expression for the free energy up to first order in the hop-
ping strength and to fourth order in the symmetry-breaking currents. Subsequently, I per-
formed a Legendre transformation, mapping the unphysical symmetry-breaking currents
onto physical time- and space-dependent order parameter fields. Consequently, the free
energy is hereby transformed to an effective Ginzburg-Landau action.
In Chapter 5 I started investigating the implications of this theoretical approach. Evaluat-
ing the resulting physical stability conditions for a static equilibrium order parameter field
I found up to the calculated level of accuracy that, this procedure exactly reproduces the
mean-field phase boundary. Furthermore, for a dynamic order parameter field, I analysed
the thermodynamic two-point density correlation function. From its poles I could success-
fully extract the dispersion relations of polariton particle- and hole-excitations in the Mott
phase, as well as their energy gap and effective masses. From this analysis I found that the
single-particle excitation spectra in the Mott phase are dominated by lower-polariton par-
ticle and hole bands separated by a Mott gap, which vanishes at the tip of the lobe and,
hence, provides an experimental signature for the onset of superfluidity. Additionally, I ob-
served the existence of massless Goldstone bosons at this critical point in accordance with
the Nambu-Goldstone theorem.
Thus, I could show that this theoretical approach is in general capable to describe second-
order quantum phase transitions [8]. Moreover this approach is, in principle, not only re-
stricted on reproducing mean-field results but instead can be extended to include higher-
order corrections with respect to the hopping. Therefore, it is advisable for a future analysis
to further investigate these higher-order corrections. Specially, I would suggest to spend
further attention on the calculation of quantum corrections, which become of striking im-
portance at the tip of each Mott-lobe. Additionally, one could go ahead and calculate the ex-
citation spectra in the superfluid phase, from which one eventually could extract the sound
velocity of light on the lattice [164, 173].
In general I find the experimental idea of the JCH model quite appealing and, consider-
ing the latest advances in the fabrication and control of micro-cavity systems, I think it is
a very good candidate for a possible quantum-information processing architecture. Like-
wise, the JCH model turns out to be very well suited as a quantum simulator for strongly
correlated many-body systems. Especially the possibility to work at higher temperatures,
compared to ultra-cold atoms in optical lattices, and the experimentally accessible intrin-
sic detuning parameter, are important advantages of this system. The latter is an essential
improvement over normal Bose-Hubbard models, since it allows on one side to alter the po-
lariton species and it provides on the other side an additional parameter which can move
the system through the quantum phase transition. For this reason I would also recommend
to study the JCH model without the rotating-wave approximation as suggested by the Refs.
[100, 129, 146, 148, 150, 177] which turns out to be of crucial importance in far-off-resonance
situation [178, 179] and allows to investigate the ultra-strong coupling regime [180–182].
Last but not least, motivated by the latest experimental approaches to implement such
micro-cavity based many-body systems, I suggest to apply the theoretical approach pre-
sented within this thesis to the Tavis-Cummings [123–127] and Dicke-Bose-Hubbard model
[119–121] as well. In particularly, the Tavis-Cummings model would fit best for the actual
experimental setup, whereas the Dicke-Bose-Hubbard model is supposed to show an even
richer variety of quantum phases. Furthermore, the inclusion of disorder should result in
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many new interesting phenomena in all these models. The same holds for going into the
dispersive regime by including loss processes in the so called bad-cavity limit [143, 144,
151, 183–185].
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