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Kurzzusammenfassung
Seit der theoretischen Vorhersage 1924 war die erste Realisierung eines Bose-Einstein-Kondensats
(BEC) 1995 der Beginn vieler und umfassender Experimente mit derartigen Systemen. Ein Bereich
solcher Forschungen an BECs sind zum Beispiel dissipative Effekte, die beispielsweise durch die
Wechselwirkung eines solchen Kondensats mit einem Elektronenstrahl verursacht werden. In dieser
Diplomarbeit untersuchen wir ein theoretisches Modell, das Vorhersagen über die Dynamik und
das Verhalten im Allgemeinen eines BECs in einer harmonischen Falle treffen soll, das mit einem
Elektronenstrahl wechselwirkt. Für diesen setzen wir eine Gaußsche Form an und modellieren
ihn durch ein imaginäres Potenzial, wohingegen die Falle durch ein reelles Potenzial beschrieben
wird. Dieser Ansatz führt für ein nichtwechselwirkendes Bose-Gas zu einem nicht-Hermiteschen
Hamilton-Operator, dessen Bedeutung in einem kleinen Einschub über nicht-Hermitesche Dy-
namik beschrieben wird. Beispielsweise sind die Energieeigenwerte komplex, wodurch die Eigen-
zustände nicht stationär sind. Dieser nichtverschwindende Imaginärteil der Energie führt dazu,
dass die Kondensatdichte mit der Zeit gedämpft oder erhöht wird.
Um diese Eigenzustände und Eigenwerte zu berechnen, nehmen wir zunächst starke Vereinfachun-
gen vor. Wir betrachten lediglich ein eindimensionales Potenzial, vernachlässigen jegliche Wech-
selwirkung der Bosonen des BECs untereinander und nähern das komplexe Potenzial durch zwei
ineinander geschachtelte Kastenpotenziale an. Für dieses System lösen wir die Schrödinger-
Gleichung für verschiedene Stärken der Dissipation, sowie Strahlbreiten und geben Ausdrücke
für die Wellenfunktionen und Bestimmungsgleichungen für die Energien an, die wir anschließend
numerisch lösen. Die dadurch erhaltenen Energien weisen einen nicht positiven Imaginärteil auf, so
dass der imginäre Potenzialtopf tatsächlich einen Dämpfungseffekt zur Folge hat. Bei den Eigen-
zuständen werden wir auf zwei verschiede Arten von Zuständen geführt, wobei eine von beiden
die Dissipation minimiert, während die andere diese maximiert. Da der Imaginärteil der Energie
die Stärke der Dämpfung beschreibt, stellt dieser auch den Indikator dar, welcher Zustand gerade
vorliegt. In den Dichten äußert sich dies ebenfalls und zwar dadurch, dass die Dichte solcher
Zustände, die die Dissipation minimieren, nach außen strebt und im Inneren, wo das imaginäre
Potenzial wirkt, für starke Dissipation auf Null abfällt. Im Gegensatz dazu streben Dissipation
maximierende Zustände nach innen und ihre Dichte fällt außen auf Null ab für starke Dissipation.
Da nur in der Mitte Dämpfung stattfindet, werden mit der Zeit nur solche Zustände übrig bleiben,
die nach außen streben, so dass im Endeffekt ein Loch im BEC entsteht, was auch der Anschauung
entspricht.
Weiterhin werden Grenzfälle für starke und verschwindende Dissipation, sowie große und kleine
Strahlradien durchgeführt. Anschließend diskutieren wir alle Ergebnisse und vergleichen sie mit
denen von ähnlichen reellwertigen Systemen. Im folgenden Kapitel verbessern wir unser Modell, in-
dem wir statt eines ineinander geschachtelten Potenzialtopfes zwei harmonische Potenzialtöpfe für
den Real- und Imaginärteil des Potenzials ansetzen. Obwohl hier eine derart ausführliche Auswer-
tung wie für das einfachere Modell nicht ohne weiteres möglich ist, können wir doch bestätigen,
dass die Ergebnisse qualitativ unverändert bleiben.
Am Ende führen wir noch einige Möglichkeiten an, um dieses Modell zu verbessern und auszubauen.
Allem voran wird die mögliche Implementierung von Wechselwirkung der Bosonen untereinander
diskutiert, sowie die Probleme erörtert, die ein System mit komplexem Potenzial dafür mit sich
bringt.
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Abstract
Since 1924 theoretically predicted, the first realization of a Bose-Einstein-Condensate (BEC) in
1995 was the begin of many experiments and investigations of such systems. Some of them con-
sider dissipative effects of a BEC, which are caused for example by the interaction of a condensate
with an electron beam. This diploma thesis considers a theoretical model which should make
predictions about the dynamics and the general behaviour of a harmonic trapped BEC that inter-
acts with such an electron beam. This beam is supposed to be Gaussian and we model it via an
imaginary potential, while the harmonic trap is described via a real potential. This ansatz leads
under the assumption of a noninteracting Bose gas to a non-Hermitian Hamilton operator, whose
influence is concisely discussed in a short section about non-Hermitian dynamics. For example we
have to deal with complex energy eigenvalues, which are consequently caused by non-stationary
eigenstates. Thus the non-vanishing imaginary part of the energies leads to a damped or increased
density.
In order to calculate these eigenvalues and eigenstates, we first consider a crudely simplified system,
that is we just take a one-dimensional potential, neglect any interaction of the bosons contained
in the BEC and approximate the whole complex potential by two nested square well potentials.
For this system we solve the Schrödinger equation for several dissipation strengths as well as beam
waists and evaluate expressions for the wave functions and equations for the energies that we solve
numerically afterwards. The calculated energies always yield a non-positive imaginary part, so
the complex potential well indeed exhibits a damping effect. Furthermore, we obtain two different
kinds of eigenstates, where one of them minimizes dissipation, while the other one maximizes it.
Since the imaginary part of the energy describes the strength of the damping, this represents
an indicator of which kind of state we deal with in particular. This distinction has also to be
performed for the densities since the spatial density of states minimizing dissipation tends to the
borders and reduces for large dissipation to zero in the center, where the imaginary potential is
present. In contrast to this the other kind of states maximizing dissipation tends to the center,
where the imaginary potential acts at, and reduces to zero at the borders for large dissipation.
Since damping happens only in the center, the time evolution yields that gradually only these
states tending to the borders will remain so that in the end a hole in the BEC develops which
looks quite plausible recalling the picture of an electron beam interacting with a BEC.
Furthermore we consider the limits for strong and vanishing dissipation as well as small and large
beam waists. Afterwards all results for the complex square well potential are discussed and com-
pared to those of similar real valued systems. In the following chapter we improve our model
by considering two nested harmonic potential wells for the real and the imaginary part of the
potential. Although a discussion to such an extent as for the nested square well potentials is not
possible without further ado, we can confirm that all results stay qualitatively unchanged for the
harmonic potentials.
Finally we give some possibilities for a further improvement of this model. Especially the imple-
mentation of interaction between the bosons of the BEC is discussed as well as difficulties which
are caused by a system with a complex valued potential.
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1 Introduction

In this chapter we will recall some fundamental issues this diploma thesis is based on, that is
Bose-Einstein condensation in general, the particular experiment involving dissipation in a BEC
we are considering and which we aim at modelling, and finally some aspects about non-Hermitian
dynamics, which is a crucial point of our model. The last section of this chapter provides an
overview of this particular diploma thesis.

1.1 Bose-Einstein Condensation
Already in 1924 Satyendranath Bose wrote a paper where he used a novel way for counting states
of identical photons to derive Planck’s quantum radiation law. In this way he found out that the
Maxwell-Boltzmann distribution is not true for microscopic particles and has to be replaced by
another distribution [1]. In the same year this idea was extended to massive particles by Albert
Einstein [2], therefore this new distribution is called today Bose-Einstein distribution. It pre-
dicts a macroscopic occupation of the ground state by a dense collection of particles with integer
spin, called bosons, for very low temperatures near to absolute zero. This phenomenon is called
Bose-Einstein condensation. The first experimental realization of a pure Bose-Einstein condensate
(BEC) was accomplished in 1995 by Eric Cornell and Carl Wieman at JILA [3] and Wolfgang
Ketterle at MIT [4]. The creation of a BEC requires temperatures very near absolute zero to reach
the critical temperature for the phase transition. The new techniques of laser cooling [5–7] and
magnetic evaporative cooling [8] made it possible for E. Cornell and C. Wiedman to cool down
a gas of rubidium-87 atoms confined in a magnetic time-averaged, orbital potential (TOP) trap
to 170 nK which undermatches the critical temperature of 87Rb. In the same year W. Ketterle
produced at MIT a much larger BEC of sodium-23, which allowed him to observe even first co-
herence effects like the quantum mechanical interference between two different BECs [9].
So far BECs have been created with many other kinds of atoms like 1H, 7Li, 23Na, 39K, 41K,

52Cr, 85Rb, 87Rb, 133Cs, 164Dy, 168Er, 170Yb, 174Yb and 4He in an excited state. Moreover, ex-
periments with BEC as well as its theory became one of the most interesting physical research
topics in the last years like the realization of a BEC in optical lattices which are standing laser
fields that yield via the AC Stark effect periodic potential wells for atoms [10]. This leads to a
strongly correlated BEC which is well controlled by the respective laser parameters and yields for
increasing laser intensities a quantum phase transition from the superfluid to a Mott phase. As
the latter is characterized by a fixed number of bosons in each well, a Bose gas in an optical lattice
is a promising candidate for quantum simulations like entanglement of atoms or quantum tele-
portation [11]. Also disordered Bose gases can be realized via laser speckles or incommensurable
optical lattices, to create random potentials [12]. Another interesting research field are fermionic
condensates. Two weakly correlated fermions called Cooper pairs yield a "particle" with integer
spin, which therefore also obeys Bose-Einstein statistics despite the fermionic constituents. By
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1 Introduction

Figure 1.1: The atomic ensemble is prepared in an optical dipole trap. An electron beam with
variable beam current and diameter is scanned across the cloud. Electron impact ionization
produces ions, which are guided with an ion optical system towards a channeltron detector. The
ion signal together with the scan pattern is used to compile the image [17].

increasing the correlation for example by a magnetic trap there is a crossover from this BCS phase
of weakly coupled fermions [13] to bound boson molecules condensing to a BEC, which is called
BCS-BEC-crossover [14].

1.2 Modelling of dissipation in Bose Einstein-Condensates
Complex potentials are used in a BEC as a heuristic tool to model dissipation processes which
occur once a BEC is brought in contact, for instance, with an ion [15]. This diploma thesis is
related to an experiment performed by the group of Herwig Ott [16,17] at the Technical University
of Kaiserslautern, where a 87Rb-BEC interacts with an electron beam, which is one technique to
achieve single-site addressability [18–22].
The BEC is confined by an anisotropic harmonic trap with the frequencies Ω⊥ = 2π · 13 Hz and
Ω|| = 2π · 170 Hz and contains about 100 000 atoms. The experiment was realized at about 80
nK, the critical temperature of 87Rb is 300 nK.
In contrast to the other applications of complex potentials the experimental setup of Herwig Ott
makes it possible to control all experimental parameters to a high degree. Therefore, this electron
beam technique seems to be the most promising candidate to compare the respective experimental
results with theoretical calculations in a quantitative way. We are now interested in the interaction
of the BEC with the beam. The main idea is to model this interaction by an imaginary potential
with a width given by the Gaussian profile of the beam [23]. The whole BEC is confined in a

2



1.3 This Thesis

harmonic trap which is modelled by a real potential.
Now we aim at getting a fundamental view on the theory of the properties and effects of a BEC
in a complex potential V (r) = VR (r) + iVI (r) at absolute zero which is described by the Gross-
Pitaevskii equation

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2M∆ + VR (r) + g |Ψ(r, t)|2 − i~
2 γ(r)

]
Ψ(r, t). (1.1)

Here Ψ represents the wave function of the condensate, g describes the strength of the two-particle
interaction and VR(r) = 1

2M
[
Ω2
⊥(x2 + y2) + Ω2

||z
2
]
stands for the harmonic trap. The imaginary

term 1
2~γ(r) represents the imaginary potential VI , where γ(r) has a Gaussian shape

γ(r) = σtot

e

I

2πw2 exp
[
−(x− x0)2 + (y − y0)2

2w2

]
, (1.2)

and models the losses of the BEC caused by the electron beam. In this expression σtot = 1.7 ·
10−20 m2 denotes the total cross section between electrons and 87Rb-atoms, I = 20 nA is the
electron current and the waist of the beam is given by w = 100 nm [23]. So we have to consider
two nested potential wells where the outer one VR is harmonic and the inner one is a Gaussian
imaginary potential:

VI(r) = −C exp
[
−(x− x0)2 + (y − y0)2

2w2

]
, (1.3)

whose strength amounts to

C = ~σtot

e

I

4πw2 ≈ 1, 8 · 10−30 J. (1.4)

1.3 This Thesis
Eq. (1.1) represents a 3-dimensional nonlinear partial differential equation for Ψ. As we aim here
at getting a fundamental look at a BEC in a complex potential, we start with simplifying this
problem. In this whole thesis we consider a model in only one spatial dimension perpendicular
to z-direction so the imaginary potential well (1.4) is considered as a one-dimensional centered
Gaussian

VI(x) = −C exp
[
− x2

2w2

]
(1.5)

and the extension of the BEC can be estimated by only one quantity which is the perpendicular
Thomas-Fermi radius [24]

R⊥ =
√

2µ
MΩ2

⊥
. (1.6)
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1 Introduction

The chemical potential reads [24]

µ =
15Ω2

⊥Ω||Ng
8π

(
M

2

) 3
2

 2
5

(1.7)

with g = 4π~2

M
as, where the s-wave scattering length of 87Rb is as = 100 a0 with the Bohr radius

a0 and the mass of the Rb-atoms amounts to M = 1, 44 · 10−27 kg. Inserting (1.7) into (1.6) thus
yields about

R⊥ = 640 µm, (1.8)

which is at least three orders in magnitude larger than the electron beam waist w. Nevertheless
we will not restrict ourselves to these calculated orders of magnitude of w, R⊥ and C but perform
a more fundamental evaluation of the energies and densities for various values of C and w.
In this thesis we start with a short trip to non-Hermitian dynamics, that is time evolution of a
system caused by a non-Hermitian Hamilton operator, which just arises for our system including
a non-vanishing imaginary part of the potential.
In Chapter 3 we consider a particular model which is supposed to represent the regarded system
in a quite simplified way. Therefore, we neglect any interaction of the 87Rb-atoms of the BEC,
that is we set g = 0 in (1.1), which can be experimentally performed by using magnetic traps
and taking advantage of hyperfine structures. In this way it is possible to influence scattering
parameters like the cross section and the scattering length via magnetic Feshbach resonances [25],
which are induced by the additional magnetic field. It is thus possible to manage a vanishing
scattering length and cross section, that is a vanishing interaction. Considering this, each particle
of the BEC can be separately described by a linear one-dimensional Gross-Pitaevskii equation
which is just a Schrödinger equation with a complex potential. To get a first impression of the
effects of a complex potential we simplify it here by taking a kind of zeroth order approximation
modelling VI to be a square well potential within the width 2w and with a strength given by C.
Also the real potential is considered to be a square well potential which is supposed to vanish
within a finite length L and to be equal to infinity outside. With these simplifications we solve
the time-independent Schrödinger equation and discuss the resulting energies and densities as
functions of the width and the depth of VI . Afterwards we will have a quite detailed discussion
of the results even this crudely simplified system provides and compare them to these of some
familiar similar potentials in order to underline new aspects of our model.
Chapter 4 then considers a more accurate approximation so we take a better approximation of VI
which is then supposed to be harmonic and the exact formula for the harmonic real potential, that
is VR = 1

2MΩ2x2, Ω = Ω⊥. Furthermore the two-particle interaction is still neglected and thus
we are able to describe the system by a Schrödinger equation considering two nested harmonic
potentials. We will solve it, discuss the resulting energies and densities and compare it to the
results of Chapter 2.
Finally in Chapter 5 we will give an outlook on possible improvements especially concerning the
implementation of interaction, that is g 6= 0. To this end we will discuss one particular approach
in order to obtain results for an interacting BEC involving our results of a non-interacting BEC.
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2 Non-Hermitian dynamics

Before considering concrete expressions for the imaginary potential we first provide a concise
overview of the results a complex potential yields on the dynamics of a BEC. Generally it involves
a non-Hermitian Hamilton operator H 6= H† since V 6= V ∗. To this end we consider the one-
dimensional time-dependent Schrödinger equation

i~
∂

∂t
Ψ(x, t) = HΨ(x, t), (2.1)

where H denotes the one-dimensional, one-particle Hamilton operator in spatial representation

H = − ~2

2M
∂2

∂x2 + V (x) (2.2)

with a complex potential V (x) := VR(x) + iVI(x). From the Schrödinger equation (2.1) one can
derive the time evolution of the density ρ(x, t) = Ψ∗(x, t)Ψ(x, t):

∂

∂t
ρ = Ψ ∂

∂t
Ψ∗ + Ψ∗ ∂

∂t
Ψ

(2.1)= − 1
i~

ΨH†Ψ∗ + 1
i~

Ψ∗HΨ

= ~
2Mi

[
Ψ ∂2

∂x2 Ψ∗ −Ψ∗ ∂
2

∂x2 Ψ
]

+ 1
i~

[V (x)− V ∗(x)] Ψ∗Ψ, (2.3)

where Ψ = Ψ(x, t) and ∗ means complex conjugation. This yields the continuity equation

∂

∂t
ρ(x, t) + ∂

∂x
j(x, t) = 2

~
VI(x)ρ(x, t), (2.4)

with

j(x, t) = ~
2Mi

[
Ψ∗(x, t) ∂

∂x
Ψ(x, t)−Ψ(x, t) ∂

∂x
Ψ∗(x, t)

]
(2.5)

representing the probability current density. It catches the eye that the non-real potential provides
an additional term on the right-hand side of (2.4), which can stand for a source (VI(x) > 0) or a
drain (VI(x) < 0) of probability.
Now let us come to the time evolution of the wave function. Since the spectrum of an operator
is only real iff it is Hermitian, the energy eigenvalues of H have to be complex E = ER + iEI .
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2 Non-Hermitian dynamics

The Hamilton operator does not depend on time so we can directly integrate (2.1) and obtain the
separation

Ψ(x, t) = exp
(
− i
~
tH
)
ψ(x). (2.6)

Let ψ(x) be an eigenstate of H to the eigenvalue E so we can write

Ψ(x, t) = exp
(
− i
~
Et
)
ψ(x). (2.7)

Now we can derive the time evolution of the density ρ(x, t):

ρ(x, t) = exp
[2
~
EI(t− t0)

]
ρ(x, t0), (2.8)

where ρ(x, t0) = ψ∗(x)ψ(x) is the density at a fixed time t = t0. One can see immediately that
this non-stationarity is a direct consequence of the complexity of the potential since H is not Her-
mitian, which is followed by complex energy eigenvalues E = ER + iEI and so the time evolution
operator exp

(
− i

~tH
)
is not unitary any more.

Inserting the separation (2.7) into (2.1) provides that ψ has to fulfill the time independent
Schrödinger

H(x)ψ(x) = Eψ(x), (2.9)

which we will solve in the next two chapters for two different approximations of V (x).
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3 Complex square well potential
We start with a crude approximation of V (x) via two nested square well potentials according to
Fig. 3.1, where the inner one is imaginary with a width equal to the diameter of the beam 2w and
vanishes outside. The depth is given by the zeroth-order Taylor approximation of VI in x at the
minimum x = 0 which is just the constant −C. The real potential vanishes within a width equal
to the spatial extension of the BEC perpendicular to the electron beam R⊥, that we call L, and
is equal to infinity outside.

VR(x) =

 0 , |x| < L

∞ , otherwise
(3.1)

VI(x) =

 −C = const. , |x| < w < L

0 , otherwise
(3.2)

Figure 3.1: Schematic sketch of the complex potential well where we call the interval−L ≤ x < −w
"area 1" and −w ≤ x ≤ +w "area 2" which is followed by "area 3" w < x ≤ L.

3.1 Static solutions of Schrödinger equation
Now we derive solutions E and ψ of (2.9) for this considered potential. In the outer region of the
well, i.e. |x| > L, the wave function vanishes because the probability of the particle to be out
of the box is supposed to be equal to zero. In the inner region we have formally to distinguish
between the three areas. Therefore, the resulting total wave function should have the following
form:

ψ(x) =



ψ1(x), −L ≤ x ≤ −w

ψ2(x), −w ≤ x < w

ψ3(x), w ≤ x < L

0, |x| > L

. (3.3)

As the Hamiltonian (2.2) is symmetric for the complex potential (3.1) and (3.2), its eigenfunctions
ψ should have a definite parity with respect to the center of the well, which is x = 0. This means
we assume ψ to be completely symmetric or antisymmetric with respect to x = 0, that is

7



3 Complex square well potential

ψs1(−x) = ψs3(x) and ψs2(x) = ψs2(−x), (3.4)

or

ψa1(−x) = −ψa3(x) and ψa2(−x) = −ψa2(x). (3.5)

Therefore it is sufficient to solve (2.9) only in area 1 and 2, since then ψ3 is determined via
symmetry according to (3.4) and (3.5). The Schrödinger equation (2.9) and the Hamilton operator
(2.2) with the considered potential yields that this solution ψ has to be continuous at x = ±L
and differentiable at x = ±w. Making the ansatz

ψ1,2 = A1,2e
−ik1,2x +Bs,a

1,2e
ik1,2x (3.6)

and demanding continuity provides

ψs(x) = 2iAseiks1L



− sin [ks1(x+ L)]

sin[ks1(w−L)]
cos(ks2w) cos(ks2x)

sin [ks1(x− L)]

, ψa(x) = −2iAaeika1L



sin [ka1(x+ L)]

sin[ka1 (w−L)]
sin(ka2w) sin(ka2x)

sin [ka1(x− L)]

(3.7)

with A = A1 and the complex wavenumbers k1 and k2

k2
1 = 2M

~2 (ER + iEI) , k2
2 = 2M

~2 [ER + i(EI + C)] , (3.8)

where the indices R and I denote the real and imaginary part of the quantities, respectively.
Normalizing these solutions, that is demanding

∫ ∞
−∞
|ψ(x)| dx = 2

∫ w

0
|ψ2(x)| dx+ 2

∫ L

w
|ψ1(x)| dx = 1, (3.9)

yields for the absolute value of the constants As and Aa

|As| =
{

2e−2ksI,1L
[

sin 2ksR,1(w − L)
ksR,1

−
sinh 2ksI,1(w − L)

ksI,1

+
cosh 2ksI,1(w − L)− cos 2ksR,1(w − L)

cosh 2ksI,2w + cos 2ksR,2w

(
sinh 2ksI,2w

ksI,2
+

sin 2ksR,2w
ksR,2

)]}− 1
2

(3.10)

and
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3.1 Static solutions of Schrödinger equation

|Aa| =
{

2e−2kaI,1L
[

sin 2kaR,1(w − L)
kaR,2

−
sinh 2kaI,1(w − L)

kaI,2

+
cos 2kaR,1(w − L)− cosh 2kaI,1(w − L)

cos 2kaR,2w − cosh 2kaI,2w

(
sinh 2kaI,2w

kaI,2
−

sin 2kaR,2w
kaR,2

)]}− 1
2

. (3.11)

Thus we can fix them only up to a phase factor eiϕ, ϕ ∈ [0, 2π). Knowing the particular wave
function it is possible to calculate the density ρ = |ψ(x)|2 and the current j(x) from (2.5) at some
fixed time. The symmetric and antisymmetric wave functions (3.7) are continuous at x = ±w and
±L. Since (2.9) yields that the second derivative of the wave function ψ′′ only has a finite jump
discontinuity at x = ±w and an infinite one at ±L, its first derivative ψ′ has to be continuous
at ±w, too, but not at ±L. Thus we obtain a relation between k1 and k2 and thus via (3.8) an
additional condition the energy E has to fulfill, which is our quantization condition

√
Es cot

(w − L)
√

2M
~2 E

s

+
√
Es + iC tan

w
√

2M
~2 (Es + iC)

 = 0 (3.12)

in the symmetric case and in the antisymmetric case

√
Ea cot

(w − L)
√

2M
~2 E

a

−√Ea + iC cot
w
√

2M
~2 (Ea + iC)

 = 0. (3.13)

The solutions of these two transcendental equation allow to determine all important physical
quantities E, ρ, j etc. of the problem.
For consistency one can evaluate the real limit by setting C = 0, which directly yields

cos
√2M

~2 E
sL

 = 0 and sin
√2M

~2 E
sL

 = 0. (3.14)

This can only be fulfilled by real arguments, since cosh(x) has no real root and cos(x) and sin(x)
no mutual one:

cos(x+ iy) = cos(x) cosh(y)− sin(x) sinh(y) = 0 ⇒ x =
(
n+ 1

2

)
π, y = 0 (3.15)

sin(x+ iy) = sin(x) cosh(y) + cos(x) sinh(y) = 0 ⇒ x = nπ, y = 0. (3.16)

Therefore E has to be real and is given by

Es = ~2π2

2ML2

(
n+ 1

2

)2
and Ea = ~2π2

2ML2n
2. (3.17)

This is followed by ks1 = ks2 =: ksn = π
L

(
n+ 1

2

)
and ka1 = ka2 =: kan = π

L
n and the identities
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3 Complex square well potential

e±ik
s
nL = ±iξn , sin ksn(x± L) = ±ξn cos ksnx , cos ksn(x± L) = ∓ξn sin ksnx, (3.18)

where we have introduced

ξn :=

 −1 , n is odd

+1 , n is even
. (3.19)

Thus, we can extract the solutions of the familiar real potential well by choosing ϕs = 0 and
ϕa = π/2 for the so far undetermined phase factors of As and Aa:

Es
j,0 = ~2π2

8ML2 (2j + 1)2, ψs(x) = 1√
L

cos ksjx, (3.20)

Ea
j,0 = ~2π2

2ML2 j
2, ψa(x) = 1√

L
sin kajx, (3.21)

with ksj = j π
L
and kaj =

(
j + 1

2

)
π
L
for j ∈ N and |x| < L. Thus the real limit provides a reasonable

choice for the phase factors of the normalization constants. The same results for E and ψ can
be obtained by evaluating w → 0, which is indeed nothing else than the familiar real potential
well, since area 2 disappears. In this context we should spend some time on evaluating the other
extreme case of w → L, that is area 1 and 3 are vanishing. The solutions of the quantization
conditions (3.12) and (3.13) in this limit are

Es
j,∞ = ~2π2

8ML2 (2j + 1)2 − iC, ψs(x) = 1√
L

cos ksjx, (3.22)

Ea
j,∞ = ~2π2

2ML2 j
2 − iC, ψa(x) = 1√

L
sin kajx. (3.23)

There is a reason why we added the indices 0 and ∞ on the different limits, which has something
to do with the behaviour of the energy eigenvalues for C → ∞ and will become clear later.
Comparing both limits it catches the eye that the wave functions and the real part of the energies
coincide. The imaginary part of E vanishes for w → 0, while it decreases linearly with C for
w → L. This limit is nothing else than a normal potential well with an additional imaginary
depth C. The imaginary part of E has nothing to do with the kinetic energy, since it does not
depend on the energy level j. Thus the imaginary depth of the well is simply added to the real
kinetic part of E. However, the wave function stays the same in both cases but we have to note
that we only deal with static solutions. The imaginary part plays an important role in view of
the time evolution of ψ as we have already seen in the previous section. From (2.8) we can read
off that, since C > 0, we can interpret the imaginary part of E as a measure, how strong the
corresponding density is damped if the whole potential well is affected by the imaginary potential.
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3.2 Energies

3.2 Energies
We start with defining dimensionless quantities, which we use to formulate dimensionless quanti-
zation conditions for the energy. Therefore we renormalize the length scale by the total extension
L of the system so that the total extension in the new variables is given by a fixed real number π.
Additionally, also the energy scale is renormalized by the ground-state energy of a real potential
well with this dimensionless width:

ε := E

~2

2M

(
π

2L

)2 , c := C

~2

2M

(
π

2L

)2 , κ := k
π

2L
, χ := x

2L
π

, ω := w
2L
π

. (3.24)

In these new variables the energy of the symmetric states for vanishing dissipation reads εR,j(0) =
(2j + 1)2, so the symmetric ground state for the real potential well is characterized by j = 0 in
(3.20). For the antisymmetric states this condition reads εR,j(0) = (2j)2 and thus it seems to be
comfortable to assign to every energy of a symmetric state the natural number m := 2j + 1 and
to every antisymmetric state m := 2j for vanishing c. Therefore, all states denoted with an odd
m are symmetric, while all states denoted with an even m are antisymmetric for c = 0. Thus the
symmetric ground state is denoted by ε1, the first antisymmetric excited state by ε2 and so on. We
can conclude that every reasonable solution of (3.26) and (3.27) has now to fulfill εR,m(0) = m2

and εI,m(0) = 0 like we found out in the discussion of the real limit. This new assignment will
make it easier to do a general evaluation of all involved states.
In terms of dimensionless variables we can calculate the quantities of interest for our experimental
setup by inserting (3.24) into (1.4) and (1.8) for w = 100 nm:

ω = π

2L = 2 · 10−4 and c = 8ML2

~2π2 C = 8 · 104. (3.25)

Moreover the quantization conditions (3.12) and (3.13) now read

0 =
√
εs cot

[(
ω − π

2

)√
εs
]

+
√
εs + ic tan

(
ω
√
εs + ic

)
, (3.26)

0 =
√
εa cot

[(
ω − π

2

)√
εa
]
−
√
εa + ic cot

(
ω
√
εa + ic

)
. (3.27)

It is quite straight forward to find the roots ε(c, ω) of the right-hand side of (3.26) and (3.27)
for given c and ω numerically. For increasing values of the dimensionsless waist ω we find the
corresponding results for the first 6 states shown in Figs. 3.2(a) – 3.2(l):
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3 Complex square well potential

(a) ω = 2 · 10−4 (b) ω = 0.1

(c) ω = 0.2 (d) ω = 0.3

(e) ω = 0.4 (f) ω = 0.5
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3.2 Energies

(g) ω = 0.7 (h) ω = 0.8

(i) ω = 0.9 (j) ω = 1

(k) ω = 1.1 (l) ω = 1.57
Figure 3.2: Real and imaginary part of the lowest energy eigenvalues as a function of the dimen-
sionless strength c of the imaginary potential. Two curves with the same colour represent the real
and imaginary part of the energy of the state, where the real part starts at εR(c = 0) = m2 and
the imaginary part at εI(c = 0) = 0. Moreover, ε∞-states are counted by integer n while ε0-states
are counted by integer k. The imaginary parts in Fig. 3.2(l) run quite similarly so only one curve
is viewable.
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3 Complex square well potential

The most important information these plots give us is the fact that the imaginary part of all
states is always negative for 0 < c < ∞. This consolidates the assumption that the model of an
imaginary potential describes dissipation since for the time evolution of the density (2.8) it yields
a damping effect.
Furthermore, the results of the real limit c → 0 are confirmed in Figs. 3.2(a) – 3.2(l) since the
real part of the energy starts at some squared natural number εR(c = 0) = m2 and the imaginary
part exactly at zero. Thus these solutions include the states of the real square well potential.
It immediately catches the eye that we can generally differ between two kinds of solutions which
are characterized by their imaginary part. For the states of the one type it is limc→∞ εI = 0 and
for the other type a deeper consideration yields a linear decay limc→∞ εI = limc→∞(−c) = −∞.
These limits correspond exactly to the imaginary part of the energies we obtained by evaluating
ω → 0 and ω → π

2 , which is εI,0 = 0 and εI,∞ = −c in dimensionless variables. So while we
counted all states for c = 0 by m, now for c→∞ states with limc→∞ εI = 0 are counted by k so
that we call them k-states εk0, and states with limc→∞ εI = −∞ are counted by n so that we call
them n-states εn∞.
Observing all 12 pictures one can see that for small waists there are only k-states among the lowest
six states. For some ω < 0.1 the first n-state enters these lowest states namely the state starting
at m = 5. In the course of increasing ω more and more states become n-states, so for some big
waist ω > 1.1 even the k = 1-state is dropped out. Then we are left with 6 n-states among the
lowest 6 energy levels so that for ω = π

2 we have reached the constellation that we calculated in
Section 2 for w = L. Thus both limits are connected by a continuous rearrangement of k- and
n-states among the lowest states.
Now let us take a look at the situations where the waist is very close to 0 or π

2 which yields that
area 2 or area 1 and 3 approximately vanish, respectively.

3.2.1 Regime of vanishing areas
We start with comparing Fig. 3.2(a) and Fig. 3.2(l) which represent a very small waist ω & 0 and
a very large waist ω . π

2 , respectively. From our former discussion we expect that approximately
the same constellation is represented as we calculated for the limits ω = 0 and ω = π

2 , that
means εk0 ≈ k2 = m2 and εn∞ ≈ n2 − ic = m2 − ic. This means that in both cases the real part
is approximately unaffected of the dissipation c so for every strength of dissipation it should be
nearly equal to m2. The imaginary part of the k-states for ω & 0 is nearly equal to zero for all
values of c and the imaginary part of the n-states for ω . π

2 approximately decreases with −c to
−∞, so εnI,∞ + c is nearly equal to zero for all values of c.
Let us compare this with the respective images and start with the n-states. Fig. 3.2(l), where
ω = 1.57 ≈ π

2 , shows that the real part is nearly constant and equal to n2 = m2 so the real part
is correct. To prove for the imaginary part εnI,∞ ≈ −c it seems to be more comfortable to have a
look at εnI,∞ + c and to show that it tends to be equal to zero for all c and ω → π

2 :
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3.2 Energies

(a) ω = 1.5 (b) ω = 1.57

Figure 3.3: The deviation of εnI,∞ from (−c) reveals a maximum at some dissipation and then
decreases asymptotically to zero. We see that the height of the maximum decreases with increasing
ω.

Figs. 3.3(a) and 3.3(b) imply limω→π
2
εnI,∞ = −c, so for big waists the n-states fulfill the condition

limω→π
2
εn∞ = n2 − ic.

In contrast to this Fig. 3.2(a) unfortunately does not approximately yield the correct results for
the limit ω → 0 which would be constant εR = m2 and εI = 0 for all values of c. This is just true
for the antisymmetric states, that means for even m. Here the real part is nearly constant and
equal to n2 and the minimum of the imaginary part decreases with ω → 0 and vanishes for ω = 0.

(a) ω = 0.0005 (b) ω = 0.0002

Figure 3.4: The imaginary part εnI,0 of the k-states, which are antisymmetric for c = 0, reveals a
minimum at some dissipation and then decreases asymptotically to zero. We see that the depth
of the minimum decreases with decreasing ω.

So the antisymmetric states are fine. In contrast for the symmetric states the real part of the
energy εk,sR,0 indeed starts at the square of some odd m but then raises and ends up at an even one
for every ω & 0, which means it coincides with an antisymmetric state. Furthermore εk,sI,0 is not
approximately equal to zero for all c. There are minima with a depth that do not decrease with
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3 Complex square well potential

ω → 0 at all as we can see by comparing with Figs. 3.2(b) – 3.2(k). So from this point of view
both real and imaginary part do not show any tendency for ω → 0 to coincide with the calculated
limit limω→0 ε

k
0 = k2 = m2 at all. This looks inconsistent but at a later point of this discussion we

will give an interpretation that provides an appropriate explanation of this.
First we spend some time on looking at the particular strength of dissipation the maxima and
minima of the imaginary part occur at. Let us call it ccrit which seems to depend on the particular
waist ω and state m we are considering. From Figs. 3.3(a) – 3.4(b) we can read off that ccrit

obviously increases for ω ≈ 0 with decreasing ω and for ω ≈ π
2 with increasing ω, respectively.

Moreover, considering the symmetric states in Fig. 3.2(a) shows that the real part reaches its
biggest slope at ccrit that means it has an inflection point right there. A closer look on the
antisymmetric states in Fig. 3.2(a) and on the n-states in Fig. 3.2(l) as well provides the same
insight. So it seems that ccrit denotes the dissipation, where the energy has its largest deviation
from the limits we just discussed, that is for εR being constant and for εkI,0 as well as for εnI,∞
being equal to zero.
Many things we have introduced and discussed so far can be generalized to arbitrary waists
0 ≤ ω ≤ π

2 , so we continue with the regime where all areas yield similar extensions.

3.2.2 Three areas regime
Now let us take a look at the remaining pictures, that is the regime 0.1 ≤ ω ≤ 1.1, where both
types of states are coexisting among the lowest six energy levels. First we can generalize the
concept of ccrit since εkI,0 and εnI,∞ + c reveal also in this case minima and maxima.

Figure 3.5: εkI,0 ≤ 0 (minima) and εnI,∞ + c ≥ 0 (maxima) plotted for ω = 0.7.

Considering Figs. 3.2(b) – 3.2(k) yields that for intermediate waists ccrit also represents an inflection
point of the real part of the energy, so its largest slope. Thus we can conclude that the critical
dissipation exhibits the largest deviation from the limits ω & 0 and ω . π

2 in the same way as we
found out in the end of the previous subsection.
Since there occur only k-states for ω & 0 and only n-states for ω . π

2 in the course of continuous
rearrangement a kind of continuous transfer of lower k-states with higher n-states for increasing
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3.2 Energies

ω have to take place. Even for ω = 0.1 there are much more k-states than n-states in contrast
to ω = 1.1 which is instead dominated by n-states. Let us have a closer look at this process
by observing the states for small dissipation c � ccrit, intermediate dissipation c ≈ ccrit and at
last for large dissipation c � ccrit. In this context we will often talk about states, that "start"
at some m and "continue" at some k or n. This way of speaking means nothing else than that
the state is characterized by m for c = 0, so it starts there, and by k or n for c → ∞. This
particular assignment between m on the one hand and k or n on the other hand changes obviously
for increasing waists and we are going to describe it this way.

3.2.2.1 Small dissipation

First we will have a more detailed discussion of the energies for c � ccrit and start with c = 0.
Figs. 3.2(a) – 3.2(l) show that the imaginary part of all states starts at εI(0) = 0 and the real part
at 1, 4, 9, 16, 25 and 36, that is εR(0) = m2 as we claimed. So m is the number characterizing the
behaviour of each state for c = 0 and represents the connection to the familiar real potential well.
This does not change much for small c > 0 since for small dissipation the imaginary part is always
decreasing with c so it is not possible to decide whether a state is a k-state or an n-state. Thus
for c � ccrit all states are m-states corresponding to the states of the familiar real potential well
for c = 0 characterized by the integer number m.

3.2.2.2 Intermediate dissipation

Next we consider c ≈ ccrit. For small dissipation c � ccrit the energy of the states just differ
slightly from these of the real potential well. For stronger dissipation this difference generally grows
especially for the imaginary part which is continuously decreasing with increasing dissipation for
c < ccrit. So instead of the exact separation the real parts εR ≈ m2 yield for c � ccrit, now some
of them have to get closer together, because some are increasing and others are decreasing for
growing c < ccrit. Now c ≈ ccrit is the particular value of dissipation where the characterization
of all states changes from m to k or n, respectively. One can understand this by observing the
imaginary part for growing c. For c < ccrit it is decreasing for all states with a slope −1 < dεI

dc < 0.
For c = ccrit either εI exhibits a minimum so that it increases for c > ccrit, tends to zero again and
thus turns out to be a k-state, or its slope is even decreasing for c > ccrit so that the deviation
εI + c exhibits a maximum and the state turns out to be an n-state. Thus for c = ccrit the transfer
of the m-states characterized by m to k- and n-states characterized by k and n takes place.
Furthermore, there are various waists for that this assignment of an m-state to a k- or n-state
changes, for example for some waist within ω = 0.3 in Fig. 3.2(d), where them = 1-state continues
as the k = 1-state and the m = 3- as the n = 1-state, and ω = 0.4 in Fig. 3.2(e), where this
assignment is exactly vice verca. Let us denote waists, where such a transfer occurs at, with ωk,ncrit,
where k and n denote the involved k- and n-state. Unfortunately it is not possible to determine
a particular value for such critical waists exactly since all solutions for given ω and c have been
calculated numerically and then combined to a continuous graph ε(ω, c). Thus it is not possible
to find an exact value for any ωk,ncrit, because there is no rule to which curve a single numerical
solution for fixed c and ω has to assigned if two curves get really close together. So it depends
on the particular assignment when the transfer occurs. Since this is performed manually it is not
exactly determined:
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3 Complex square well potential

(a) ω = 0.31 (b) ω = 0.31

(c) ω = 0.32 (d) ω = 0.32

Figure 3.6: Possible assignment of (k = 1)- and (n = 1)-states to (m = 1)- and (m = 3)-states for
ω = 0.31 and ω = 0.32. Both assignments seem to be possible, which yields, that until we have
no expression for ε(c, ω), there is no single value ω1,1

crit but an interval of waists for which such an
exchange occurs.

Nevertheless there are some observable indicators that signalize such a critical waist. First of all
it is important to know the circumstances, where such a changeover takes place. It is always a
pair of two adjoining m-states with the same parity, so for instance m and m+ 2, where the lower
m-state is a k-state and the upper (m+ 2)-state an n-state with the same parity as both m-states
for ω < ωk,ncrit. After the interchange the (m + 2)-state is the k-state and the m-state the n-state.
Thus there belongs respectively one ωk,ncrit to every pair of one k- and n-state with the same parity
(both even or both odd).
For all waists such a changeover is imminent, there seems to be a kind of interaction between the
involved two states that becomes stronger for ω → ωcrit. Even for very small dissipation their real
parts strongly curve towards each other until they get very close. The imaginary parts run nearly
equally so that it is not possible to decide clearly which one will continue as a k- and which one
as an n-state. Then one of them suddenly reveals a minimum and increases again while the other
one also suddenly decreases its slope which then tends to −c, so that εI + c reaches a maximum
for this state. This is the point where ccrit is reached and one k- and one n-state emerge instead
of the two m-states as we can see in Fig. 3.6. Since the imaginary parts of both m-states yield
quite similar slopes, the particular assignment of the m- and (m + 2)-state to the developing k-
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3.2 Energies

and n-state is not clear. The strong curvature of εR effects that this happens even for very small
dissipations, so ccrit is really small for ω ≈ ωcrit which is characteristic for such an interchange.
Therefore a strong curvature and a small ccrit as well as a deep minimum of εkI,0 and a high
maximum of εnI,∞ + c are signals for ω ≈ ωk,ncrit. On the other hand if the real parts run very flat,
the extrema of εkI,0 as well as εnI,∞ + c, respectively, are quite flat and ccrit is large, this implies
that there is no state of the opposite type (k or n) around it with which it can interact with.
With this insight we can give an explanation of the apparent inconsistency that Fig. 3.2(a) does
not approximately exhibit the calculated states for the limit ω → 0 which would yield a constant
real part and an imaginary part equal to zero. Figs. 3.3(a) – 3.4(b) confirm that for an n-state
or a k-state, starting at some even m, ccrit is very large if there is no state of the opposite type
(k or n) around as well as that the maxima of εnI,∞ + c and the minima of εkI,0 are very flat. For
ω & 0 and ω . π

2 this is fulfilled for the lowest energy levels and Figs. 3.3(a) – 3.4(b) yield a very
large ccrit and very flat maxima and minima for εI + c and εI , respectively. We already checked
that for ω = 0 and ω = π

2 the maxima and minima of the states, we just mentioned, are equal
to zero which is equivalent to εkI,0 ≡ 0 and εnI,∞ ≡ −c for all c. Unfortunately this was not true
for the k-states starting at some odd m since we observed that the depth of the minimum does
not tend to zero for ω → 0. Now we found an additional effect which holds for all states in the
limits ω → 0 and ω → π

2 . Since ccrit becomes very large if no state of the opposite type is around
and for ω = 0 and ω = π

2 only one type of states is present at all, the deduction ccrit →∞ seems
to be reasonable. Thus for the symmetric states in Fig. 3.2(a) the particular point, where the
minimum of the imaginary part occurs at as well as where the real part suddenly increases and
fuses with the upper antisymmetric state, moves over to infinity. Therefore, since the curves look
nearly constant and equal to ε(c = 0) for c � ccrit, this implies that for ccrit → ∞ the regime of
small dissipation dominates everywhere and these curves are constant and equal to these values
so εmR ≡ m2 and εmI ≡ 0 for all 0 < c <∞.
Summing up the discussion of intermediate dissipation it is important that for c < ccrit and
ω ≈ ωcrit there are always two adjoining m-states with the same parity, that is m and m+ 2, from
which one k-state and one n-state arise, respectively. Moreover the n-state succeeds the parity of
the corresponding m-states in contrast to the k-state. Thus m-states of the opposite parity, even
the (m+1)-state in between, are completely unaffected of this procedure, since the n-state arising
from the m- or (m+ 2)-state can never evolve from the (m+ 1)-state, because it has the opposite
parity.
Now we can understand how both limits, ω & 0 dominated by k-states and ω . π

2 dominated
by n-states among the 6 lowest energy levels, are connected with each other. Via the described
interchange the energy, the curves of the k-states run at, generally increases with ω while the
energy of the n-states generally decreases. For some ω = ωk,ncrit they have to cross and interchange.
Thus the k-states run at increasing energies for increasing ω and for some waist there is no k-state
any more among the lowest 6 energy levels.

3.2.2.3 Large dissipation

We already explained that the imaginary part allows us to divide all states generally into two
groups, which we already characterized in the general discussion and then called k-states εk0 and
n-states εn∞. Since m describes the states for small dissipation c � ccrit and we just discussed
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that this changes for intermediate waists c ≈ ccrit from m to k or n the states for large dissipation
c � ccrit, the states are characterized only by the integer number k or n, which is not clearly
ascribable to a particular m as we just stated.
Here always two εkI,0-states are fusing for c → ∞ so we denoted them with the same k. These
pairs consist on a k-state starting at some odd m and one starting at one adjoining even m± 1 so
a symmetric and an antisymmetric state. Moreover we know from Fig. 3.2(a) that it is the state
starting at some odd m which approaches to the state started at some even m. The indetermi-
nacy of the assignment m ↔ k if ω ≈ ωk,ncrit does not matter since anyhow, if the considered ω is
approximately equal to some critical waist, both possible k-states starting at m or m+ 2 yield the
same parity which is opposite to this of the m+ 1-state.
It is interesting that all pairs of such fusing k-states have this property that they start at adjoining
values of m for all ω. This is related to the fact that the n-states are ordered by the real part of
the energy and never intersect each other, that means that the real part of states with higher n
run at higher energies than states with smaller n for all c. We already know that the energy, these
real parts run at, decreases for increasing ω so that interchanges with the upcoming real parts of
the k-states occur but the order of the n-states does not change. So after a k-state starting at
some odd m pairing with the k-state starting at m+ 1, which is even, has interchanged with some
symmetric n-state, it then starts at m+ 2, so the property of pairs m and m± 1 is still fulfilled.
Because of the order of the n-states the next downcoming n-state is an antisymmetric one, which
interchanges with the other k-state which starts at m+ 3 after that and the property is once more
fulfilled. This procedure repeats until all k-states populating the potential well for ω = 0 have
been redistributed to much more higher energies for ω → π

2 until exclusively n-states are present
when this limit is reached.
Next we still consider the limit c → ∞. For the imaginary part the limits limc→∞ ε

k
I,0 = 0 and

limc→∞ ε
n
I,∞ = limc→∞(−c) = −∞ seem to be accurate. For the real parts we assume that they

are converging to some finite real number which seems to be plausible since on the one hand it is
implied by the numerical evaluation and on the other hand we know that they are converging for
ω = 0 and ω = π

2 since they are constant in these cases. These should be continuously reached
limit cases so the real part should converge for all waists.
So let us make the ansatz limc→∞ ε

k
I,0 = 0 and limc→∞ ε

n
I,∞ = −c and insert this into the quanti-

zation conditions (3.26) and (3.27) to derive expressions for symmetric and antisymmetric k- and
n-states from these assumptions. Performing this and summing up the results of both (3.26) and
(3.27) provides indeed analytical results:

εk,sat
R,0 =

(
k

π
π
2 − ω

)2

, εn,sat
R,∞ =

(
n
π

2ω

)2
. (3.28)

The results of these equations coincide perfectly with the numerical solutions for large c. They
confirm that for ω = 0 there are only k-states present, since then εnR,∞ diverges, and for ω = π

2
the k-states are vanishing since then the energy they run at goes to infinity.
They also include the fact that the symmetric k-states tend to the antisymmetric ones as we can
see in Fig 3.2(a), because

lim
ω→0

εk,sat
R,0 = (2k)2, (3.29)
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3.2 Energies

Figure 3.7: Saturation values of the real part of the energy εR(ω) for the k- and n-states. For
ω = π

2 the real part of the n-states reach n2, while for ω = 0 the k-states reach (2k)2.

which is the energy of the antisymmetric k-states. This shows that the limits of ω and c can
not be interchanged since the limit ω → 0 yields (3.20) and (3.21) which would be followed by
εk,sat
R,0 = k2. One can explain this by taking both combinations of the limits for the imaginary part
of the potential, where the one yields limc→∞ limω→0 VI ≡ 0 and the other something including
the Dirac-delta distribution limc→∞ limω→0 VI ∼ δ(x). However we already solved this problem
with the assumption limω→0 ccrit =∞.
In contrast to this for the n-states both limits are obviously compatible since

lim
ω→π

2

εn,sat
I,∞ = n2. (3.30)

The expressions in (3.28) are integers k2 and n2 weighted with the squared ratio of the full extension
π of the well and a smaller length 2ω or π

2 − ω. These are nothing else than the widths of area
2 on the one hand and on the other hand area 1 and 3, respectively. Thus it seems that (3.28)
are the energies of two potential wells width the width 2ω and π

2 − ω, respectively. Reexpressing
them in terms of the original quantities makes this interpretation even more apparent:

En
sat,∞ = ~2π2

2M(2w)2n
2 , Ek

sat,0 = ~2π2

2M(L− w)2k
2. (3.31)

These are nothing else than the energies of a potential well with the width 2w and L − w,
respectively. We will have a discussion of this in the next section since the additional evaluation
of the densities makes this even clearer. Nevertheless there is one point we can have a look at
now. Eq. (3.31) yields one potential well with the width of area 2 and one with the width of the
half of the complement of it. We argued so far that n-states belong to area 2 and k-states to its
complement but (3.31) shows that the k-states have to be identified with the states of a well with
only half the width. So if we take this formula, then the limit (3.29) yields the right energy:
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3 Complex square well potential

lim
ω→0

Ek
sat,0 = ~2π2

2ML2k
2. (3.32)

These are all energies of a half-width potential well with the width L instead of 2L. So it seems
that we have to decide between area 2 as well as area 1 and 3, respectively. In the next chapter
we will have a closer look on this but for the moment the fusion of respective two k-states may
have to do something with the symmetry of the well which means that area 1 and 3 are equivalent
and thus indistinguishable so that their states are quite similar.

3.2.3 Critical waists
Finally let us have a closer look at the critical waists and Fig. 3.7. Unfortunately the intersections
between the curves are not the critical waists we are looking for, because it only reveals when a
pair of one k- and one n-state have the same saturation value but provides no insight about as
which kind of state an m-state continues for c > ccrit. Therefore we denote them differently with
ωk,nint , where k and n stand for the involved k- and n-state. We can see from Fig. 3.2(b) – 3.2(k)
that this does not give much information at which particular waist the interchange occurs, that
is ωk,ncrit. Having a closer look one additional issue catches the eye. In Figs. 3.2(d) and 3.2(e) the
(n = 1)-state interchanges with the (k = 1)-state. Here the interchange occurs for smaller waists
than the intersection in Fig. 3.7 between these two states. This means that after the interchange
at ω1,1

crit < 0.4, when the (n = 1)-state already came down and continues the (m = 1)-state, the
saturation value is still higher than this of the corresponding (k = 1)-state until ω1,1

int = π
6 > 0.4.

On the other hand Fig. 3.2(j) yields the opposite situation. Here for ω = 1 the interchange is not
performed yet but the saturation value of the involved (n = 3)-state is obviously even smaller than
this of the corresponding (k = 2)-state as one can also see by comparing with Fig. 3.7 where the
intersection occurs at ω1,3

int = 3
14π < 1.1. A third case seems to be revealed by Fig. 3.2(h) where the

interchange has just occurred and the curve of the n-state runs only slightly and nearly parallel
under the curve of the corresponding k-state. Furthermore, Fig. 3.7 yields with ω = π

4 a point of
intersection, which would be a quite reasonable choice for ω1,2

crit. Exactly the same situation occurs
for every pairs of k- and n-state that cross each other in Fig. 3.7 at ω = π

4 , which are all pairs
with n = 2k. Thus we assume

ωk,2kcrit = ωk,2kint = π

4 . (3.33)

Thus for ω = π
4 all k-states interchange with an even n-state, namely n = 2k. Fig. 3.2(h) confirms

especially for n = 1 and n = 3 that odd n-states are not interchanging with any k-state for ω ≈ π
4 .

A deeper observation of all states exhibits that for all pairs with ωk,ncrit <
π
4 it is ωcrit < ωint while

for ωk,ncrit >
π
4 it is ωcrit > ωint. This might have to do something with the fact, that ω = π

4 yields
w = L

2 . This fact should be taken into account for deriving a reasonable definition of ωcrit.

3.3 Densities
With (3.26) and (3.27) we can directly calculate from ε(ω, c) numerical solutions for the dimen-
sionless wavenumbers κ1(ω, c) and κ2(ω, c) via (3.8) and (3.24) and thus obtain ψ(χ) and ρ(χ).
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3.3 Densities

(a) m = 1, n = 1 (b) m = 2, n = 2

(c) m = 3, k = 1 (d) m = 4, k = 1

(e) m = 5, n = 3 (f) m = 6, n = 4

Figure 3.8: Densities of the lowest six states for ω = 0.8 for some values of c. They obviously
include the densities of the real limit for c = 0 and for large c it catches the eye that k-states tend
to the outside, where VI = 0 so they minimize dissipation, while the n-states tend to the center,
where VI = −C, so they maximize dissipation. The fusion of two respective k-states, which we
already observed in Figs. 3.2(a) – 3.2(l), is confirmed here, too. Furthermore, it shows that two
states with the same k indeed end up exactly in the same state.
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3 Complex square well potential

We took only an example for one particular waist ω = 0.8, since the general qualitative behaviour
of k- and n-states is the same for all waists. Fig. 3.8 shows how the densities develop and change
their shape from the familiar form for c = 0, which corresponds to the ordinary symmetric and
antisymmetric states of the real square well potential with m maxima, to large c. It directly be-
comes clear how the behaviour of k- and n-states differs for increasing dissipation. While densities
of k-states tend to the borders, that is area 1 and 3, these of n-states tend to the center, that
is area 2, for increasing c. We remember, that for ω → π

2 , which yields an imaginary potential
well affecting the whole system, only n-states occur, while the k-states dominate the system for
ω = 0. This is related to the fact that for c → ∞ two independent potential wells are formed,
which means that the states of the respective wells have densities equal to zero in the respective
other well.
Thus an appropriate interpretation of the saturation values (3.31) becomes obvious. The observa-
tion that two independent potential wells emerge, matches perfectly to the fact that the real part
of the energies of the n-states, which then are confined to the inner well with the width 2w, become
these of an ordinary potential well with exactly this width. In contrast a k-state is confined to
the borders, that is area 1 and 3. Since this is a non-connected region only antisymmetric states
fit since a maximum of the density in the center is not possible. From (3.31) we saw that we can
interpret the whole situation also as 3 independent potential wells with the width of each area so
that every well is a connected region and thus both symmetric and antisymmetric states emerge.
Both interpretations are possible since the corresponding energies are the same:

Ek = ~2π2

2M [2(L− w)]2 (2k)2 = ~2π2

2M(L− w)2k
2. (3.34)

The more appropriate interpretation will become apparent while evaluating more general systems
where this equality between states living in area 1 and 3, respectively, is not valid any more.
Let us also have a look at the time evolution of these densities. Since we only aim at having a
general impression of this, we restrict ourselves only to two cases, that is two waists, where we
show the effect of the imaginary potential on the time evolution exemplarily. Therefore we take
on the one hand the data of the particular experiment, that is (3.25), and on the other hand
ω = 0.8 and c = 100 for which we already plotted the densities. First it seems to be reasonable
to renormalize also the time t and to deal with the corresponding dimensionless quantity:

τ := ~π2

8ML2 t. (3.35)

Inserting ~,M and L especially for our system provides t = τ · 4.5 s. Thus (2.8) reads

ρ(χ, τ) = exp [2εI(τ − τ0)] ρ(χ, τ0). (3.36)

Now we consider for both data a superposition of the (m = 1)- and the (m = 4)-state, that is
1√
2 (|1〉+ |4〉). Let us start with (3.25). Although we did not plot the corresponding densities in

this case, the considered waist is so small that the antisymmetric state does not change much
for increasing c, so it is nearly equal to the (m = 4)-state for c = 0. In contrast to this the
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3.3 Densities

(m = 1)-state changes with increasing c but as we can see from Fig. 3.2(a) it is nearly equal
to the antisymmetric (m = 2)-state for c = 0. So for c = 8 · 104 we approximately deal with
two antisymmetric states, which are both k-states. Nevertheless the (m = 1)-state yields a much
larger absolute value of εI while it is approximately equal to zero for the (m = 4)-state. This has
a viewable effect on the time evolution:

Figure 3.9: The density of the (m = 1)-state is damped much stronger than the (m = 4)-state
since even for τ = 30 it has already vanished, while the (m = 4)-state is still present for very large
τ .

Here the (m = 1)-state is damped much stronger than the (m = 4)-state which is a consequence
of its negligibly small imaginary part of the energy, while for the (m = 1)-state it yields a broad
minimum. Let us therefore have a look at the time evolution of both states for ω = 0.8 and
c = 100. Here we consider not only a symmetric and an antisymmetric one for c = 0 but also
a k- and an n-state. Thus we expect that the n-state would be damped much stronger since we
already argued that this kind of states maximize dissipation:

Figure 3.10: This example confirms that n-states are damped much stronger than k-states so
n-states maximize dissipation while k-states minimze it.

Here the n-state is damped stronger than the k-state but also both are damped much stronger
than for ω = 2 · 10−4. Even for quite small τ ≈ 1 even the density of the k-state is almost damped
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3 Complex square well potential

away but we can see again that even for τ = 0.2 only this k-state remains while the n-state has
already nearly vanished.

3.4 Related Systems
The last section of this chapter is dedicated to some related systems. On the one hand we
consider the asymmetric potential where area 1 and 3 do not yield the same extension and which
thus represents a generalization of our so far regarded system. From this we will get an impression
in what extent the particular symmetry influences our system and w will be able to evaluate an
appropriate interpretation of (3.34). On the other hand we compare the results of our model with
these two quite similar real valued systems in order to underline new properties the potential well
exhibits only in the complex case.

3.4.1 Asymmetric complex square well potential
So let us first consider the asymmetric complex potential well as depicted in Fig. 3.11, that means
area 1 and 3 do not yield the same width but l for area 1 and L 6= l for area 3.

VR(x) =

 0 , −l < x < L

∞ , otherwise
(3.37)

VI(x) =

 −C = const. , |x| < w ≤ min{l, L}
0 , otherwise

(3.38)

Figure 3.11: Schematic sketch of the asymmetric complex potential well where the interval −l ≤
x < −w represents area 1, −w ≤ x ≤ +w area 2 and w < x ≤ L area 3.

The Hamiltonian of this system is thus not symmetric with respect to x = 0 so its eigenfunctions
do not have a defined parity any more. Therefore we only have to deal with one quantization
condition for all states instead of separating between symmetric and antisymmetric states:

0 = (ε+ ic) sin
[√
ε(ω − λ)

]
sin

[√
ε(ω − Λ)

]
(3.39)

−
{√

ε+ ic sin
[√
ε(ω − Λ)

]
cos

(
2ω
√
ε+ ic

)
−
√
ε cos

[√
ε(ω − Λ)

]
sin

(
2ω
√
ε+ ic

)}
×
{√

ε+ ic sin
[√
ε(ω − λ)

]
cos

(
2ω
√
ε+ ic

)
−
√
ε cos

[√
ε(ω − λ)

]
sin

(
2ω
√
ε+ ic

)}
.

Here we introduced dimensionless variables similar to (3.24), but replaced 2L by the width of
the asymmetric well, that is L + l so that Λ + λ = π. The symmetric limit is thus reached for
Λ = π

2 = λ, which we are familiar with. Consequently if we insert this into (3.39) we will obtain
both the quantization conditions for the symmetric (3.26) as well as the antisymmetric states
(3.27). Solving (3.39) numerically yields for the energy:
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3.4 Related Systems

Figure 3.12: Energies of the asymmetric potential well for ω = 0.8 and Λ = 2. Since we have to
deal with two kinds of k-states, as will become clear in Figs. 3.13(a) – 3.13(f), we denote them
differently with k and K.

Therefore we have to deal with k- and n-states as well but not with a fusion between adjoining k-
states. The real part of every state ends up at one own saturation energy for c→∞. Furthermore
these k-states have to be separated into those belonging to area 1, denoted by k, and those
belonging to area 3, denoted by K. Let us therefore have a look at the corresponding densities:
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3 Complex square well potential

(a) m = 1, n = 1 (b) m = 2,K = 1

(c) m = 3, n = 2 (d) m = 4, n = 3

(e) m = 5,K = 2 (f) m = 6, k = 1

Figure 3.13: One can see the same qualitative behaviour as for the symmetric complex potential
well for n- and k-states, but additionally we now have to separate between two kinds of k-states,
which we denote with k and K.
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3.4 Related Systems

Figs. 3.13(a) – 3.13(f) confirm that we really have to separate between three different kinds of
states. The k- and K-states differ from each other in the area they are tending to, so even the
k-states have maxima in only one area for an asymmetric potential. Thus the fact that the density
of k-states yield maxima in area 1 and 3 in the symmetric case is a direct consequence of this
symmetry, that is the indistinguishability of area 1 and 3, since physically, for large dissipation,
the particle can only be either at one or the other border.
Let us discuss shortly the symmetric limit, that is λ→ Λ. Observing the energies for Λ ≈ λ shows
that, if the difference between λ and Λ becomes very small, then the maxima of the k-states are
growing quite equally and only for very large c the maxima in the one area (1 or 3) are dominating.
So for Λ = λ the maxima in area 1 and 3 are growing similarly for all c and thus the parity of the
wave functions is ensured due to the symmetry of the system.
Furthermore, we can again calculate the saturation value of the real part of the energy by con-
sidering limc→∞ ε

n
I,∞ = −c as well as limc→∞ ε

k
I,∞ = 0 and obtain results which are not very

surprising:

lim
c→∞

εnR,0 =
(
n
π

2ω

)2
, lim

c→∞
εkR,0 =

(
k

π

ω − λ

)2
, lim

c→∞
εKR,0 =

(
K

π

ω − Λ

)2
. (3.40)

Indeed we obtain three independent potential wells with three different widths, that is 2ω, λ− ω
and Λ−ω, and again the symmetric limit becomes obvious for Λ = π

2 . This is directly followed by
λ = π

2 and yields εk = εK which causes a fusion of the corresponding k- and K-states in Fig. 3.12.
We can also extract something mysteriously from the quantization condition (3.39) involving the
limit limc→∞ ε

n
∞. In fact inserting

(
nπ
2ω

)2
− ic into (3.39) shows that it represents a solution even

for all c, not only for c → ∞. Thus we have energies with a constant real part equal to the
saturation value so that c only affects the imaginary part in an exactly linear way. However, it
does not fulfill the real limit εn∞(0) = n2 and is therefore quite unphysical so we neglect them in
the further discussion.
So finally this short side-trip into a complex potential well with less symmetry provided some
useful insights for a further understanding of our symmetric system. We have seen that in this
case for very large dissipation c the whole system consists of three independent potential wells,
which was not observable that clearly for the symmetric case. Physically this means the following.
For c→∞ the particle has to be in area 1 or 3 and can not switch since the imaginary potential in
area 2 has the same effect as an infinitely high potential barrier. So the particle, indeed, is in area
1 or 3 but since we can not distinguish between them in the symmetric case, both areas are equal.
For the asymmetric potential we have seen that we can differ 3 kinds of states corresponding
to the particle being in respectively one of the three distinct areas for c → ∞. Therefore the
interpretation considering three independent potential wells seems to be more appropriate in
(3.34) since we account the symmetric potential well a special case of the general potential well
yielding an imaginary potential in the center.

3.4.2 Related real potential systems

Next we will compare the results of the complex potential with some familiar real valued systems.
Especially the energy limits (3.28) show that our complex square well potential yields quite similar
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3 Complex square well potential

results as the familiar real double well potential. Therefore we now consider the following real
potential in dimensionless variables:

v(χ) =


∞ , |χ| > π

2

0 , ω ≤ |χ| ≤ π
2

c , |χ| < ω

, (3.41)

but allow for c being also negative, which yields on the one hand the double well potential for
c > 0 and on the other hand a nested real potential well for c < 0.
In any case, due to its symmetry, the real potential (3.41) yields the following quantization con-
ditions for symmetric and antisymmetric states

0 =
√
εs cot

[(
ω − π

2

)√
εs
]

+
√
εs − c tan

(
ω
√
εs − c

)
, (3.42)

0 =
√
εa cot

[(
ω − π

2

)√
εa
]
−
√
εa − c cot

(
ω
√
εa − c

)
. (3.43)

Of course both conditions are looking quite similar to (3.26) and (3.27) and also the solutions will
turn out to be not that unfamiliar. We discuss them separately for c > 0 and c < 0 in the next
two subsections.

3.4.2.1 Real double well potential

The so called real double well potential is realized for c > 0 in (3.41). We know that for very large
c and fixed ω the density reduces to zero in area 2 and is thus displaced to the borders which is
area 1 and 3. Since exactly this occurs for the k-states of our complex potential it seems to be
reasonable to compare it with the results of this real system. Let us therefore have a look at the
solutions of (3.42) and (3.43) for c > 0:

Figure 3.14: Lowest six energies of the real double well for ω = 0.8. Here only k-states are
emerging. Similarly to the complex potential well they start at some m2 for natural m and always
two states starting at two adjoining m, so a symmetric and an antisymmetric state, fuse and end
up at a mutual finite saturation value for c→∞.
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3.4 Related Systems

As we expected Fig. 3.14 shows that for c > 0 there are only k-states present. We can identify
them as k-states since always two adjoining states are fusing for increasing c. This is confirmed
by considering c→∞ in (3.42) and (3.43):

εsat =
(
k

π

ω − π
2

)2

, k =
[
m+ 1

2

]
=


m
2 , m even

m+1
2 , m odd

, (3.44)

which is equal to the saturation value of the k-states in (3.28) and coincides perfectly with the
numerical results. Therefore this limit yields nothing else than two equal potential wells separated
by an infinitely high real potential barrier. This interpretation is confirmed by the corresponding
densities:

(a) m = 1, k = 1 (b) m = 2, k = 1

(c) m = 3, k = 2 (d) m = 4, k = 2

(e) m = 5, k = 3 (f) m = 6, k = 3

Figure 3.15: Densities of the lowest six states of the real double well potential for ω = 0.8. It
yields a real infinite high potential barrier for c→∞ so that two equal potential wells develop.
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So finally we can state that the real double well potential yields only one kind of states. Comparing
them with the corresponding ones of the complex potential well shows qualitatively the same
results for the k-states, that means for c = 0 and c→∞ they are equal and additionally exhibit
this particular fusion for diverging c. Nevertheless there are deviations between the eigenvalues ε
of both systems for 0 < c <∞.

3.4.2.2 Nested real potential wells

Next we consider the so called nested real potential wells which means nothing else than (3.41)
with (−c) < 0. Thus we also deal with a well in the center of the system just like we do for the
complex potential well. We know that in this case the density tends to the center for (−c)→∞
which exactly happens for the n-states of the complex potential well, too. Therefore we should
contrast these both systems with each other, too. Solving (3.42) and (3.43) for c < 0 provides:

Figure 3.16: Lowest six energies of a system with two nested real potential wells for ω = 0.8. For
c = 0 all states start at some m2 for natural m. For decreasing c their energy decreases, especially
linearly for large (−c), to −∞.

Recalling the results of the complex potential well yields that in some way the states in Fig. 3.16
show a quite similar behaviour as the n-states although we deal here with real solutions. They
start at ε(c = 0) = m2 for m = 1, 2, 3, 4, 5, 6, . . . like the real part, but then decrease linearly for
large c to −∞ like the imaginary part of the energy does in the complex case. We can additionally
calculate ε analytically in the limit c→ −∞ from (3.42) and (3.43), which provides

lim
c→−∞

ε = lim
c→−∞

[(
n
π

2ω

)2
− c

]
, n = m. (3.45)

The plateau occurring in Fig. 3.16, especially for the higher states, is related to the fact that for
c = 0 all states yield the energy of a potential well with the width π, that is ε(0) = m2. In contrast
the first term in (3.45) exhibits energies of a potential well with the width 2ω < π for c→∞, so
that the energy can not decrease perfectly linearly with c for all c but have to reveal a deviation
of this linear decay. Exactly this is reexpressed by this plateau and it becomes more and more
viewable for large m since the deviation grows quadratically in m.
Furthermore (3.45) reminds us of the n-states of the complex potential well which yield
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lim
c→−∞

εn = lim
c→−∞

[(
nπ

2ω

)2
− ic

]
. (3.46)

The densities confirm this analogy:

(a) m = n = 1 (b) m = K = 2

(c) m = n = 3 (d) m = n = 4

(e) m = n = 5 (f) m = n = 6

Figure 3.17: Densities of the lowest siy states of a system with two nested real potential wells. It
yields a decreasing density in area 1 and 3 with increasing c which reduces to zero in the limit
c→ −∞. Thus the states tend to the center just like the n-states of the complex potential well.
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It catches the eye that, just like the n-states of the complex potential well, the states of the two
nested real potentials tend to the center and end up as states of a potential well with the width
2ω as (3.45) already implied. This is given by the first summand of (3.45) which exactly coincides
with εn,sat

R,∞ .

3.4.2.3 Comparison with complex potential well

Let us finally compare the results of both related real valued systems with the corresponding ones
of the complex potential well. We have already seen that both systems yield one kind of state,
respectively, that is the double well shows k-states and the nested potential well n-states, while
for the complex potential well both types of states occur at once. This has several consequences,
for example we saw that this coexistence causes a kind of interaction between k- and n-states.
We already evaluated similarities between the real part of the energy, the states of the complex
potential well yield, and the energies or respective parts of it the real potential systems reveal. We
found out that the energies of corresponding states exactly coincide in the limits c = 0 and c→∞
but this is generally not true for all c. Comparing the energies of corresponding states of the real
systems with these of the complex one also for 0 < c <∞ exhibit differences which are caused by
this kind of interaction we discussed in Section 3.2. This interaction is represented for example by
a strong curvature of the graphs that do not occur that strong in Figs. 3.14 and 3.16. If it is weak
then energies are in good accordance which confirms the interpretation as a kind of interaction
since it only emerges if both kinds of states are present at once. Thus also the interchange of
states at some ωcrit is an effect only the complex potential well includes since k- and n-states keep
their order among each other as we already found out for the complex potential well.
Nevertheless the most important difference consists in the time evolution (2.8). Because all en-
ergies of the real valued systems are accordingly real, we deal with stationary solutions in these
cases, because EI = 0 is obviously followed by ρ(x, t) = ρ(x, t0) for all t. Therefore only the
complex potential well is able to describe damping and, since the density in area 2 reduces to
zero for large t, a hole in the condenstate develops and primarily the k-states remain for large
dissipation.
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4 Complex harmonic potential
After this quite detailed evaluation of that crude square well approximation there are many possi-
bilities to improve our ansatz in order to have a more appropriate description. Some obvious ones
are of course to extend the model to three dimensions, including interaction in our theory and
finally to have a more accurate approximation of the potential, which we aim at performing in
this chapter. Therefore we now take a harmonic complex potential V (x) = VR(x) + iVI(x), where
VR(x) = M

2 Ω2x2 represents the harmonic trap the BEC is confined in and Ω denotes its frequency.
Furthermore, in this chapter we consider the imaginary part of the potential to be harmonic and
negative for |x| ≤ w and equal to zero otherwise. Moreover it is supposed to be continuous at
x = ±w and again symmetric with respect to x = 0, where the beam is focused on. Therefore
it can not include any terms linear in x but only constant and quadratic ones so we have to deal
with the expression VI(x) = C

(
x2

w2 − 1
)
for |x| ≤ w which fulfills all demands. Therefore, putting

both parts together, we consider the following system:

VR(x) = M

2 Ω2x2 (4.1)

VI(x) =

 0 , |x| > w

C
(
x2

w2 − 1
)

, |x| ≤ w
. (4.2)

Figure 4.1: Schematic sketch of the complex harmonic potential, where again the interval −L ≤
x < −w is called area 1, −w ≤ x ≤ +w area 2 and w < x ≤ L area 3.

Just like for the square well potential we have to distinguish between three different areas with a
non-vanishing imaginary part VI only in area 2. So the wave function has also the same piecewise
form (3.3).
However, due to various reasons, we will not perform an exactly analogous discussion as in the
previous chapter, although many aspects of this complex harmonic potential will be similar to the
complex square well potential. Nevertheless one important difference relies in the real part of the
potential, which is not piecewise defined, so that the wave function does not vanish for finite x
and thus the waist can, in principle, tend to infinity. Beside the quite complicated formulas that
will arise from this ansatz, this issue will cause much more numerical effort since for example the
limit case ω → π

2 turns now into ω → ∞. Thus we just aim at getting an impression of how
the results change due to the new potential and see whether they provide something completely
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4 Complex harmonic potential

different or otherwise even this crude approximation of the previous chapter yields qualitatively
satisfying results.

4.1 Static solutions of Schrödinger equation
The time-independent Schrödinger equation (2.9) for the considered potential is given by

H(x)ψ(x) =
[
− ~2

2M
d2

dx2 + M

2 Ω2x2 + iC

(
x2

w2 − 1
)]

ψ(x) = Eψ(x). (4.3)

Solving this we take an analogues approach as in [29, Ch. 7] and introduce the abbreviations

k2
1 = 2ME

~2 and k2
2 = 2M

~2 (E + iC) (4.4)

as well as

λ1 = MΩ
~

and λ2 =
√
M2Ω2

~2 + i
MC

~2w2 = λ1

√
1 + i

C

MΩ2w2 , (4.5)

where the index 1 stands for area 1 and 3, i.e. VI(x) = 0, while the index 2 denotes area 2, i.e.
VI(x) > 0. Thus (4.3) becomes

d2

dx2ψ(x) +
(
k2 − λ2x2

)
ψ(x) = 0. (4.6)

With the substitutions

y := λx2, ψ(y) =: e−y/2ϕ(y) and γ := k2

2λ (4.7)

it takes the form of Kummer’s differential equation

y
d2ϕ

dy2 +
(1

2 − y
) dϕ

dy +
(
γ

2 −
1
4

)
ϕ = 0, (4.8)

that is generally solved by

ϕ(y) = A 1F1

(
a; 1

2; y
)

+B
√
y 1F1

(
a+ 1

2; 3
2; y

)
(4.9)

with the confluent hypergeometric functions

1F1 (p; q; y) =
∞∑
ν=0

(p)ν
(q)ν

yν

ν! (4.10)
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4.1 Static solutions of Schrödinger equation

and the Pochammer-symbols

(a)ν = a(a+ 1) . . . (a+ ν − 1), where a = −
(
γ

2 −
1
4

)
and (a)0 := 1. (4.11)

Resubstitution to x and ψ provides the general solution

ψ(x) = Ase−
1
2λx

2
1F1

(
a; 1

2;λx2
)

+ Aa
√
λxe−

1
2λx

2
1F1

(
a+ 1

2; 3
2;λx2

)
, (4.12)

with the corresponding series representation

ψ(x) = Ase−
1
2λx

2
∞∑
ν=0

(a)ν(
1
2

)
ν

λν
x2ν

ν! + Aae−
1
2λx

2
∞∑
ν=0

(a)ν(
3
2

)
ν

λν+ 1
2
x2ν+1

ν! . (4.13)

The first term of this solution is symmetric, while the second term is antisymmetric with respect
to x = 0, therefore we denoted the respective constants with As and Aa. This solution and its
first derivative have to be differentiable at x = ±w, since the Schrödinger equation for the whole
wave function (4.3) yields that the second derivative of ψ is a continuous function. Moreover one
has to demand that, due to normalizability, ψ vanishes for x → ±∞. One can reduce these four
conditions to only two by using the symmetry of the Hamiltonian with respect to x = 0 on the left
hand side of (4.3), which implicates that its eigenfunctions ψ have to be completely symmetric or
antisymmetric with respect to x = 0, that is

ψs1(−x) = ψs3(x) and ψs2(−x) = ψs2(x) (4.14)

for the symmetric wave function ψs and

ψa1(−x) = −ψa3(x) and ψa2(−x) = −ψa2(x) (4.15)

for the antisymmetric one ψa. Especially for the wave function in area 2 this means that ψ2 is
either completely symmetric or antisymmetric so that it takes the following form:

ψs2(x) = As2e
− 1

2λ2x2
1F1

(
a2; 1

2;λ2x
2
)
, (4.16)

ψa2(x) = Aa2

√
λ2xe

− 1
2λ2x2

1F1

(
a2 + 1

2; 3
2;λ2x

2
)
, (4.17)

while we have to express the wave function in area 1 via the general expression

ψ1(x) = As1e
− 1

2λ1x2
1F1

(
a1; 1

2;λ1x
2
)

+ Aa1

√
λ1xe

− 1
2λ1x2

1F1

(
a1 + 1

2; 3
2;λ1x

2
)
. (4.18)

Before taking the symmetry conditions (4.14) and (4.15) into account, we reexpress the wave
functions in terms of new dimensionless variables, where the length scale is normalized by the
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oscillator length l = λ
−1/2
1 and the energy scale by the ground-state energy 1

2~Ω of a real harmonic
potential to make the calculations and the results more clearly:

ε := E
~Ω
2
, c := C

~Ω
2
, χ := 1

l
x, ω := 1

l
w and κ := l k. (4.19)

Furthermore we introduce the following abbreviation:

θ = θ(c, ω) =
√

1 + i
c

ω2 . (4.20)

From this we can directly calculate λ and γ and thus finally obtain

a1 = 1
4(1− ε) and a2 = 1

4

(
1− ε+ ic

θ

)
. (4.21)

Using these new variables the general solutions now read

ψs(χ) =



As1e
− 1

2χ
2

1F1
(
a1; 1

2 ;χ2
)

+ Aa1χe
− 1

2χ
2

1F1
(
a1 + 1

2 ; 3
2 ;χ2

)
, χ < −ω

As2e
− 1

2 θχ
2

1F1
(
a2; 1

2 ; θχ2
)

, −ω < χ < ω

As1e
− 1

2χ
2

1F1
(
a1; 1

2 ;χ2
)
− Aa1χe−

1
2χ

2
1F1

(
a1 + 1

2 ; 3
2 ;χ2

)
, ω < χ

, (4.22)

ψa(χ) =



As1e
− 1

2χ
2

1F1
(
a1; 1

2 ;χ2
)

+ Aa1χe
− 1

2χ
2

1F1
(
a1 + 1

2 ; 3
2 ;χ2

)
, χ < −ω

Aa2θχe
− 1

2 θχ
2

1F1
(
a2 + 1

2 ; 3
2 ; θχ2

)
, −ω < χ < ω

−As1e−
1
2χ

2
1F1

(
a1; 1

2 ;χ2
)

+ Aa1χe
− 1

2χ
2

1F1
(
a1 + 1

2 ; 3
2 ;χ2

)
, ω < χ

. (4.23)

Now we demand continuity of the wave function and its first derivative at χ = ±ω. With the
symmetry conditions (4.14) it is sufficient to evaluate this at χ = −ω and to ensure that ψ1(χ)
vanishes for χ → −∞, because then the same is automatically fulfilled for ψ3 at χ = +ω and
χ→∞. We start with the normalizability:

lim
χ→−∞

ψ1(χ) = lim
χ→−∞

e−
1
2χ

2
[
As1 1F1

(
a1; 1

2;χ2
)

+ Aa1χ 1F1

(
a1 + 1

2; 3
2;χ2

)]
!= 0. (4.24)

If the confluent hypergeometric functions (4.10) reduce to polynomials, this would be automat-
ically fulfilled because of the exponential function. In the real case this allows us immediately
to formulate the quantization condition a1 = −n for some n ∈ N. Unfortunately this does not
work here since a is, in general, a complex number so that the Pochammer symbol (a1)ν does not
vanish even for any n ∈ R and 1F1

(
a1; 1

2 ;χ2
)
does not become a polynomial. Therefore we have

to demand that the sum of two confluent hypergeometric functions vanishes for χ→ −∞:

lim
χ→−∞

[
As1 1F1

(
a1; 1

2;χ2
)

+ Aa1χ 1F1

(
a1 + 1

2; 3
2;χ2

)]
!= 0. (4.25)
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4.1 Static solutions of Schrödinger equation

The occurring confluent hypergeometric functions are continuous and symmetric in χ, since their
argument is χ2, while χ is obviously antisymmetric with respect to χ, so that we can rewrite this
to

Aa1 = As1 lim
χ→∞

1F1
(
a1; 1

2 ;χ2
)

χ 1F1
(
a1 + 1

2 ; 3
2 ;χ2

) (4.26)

and use the asymptotic behaviour of the confluent hypergeometric functions for x→∞ from [29,
(34.21)]:

1F1 (a; c;x) −→ Γ(c)
Γ(c− a)e

−iaπx−a + Γ(c)
Γ(a)e

xxa−c. (4.27)

Applying this to (4.26) provides

Aa1 = As1 lim
χ→∞

Γ(1/2)
Γ(1/2−a1)e

−ia1πχ−2a1 + Γ(1/2)
Γ(a1) e

χ2
χ2a1−1

χ
[

Γ(3/2)
Γ(1−a1)e

−i(a1+ 1
2)πχ−2a1−1 + Γ(3/2)

Γ(a1+1/2)e
χ2χ2a1−2

] (4.28)

= As1 lim
χ→∞

Γ
(

1
2

) [
Γ
(

1
2 − a1

)−1
e−ia1πχ−2a1 + Γ (a1)−1 eχ

2
χ2a1−1

]
Γ
(

3
2

) [
−iΓ (1− a1)−1 e−ia1πχ−2a1 + Γ

(
a1 + 1

2

)−1
eχ2χ2a1−1

] (4.29)

= 2As1 lim
χ→∞

Γ
(

1
2 − a1

)−1
+ Γ (a1)−1 eχ

2+ia1πχ4a1−1

−iΓ (1− a1)−1 + Γ
(
a1 + 1

2

)−1
eχ2+ia1πχ4a1−1

, (4.30)

where we used the recurrence formula of the Γ-function Γ(x + 1) = xΓ(x). Now we neglect the
terms not including eχ2 so that the χ-dependency cancels and we are directly left with

Aa1 = 2As1
Γ
(
a1 + 1

2

)
Γ (a1) . (4.31)

From this expression one can read off Aa1 = 0 if a1 is equal to some integer number a1 = −n ≤ 0
and, for normalizability, As1 = 0 if a1 = −n − 1

2 < 0. This yields, that then ψ1 is also symmetric
or antisymmetric with respect to χ = 0, respectively. Now we can express ψ1 via only one
normalization constant:

ψ1 (χ) = As1e
− 1

2χ
2

1F1

(
a1; 1

2;χ2
)

+ 2χ
Γ
(
a1 + 1

2

)
Γ (a1) 1F1

(
a1 + 1

2; 3
2;χ2

) . (4.32)

In the following we discuss symmetric and antisymmetric states separately.
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4.1.1 Symmetric states

With (4.22) the continuity condition ψs1(−w) = ψs2(−w) provides

As1e
− 1

2ω
2

[
1F1

(
a1; 1

2 ;ω2
)
− 2ω

Γ
(
a1 + 1

2
)

Γ (a1) 1F1

(
a1 + 1

2; 3
2 ;ω2

)]
= As2e

− 1
2 θω

2

1F1

(
a2; 1

2 ; θω2
)
. (4.33)

With this we reexpress As2 in terms of As1, which then exhibits the normalization constant of the
whole symmetric wave function, so that we call it from now on N s := As1. Then the continuity
condition reads

As2 = N se
1
2 (θ−1)ω2 1F1

(
a1; 1

2 ;ω2
)
− 2ω Γ(a1+ 1

2)
Γ(a1) 1F1

(
a1 + 1

2 ; 3
2 ;ω2

)
1F1

(
a2; 1

2 ; θω2
) =: N sRs, (4.34)

where Rs = Rs (ω, ε, c) represents an abbreviation. We can now write down the wave functions in
all 3 areas obeying (4.14), which yields the symmetric wave function ψs:

ψs(χ) = N s



e−
1
2χ

2
[

1F1
(
a1; 1

2 ;χ2
)

+ 2χΓ(a1+ 1
2)

Γ(a1) 1F1
(
a1 + 1

2 ; 3
2 ;χ2

)]
, χ < −ω

Rs e−
1
2 θχ

2
1F1

(
a2; 1

2 ; θχ2
)

, −ω ≤ χ ≤ ω

e−
1
2χ

2
[

1F1
(
a1; 1

2 ;χ2
)
− 2χΓ(a1+ 1

2)
Γ(a1) 1F1

(
a1 + 1

2 ; 3
2 ;χ2

)]
, χ > ω

. (4.35)

4.1.1.1 Quantization condition

Now we have to ensure the continuity of the first derivative of ψs at χ = −ω

d
dχψ

s
1 (χ)

∣∣∣∣∣
χ=−ω

= d
dχψ

s
2 (χ)

∣∣∣∣∣
χ=−ω

, (4.36)

which yields with (4.35)

ω 1F1

(
a1; 1

2 ;ω2
)
− 4a1ω 1F1

(
a1 + 1; 3

2 ;ω2
)

+

2
Γ
(
a1 + 1

2
)

Γ (a1)

[(
1− ω2)

1F1

(
a1 + 1

2; 3
2 ;ω2

)
+ 4

3

(
a1 + 1

2

)
ω2

1F1

(
a1 + 3

2; 5
2 ;ω2

)]

=
1F1

(
a1; 1

2 ;ω2)− 2ω Γ(a1+ 1
2 )

Γ(a1) 1F1
(
a1+ 1

2 ; 3
2 ;ω2)

1F1
(
a2; 1

2 ; θω2
) [

θω 1F1

(
a2; 1

2 ; θω2
)
− 4a2θω 1F1

(
a2+1; 3

2 ; θω2
)]

. (4.37)

Here we used the derivative of the confluent hypergeometric functions with respect to the last
argument
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d
dχ 1F1

(
a; c; βχ2

)
=
∞∑
ν=1

(a)ν
(c)ν

βν
2νχ2ν−1

ν!

= 2χβa
c

∞∑
ν=1

(a+ 1)ν−1
(c+ 1)ν−1

βν−1 χ
2(ν−1)

(ν − 1)!

= 2χβa
c

1F1
(
a+ 1; b+ 1; βχ2

)
. (4.38)

Eq. (4.37) represents the quantization condition for the symmetric states. Its solutions are the
energy eigenvalues εs of the eigenstates ψs. Since θ and a are functions of c and ω via (4.20) and
(4.21) these energies just depend on the waist ω and the strength of dissipation c. The quan-
tization condition for the energy is a transcendental equation in ε so that we have to solve it
numerically, which we do in the next section.

4.1.1.2 Normalization constant

Finally we derive an expression for the normalization constant N s. For this purpose we have to
calculate the following integral by using the symmetry of ψ:

1 =
∫ ∞
−∞
|ψ(χ)| dχ = 2

∫ ω

0
|ψ2(χ)|2 dχ+ 2

∫ ∞
ω
|ψ3(χ)|2 dχ. (4.39)

One can generally write for the following integral including 1F1:

∫ ∞
r

xp
∣∣∣e− 1

2βx
2

1F1
(
a; c; βx2

)∣∣∣2 dx =
∞∑

µ,ν=0

(a)ν(a∗)µ
(c)ν(c∗)µν!µ!β

ν (β∗)µ
∫ ∞
r

e−Re(β)x2
x2(µ+ν)+pdx, (4.40)

where Re(β) represents the real part of β. With the substitution z := Re(β)x2 one obtains

∞∑
µ,ν=0

(a)ν(a∗)µ
(c)ν(c∗)µν!µ!β

ν (β∗)µ
∫ ∞

Re(β)r2
e−zzµ+ν+ p

2
dz

2
√

Re(β)z

= 1
2

∞∑
µ,ν=0

(a)ν(a∗)µ
(c)ν(c∗)µν!µ!

βν (β∗)µ√
Re(β)

∫ ∞
Re(β)r2

e−zzµ+ν+ p+1
2 −1dz

= 1
2

∞∑
µ,ν=0

(a)ν(a∗)µ
(c)ν(c∗)µν!µ!

βν (β∗)µ√
Re(β)

Γ
(
µ+ ν + p+ 1

2 ,Re(β)r2
)
, (4.41)

where

Γ (x, r) :=
∫ ∞
r

e−ttx−1dx (4.42)

denotes the Plica-function, which is a generalization of the familiar Γ-function, namely Γ(x, 0) =
Γ(x). So for the first integral in (4.39) follows
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2
∫ ω

0
|ψs2(χ)|2 dχ = 2 |N sRs|2

∫ ω

0

∣∣∣∣e− 1
2 θχ

2
1F1

(
a2; 1

2; θχ2
)∣∣∣∣2 dχ

= 2 |N sRs|2
[∫ ∞

0

∣∣∣∣e− 1
2 θχ

2
1F1

(
a2; 1

2; θχ2
)∣∣∣∣2 dχ−

∫ ∞
ω

∣∣∣∣e− 1
2 θχ

2
1F1

(
a2; 1

2; θχ2
)∣∣∣∣2 dχ

]

= |N sRs|2
∞∑

µ,ν=0

(a2)ν(a∗2)µ(
1
2

)
ν

(
1
2

)
µ
ν!µ!

θν(θ∗)µ√
Re(θ)

[
Γ
(
µ+ ν + 1

2

)
− Γ

(
µ+ ν + 1

2 ,Re(θ)ω2
)]
. (4.43)

The second integral in (4.39) reads

2
∫ ∞
ω

|ψs3 (χ)|2 dχ = 2 |N s|2
∫ ∞
ω

e−χ

∣∣∣∣∣ 1F1

(
a1; 1

2 ;χ2
)
− 2χ

Γ
(
a1 + 1

2
)

Γa1
1F1

(
a1 + 1

2; 3
2 ;χ2

)∣∣∣∣∣
2

dχ

= 2 |N s|2
{∫ ∞

ω

e−χ
∣∣∣∣ 1F1

(
a1; 1

2 ;χ2
)∣∣∣∣2 dχ+ 4

∣∣∣∣∣Γ
(
a1 + 1

2
)

Γ(a1)

∣∣∣∣∣
∫ ∞
ω

e−χχ2
∣∣∣∣ 1F1

(
a1 + 1

2; 3
2 ;χ2

)∣∣∣∣2 dχ

−4Re
[

Γ
(
a1 + 1

2
)

Γ (a1)

∫ ∞
ω

χe−χ
2

1F1

(
a∗1; 1

2 ;χ2
)

1F1

(
a1 + 1

2; 3
2 ;χ2

)]
dχ
}

= |N s|2

∞∑

µ,ν=0

1
ν!µ!

 (a1)ν(a∗1)µ( 1
2
)
ν

( 1
2
)
µ

Γ
(
µ+ ν+ 1

2 , ω
2
)

+4

∣∣∣∣∣Γ
(
a1+ 1

2
)

Γ(a1)

∣∣∣∣∣
2 (
a1 + 1

2
)
ν

(
a∗1 + 1

2
)
µ( 3

2
)
ν

( 3
2
)
µ

Γ
(
µ+ ν+ 3

2 , ω
2
)

−4Re
{

Γ
(
a1 + 1

2
)

Γ(a1)
(a∗1)ν

(
a1 + 1

2
)
µ( 1

2
)
ν

( 3
2
)
µ

Γ
(
µ+ ν+ 1, ω2)}]} , (4.44)

where we used (4.41). Thus for the absolute value of the normalization constant of the whole
symmetric wave function follows

|N s| =

 ∞∑
µ,ν=0

1
µ!ν!

|Rs|2 (a2)ν(a∗2)µ(
1
2

)
ν

(
1
2

)
µ

θν (θ∗)µ√
Re(θ)

[
Γ
(
µ+ ν + 1

2

)
− Γ

(
µ+ ν + 1

2 ,Re(θ)ω2
)]

+(a1)ν(a∗1)µ(
1
2

)
ν

(
1
2

)
µ

Γ
(
µ+ ν + 1

2 , ω
2
)

+ 4

∣∣∣∣∣∣
Γ
(
a1+ 1

2

)
Γ(a1)

∣∣∣∣∣∣
2 (
a1 + 1

2

)
ν

(
a∗1 + 1

2

)
µ(

3
2

)
ν

(
1
2

)
µ

Γ
(
µ+ ν+ 3

2 , ω
2
)

−4Re


Γ
(
a1 + 1

2

)
Γ(a1)

(a∗1)ν
(
a1 + 1

2

)
µ(

1
2

)
ν

(
3
2

)
µ

Γ
(
µ+ ν+ 1, ω2

)


−1/2

. (4.45)

We have to note that this is only the absolute value of the normalization constant so that a general
expression for N s would include an additional phase factor:

N s = |N s| eiϕs . (4.46)
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4.1 Static solutions of Schrödinger equation

4.1.1.3 Real limit

Now let us evaluate for consistency reasons our results in the limit c→ 0 in order to see whether
the familiar results of the real harmonic potential

Es
0 = ~Ω

(
2n+ 1

2

)
, ψs0 (x) =

√√√√√λ1

π

1
22n(2n)!e

− 1
2λ1x2

H2n

(√
λ1x

)
(4.47)

are included. Here H2n(χ) denotes the Hermite polynomials of even order 2n, which are special
cases of the confluent hypergeometric functions according to the formula [29, (34.23)]

H2n (χ) = (−1)n (2n)!
n! 1F1

(
−n; 1

2;χ2
)
. (4.48)

Let us start with evaluating the quantization condition in this limit. First of all taking a look at
(4.11) and (4.20) allows us to calculate directly

lim
c→0

θ = 1 ⇒ lim
c→0

a2 = a1 =: a , lim
c→0

λ2 = λ1 =: λ. (4.49)

Thus (4.37) reads

ω 1F1

(
a; 1

2;ω2
)
− 4aω 1F1

(
a+ 1; 3

2;ω2
)

+ 2
Γ
(
a+ 1

2

)
Γ (a)

[(
1− ω2

)
1F1

(
a+ 1

2; 3
2;ω2

)
+ 4

3

(
a+ 1

2

)
ω2

1F1

(
a+ 3

2; 5
2;ω2

)]

=
1− 2ω

Γ
(
a+ 1

2

)
Γ (a)

1F1
(
a+ 1

2 ; 3
2 ;ω2

)
1F1

(
a; 1

2 ;ω2
)

 [ω 1F1

(
a; 1

2;ω2
)
− 4aω 1F1

(
a+ 1; 3

2;ω2
)]
, (4.50)

which reduces to

Γ
(
a+ 1

2

)
Γ (a)

[
1F1

(
a+ 1

2; 3
2;ω2

)
+ 4

3

(
a+ 1

2

)
ω2

1F1

(
a+ 3

2; 5
2;ω2

)

−4aω2 1F1
(
a+ 1

2 ; 3
2 ;ω2

)
1F1

(
a; 1

2 ;ω2
) 1F1

(
a+ 1; 3

2;ω2
) = 0. (4.51)

We have to obtain a solution a, which does not depend on the waist ω, since in the real limit this
quantity obviously has no influence on the whole system at all. To ensure this the first factor has
to vanish so the solutions are Γ(a+ 1

2)
Γ(a) = 0, which are all −n for non-negative integers n. Thus we

conclude by using (4.21)

a = −n ⇒ εs0 = 4n+ 1 ⇒ Es
0 = ~Ω

(
2n+ 1

2

)
, n ∈ N, (4.52)
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which coincides with the energy in (4.47). Next we derive an expression for the normalization
constant in the real limit. For this purpose we also set a1 = a2 = −n in (4.45) and conclude that
all terms containing Γ (a1)−1 vanish and thus Rs = 1 from (4.34). Furthermore all infinite sums
including (−n)ν now have n as their upper summation index, since we have (−n)ν = 0 for all
ν > n. Finally there only remains

|N s|=
{

n∑
µ,ν=0

1
µ!ν!

[
(−n)ν(−n)µ( 1

2
)
ν

( 1
2
)
µ

[
Γ
(
µ+ν+ 1

2

)
−Γ

(
µ+ν+ 1

2 , ω
2
)]

+ (−n)ν(−n)µ( 1
2
)
ν

( 1
2
)
µ

Γ
(
µ+ν+ 1

2 , ω
2
)]}−1/2

, (4.53)

which reduces to

|N s| =


n∑

µ,ν=0

1
µ!ν!

(−n)ν(−n)µ(
1
2

)
ν

(
1
2

)
µ

Γ
(
µ+ν+ 1

2

)
−1/2

. (4.54)

Taking into account (4.41) we obtain

|N s| =
{∫ ∞
−∞

e−χ
2
∣∣∣∣1F1

(
−n, 1

2;χ2
)∣∣∣∣2 dχ

}−1/2

, (4.55)

where we used the symmetry of e−χ2
∣∣∣1F1

(
−n, 1

2 ;χ2
)∣∣∣2 with respect to χ = 0 in the last step to

expand the integral over the whole real axis. With the definition of the Hermite polynomials
(4.48) we can write for this integral

|N s| = (2n)!
n!

{∫ ∞
−∞

e−χ
2 |H2n (χ)|2 dχ

}−1/2
= (2n)!

n!

√
1√

π22n(2n)! , (4.56)

where we used the calculation of the integral from [29, Chap. 35].
Taking the real limit a1 = a2 = −n of (4.35) yields directly one and the same form in all 3 areas

ψs0 (χ) = N se−
1
2χ

2
1F1

(
−n; 1

2;χ2
)
. (4.57)

Now we insert the absolute value of the normalization constant (4.56) into the general expression
(4.46), so that we can write for the wave function

ψs0 (χ) = (2n)!
n!

√
1√

π22n(2n)!e
iϕe−

1
2χ

2
1F1

(
−n; 1

2;χ2
)
, (4.58)

which reduces with (4.48) to

ψs0 (χ) = (−1)n
√

1√
π22n(2n)!e

iϕe−
1
2χ

2
H2n (χ) . (4.59)
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4.1 Static solutions of Schrödinger equation

Thus the phase has to be ϕ = nπ, that is eiϕ = (−1)n, and we obtain the correct real limit

ψs0 (χ) =
√

1√
π22n(2n)!e

− 1
2χ

2
H2n (χ) ⇔ ψs0 (x) =

√√√√√λ
π

1
22n(2n)!e

− 1
2λx

2
H2n

(√
λx
)
, (4.60)

where λ1 = λ2 =: λ in the limit C → 0. The λ in the prefactor arises, because the integration has
now to be performed with respect to x instead of χ =

√
λx.

4.1.1.4 Limit of vanishing waist

Next we evaluate the special case ω → 0, that should directly correspond to the real limit just
like for the square well potential, since in this particular limit area 2 and thus the region, where
VI 6= 0, vanishes. Therefore, only the familiar system of a real harmonic potential remains, which
is, indeed, nothing else than the real limit. Thus we have to show that in the limit ω → 0 all
area-1- and area-3-quantities of our complex system turn into the familiar form of the real system.
Area 2 and its variables are not of any interest in this case but nevertheless we must derive a1 and
thus also ε from the quantization condition (4.37). Therefore we have to write down an expression
of it in the limit ω → 0. To perform this we first need the limits of the following quantities:

lim
x→0 1F1 (a; c;x) = 1 , lim

ω→0
θ = lim

ω→0

√
1 + ic

ω2 =∞ , lim
ω→0

a2 = 1
4 . (4.61)

From them we conclude

lim
ω→0

θω =
√
ic , lim

ω→0
θω2 = 0. (4.62)

Inserting these results into (4.37) yields the following condition for a1:

2
Γ
(
a1 + 1

2

)
Γ (a1) = −2 lim

ω→0
ω

Γ
(
a1 + 1

2

)
Γ (a1)

[√
i
c

2 −
√
i
c

2

]
⇔

Γ
(
a1 + 1

2

)
Γ (a1) = 0. (4.63)

This is only fulfilled if a1 is equal to some negative natural number a1 = −n, which indeed yields
exactly the same result like in the real limit so that all the following steps can be adopted and we
finally obtain for the limit of vanishing waist ω → 0 the familiar result:

Es
0 = ~Ω

(
2n+ 1

2

)
, ψs1,0(x) =: ψs0(x) =

√√√√√λ
π

1
22n(2n)!e

− 1
2λx

2
H2n

(√
λx
)
. (4.64)

4.1.1.5 Limit of big waist

Similar to the limit of vanishing waist, that is ω → 0, we also evaluate the limit of big waist
ω →∞. To this end we rewrite the quantization condition (4.37) in the limit ω →∞ and extract
some information about a2 and thus ε, since area 1 vanishes and thus a1 is not important any

45



4 Complex harmonic potential

more. Taking the limit ω →∞ in (4.37) we have to use the limit of the confluent hypergeometric
functions (4.27) and neglect the first term since the exponential function in the second grows
much stronger than every polynomial in ω. Furthermore we calculate from (4.20) that θ → 1
and multiply the whole expression with the denominator of Rs so that all remaining terms have
the denominator Γ(a1)Γ(a2). This may be also reasonable since in the considered limit we have
ψs2 = ψs on the whole axis so that it should be limχ→∞ ψ

s
2 (χ) = 0. Otherwise the calculation of

Rs in (4.34) could include some division by zero. Since the prefactor of the right-hand side, which
is then the numerator of Rs, vanishes in the highest order and all terms of the order 2(a1 +a2)−1
in ω cancel each other, there remains only one term of order 2(a1 + a2)− 3 which has to be equal
to zero. Thus the quantization condition for ω →∞ reads

lim
ω→∞

ω2(a1+a2)

Γ(a1)Γ(a2) = 0. (4.65)

We want to extract a condition for a2 from that, which is fulfilled (4.65) for all a1, since it is not
realized any more in this system for ω → ∞. Eq. (4.65) is always ensured if a2 is equal to some
negative integer number a2 = −n. This yields nothing else than the "real limit" for area 2 since
it is the same result for a2 like for a1 in the limit c → 0 or ω → 0 when area 2 disappeared.
Nevertheless it is followed by a different energy which is still complex and contains an imaginary
part which is linear in the depth c of the well:

lim
ω→∞

a2 = 1
4 (1− ε∞ − ic) = −n ⇔ εs∞ = 4n+ 1− ic (4.66)

⇔ Es
∞ = ~Ω

(
2n+ 1

2

)
− iC. (4.67)

For the wave function this provides

ψs2,∞ (χ) = ψs∞ (χ) = N se−
1
2χ

2
1F1

(
−n; 1

2;ω2
)

= (−1)nN s n!
(2n)!e

− 1
2χ

2
H2n (χ) . (4.68)

Evaluating the normalization constant (4.45) in the limit ω →∞ yields

|N s| = 1
|Rs|

 n∑
µ,ν=0

(−n)ν(−n)µ
ν!µ!

(
1
2

)
ν

(
1
2

)
µ

Γ
(
µ+ ν + 1

2

)
−1/2

(4.41)= 1
|Rs|

[
2
∫ ∞

0
e−

1
2χ

2
∣∣∣∣1F1

(
−n; 1

2;χ2
)∣∣∣∣2 dχ

]−1/2

(4.48)= (2n)!
n! |Rs|

[∫ ∞
−∞

e−
1
2χ

2 |H2n (χ)|2 dχ
]−1/2

(4.56)= (2n)!
n! |Rs|

√
1√

π22n(2n)! , (4.69)
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4.1 Static solutions of Schrödinger equation

since limω→∞ Γ (a, ω2) = 0. Before inserting this into the wave function (4.68) in area 2 we have
to consider that this is only the absolute value of N s and also includes only the absolute value
of Rs which are in general complex numbers. Thus we have to add an arbitrary phase factor
N s = |N s| eiϕ, Rs = |Rs| eiϑ. We already know ϕ = nπ from the real limit, when area 2 vanishes,
and, since Rs only contains real functions for ω → ∞, we can state |Rs| = Rs. This seems to be
right since exactly ϑ = 0 leads us to the correct wave function

ψs2,∞ (χ) = ψs∞ (χ) = (−1)n (2n)!
n!

√
1√

π22n(2n)!e
− 1

2χ
2

1F1

(
−n; 1

2;χ2
)

=
√

1√
π22n(2n)!e

− 1
2χ

2
H2n (χ) . (4.70)

Thus, we have

ψs∞ (x) =

√√√√√λ
π

1
22n(2n)!e

− 1
2λx

2
H2n

(√
λx
)

= ψs0(x). (4.71)

So finally we got in some sense the same result as for the complex square well potential since
the wave function and the real part of the energy yield nothing else than the real limit and only
the imaginary part of the energy provides something new. Thus the imaginary potential does
not influence the wave function qualitatively but yields an imaginary part of the energy which is
linear in c. The interesting issue is that this seems to be independent of the particular shape of
the imaginary potential since in both cases, square well in the limit ω → π/2 as well as harmonic
potential for ω →∞, we get the same result for the imaginary part.

4.1.2 Antisymmetric states

Let us now evaluate along similar lines the antisymmetric wave function (4.23), that means the
wave functions ψa1 , ψa2 , ψa3 have to fulfill

ψa1 (−χ) = −ψa3(χ) , ψa2 (−χ) = −ψa2 (χ) . (4.72)

Next we derive conditions for Aa2 and ε by demanding continuity and differentiability of ψa at
χ = −ω. But first of all we change slightly the notation for ψ1, which seems to be reasonable in
the antisymmetric case. Instead of expressing Aa1 via As1 we now do it vice verca and get for the
constant of the antisymmetric part

As1 = Aa1 lim
χ→∞

χ 1F1
(
a1 + 1

2 ; 3
2 ;χ2

)
1F1

(
a1; 1

2 ;χ2
) . (4.73)

Performing an analogous discussion as we did for As1 provides correspondingly
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As1 = Aa1
Γ (a1)

2Γ
(
a1 + 1

2

) , (4.74)

where we have to note Aa1 = 0 if a1 is equal to some negative integer number a1 = −n, n ∈ N,
similar to the symmetric case. Moreover the wave function is completely antisymmetric for a1 =
−n− 1

2 , because in this case As1 vanishes. Thus the antisymmetric wave function in area 1 reads

ψ1 (χ) = Aa1e
− 1

2χ
2

 Γ (a1)
2Γ
(
a1 + 1

2

) 1F1

(
a1; 1

2;χ2
)

+ χ 1F1

(
a1 + 1

2; 3
2;χ2

) . (4.75)

Now we consider the continuity conditions of ψa and its first derivative. We start with the
continuity of ψa at χ = −ω:

ψa1(−ω) = ψa2(−ω), (4.76)

which reads in detail

Aa2 = N ae
1
2 (θ−1)ω2

ω 1F1
(
a1 + 1

2 ; 3
2 ;ω2

)
− Γ(a1)

2Γ(a1+ 1
2) 1F1

(
a1; 1

2 ;ω2
)

θω 1F1
(
a2 + 1

2 ; 3
2 ; θω2

) =: N aRa, (4.77)

where we set N a := Aa1 and introduced the abbreviation Ra = Ra (ω, ε, c) similar to the symmetric
case. Therefore obeying (4.72) the antisymmetric wave function in all 3 areas reads

ψa(χ) = N a


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χ 1F1
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(
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2 ;χ2
)]

, χ < −ω

Raθχe−
1
2 θχ

2
1F1
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2 ; 3
2 ; θχ2

)
, −ω ≤ χ ≤ ω

e−
1
2χ

2
[
χ 1F1

(
a1 + 1

2 ; 3
2 ;χ2

)
− Γ(a1)

2Γ(a1+ 1
2) 1F1

(
a1; 1

2 ;χ2
)]

, χ > ω

. (4.78)

4.1.2.1 Quantization condition

Next we derive the quantization condition for the antisymmetric states which can be derived
similar to the symmetric case by demanding continuity of ∂

∂χ
ψa at χ = −ω, that is

∂

∂χ
ψa1 (χ)

∣∣∣∣∣
χ=−ω

= ∂

∂χ
ψa2 (χ)

∣∣∣∣∣
χ=−ω

, (4.79)

which reads
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2 ;ω2
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2; 5
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, (4.80)

where we used again (4.38). Since a1, a2 and θ are functions of ε, ω and c via (4.20) and (4.21)
the quantization condition for the antisymmetric states (4.80) does only depend on these three
quantities. Similar to the symmetric case this is a transcendental equation in ε, so that we have
to solve it numerically later on.

4.1.2.2 Normalization constant

The next step should be the normalization of the wave function for which we have to determine
N a from the condition

∫ ∞
−∞
|ψa (χ)|2 dχ = 2

∫ ω

0
|ψa2 (χ)|2 dχ+ 2

∫ ∞
ω
|ψa3 (χ)|2 dχ = 1. (4.81)

We calculate the integrals separately and start with the first one. With (4.41) we can write
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For the second one follows
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Thus the normalization constant for the whole antisymmetric wave function reads
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|N a| =
[ ∞∑
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, (4.84)

where we have to note again that this only represents the absolute value so that the complete
expression of N a also contains an additional phase ϕa:

N a = |N a| eiϕa . (4.85)

4.1.2.3 Real limit

Next we evaluate for consistency reasons the real limit, that is c→ 0, and ensure that our results
contain the familiar harmonic potential well

Ea = ~Ω
(

2n+ 3
2

)
, ψa(x) =

√√√√√λ1
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1
22n+1(2n+ 1)!e
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)
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as the limit for vanishing imaginary potential. To this end we introduce the Hermite polynomials
of odd order 2n + 1, that are special cases of the confluent hypergeometric functions, via the
relation [29, (34.23)]

H2n+1 (χ) = (−1)n2(2n+ 1)!
n! χ 1F1

(
−n; 3

2;χ2
)
. (4.87)

We start with the quantization condition (4.80). In the limit c→ 0 we can use (4.49) again which
leads us to
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This simplifies to
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From this we extract a condition for a and thus for the energy, which has to be independent of
the waist ω, because in the real limit it has obviously no influence on the system any more. Since
the Γ-function has no roots, the only possible choice of a is at a singularity of Γ

(
a+ 1

2

)
which is

a = −n − 1
2 for some arbitrary natural number n ∈ N. From this we can directly calculate the

energy of the antisymmetric states in the real limit via (4.21)

a = 1
4(1− εa0) = −n− 1

2 ⇔ εa0 = 4n+ 3 ⇔ Ea
0 = ~Ω

(
2n+ 3

2

)
. (4.90)

So the quantization condition in the real limit directly provides the correct energy of the antisym-
metric states of the real harmonic potential well. Next we evaluate the wave function in the real
limit and start with the normalization. Therefore we take the expression for the antisymmetric
normalization constant (4.84) in the limit c = 0, that means θ = 1 and a1 = a2 = a = −n − 1

2 .
The last condition yields directly that we can neglect all terms including Γ

(
a+ 1

2

)−1
because of

the singularity of Γ at this particular value for a. Furthermore, one can calculate Ra = 1 for c = 0,
so that N a finally reads

|N a|=
{

n∑
µ,ν=0

1
µ!ν!

[
(−n)ν(−n)µ( 3

2
)
ν

( 3
2
)
µ

[
Γ
(
µ+ν+ 3

2

)
−Γ

(
µ+ν+ 3

2 , ω
2
)]

+ (−n)ν(−n)µ( 3
2
)
ν

( 3
2
)
µ

Γ
(
µ+ν+ 3

2 , ω
2
)]}−1/2

=
{

n∑
µ,ν=0

1
µ!ν!

(−n)ν(−n)µ( 3
2
)
ν

( 3
2
)
µ

Γ
(
µ+ν+ 3

2

)}−1/2

(4.41)=
{∫ ∞
−∞

χ2e−χ
2
∣∣∣∣1F1

(
−n, 3

2 ;χ2
)∣∣∣∣2 dχ

}−1/2

. (4.91)

In the last step we used the symmetry of the integrand with respect to χ = 0 to extend the
integration over the whole real axis. With (4.87) we can write for this

|N a| = 2(2n+ 1)!
n!

{∫ ∞
−∞

e−χ |H2n+1(χ)|2 dχ
}−1/2

= 2(2n+ 1)!
n!

√
1√

π22n+1(2n+ 1)! , (4.92)

where we took the particular evaluation of the integral again from [29, Chap. 35]. We have to
note again that this is only the absolute value for N a so that we calculated the normalization
constant only up to a phase ϕa which we want to determine by demanding consistence in the real
limit. Now we are able to derive the correct expression for the antisymmetric wave function in
the real limit. Therefore we insert all results we calculated so far for a, θ, Ra and N a into (4.78)
and see directly that alle three wave functions end up in one and the same expression:

ψa (χ) = 2(2n+ 1)!
n!

√
1√

π22n+1(2n+ 1)!e
iϕae−

1
2χ

2
χ 1F1

(
−n; 3

2;χ2
)

(4.93)

= (−1)neiϕa
√

1√
π22n+1(2n+ 1)!e

− 1
2χ

2
H2n+1 (χ) , (4.94)
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4 Complex harmonic potential

so that we have to choose ϕa = nπ to get the correct formulation for the antisymmetric wave
function of the real harmonic potential

ψa (χ) =
√

1√
π22n+1(2n+ 1)!e

− 1
2χ

2
H2n+1 (χ) (4.95)

⇔ ψa (x) =

√√√√√λ
π

1
22n+1(2n+ 1)!e

− 1
2λx

2
H2n+1

(√
λx
)
, (4.96)

where λ := λ1 = λ2 for C = 0. The additional
√
λ enters the equation similarly to the real limit

of the symmetric states because of the substitution of the integration variable χ =
√
λx in (4.92).

Thus we have derived the familiar results for the real harmonic potential for the symmetric and
antisymmetric states. Putting both results together allows us to write generally for C = 0:

E = ~Ω
(
n+ 1

2

)
and ψ(x) =

√√√√√λ
π

1
2nn!e

− 1
2λx

2
Hn

(√
λx
)
. (4.97)

4.1.2.4 Limit of vanishing waist

Similar to the symmetric case we next evaluate the equivalent limit ω → 0 and show that this
provides the same results as c → 0. In order to perform this we adopt the argumentation in the
beginning of Subsection 4.1.1.4 and the limits (4.61) and (4.62). Using them for the limit ω → 0
of (4.80) directly provides

0 = Γ(a1)
Γ
(
a1 + 1

2

) , (4.98)

which is nothing else than the same quantization condition for εa as we got for the real limit and
which is solved by a1 = −n− 1

2 . Thus the limit of vanishing waist ω → 0 provides the same results
as c→ 0 as we exactly wanted to show.

4.1.2.5 Limit of big waist

Next we evaluate again the other special case for ω which is the limit ω →∞. For this purpose,
just like we did in the former subsection, we adopt the argumentation Subsection 4.1.1.5 starts
with. That means we multiply the whole quantization condition (4.80) with 1F1

(
a2 + 1

2 ; 3
2 ;ω2

)
and use (4.27), where we neglect all terms not including eω2 . Calculating this it turns out that
only one term remains which yields

lim
ω→∞

ω2(a1+a2)

Γ
(
a1 + 1

2

)
Γ
(
a2 + 1

2

) = 0. (4.99)

This looks quite similar to the quantization condition in the limit of big waist for the symmetric
states but, in contrast to that, it is always fulfilled by a2 = −n− 1

2 , since the solution should not
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4.1 Static solutions of Schrödinger equation

depend on a1. The following discussion is just the same, which means that we found again a kind
of real limit unless in this case area 1 and 3 are vanishing and area 2 with the imaginary potential
is extended over the whole axis. It turns out that the imaginary part of the energy is the same
but the real part is equal to the energy in the real limit:

a2 = 1
4 (1− ε− ic) = −n− 1

2 ⇔ εa∞ = 4n+ 3− ic (4.100)

⇔ Ea
∞ = ~Ω

(
2n+ 3

2

)
− iC. (4.101)

In order to evaluate the corresponding wave function, we start with the normalization constant
(4.84), where we can use that limω→∞ Γ (a, ω2) = 0 and limω→∞ θ = 1. Thus the normalization
constant reads

|N a| = 1
|Ra|

 ∞∑
µ,ν=0

1
µ!ν!

(−n)ν (−n)µ(
3
2

)
ν

(
3
2

)
µ

Γ
(
µ+ ν + 3

2

)
−1/2

. (4.102)

Applying (4.41) this simplifies to

|N a| = 1
|Ra|

[
2
∫ ∞

0
χ2e−χ

2
∣∣∣∣1F1

(
−n; 3

2;χ2
)∣∣∣∣2 dχ

]−1/2

. (4.103)

Using the definition of the Hermite polynomials (4.87) provides

|N a| = 2(2n+ 1)!
n! |Ra|

[∫ ∞
−∞

e−χ
2 |H2n+1 (χ)|2 dχ

]−1/2
(4.104)

and with (4.92) this finally reduces to

|N a| = 2(2n+ 1)!
n! |Ra|

√
1√

π22n+1(2n+ 1)! . (4.105)

Since Ra contains only real functions for ω → ∞, we can conclude that Ra is also real and does
not include a non-trivial phase factor. In contrast to this we know that N a has to be completed
by a phase factor einπ = (−1)n, so that the wave function in our considered limit reads

ψa2,∞ (χ) = ψa∞ (χ) = (−1)n2(2n+ 1)!
n!

√
1√

π22n+1(2n+ 1)!e
− 1

2χ
2
χ 1F1

(
−n; 3

2;χ2
)
. (4.106)

With the definition of H2n+1 in Eq. (4.87) follows

ψa2,∞ (χ) =
√

1√
π22n+1(2n+ 1)!e

− 1
2χ

2
H2n+1 (χ) . (4.107)
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4 Complex harmonic potential

It catches the eye that, in contrast to the energy, the limit of big waist yields exactly the same
wave function as the limit of vanishing waist and thus also the real limit:

ψa∞(x) =

√√√√√λ
π

1
22n+1(2n+ 1)!e

− 1
2λx

2
H2n+1

(√
λx
)

= ψa0(x). (4.108)

So finally it turns out that we can also express the energy and the wave function in the limit
ω →∞ by only one expression. independent from the particular parity:

E∞ = ~Ω
(
n+ 1

2

)
− iC and ψ∞(x) =

√√√√√λ
π

1
2nn!e

− 1
2λx

2
Hn

(√
λx
)

= ψ0(x). (4.109)

This looks reasonable since, if one takes the limit ω → ∞ of the time-independent Schrödinger
equation (4.3), the imaginary part reads

lim
w→∞

VI(x) = C lim
w→∞

(
x2

w2 − 1
)

= −C (4.110)

and just represents a constant energy shift. Knowing the eigenvalue in the real case

Hψ(x) =
[
− ~2

2M
d2

dx2 + M

2 Ω2x2
]
ψ(x) = E0ψ(x) = ~Ω

(
n+ 1

2

)
ψ(x), (4.111)

one can directly conclude

lim
w→∞

Hψ(x) =
[
− ~2

2M
d2

dx2 + M

2 Ω2x2 − iC
]
ψ(x) =

[
~Ω

(
n+ 1

2

)
− iC

]
ψ(x). (4.112)

4.2 Energies
Next we solve the quantization conditions (4.37) and (4.80) numerically. Note that in our dimen-
sionless variables the specific value of c and ω for w = 100 nm and l = 30 µm is

c = 420 , ω = 3 · 10−3. (4.113)

Now let us have a look at the energies of the lowest six states for several waists:
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4.2 Energies

(a) ω = 3 · 10−3 (b) ω = 0.2

(c) ω = 0.4 (d) ω = 0.6

(e) ω = 0.8 (f) ω = 1
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4 Complex harmonic potential

(g) ω = 1.2 (h) ω = 1.4

(i) ω = 1.5 (j) ω = 1.6

(k) ω = 1.8 (l) ω = 2.0

Figure 4.2: Real and imaginary part of the lowest six states as a function of the dissipation
strength c of the imaginary potential. Two curves with the same colour represent the real and
imaginary part of the energy of the state, where the real part starts at εR(c = 0) = 2m − 1 and
the imaginary part at εI(c = 0) = 0. Moreover, ε∞-states are counted by integer n while ε0-states
are counted by integer k.
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4.3 Densities

Figs. 4.2(a)–4.2(l) show qualitatively an analogous behaviour for the energies of the harmonic
potential as for the square well except the fact that here the real part of the energy yields εR =
2m−1 instead of m2. The imaginary part of the energy is always non-positive which confirms that
our imaginary potential model really describes a damping effect and thus dissipation. Furthermore
we can separate all states in two groups of n-states and k-states again, where we resumed the
notation of the last chapter which means limc→∞ ε

k
I = 0 and limc→∞ ε

n
I = −∞. Also the well

known fusion of always two adjoining k-states is a property of the harmonic potential and an
effect of its natural symmetry, as well as the interchange of states being k- or n-state at some
waists ωcrit. Observing the imaginary parts of the k-states reveals again a minimum so we can
see that after it εkI indeed increases to zero. Unfortunately we can not derive the analogon of this
for the n-states that is a maximum of εnI + c. This is related to the behaviour of the left hand
side of (4.37) and (4.80) which yields an increasing effort of the numerical calculation for large
values of c and ω for the n-states. So the numerical evaluation of the n-states for large waists and
dissipations can unfortunately not be included in this diploma thesis.
Nevertheless we know from the last chapter that the limit ω →∞ yields finite values for εnR and
there is some additional evidence that also c → ∞ is followed by finite results. We can take for
instance the obvious analogy of all results to the square well potential where a finite saturation
value exists which we even can calculate. Moreover we found out that the imaginary potential
does not directly affect the real part of the energy but yields the same effect as a potential barrier
confining the n-states in a square well potential with the width 2w for c → ∞. Thus the εnR
become the real energies of states of exactly this potential well and should be therefore finite. The
general situation actually did not change since the harmonic potential becomes a square well one
for c → ∞ and w = const. < ∞. So the assumption, that also in the harmonic case a kind of
independent potential well containing states with finite energy eigenvalues develops, seems to be
reasonable. We will have a deeper look at exactly this issue while discussing the corresponding
densities of the energies.

4.3 Densities
Taking (4.35) and (4.78) we can calculate via (4.21) the densities for given c and ω:
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4 Complex harmonic potential

(a) m = 1, n = 1 (b) m = 2, n = 2

(c) m = 3, k = 1 (d) m = 4, k = 1

(e) m = 5, k = 2 (f) m = 6, k = 2

Figure 4.3: Densities of the lowest states for ω = 1 for some values of c, where all states are
counted by m for c < ccrit and by k and n for c > ccrit. The fusion of two respective k-states,
which we already observed in Figs. 4.2(a) – 4.2(l), is also confirmed here. Furthermore, it shows
that two states with the same k end up exactly in the same state.
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4.3 Densities

Thus also the densities yield the same behaviour as for the square well potential. Also in the
harmonic case k-states tend to the borders of the well and their density decreases to zero in the
center while n-states have maxima in the center and a vanishing density at the borders for large
dissipation c. So for c → ∞ we are again left with three independent potential wells just like in
the case of a square well potential. However, in contrast to this case, we can not have an analogous
discussion of ωcrit as we had for the square well potential in subsection 3.2.3 since on the one hand
we have no analytical function for the saturation values of εkR and εnR to calculate intersections
and on the other hand there is no finite upper boundary for the waist for the harmonic potential
and thus also no ω that yields the half of the well.
Anyhow instead of directly calculating limc→∞ εR from (4.37) and (4.80) we can take advantage of
our knowledge from the square well potential and the so far obtained similarities in the results of
both systems. Therefore we assume that also in the case of a harmonic potential independent wells
develop and that the imaginary potential has the same effect as a potential barrier. Considering
that for c→∞ the density of the k-states vanishes for |χ| < ω and yields the states of a harmonic
potential well for |χ| ≥ ω. Comparing this with the results of a system with a potential barrier
should provide the same results:

V (χ) =


1
2~Ωχ2 , |χ| ≥ ω

∞ , |χ| < ω
(4.114)

This is directly followed by the quantization condition

1F1

(1
4(1− ε); 1

2;ω2
)
− 2ω

Γ
(

1
4(3− ε)

)
Γ (a1) 1F1

(
a1+ 1

2; 3
2;ω2

)
= 0 (4.115)

for both symmetric and antisymmetric states. Taking c → ∞ in (4.37) and (4.80) has no effect
on the left hand since only a2 and θ are direct functions of c. So the quantization condition is
fulfilled in this limit if the right hand side does not diverge which is ensured if exactly (4.115) is
true. Thus we can calculate numerically the saturation values for the real parts of the energies
of the k-states which coincide perfectly with the results of the direct calculation from (4.37) and
(4.80) and thus also with Figs. 4.2(a) – 4.2(l).

Let us do the same with the n-states. Since in this case the density vanishes at the borders for
|χ| ≥ ω, we thus take instead the potential
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V (χ) =

 ∞ , |χ| ≥ ω

1
2~Ωχ2 , |χ| < ω

(4.116)

and obtain correspondingly the quantization condition

1F1

(1
4(1− ε); 1

2;ω2
)

1F1

(1
4(3− ε); 3

2;ω2
)

= 0. (4.117)

We can solve this numerically, too, but so far it was not possible to show that the results coincide
with εnR for large c. Furthermore we have to consider εnI → −c→ −∞ so that the left hand sides
as well as the right hand sides of (4.37) and (4.80) are complicated functions of c and it was not
possible yet to extract some reasonable insights from this for the n-states so far.

Figure 4.4: Solutions of (4.115), counted by k, and (4.117), counted by n. The solutions of
(4.115) yield εR = 3, 7, 11, . . . for ω = 0, which are the energies of the antisymmetric states of
a real harmonic potential well, and ε → ∞ for ω → ∞. The situation is exactly vice verca for
the solutions of (4.117) except that here it is εR → 1, 3, 5, . . . for ω → ∞ so the energies of both
symmetric and antisymmetric states can be observed. This behaviour makes the assumption more
reasonable that (4.115) and (4.117) represent the limits of εR for limc→∞ εI = 0 and limc→∞ εI = 0,
respectively.
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5 Outlook

There are several issues remaining for further studies. For example a better approximation of the
Gaussian beam than the harmonic one or a model in more than only one dimension, but in fact
the most interesting improvement would be the implementation of interaction.
Despite many satisfying insights our model provides for the square well potential as well as for the
harmonic one, that is a hole in the condensate for large dissipation and evolution times, we still
deal with very idealized results since no interaction has been implemented. In order to include
also this we could consider a variational approach, which consists in making a suitable ansatz
for the wave function ψ. It should yield approximately the same qualitative behaviour as the
numerical calculated ones in Figs. 4.3(a) – 4.3(f) but have a quite simpler form as (4.35) and
(4.78). Additionally ψ depends on some parameters λ1, . . . , λN to vary its particular shape in a
similar way as the numerical calculated wave functions do for several c and ω. Subsequently we
take the energy functional in order to calculate the energies of the interacting system:

ε(λ1, . . . , λN , ω, c, g) =
∫ ∞
−∞

(
−ψ∗λ1,...,λN

(χ) ∂
2

∂χ2ψλ1,...,λN
(χ) + V (χ) |ψλ1,...,λN

(χ)|2 + g |ψλ1,...,λN
(χ)|4

)
dχ

= 2
∫ ∞

0

(∣∣∣∣ ∂∂χψλ1,...,λN
(χ)
∣∣∣∣2 + χ2 |ψλ1,...,λN

(χ)|2 + g |ψλ1,...,λN
(χ)|4

)
dχ (5.1)

+ 2ic
∫ ω

0

(
x2

ω2 − 1
)
|ψλ1,...,λN

(χ)|2 dχ.

The next question is how to determine the optimal parameters λ1, . . . , λN for every value of c and
ω. This can be done by a variation of ε(λ1, . . . , λN , ω, c, g = 0), that is for vanishing interaction,
with respect to the variational parameters λ1, . . . , λN in order to obtain an optimal form for the
wave function ψ. If this wave function is in good accordance with the numerical results, we take
it as an appropriate ansatz for the calculation of the energies even for an interacting system, that
would be g 6= 0.
Unfortunately, due to the complexity of the system, this approach involves some difficulties that we
were not able to eliminate so far. Of course the variational parameters have to be complex so if one
aims at varying ε with respect to the complex λ1, . . . , λN in order to obtain optimal parameters,
one has to ensure the complex differentiability of ε with respect to λ1, . . . , λN . Unfortunately
this is generally not the case since these parameters enter the energy functional via the absolute
square of the supposed wave function ψλ1,...,λN . Therefore we have to deal with functions like
the complex conjugate as well as real or imaginary part of the parameters and it is well-known
that these functions are not differentiable in the complex sense. Thus we have to try real valued
functions of ε like either the real and the imaginary part or the absolute value, that we can take
for the variation. Following this ansatz the next problem consists in the choice of the particular
trial function.
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5 Outlook

We tried on the one hand several expressions and possible real valued functions for ψ for this
approach and on the other hand piecewise defined wave functions including a Gauss function in
area 1 and 3 and a polynomial in area 2 but neither the variation of the real and the imaginary
part nor of the absolute value yield satisfying results for the non-interacting density.
The fact that we are able to reproduce the densities with such an ansatz for c = 0, that is for the
real case, implies that the complexness of the system is responsible for the non-applicability of
this particular variational approach.
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