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Chapter 1

Introduction

In the following, we give a brief historical introduction to the subject of ideal quantum gases and
to the phenomenon of Bose-Einstein condensation, which takes place in these systems for low
enough temperatures and in equilibrium conditions. We outline the mathematical description
in terms of critical parameters, before we continue with non-equilibrium phenomena, where
we present two important examples related to quenches of a parameter of the underlying
Hamiltonian.

1.1 Ideal Quantum Gases in Equilibrium

In 1920, the Indian physicist Satyendra Nath Bose wrote a paper on the quantum statistics of
light quanta (photons), in which he argued that Maxwell-Boltzmann statistics might not be
the right statistics for microscopic particles, where fluctuations due to the uncertainty principle
will be significant. In his derivation of the right statistics for a photon gas he assumed that the
number of quantum states available to a single photon of fixed energy is given by the number
of phase space cells of volume h3, using only Einstein’s light quantum hypothesis and the laws
of statistical physics and obtaining a version of Planck’s law at the end.

However, European physics journals refused to publish his results, as it was their contention
that Bose was mistaken. Discouraged, he sent his work to Albert Einstein in 1924, who
immediately recognised its significance and arranged its publication in the Zeitschrift für Physik
after he had translated it to German [1].

Einstein extended Bose’s work to an ideal gas of massive particles, publishing his results
in a first article [2] some months later. In a follow-up article [3], he noted that from the
equation of state of this ideal quantum gas there follows a critical particle density, where
further compression results in the condensation of additional particles into the lowest quantum
state, i.e. the ground state.

From a modern perspective, the principle behind what is today known as Bose-Einstein
condensation can be understood by the following argument: Consider a collection of N non-
interacting particles which can each be in one of two quantum states |0〉 and |1〉, both having
equal energy.

If the particles are assumed to be distinguishable, there are 2N possible configurations, i.e.
microstates of this system. Let p1 and p2 = 1− p1 be the a priori probability for a particle to
be in |0〉 and |1〉, respectively, then the probability that k particles are in state |0〉 and N − k
in state |1〉 is given by the probability function of the binomial distribution

ρD(k,N) = pk1(1− p1)N−k
(
N

k

)
. (1.1)

1



Chapter 1 Introduction

If each particle may be in |0〉 or |1〉 independently and with equal probability, i.e. p1 = p2 = 1/2,
which is the equal a priori probability postulate of statistical mechanics, we have specifically

ρD(k,N) =
(

1
2

)k (
1− 1

2

)N−k (N
k

)
=

1
2N

(
N

k

)
. (1.2)

This expression has a maximum for k = N/2, i.e. when both states are equally populated. It
follows that in almost all the possible configurations of the system, about half of the particles
will be in |0〉 and the other half in |1〉. Thus, this balance is a statistical effect; the number of
configurations is largest when the particles are divided equally.

If the particles are indistinguishable, however, there are only N + 1 different configurations,
since it cannot be determined if a certain particle is in |0〉 or |1〉. Consequently, each value of
k determines a unique quantum state for the whole system. If these states all have the same
probability, there is no statistical spreading out; i.e. it is equally likely for all the particles to
sit in |0〉 as to be equally partitioned between both states.

Suppose now that the energy of state |1〉 is slightly larger than the energy of state |0〉 by
an amount E. At temperature T , a particle will have a lesser probability to be in state |1〉
by a Boltzmann weight exp {−E/T}. In the distinguishable case, the particle distribution will
be biased slightly towards state |0〉 and the distribution will be slightly different from half
and half. But in the indistinguishable case, since there is no statistical pressure toward equal
occupation numbers, the most likely outcome is that most of the particles will collapse into
state |0〉:

In the indistinguishable case, each value of k has its separate Boltzmann probability of
exp (−βEk), so the probability distribution is exponential. Introducing for convenience k′ =
N − k for the number of particles in state |1〉, we have

ρI(k′, N) = C e−βEk
′

= C pk
′

, (1.3)

where C is a normalisation constant. In the thermdynamic limit N → ∞, the sum
∑∞

k′=0 p
k′

yields C = 1−p and the number of particles that are not in state |0〉 is given by the expectation
value of the particle number n:

〈n(k)〉 = C
∞∑
n>0

n pn =
p

1− p
=

1
eβE − 1

, (1.4)

which is a constant as N −→ ∞. It follows that for a collection of a large number of bosons
(i.e. particles with integer spin) in equilibrium, at low temperatures most will be in the ground
state |0〉 of the system and only a negligible amount in thermally excited states. Thus at its
heart, Bose-Einstein condensation is a quantum statistical effect, as it can only take place in
ensembles of indistinguishable particles.

Mathematically, this can be seen as follows. For an ideal quantum gas of bosons in ther-
modynamic equilibrium, the mean occupation number of the single-particle state i in the
grand-canonical description is given, according to Einstein, by what today we know as the
Bose-Einstein distribution function:

n(Ei) =
1

eβ(Ei−µ) − 1
. (1.5)
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1.1 Ideal Quantum Gases in Equilibrium

Here, β = 1/kBT is the inverse temperature, kB is the Boltzmann constant and µ is the chemical
potential, which is determined implicitly by the condition that the sum of all occupation
numbers (1.5) must yield the total particle number N , i.e.

N =
∑
i

1

eβ(Ei−µ) − 1
. (1.6)

Dividing (1.6) by the volume V that the system occupies, gives the particle density n(Ei) which
we have sloppily denoted by the same symbol as the occupation number. In the thermodynamic
limit of an infinite system N → ∞ and V → ∞, such that the density n = N/V remains
constant, the sum in (1.6) becomes an integral with the substitution 1/V → 1/(2πh̄)3 and we
have

n(p) =
1

(2πh̄)3

∫
d3p

1

eβ(p2/2M−µ) − 1
. (1.7)

This is a monotonously increasing function of µ, which is bounded as µ ↗ 0 by the critical
density

nc =
(
MkBT

2πh̄2

)3/2

ζ(3/2) , (1.8)

where ζ(3/2) ≈ 2.612. This is absurd, of course and the resolution is that the particles
exceeding the critical number all go into the lowest energy state. Thus, below the corresponding
critical temperature

Tc =
2πh̄2

MkB

[
nc

ζ(3/2)

]2/3

, (1.9)

the ground state of the gas is macroscopically populated and accordingly one has to be more
careful in replacing the sum in (1.6) by an integral. To this end, it is sufficient to separate
the contribution from the ground state, i.e. the condensate fraction, and to approximate the
thermal contribution by an integral:

n = n0 + n(p) . (1.10)

According to the wave-particle duality, the particles in the Bose gas must be taken to be wave
packets. Their mean temperature dependent wavelength is then of the order of the so-called
thermal de Broglie wavelength

λdB =
(

2πh̄2

MkBT

)1/2

. (1.11)

Now, using (1.11) and noting, that the mean interparticle spacing is of order of the third root
of the inverse particle density, n−1/3, equation (1.9) reads

nc λ
3
dB =

(
λdB

n−1/3

)3

= ζ(3/2) . (1.12)

Thus, we see that Bose-Einstein condensation sets in, when the mean interparticle spacing
becomes comparable to the particle’s thermal de Broglie wavelength. As the wavefunctions
of the particles start to overlap, they begin to take up the same region of space, so quantum
statistics, i.e. the symmetry of the many-particle wavefunction becomes important and we are
now dealing with a true quantum gas.

3



Chapter 1 Introduction

Apparently, there are two ways that this condition can be met: First, by lowering the temper-
ature and thus increasing the thermal de Broglie wavelength (1.11); and secondly, by increasing
the particle density and therefore decreasing the mean interparticle spacing. However, at low
enough temperatures, the particles of all substances have the natural tendency to clog together
and eventually solidify. This solidification process typically proceeds via two mechanisms: By
three-body and higher order inelastic collisions of the particles; and by collisions of the gas
particles with the walls of their container. The second problem may be avoided by keeping the
gas sample strictly isolated from the walls of its container; this is done by trapping it in ultra
high vacuum (UHV) conditions inside a variety of magnetic fields, the potentials of which are
in most cases well approximated by that of an anisotropic harmonic oscillator.

Since the probability of three-body collisions is proportional to the cube of the particle
density, n3, it follows that in order to achieve Bose-Einstein condensation, n must be low
enough, so that three-particle collisions are negligible, and consequently BEC is only achievable
in very dilute gases of typically 1013–1015 atoms/cm3, requiring extremely low temperatures
of the order of microkelvins [15]. On the other hand, since BEC is a phase transition that
requires thermal equilibrium, two-body collisions, the rate of which is proportional to n2, must
be sufficiently frequent to allow the particles to equilibrate. The regime in the phase diagram
where BEC takes place is thus metastable and the condensates are lost after a time of a few
seconds to several minutes, when the system eventually goes into the thermodynamically stable
solid phase.

The lack of suitable cooling and trapping techniques is the main reason for the relatively
late experimental realisation of BEC in the mid 1990s. Early experiments with dilute gases
in the 1980s had mainly focused on spin-polarised hydrogen and it was for this system, that
evaporative cooling was invented in 1985. With evaporative cooling, the magnetic trapping
potential is lowered, so that the most energetic particles can escape; thus the high energy tail
of the thermal distribution is constantly removed from the trap. Of course, in order for this
process to take place continuously, the thermal tail must constantly be repopulated and this
requires short thermalisation times, which in turn requires high particle densities.

A major step forward to the demonstration of BEC was the combination of laser cooling and
evaporative cooling in 1994, which extended the applicability of evaporative cooling to alkali
atoms, as well as the introduction of radio frequency induced evaporative cooling, which made
the technique more efficient.

Laser cooling is an application of the Doppler effect, where two counterpropagating laser
beams of equal intensity and frequency are focused on the gas cloud. If the frequency of the
laser beams is slightly detuned from the frequency of an optical transition from the ground
state to an excited state of the atomic species to be cooled, an atom which is at rest absorbs
equally many left-moving photons as right moving ones, each of which imparts momentum of
p = h̄k on the atom, so the total momentum change will be zero. However, an atom which
moves to the right will absorb less right-moving photons, as their frequency is Doppler-shifted
away from the transition, and more left-moving photons, as it ”sees” their Doppler-shifted
frequencies closer to the transition frequency. Thus the laser fields produce a ”frictional”, i.e.
velocity dependent force on the atoms, so the cloud is effectively cooled.

The first Bose-Einstein condensate was then observed in 1995 by Eric Cornell and Carl
Wieman at the University of Colorado using a gas of approximately 2 × 104 rubidium atoms
cooled to 170 nK [4]; and shortly afterwards in a sample of 105 lithium atoms [6], as well as
in 5 × 105 sodium atoms by the group of Wolfgang Ketterle at MIT [7]. This discovery was

4



1.2 Non-Equilibrium Phenomena

honoured with the 2001 Nobel Price in Physics for Cornell, Wieman, and Ketterle.
The unique feature of a BEC lies in the fact, that it is a macroscopic quantum object, where

the individual bosons are completely delocalised. A BEC consists of a single macrosopic wave-
function, which displays all the features of quantum mechanics – such as quantum coherence
– on macroscopical length scales.

1.2 Non-Equilibrium Phenomena

Despite the fact that the study of the equilibrium properties of systems is one of the most
important tools in statistical physics, it is important to note that generally all systems are
constantly in a non-equilibrium state; although they may be very close to equilibrium on some
timescale. Real systems are not isolated from their environment and are therefore continuously
interacting and interchanging energy with other systems. This sharing of energy includes being
driven by external energy sources as well as dissipating energy to the environment.

Thus experimentally, the notion of equilibrium state is an approximation. It is limited by
power on and power off cycles of the experimental apparatus, by imperfect isolation of the
system being studied from the environment of the containing vessel, as well as by changes in
different parameters as the experiment progresses.

Mathematically, the main point in the description of non-equilibrium phenomena is that the
system in question is governed by a time dependent Hamiltonian Ĥ(t) that does not commute
for different times, i.e. [Ĥ(t1), Ĥ(t2)] 6= 0. There exist different classes of methods for the
theoretical description of time dependent quantum systems.

If the system is subject to small time dependent perturbations, the Hamiltonian may be
split into a time independent and a time dependent part via

Ĥ(t1) = Ĥ0 + λ Ĥ1(t) , (1.13)

with λ being a small quantity associated with the size of the perturbation. This approach
leads to time dependent perturbation theory, where in the end one obtains an expression
for the physical quantity of interest (e.g. time dependent expectation values, time dependent
amplitudes of energy eigenstates of the unperturbed system) as an infinite power series in λ.

Instead of (1.13) the time dependence of the system may be such, that a system parameter
is changed on a short timescale. In many cases these changes are so fast, that one may
consider the limit of a sudden, abrupt change. The system is prepared, for instance, in the
ground state of an initial Hamiltonian ĤI. At time t0 the system parameter is then changed
instantly, in the following of which the system evolves under the influence of a final Hamiltonian
ĤF. This situation is called a quench. Such a quench is an example of a particularly simple
non-equilibrium situation, since for its description only two non-commuting Hamiltonians are
required, instead of the infinitely many in the general case (1.13). In the following, we give two
important examples of non-equilibrium phenomena in the field of Bose-Einstein condensation,
both of which can be regarded as quenches. The first is the turning-off of all trapping potentials
prior to the recording of so-called time-of-flight images. The second is the observation of
collapse and revival of the condensate field in an optical lattice following a quench of the
lattice potential.
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Chapter 1 Introduction

1.2.1 Time-of-Flight Imaging

Different methods exist for the detection and observation of a Bose-Einstein condensate. One of
the oldest methods is time-of-flight imaging, where the trapping potentials are suddenly turned
off and the density of the expanding atomic cloud is imaged. We note, that this turning-off of
all trapping potentials can be regarded as a special quench in the trap frequency, where ω is
taken from its normal value to zero.

For a harmonic trap and for times much larger than the inverse of the associated oscillator
frequency, i.e. for ωt � 1, the recorded density profiles for the thermal and the condensate
component are proportional to their respective momentum distributions, as we will see below.
The thermal component of an harmonically trapped quantum gas in three dimensions may be
described semiclassicaly by its density function

nT(r) = λ−3
dB ζ3/2

(
eβ(µ−V (r))

)
, (1.14)

where

V (r) =
3∑
i=1

M

2
ω2
i x

2
i (1.15)

is the harmonic potential. When the trap is switched off, the atoms fly ballistically from their
position in the trap with the velocity at the time of the switch-off. For an atom that starts at
point r0 and arrives at r after a time t of free expansion, the momentum is p = M(r− r0)/t.
After an expansion time of t, the distribution is the given by

nT(r, t) = nT(r− pt/M) . (1.16)

Using (1.5), we may determine the density distribution as a function of the expansion time t by
performing an integration over momentum, i.e. nT(r, t) = (M/t)3

∫
dpnT(r− pt/M), yielding

nT(r, t) = λ−3
dB

[
3∏
i=1

(
1

1 + ω2
i t

2

)1/2
]
ζ3/2

(
exp

{
β

[
µ−

∑
i

Mω2
i r

2
i

2(1 + ω2
i t

2)

]})
. (1.17)

As it was said above, for large times, i.e. t� ω−1
i , the density distribution of the thermal cloud

becomes isotropic:

nT(r, t)
t�ω−1

i−−−−→ λ−3
dB ζ3/2

(
e
β(µ−Mr2

2t2
)

)
. (1.18)

For noninteracting particles, the ground state wavefunction is a Gaussian, and consequently
the condensate density is also a Gaussian, given by

n0(r) = N0π
−3/2

3∏
i=1

r−1
i,0 exp

{
−
(
ri
r0,i

)2
}

. (1.19)

Under unitary time evolution, Gaussian wavepackets remain Gaussian except for a phase factor.
Thus, after a time t of free expansion, the oscillator length r0,i =

√
h̄/Mωi in (1.19) is simply

rescaled [5] according to

r′2i,0 = r2
0,i + v2

i t
2 =

r2
0,i

1 + ω2
i t

2
, (1.20)

6



1.2 Non-Equilibrium Phenomena

Figure 1.1: Observation of Bose-Einstein condensation of sodium atoms by absorption imaging.
Each of the three images was taken after a time-of-flight of 6 ms. They show, from
left to right, an expanding cloud cooled to: just above the critical temperature
T > Tc, just below, after the condensate appeared, and well below Tc, showing an
almost pure condensate . Images taken in 1995 by the group of Wolfgang Ketterle
and Dave Pritchard at MIT [7].

where vi =
√
h̄ωi/M is the velocity associated with harmonic oscillator’s ground state energy.

Therefore, we obtain the following expression for the time dependent density of the expanding
condensate:

n0(r, t) = N0

3∏
i=1

(
1

1 + ω2
i t

2

)1/2 √ πh̄

Mωi
exp

{
− Mωir

2
i

h̄(1 + ω2
i t

2)

}
. (1.21)

Among the different techniques that exist for visualising the velocity distribution of the
trapped atoms, more precisely its density, there are absorption imaging and phase-contrast
imaging [5]. In absorption imaging, light at a resonant frequency of the atomic species is
passed through the atomic cloud and is partially absorbed. The absorption profile then yields
information about the density distribution of the cloud. A drawback of absorption imaging is
that it is destructive, since the absorption of light quanta heats the cloud considerably.

7



Chapter 1 Introduction

An alternative technique is phase-contrast imaging, which exploits the fact that the refractive
index of the gas depends on its density. By allowing a light beam that has passed through the
cloud to interfere with a reference beam that has been phase shifted, changes in optical path
length are converted into intensity variations. This method is almost non-destructive.

After the light has passed through the thermal cloud and the condensate, both methods
capture the resulting image via sensitive charge-coupled devices (CCD). The resulting time-
of-flight images generally exhibit a narrow central peak which has the parabolic profile of
the bottom of the trap, corresponding to the fraction of condensed bosons which have zero
momentum, sitting collectively in the lowest eigenstate of the trapping potential, as well as a
broad Gaussian distribution of the thermal component of the gas, which expands quickly. This
sharp central peak in the velocity distribution of a harmonically trapped Bose gas is direct
evidence for Bose-Einstein condensation.

Weakly interacting Bose gases are described by the Gross-Pitaevkii equation and in the limit
of negligible kinetic energy and large particle numbers, we may apply the Thomas-Fermi ap-
proximation [16, Chapter 6.2], which yields for harmonic potentials V (r) a density distribution
of the form of an inverted parabola,

n0(r) = |ψ(r)|2 = [µ− V (r)] /U0 , (1.22)

where U0 is associated with the interaction energy. Thus, as a result of the residual repulsive
interaction, the density profile of the BEC deviates from a Gaussian and the expanding BEC
retains the shape of the potential at the bottom of the trap. Consequently, it displays the same
anisotropy in time-of-flight images, whereas the thermal cloud is spherically symmetric due to
the isotropy of the velocity distribution (1.18). The observation, that the alleged condensate
fraction retains the anisotropy of the trapping potential served as strong evidence for Bose-
Einstein condensation in early experiments.

Figure 1.1 shows absorption images of the expanding cloud of an ultracold gas of sodium
atoms, taken after the turning-off of the harmonic trapping potential, after a time-of-flight of
6 ms. The total number of atoms at the phase transition at Tc ≈ 2 µK was approximately
Ntot ≈ 7 × 105. These images were recorded by the group of Wolfgang Ketterle and Dave
Pritchard at MIT during their experiments in 1995, where the first BEC with sodium atoms
was achieved [7].

The greyscale images in the top row are the original two dimensional absorption images;
in the lower row, these were rendered in a three-dimensional plot where the blackness of the
shadow is represented by height. The left image of Fig. 1.1 shows the expanding thermal
cloud at just above the critical temperature Tc, where Bose-Einstein condensation sets in.
Consequently, we only see the broad thermal distribution of an ultracold gas that still behaves
classically. The image in the center was taken at a temperature just below Tc. Now, in the
center of the thermal distribution, we see the sharp peak that accompanies the beginning
of BEC. The density distribution is thus bimodal, with two separate contributions from the
thermal component and the condensate. In the corresponding greyscale image above, we further
observe that the BEC component displays the anisotropy discussed above. Finally, the third
image was taken at a temperature well below the critical one, where most of the atoms are in
the condensate component. Thus, the thermal component of the gas is practically absent and
what is left is an almost pure Bose-Einstein condenstate.

8



1.2 Non-Equilibrium Phenomena

1.2.2 Collapse and Revival in Optical Lattices

Bose-Einstein condensates may be loaded into two- or three-dimensional optical lattices; these
are made by interfering counterpropagating laser beams such that at every location of the
resulting grid of laser light where beams cross, a small potential well is formed, which can
be used to trap neutral atoms via the Stark shift. The resulting periodic potential can then
be populated by atoms from a condensate, so that the resulting system of trapped atoms
resembles an ideal crystal [9, 10]. Today, these optical lattices are an important tool for
condensed matter research, as they offer a toy model of a quantum solid-state system where all
parameters, such as lattice spacing and depth of the periodic potential, can at least in principle
be controlled. Thus, they allow researchers to simulate important aspects and phenomena of
solid-state physics with a minimally complex system.

Optical lattices, that are populated with bosons, are described by the Bose-Hubbard model,
the Hamiltonian of which reads

ĤBH = −J
∑
〈i,j〉

(
b̂†i b̂j + b̂†j b̂i

)
+
∑
i

[
U

2
n̂i(n̂i − 1)− µin̂i

]
, (1.23)

where the first part describes the hopping, or tunnelling, of particles between neighbouring sites
with the hopping matrix element J , and the second is the on-site repulsion between particles
in the same potential well, which is characterised by the on-site interaction matrix element U .
Finally, n̂i = b̂†i b̂i is the occupation number operator at site i and µi = µ−Mω2x2

i /2 denotes the
local chemical potential within the Thomas-Fermi approximation. This site dependence of µi
is a consequence of the additional harmonic trapping potential which is usually superimposed
on the optical lattice one.

In equilibrium, this model exhibits a quantum phase transition at a critical value of the
interaction strength U/J = uc, between a superfluid (U/J < uc) and a Mott-insulating state
(U/J > uc) [8]. For weak interactions relative to the kinetic energy, i.e. for U/J � 1, the system
forms a Bose-Einstein condensed state of matter, where each atom is delocalised over the entire
lattice. This state is favoured as the kinetic energy term in (1.23) is minimised for single-particle
wavefunctions spread out throughout the lattice, so in this case the system is described by a
single multiparticle wavefunction. This phase is referred to as the superfluid phase of the
system. Superfluids (like the superfluid phase of helium) are extraordinary quantum liquids.
They are generally characterised by a single coherent wavefunction, zero viscosity, as well zero
entropy and infinite thermal conductivity.

In contrast, for the case of U/J � 1, i.e. when the on-site interactions are large compared
to the kinetic energy, the system is in the Mott insulator phase, in which the atoms are
localised at single lattice sites, with a fixed particle number per site. Therefore, the single
site wavefunctions cannot overlap coherently, and the system cannot be described by a single
coherent macroscopic wavefunction. Then, for very strong interactions, no interference pattern
is observed [9, 10].

In an optical lattice, the potential well formed by the crossing laser beams at each lattice
site can be prepared in a coherent superposition of different occupation number states with
constant relative phases between neighbouring sites. These can be expressed as a superposition
of eigenstates |n〉 of (1.23) at a single site with a complex amplitude α:

|α〉 = e
−i |α|

2

2
∑
n

αn√
n!
|n〉 . (1.24)
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Chapter 1 Introduction

Figure 1.2: Absorption images of the dynamical evolution of the multiple matter wave in-
terference pattern observed after quenching the optical lattice potential from the
superfluid phase to the Mott insulator regime [11].

We obtain a time evolved coherent state (1.24) by using the solution of the Schrödinger equation
for a Fock state, |n〉(t) = |n〉(0) exp {−iEnt/h̄}:

|α〉(t) = e
−i |α|

2

2
∑
n

αn√
n!

e−iEnt/h̄|n〉(0) . (1.25)

In Ref. [11], Greiner et al. report on an experiment, where all lattice sites were initially
prepared in such a superposition and where subsequently the lattice intensity was suddenly
increased, taking the system from the superfluid phase to the Mott insulator regime. Following
this quench, a periodic series of collapses and revivals of the collective interference pattern was
observed. Figure 1.2 shows a series of seven experiments, where each time the intensity of the
lattice potential was quenched. After each quench followed a variable hold time t, during which
no further manipulations were performed on the system. After this hold time, all potentials
were shut off and absorption images were taken. In the first image, a, of Fig. 1.2, the hold
time was zero and consequently the quench could not affect the system. We see the typical
momentum distribution of a square optical lattice, which can be thought of as a direct image
of the reciprocal lattice. Thus, initially, the system can be described by a macroscopic wave
function with phase coherence between individual potential wells.

In images b through d, taken after hold times of 100µs , 150µs, and 250µs, the sharp inter-
ference peaks vanish completely, corresponding to a collapse of the macroscopic wavefunction
over the entire lattice. Then, in images e through f, the interference pattern appears again,
and is perfectly restored in image g, which was taken after 550 µs.

Thus, Figure 1.2 shows a complete cycle of collapse and revival of the multiple matter wave in
an optical lattice. The strength of these oscillations, i.e. the number of coherent atoms relative
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1.2 Non-Equilibrium Phenomena

Figure 1.3: Number of coherent atoms relative to the total number of atoms monitored over
time for the same experimental sequence as in Fig. 1.2. The solid line is a fit to
the data assuming a sum of Gaussians with constant widths and constant time
separations, including an exponential damping and a linear background, [11].

to the total number of atoms for the same experiments as above is depicted in Fig. 1.3. Here,
the number of coherent atoms, Ncoh, has relaxed to zero after 3 ms and about five complete
cycles. The data points in Fig. 1.3 were fitted with a sum of Gaussians and an exponential
damping term. According to the authors of [11], the damping is mainly an artefact of the
measuring process: Due to the additional harmonic trap, that is superimposed on the optical
lattice potential, the chemical potential in (1.23) is site-dependent and features a parabolic
profile over the whole lattice, which leads to a broadening of the interference peaks over time.
The density, however, is only counted inside a rectangular area of 130µm× 130µm around the
interference peaks of Fig. 1.2, so when these become broader than this area, Ncoh cannot be
correctly determined any more.

The apparent decay of oscillations in Fig. 1.3 can be modeled with the following approach
due to Santos and Pelster [13]: Before the quench, the system is deep inside the superfluid
phase and is thus well described by the Gross-Pitaevskii equation, where the collective wave
function, or order parameter field ψi(t) = 〈b̂i(t)〉 is large.

Near the boundary to the Mott phase, however, ψi is small, so the system is better described
by a Ginzburg-Landau theory, where the order parameter field ψi satisfies equations of motion
that follow from an effective action [14]. In the limit of U → 0 these equations of motion then
reduce to the Gross-Pitaevskii equation. They may be linearised in ψi in order to treat small
oscillations of the system, yielding the general solution in the time domain

ψi(t) = A+
i e−i(Uni−µi)t/h̄ +A−i e−i[Uni(ni−1)−µi]t/h̄ . (1.26)

Starting with the time-independent Gross-Pitaevskii equation, which is accurate only for the
beginning of the quench, and at non-zero hopping, i.e. J 6= 0, the hopping constant is then
quenched to J = 0 by changing the lattice potential. This causes the values of the parameters
U and µi in (1.23) to change as well, i.e. to take on the values Ũ and µ̃i. The Gross-Pitaevskii
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equation in terms of these changed parameters has exact solutions for J = 0, which determine
the boundary conditions for (1.26), i.e. the parameters A±i . From (1.26) one then obtains
the momentum space distribution, from which the density at momentum k⊥ in the x-y-plane
follows by integrating out the z coordinate. For large times t→∞ the integrated momentum
space density turns out to have the asymptotical limit

n(k⊥, t) ∝
(

2πh̄
Mω2a2t

)2

, (1.27)

with the lattice constant a. The condensate fraction in a small region δk2 of k⊥-space around
an interference peak is then of the form

Nc ∼
α+ β cos (Ut/h̄)

t2
, (1.28)

where α and β are constants that can be explicitly determined in terms of the parameters A±i .
Thus, it follows that the single-site order parameter field described by ψi(t) has a periodic time
dependence with a quadratic decay. This decay however, is no real damping due to dissipative
processes, but a mere artifact of the experimental detection process.

1.3 Overview of this Thesis

This thesis is divided into two parts. The first consists of Chapters 2 and 3 and provides the
necessary background for the statistical description of harmonically trapped ideal quantum
gases. Therein, Chapter 2 deals with the description of many-particle systems: We start
by introducing permutations and the corresponding symmetric group, as well as permutation
matrices as particular representations thereof. Finally, we come to the important notion of
permutation cycles, which correspond to the conjugacy classes of the symmetric group. The
following sections then deal with the mathematical description of systems of distinguishable
and indistinguishable particles. From the defining relation for many-particle states we derive
the explicit form of these in terms of states that are either completely symmetric or completely
antisymmetric under the exchange of a pair of particles. Then, we review the continuous Fock-
space representation of position eigenstates and thereafter the discrete, or occupation-number
representation.

In Chapter 3, we develop the canonical and the grand-canonical description of ideal quan-
tum gases. Beginning with a short review of ensembles of statistical mechanics, we turn to
the one-particle time evolution amplitude, which represents the central quantity both in the
canonical and the grand-canonical description. We then introduce Wick rotation, which con-
nects quantum mechanics and statistical physics. By Wick rotation, the real-time evolution
amplitude becomes the imaginary time one for which we derive a path-integral representation
in the next subsection. In the following, we first turn to the grand-canonical description, for
which we briefly motivate the Van-Vleck-Pauli-Morette formula. From this we then calculate
the time-evolution amplitude of the harmonic oscillator, before we derive the harmonic os-
cillator’s many-particle partition function, using the cycle decomposition of Chapter 2 with
the permutations that appear in the (anti-)symmetrised many-particle states for bosons and
fermions. We then pass to the more popular grand-canonical description, where we calculate
the grand-canonical partition function.
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In the second part of this thesis, which consists of Chapter 4, we present our results for
the quench dynamics of harmonically trapped ideal quantum gases. To that end, we calculate
in the canonical ensemble the effect of a quench of trap frequency for a single particle in a
harmonic potential well. We find that the corresponding one-particle width factorises into the
well-known thermodynamic width and a function which carries the time dependence. The latter
oscillates with twice the frequency of the final harmonic potential. Repeating our calculations
for the case of two particles, we obtain the time dependent density matrix and the two-particle
partition function, as well as the time dependent reduced density matrix in this two-particle
ensemble.

We then generalise to the case of N particles. We obtain an expression for the time dependent
N -particle density matrix in terms of the sum over all permutations of a product of one-
particle density matrices. In order to calculate the N -particle partition function, we explicitly
integrate out all coordinate dependencies of the time dependent N -particle density matrix. In
the corresponding multi-dimensional Gaussian integral, there appear permutation dependent
matrices, which complicates the integration considerably. We obtain a general expression for
their determinants by noting that, because of the decomposition of the permutation group
into conjugacy classes, there is also a cycle decomposition of the determinant of the above
permutation dependent matrices, with the same subdeterminant factor for every n-cycle. We
proceed in the calculation of this cycle factor by Laplace expanding a suitable single-cycle
matrix, obtaining a difference equation, which we solve via a Z-transform. This yields the
well-known expression for the N -particle partition function in cycle reduced form.

Next, we calculate the time dependent reduced one-particle density matrix in an N -particle
ensemble by performing a partial trace over N − 1 particle coordinates, during which integrals
over broken cycles appear. In order to deal with these, we derive a master equation for their
corresponding contributions. From this we obtain the reduced one-particle width and we find
that this quantity also factorises into a time dependent and a thermodynamic part. We discuss
the behaviour of the reduced one-particle width for different ensemble particle numbers and
derive an expression for their high-temperature asymptotes.

For comparison, we calculate the time-dependent grand-canonical density matrix and the
corresponding reduced one-particle one, for which we obtain an expression in terms of a weighed
sum of canonical one-particle density matrices.

Finally, Chapter 5 summarises the results of this thesis and Chapter 6 discusses further
interesting problems in the realm of non-equilibrium quantum statistics.
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Chapter 2

Many-Particle Quantum Statistics

As we will be mainly working in the canonical ensemble, where the time evolution ampli-
tude is given by the expectation value of the Wick-rotated time evolution operator between
many-particle states, it useful to review the quantum mechanical description of many-particle
systems of distinguishable and indistinguishable particles. We start by giving an overview of
the permutation group in section 2.1, focusing on its decomposition into conjugacy classes, from
which follows a decomposition of permutations into cycles. The cycle structure of the sym-
metric group provides the fundamental tool for the mathematical description of the quantum
statistics of ideal and weakly interacting quantum gases.

2.1 Permutations and Cycles

A permutation is a bijective map from a finite ordered set M , that contains every element only
once, to itself [18]:

P : M −→M (2.1)

Practically, a permutation corresponds to a rearrangement of the elements of M : Consider the
N -tuple (the ordered set, or sequence, of N elements) S = (1, 2, 3, . . . , N). A permutation P re-
arranges the elements of S. For example, P (S) = (2, 1, 3, . . . , N) is the permutation that inter-
changes the first two elements of S. A permutation that interchanges any two elements is called
a transposition. Another example for a permutation on S is P ′(S) = (5, 3, 4, 2, 1, 6, 7, . . . , N)
where the first five elements are involved. One method of writing a permutation is relation
notation, where the original sequence or N -tuple is in the first line and the permuted sequence
is written in the second line of a (N × 2) matrix. Thus, in relation notation, P and P ′ are
written as

P (S) =
(

1 2 3 4 . . . N
2 1 3 4 . . . N

)
, P ′(S) =

(
1 2 3 4 5 6 7 . . . N
5 3 4 2 1 6 7 . . . N

)
. (2.2)

In general, for a permutation P , P (i) is the action of P on the i-th element of the original
sequence S, given by

P (S) =
(

i
P (i)

)
=
(

1 2 3 4 5 . . . N
P (1) P (2) P (3) P (4) P (5) . . . P (N)

)
. (2.3)

Any permutation P of a finite set S can be expressed as the composition (product) of trans-
positions Pij :

P (S) =
N∏

i,j=1

Pij . (2.4)
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Here the transposition Pij , which is defined as

Pij ((1, . . . , i, . . . , j, . . .)) = (1, . . . , j, . . . , i, . . .) , (2.5)

is the special two element interchanging permutation mentioned above. For a sequence S of
N elements, there are in total N ! permutations. This can be seen quite easily as there are N
possible choices for the first element of the sequence. Once the first element has been fixed,
there are (N − 1) elements left in S, thus for the second element, there are (N − 1) possible
choices, for the third element we have (N − 2) possible choices and so on. Consequently, for
the first two elements, there are N × (N − 1) possible choices, for the first three elements we
have N × (N − 1)× (N − 2), and for the full set of N elements there are N ! different choices,
i.e. permutations.

There are different ways of enumerating permutations. In this thesis we employ lexicographic
ordering, i.e. the permutations are listed in numeric or dictionary order. Permutation P pre-
cedes permutation P ′ in lexicographic order if and only if for the minimum value of index i
such that P (i) 6= P ′(i), we have P (i) < P ′(i). For example, for N = 4, the permutations in
lexicographic order of (1, 2, 3, 4) are from top to bottom and right to left:

P1 = (1, 2, 3, 4) P7 = (2, 1, 3, 4) P13 = (3, 1, 2, 4) P19 = (4, 1, 2, 3)
P2 = (1, 2, 4, 3) P8 = (2, 1, 4, 3) P14 = (3, 1, 4, 2) P20 = (4, 1, 3, 2)
P3 = (1, 3, 2, 4) P9 = (2, 3, 1, 4) P15 = (3, 2, 1, 4) P21 = (4, 2, 1, 3)
P4 = (1, 3, 4, 2) P10 = (2, 3, 4, 1) P16 = (3, 2, 4, 1) P22 = (4, 2, 3, 1)
P5 = (1, 4, 2, 3) P11 = (2, 4, 1, 3) P17 = (3, 4, 1, 2) P23 = (4, 3, 1, 2)
P6 = (1, 4, 3, 2) P12 = (2, 4, 3, 1) P18 = (3, 4, 2, 1) P24 = (4, 3, 2, 1) . (2.6)

2.1.1 Symmetric Group SN

Two permutations P and P ′ of a set M may be applied successively, i.e., P ◦ P ′, where the
result is again a permutation. Thus, the set of permutations of M together with the operation
of composition of permutations ◦ forms a group, called the symmetric group of degree N and
denoted by SN = (M, ◦), so that

1. The identity element corresponds to the unpermuted set:

1SN =
(

1 2 3 ... N
1 2 3 ... N

)
∈ SN . (2.7)

2. The inverse corresponds to the inverse permutation:

P−1 =
(

1 2 3 ... N
P (1) P (2) P (3) ... P (N)

)−1
=
(
P (1) P (2) P (3) ... P (N)

1 2 3 ... N

)
. (2.8)

3. The operation ◦ is associative:

(P ◦ P ′) ◦ P ′′ = P ◦ (P ′ ◦ P ′′) for all P, P ′, P ′′ ∈M . (2.9)

Subgroups of SN are called permutation groups. A permutation matrix is a square binary
matrix, i.e. a matrix that has only entries of 0 and 1, with exactly one entry 1 in each row and
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each column and zeros elsewhere. The (N ×N) permutation matrix P that corresponds to a
permutation P ∈ SN is constructed by permuting the columns of the (N ×N) identity matrix
1N according to P , i.e.

PP = (δi,P (j)) =
(
eP (1), eP (2), . . . , eP (N)

)
, (2.10)

where ei denotes the ith unit vector. Some examples for permutation matrices with N = 4
are:

P1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , P10 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , P12 =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 . (2.11)

A faithful representation R of a group G is defined as a group isomorphism, i.e. a bijective
map that preserves group structure, from G to a group of operators R(G) on a linear vector
space over some field V, denoted GL(n,V) (the group of all linear operators of dimension n
on V), that is

g ∈ G
R−−−→ R(G) ∈ GL(n,V) . (2.12)

The representation matrices R(G) thus obey the same multiplication rules as the original
group elements. Specifically, for g1, g2 ∈ G we have R(g1 ◦ g2) = R(g1) ◦ R(g2), as well as
R(1G) = 1R(G) and R(g−1) = R−1(g1).

It is straightforward to see that the map (2.10) is a faithful representation of SN on a
subgroup of GL(N,R), where the permutation matrices introduced above are the representation
matrices of their corresponding permutation. It follows that, given the permutation matrix PP

of some permutation P , the inverse of PP is the permutation matrix of the inverse permutation
P−1, that is P−1

P = PP−1 . Given permutations P and P ′ from SN , the product of their
corresponding permutation matrices PP and PP ′ is equal to the permutation matrix of the
composite permutation P ◦ P ′:

PPPP ′ = PP◦P ′ . (2.13)

2.1.2 Permutation Cycles

There exists another essential notation for permutations. Let us takeN = 4 and P12 = ( 1 2 3 4
2 4 3 1 ),

which is the permutation that corresponds to the third matrix displayed in (2.11). P12 changes
1 to 2, then 2 to 4 and 4 back to 1 again. Additionally, 3 is left untouched, in other words
3 ”is changed” to 3. For another permutation, e.g. for P8 we have: P8 = ( 1 2 3 4

2 1 4 3 ), that is,
1 is changed to 2 and then 2 goes back to 1 again. Then, 3 goes to 4 and 4 goes back to
3. We see that we can write the permutation in terms of how the elements change when the
permutation is successively applied. This is called cycle notation, where the term permutation
cycle or just cycle refers to a cyclic permutation of some or all elements of the permutation.
In other words: A permutation cycle is a subset of a permutation whose elements trade places
with one another in a cyclic fashion. Permutation cycles are sometimes called ”orbits”. For
the example permutations above, we have P12 = (3)(124), so P12 consists of a one-cycle and a
three-cycle, and P8 = (12)(34) decomposes into two two-cycles. One-cycles, i.e. elements that
are not changed by their respective permutation are also called fixed points and two-cycles are
just transpositions.
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Pn Permuted sequence Relation notation Cycle notation
P1 (1, 2, 3) ( 1 2 3

1 2 3 ) (1)(2)(3)
P2 (1, 3, 2) ( 1 2 3

1 3 2 ) (1)(2 3)
P3 (2, 1, 3) ( 1 2 3

2 1 3 ) (3)(1 2)
P4 (2, 3, 1) ( 1 2 3

0 1 0 ) (1 2 3)
P5 (3, 1, 2) ( 1 2 3

0 1 0 ) (1 3 2)
P6 (3, 2, 1) ( 1 2 3

0 1 0 ) (2)(1 3)

Table 2.1: All permutations of (123), i.e. all elements of S3 in relation notation and cycle
notation.

Every permutation in SN decomposes into a product of disjoint cycles; this representation is
unique up to the order of the factors. However, there is a great deal of freedom in picking the
representation of a cyclic decomposition. In addition to the freedom in choosing the ordering
of cycles, any rotation of a given cycle specifies the same cycle, so we could also have written
P12 = (3)(124) = (124)(3) = (241)(3) = (3)(412) and P8 = (12)(34) = (34)(12) = (43)(21),
etc. Therefore it is customary to fix a notation by sorting the cycle representation of a given
permutation in lowest canonical order, i.e. first by cycle length, and then by lowest initial order
of elements within each cycle. Table 2.1 displays the elements of S3, i.e. all permutations of
the sequence (1, 2, 3) in different notations.

We obtain the inverse of some permutation in cycle notation by leaving the first element
and reversing the order of the other elements for every cycle, so we get P−1

12 = (3)(142) and
P−1

8 = (12)(34) as well as P−1
10 = ( 1 2 3 4

4 1 2 3 )−1 = (1234)−1 = (1432).
The elements of any group G may be partitioned into conjugacy classes where members of

the same conjugacy class have many properties in common. Two elements a and b of G are
called conjugate a ∼ b, if there exists an element g in G with

g−1 a g = b . (2.14)

It is easy to see that the relation ∼ is reflexive, i.e., a ∼ a, symmetric, i.e., a ∼ b ⇔ b ∼ a,
and transitive, i.e. if a ∼ b and b ∼ c then a ∼ c, so conjugacy is an equivalence relation and
therefore partitions G into equivalence classes. This means that every element of the group
belongs to precisely one conjugacy class, and the classes Cl(a) and Cl(b) are equal if and only
if a and b are conjugate, and disjoint otherwise.

The conjugacy classes of SN correspond to the cycle structures of permutations; that is, two
elements of SN are conjugate in SN if and only if they consist of the same number of disjoint
cycles of the same lengths. For example, taking N = 4 again, P9 = (4)(123) and P12 = (3)(124)
are conjugate; P1 = (1)(2)(3)(4) and P8 = (12)(34) are not. Specifically, the identity element
1G of a group G, i.e. P1 for SN is always in its own class.

Of course, conjugacy has its counterpart in the representation group R(G), where it is called
similarity. Two (N×N) matrices A and B in R(G) are called similar if for some representation
matrix C we have

C−1AC = B . (2.15)

Similar matrices share many properties, for example:

• rank
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• determinant

• trace

• eigenvalues

• characteristic polynomial

etc., since they are related by an orthogonal similarity transformation, i.e. they represent the
same linear transformation under two different bases, with C being the change of base matrix.

Thus, two permutation matrices, where the corresponding permutations have the same cycle
structure, i.e. the same number of cycles with the same lengths, are similar.

2.2 Distinguishable Particles

Particles are called distinguishable, if they can be distinguished in terms of some measurable
property. Consequently, distinguishable particles can be enumerated and the mathematical
formalism for their description follows readily from a generalisation of the postulates of one-
particle quantum mechanics to the case of an N -particle quantum system. In order to describe
a quantum mechanical system, one first has to specify the Hilbert space, that the system’s state
lives in. Secondly, one constructs a set of states that form a basis in the respective Hilbert
space.

For an N -particle system the space that the corresponding states live in can be constructed
as a direct product of one-particle Hilbert spaces H1. Let H(i)

1 denote the Hilbert space of the
ith particle, then the multiparticle Hilbert space for the whole N -particle system is

HN = H(1)
1 ⊗H

(2)
1 ⊗ · · · ⊗ H

(N)
1 . (2.16)

The elements of HN are N -particle states that are themselves a tensor product of one-particle
states |ϕ〉, such that the ith particle with one-particle state |ϕi〉 lives in the ith one-particle
Hilbert space H(i)

1 , where the symbol ϕ stands for all quantum numbers that characterise the
particle. The N -particle states thus read

|ϕ(N)〉 = |ϕ1ϕ2 · · ·ϕN 〉 = |ϕ1〉|ϕ2〉 · · · |ϕN 〉 = |ϕ1〉 ⊗ |ϕ2〉 ⊗ · · · ⊗ |ϕN 〉 . (2.17)

Let {Ô(i)} be a complete set of commuting observables in H(i)
1 , then the corresponding eigen-

states {|ϕ(i)
e 〉} form a basis of H(i)

1 . We may assume these to be orthonormal:

〈ϕ(i)
α |ϕ

(i)
β 〉 =

{
δαβ discrete basis
δ(α− β) continuous basis .

(2.18)

Consequently, a basis of HN is constructed by taking the direct product of the corresponding
single-particle basis states |ϕ(N)〉 = |ϕ(1)

α1 〉|ϕ
(2)
α2 〉 · · · |ϕ

(N)
αN 〉. A general N -particle state |ψN 〉 can

be expanded in terms of the |ϕ(N)〉:

|ψN 〉 =
∑
αi

C(α1, α2, . . . , αN )|ϕ(1)
α1
〉|ϕ(2)

α2
〉 · · · |ϕ(N)

αN
〉 . (2.19)

The same statistical interpretation holds for an N -particle state as for a single-particle state:
Therefore, |C(α1, α2, . . . , αN )|2 represents the probability for a measurement of the observable
Ô in the state |ψN 〉 to yield the eigenvalue of Ô, i.e. |ϕ(1)

α1 〉|ϕ
(2)
α2 〉 · · · |ϕ

(N)
αN 〉.
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2.3 Identical Particles

In reality, the only observable properties, that a quantum mechanical particle like an electron
has, are its quantum numbers, which are the eigenvalues of an associated observable, i.e. an
Hermitian operator. It follows, that quantum particles, which have similar or equal values
for all of their quantum numbers, cannot, in principle, be distinguished. As an example for
particles that share the same quantum numbers, consider the fraction of particles of an ideal
quantum gas, which is in its ground state. If the gas is confined to an harmonic trap, the
particles in the ground state will share the same volume at the trap’s potential minimum, thus
their wavefunctions will overlap.

Thus, when dealing with multiparticle quantum systems, we must take into account the
principle of indistinguishability and consequently, every physical problem, which requires the
observation of single particles, must be regarded as physically meaningless for systems of iden-
tical particles. Now, for computational reasons, an enumeration of particles is unavoidable,
since we must be able to enumerate the system’s one-particle states. However, this enumera-
tion must be carried out in such a way, that above principle is respected, i.e. that physically
relevant quantities are invariant with respect to changes in the enumeration scheme. Otherwise
it would be possible to perform a measurement which could in principle distinguish between
particles.

The only physically relevant properties are the expectation values of observables. Therefore,
the relation

〈ϕ1 · · ·ϕi · · ·ϕj · · ·ϕN | Ô |ϕ1 · · ·ϕi · · ·ϕj · · ·ϕN 〉 = 〈ϕ1 · · ·ϕj · · ·ϕi · · ·ϕN | Ô |ϕ1 · · ·ϕj · · ·ϕi · · ·ϕN 〉
(2.20)

may be regarded as the defining equation for the states of systems of identical particles. On
the right side of (2.20), the coordinates of particles i and j are permuted with respect to those
on the left. We now ask if there is an operator P̂ij which, when applied to a state, interchanges
coordinates in the above way. Of course, the right side of (2.20) differs from the left side by a
transposition (2.5) and the operator in question is the transposition operator, which we define
as

P̂ij |ϕ1 · · ·ϕi · · ·ϕj · · ·ϕN 〉 = |ϕ1 · · ·ϕj · · ·ϕi · · ·ϕN 〉 . (2.21)

Before going on, let us review some of the properties of the transposition operator. Applying
P̂ij to an N -particle state twice obviously yields the initial state. This means that

P̂ 2
ij = 1̂ ⇐⇒ P̂ij = P̂−1

ij , (2.22)

so P̂ij is an involution, i.e. it is self-inverse. Equation (2.20), which is written in coordinate
representation can now be rewritten in the following coordinate independent form:

〈ϕ(N)| Ô |ϕ(N)〉 = 〈P̂ijϕ(N)| Ô |P̂ijϕ(N)〉 = 〈ϕ(N)| P̂ †ijÔP̂ij |ϕ
(N)〉 . (2.23)

We should stress that this holds for arbitrary N -particle states in HN and also for all matrix
elements of the type 〈ϕ(N)| Ô |ψ(N)〉, since these are trivially brought into the above form by
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2.3 Identical Particles

the decomposition

〈ϕ(N)| Ô |ψ(N)〉 =
1
4

{
〈ϕ(N) + ψ(N)| Ô |ϕ(N) + ψ(N)〉 − 〈ϕ(N) − ψ(N)| Ô |ϕ(N) − ψ(N)〉

+ i〈ϕ(N) + iψ(N)| Ô |ϕ(N) + iψ(N)〉 − i〈ϕ(N) − iψ(N)| Ô |ϕ(N) − iψ(N)〉
}

.

(2.24)

This leads to the operator identity

Ô = P̂ †ijÔP̂ij for all i, j . (2.25)

Thus, it is a necessary precondition for the observables of a system of indistinguishable i.e.
identical particles, that they depend explicitly on the coordinates of all N particles. If in
(2.25) we make the particular choice Ô = 1̂ for the observable, we get by applying (2.22)

1̂ = P̂ †ijP̂ij =⇒ P̂ij = P̂ †ijP̂
2
ij = P̂ †ij ; (2.26)

thus, the transposition operator P̂ij is both Hermitian and unitary:

P̂ij = P̂ †ij , P̂ †ij = P̂−1
ij . (2.27)

It also follows from (2.25), that

P̂ijÔ = P̂ijP̂
†
ijÔP̂ij = ÔP̂ij , (2.28)

which means that all observables of the N -particle system commute with P̂ij :[
P̂ij , Ô

]
− = P̂ijÔ − ÔP̂ij ≡ 0 , (2.29)

in particular the Hamiltonian, which generates the system’s time evolution, i.e.[
P̂ij , Ĥ

]
− = 0 . (2.30)

According to the principle of indistinguishability for identical particles, an N -particle state
|ψN 〉 may only change in terms of a phase factor under the action of P̂ij . Consequently, |ψN 〉
must be an eigenstate of P̂ij :

P̂ij |ϕ1 · · ·ϕi · · ·ϕj · · ·ϕN 〉 = |ϕ1 · · ·ϕj · · ·ϕi · · ·ϕN 〉
!= λ|ϕ1 · · ·ϕi · · ·ϕj · · ·ϕN 〉 , (2.31)

and because of the unitarity and involutary properties (2.27) and (2.22) of the transposition
operator, P̂ij has only the real eigenvalues of λ = ±1, which are independent of the particular
pair i, j. It follows that

the states of a system of identical particles are either completely symmetric or
completely antisymmetric under exchange of a pair of particles.

Because of (2.30), we have [P̂ij , Û(t)] = 0, so P̂ij commutes with the time evolution operator

Û(t− t0) = exp
{
− i
h̄
Ĥ(t− t0)

}
(2.32)

and, accordingly, the states of a system of N identical particles retain their symmetry character
for all times. Thus, the Hilbert space HN of a system of N identical particles decomposes into
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Chapter 2 Many-Particle Quantum Statistics

H(+)
N : the Hilbert space of symmetric states |ϕ(+)

N 〉:

P̂ij |ϕ(+)
N 〉 = |ϕ(+)

N 〉 (2.33)

H(−)
N : the Hilbert space of antisymmetric states |ϕ(−)

N 〉:

P̂ij |ϕ(−)
N 〉 = −|ϕ(−)

N 〉 . (2.34)

We may combine both cases by writing P̂ij |ϕ(ε)
N 〉 = ε|ϕ(ε)

N 〉, where we use ε = +1 for symmetric
and ε = −1 for antisymmetric states. Symmetric and antisymmetric states are orthogonal to
each other:

〈ϕ(−)
N |ϕ

(+)
N 〉 = 〈ϕ(−)

N | P̂ijϕ
(+)
N 〉 = 〈P̂ijϕ(−)

N |ϕ
(+)
N 〉 = −〈ϕ(−)

N |ϕ
(+)
N 〉 = 0 . (2.35)

We are now in the position to ask ourselves, how an (anti-)symmetrized N -particle state |ϕ(ε)
N 〉

is constructed. To answer this question, we may start with a non-symmetrized N -particle state
(2.19), which has now to be symmetrized or anti-symmetrized in a suitable way. To achieve
this, we may define a symmetrization operator

Ŝε =
∑
P

εp(P )P̂ (P ) , (2.36)

where we have introduced the permutation operator, which is given as a suitable product of
transposition operators [recall (2.4)]

P̂ (P ) =
N∏

i,j=1

P̂ij , (2.37)

and which acts on multi-particle states by permuting the particles according to the permutation
P :

P̂ (P )|ϕ1ϕ2 · · ·ϕN 〉 = |ϕP (1)ϕP (2) · · ·ϕP (N)〉 . (2.38)

The sum in (2.36) runs over all permutations P and p(P ) denotes the number of transpositions
that construct the current permutation via equation (2.37). It can be shown [24] that the
N -particle states of identical particles can be only of the type |ϕ(±)

N 〉 and that they retain their
symmetry character for all times. Thus, we can state:

The states of a system of N identical particles either all belong to H(+)
N , or else

they all belong to H(−)
N .

Which space, H(+)
N orH(−)

N , is the right one for which type of particle can be found in relativistic
quantum field theory. In 1940 W. Pauli proved the so-called spin-statistics theorem [23], a
critical result of quantum field theory which states that particles with half-integer spin are
fermions, while particles with integer spin are bosons, i.e.:

• H(+)
N is the space of the symmetric state of N identical particles of integer spin. These

are called bosons.
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2.3 Identical Particles

• H(−)
N is the space of the antisymmetric state of N identical particles of half-integer

spin. These are called fermions.

In the following two sections we will introduce creation and annihilation operators, which arise
in the field-theoretic description of many-particle quantum systems, that is also known as
”second quantisation”, despite the fact that this is somewhat of a misnomer.

Our first task along this way consists in constructing a basis for the space H(ε)
N using appro-

priate single-particle states |ϕi〉. In the process, we must distinguish the cases in which the
associated single-particle observable ϕ̂i has a discrete or a continuous spectrum.

2.3.1 Continuous Fock Space of Position Eigenstates

In this section we first discuss the case of a continuous single-particle spectrum. This will lead
us to the continuous Fock space of position eigenstates.

Let ϕ̂ be a single-particle observable with a continuous spectrum:

ϕ̂|ϕα〉 = ϕα|ϕα〉 , with 〈ϕα |ϕβ〉 = δ(α− β) . (2.39)

The eigenstates are assumed to form an orthonormal basis of H1:∫
dϕα|ϕα〉〈ϕα| = 1 . (2.40)

A non-symmetrised N -particle state (2.19) is then given by

|ϕ1α · · ·ϕNα〉 = |ϕ1α〉|ϕ2α〉 . . . |ϕNα〉 . (2.41)

where the first index refers to the particle and the αs in the second index are complete sets of
quantum numbers. Here, we should add a comment on our convention regarding indices. As —
for typographical reasons — we want to avoid sub-subscripts, as e.g., in ϕα1 , we have adopted
the following notation: The first index in ϕiα, i.e. i, is the particle index and the second index,
α, denotes the complete set of quantum numbers of the ith particle. Thus, ϕ1α ≡ ϕα1 and if
we print the quantum numbers alone, as in δ(β − αi), we put an index i, corresponding to the
particle number.

The single-particle states in (2.41) are ordered arbitrarily, but in some well-defined way.
Application of the symmetrisation operator (2.36) to (2.41) then yields the (anti-)symmetrised
N -particle state

|ϕ1α · · ·ϕNα〉(ε) =
1
N !

∑
P

εp(P )P̂ (P )|ϕ1α, . . . , ϕNα〉

=
1
N !

∑
P

εp(P )|ϕP (1)α, . . . , ϕP (N)α〉 , (2.42)

with the normalisation factor 1/N !. Note, that in (2.42) we have used the superscript ε to
indicate that the corresponding expression is (anti-) symmetrized, and we will stick with this
notation throughout the present thesis. It is straightforward to show that the permutation
operator is Hermitian by taking the expectation value of its Hermitian conjugate:

〈ψ(ε)
N | P̂

†(P ) |ϕ(ε)
N 〉 =

(
〈ϕ(ε)

N | P̂ (P ) |ψ(ε)
N 〉
)∗

= εp(P )
(
〈ϕ(ε)

N |ψ
(ε)
N 〉
)∗

(2.43)

= εp(P )〈ϕ(ε)
N |ψ

(ε)
N 〉 = 〈ϕ(ε)

N | P̂ (P ) |ψ(ε)
N 〉 , (2.44)
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Chapter 2 Many-Particle Quantum Statistics

where we have used the eigenvalue equation of the permutation operator

P̂ (P )|ψ(ε)
N 〉 = εp(P )|ψ(ε)

N 〉 , (2.45)

which follows from the definition of the symmetrisation operator (2.36). Thus we have P̂ (P ) =
P̂ †(P ) in H(ε)

N and we are now prepared to calculate the expectation value of an arbitrary
observable Â between the (anti-)symmetrised states (2.42):

(ε)〈ψ1α · · ·ψNα| Â |ϕ1β · · ·ϕNβ〉(ε)

=
(

1
N !

)2∑
P ′

∑
P ′′

εp(P
′)+p(P ′′)〈ψ1α · · ·ψNα| P̂ †(P ′′)ÂP̂ (P ′) |ϕ1β · · ·ϕNβ〉 . (2.46)

Here, we may first interchange P̂ †(P ′′) and Â as, according to (2.29) and (2.37), the permuta-
tion operator also commutes with every allowed observable in H(ε)

N . Secondly, it is obvious that
the permutation operator inherits the composition law of the symmetric group, so it holds that
P̂ †(P ′′)P̂ (P ′) = P̂ (P ) and we may define a composite permutation P̂ (P ), for which clearly we
have εp(P

′)+p(P ′′) = εp(P ). Because there are only N ! distinct permutations in SN , N ! terms in
the double sum of (2.46) are superfluous, and we obtain

(ε)〈ψ1α · · ·ψNα| Â |ϕ1β · · ·ϕNβ〉(ε) =
1
N !

∑
P

εp(P )〈ψ1α · · ·ψNα| ÂP̂ (P ) |ϕ1β · · ·ϕNβ〉 (2.47)

=
1
N !

∑
P

εp(P )〈ψ1α · · ·ψNα| Â |ϕP (1)β · · ·ϕP (N)β〉 (2.48)

=
1
N !

∑
P

εp(P )〈ψP (1)α · · ·ψP (N)α| Â |ϕ1β · · ·ϕNβ〉 . (2.49)

The last equation (2.49) results if we interchange P̂ (P ′) and Â instead, so only the left state in
the expectation value of (2.46) is (anti-)symmetrised. The above relation holds in particular
when Â is the identity operator 1̂, so the scalar product of two (anti-)symmetrised many-
particle states reads:

(ε)〈ψ1α · · ·ψNα |ϕ1β · · ·ϕNβ〉(ε) =
1
N !

∑
P

εp(P )〈ψ1α · · ·ψNα |ϕP (1)β · · ·ϕP (N)β〉 (2.50)

=
1
N !

∑
P

εp(P )〈ψP (1)α · · ·ψP (N)α |ϕ1β · · ·ϕNβ〉 . (2.51)

This may also be explicitly written in terms of the tensor product of one-particle states as in
(2.19) and yields the orthonormalisation condition for (anti-)symmetrised N -particle states:

(ε)〈ψ1α · · ·ψNα |ϕ1β · · ·ϕNβ〉(ε) =
1
N !

∑
P

εp(P )〈ψ1α |ϕP (1)β〉 · · · 〈ψNα |ϕP (N)β〉 (2.52)

=
1
N !

∑
P

εp(P )δ(α1 − βP (1)) · · · δ(αN − βP (N)) . (2.53)
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2.3 Identical Particles

From (2.52) we can easily find a completeness relation by multiplying it with a ket from the
left and subsequent integration over the continuous quantum numbers iα. We get∫

· · ·
∫
dα1 · · · dαN |ϕ1α · · ·ϕNα〉(ε)(ε)〈ψ1α · · ·ψNα |ϕ1β · · ·ϕNβ〉(ε) = |ϕ1β · · ·ϕNβ〉(ε) (2.54)

due to (2.53) and from this we read off the completeness relation for the (anti-)symmetrised
N -particle states in H(ε)

N :∫
· · ·
∫
dα1 · · · dαN |ϕ1α · · ·ϕNα〉(ε)〈ψ1α · · ·ψNα|(ε) . (2.55)

The states defined in (2.42) thus form a complete, orthonormalised basis in H(ε)
N .

The above considerations make it clear how tedious it can be to work with (anti-)symmetrised
N -particle states. We would thus like to find a way to construct these with the aid of special
creation operators directly from the so-called vacuum state |0〉, which is the normalised many-
particle state where no particles are present. This operator b̂†β has the characteristic effect of
linking many-particle Hilbert spaces of different numbers of particles to one another:

b̂†β : H(ε)
N → H

(ε)
N+1 . (2.56)

This creation operator is thus a particle number changing operator. It is defined by its action
on (anti-)symmetrised states,

b̂†β |ϕ1α · · ·ϕNα〉(ε)︸ ︷︷ ︸
∈ H(ε)

N

=
√
N + 1 |ϕβϕ1α · · ·ϕNα〉(ε)︸ ︷︷ ︸

∈ H(ε)
N+1

, (2.57)

thus one can say that it creates an additional particle in the single-particle state |ϕβ〉. The
notation for the resulting (N + 1)-particle state in (2.57) needs some explanation: Convention-
ally, the symbol for the newly created additional one-particle state ϕβ is simply added at the
left of the other symbols ϕ1α · · ·ϕNα that describe the previous N -particle state.

The other way round, we may create an arbitrary (anti-)symmetrised N -particle state by
letting N creation operators act on the vacuum state. This reads

|ϕ1α · · ·ϕNα〉(ε) =
1√
N !

b̂†1αb̂
†
2α · · · b̂

†
Nα|0〉 . (2.58)

Here, it is crucial to observe the order of the operators, as interchanging two creation operators
in (2.58) yields an additional factor ε:

b̂†1αb̂
†
2α|ϕ3α · · ·ϕNα〉(ε) =

√
N(N − 1) |ϕ1αϕ2αϕ3α · · ·ϕNα〉(ε) (2.59)

in contrast to

b̂†2αb̂
†
1α|ϕ3α · · ·ϕNα〉(ε) = ε

√
N(N − 1) |ϕ1αϕ2αϕ3α · · ·ϕNα〉(ε) , (2.60)

where in (2.60) we have exchanged the symbols ϕ1α and ϕ2α, to adapt the ket there to the
one in (2.59). From these two equations, we find the commutator of two creation operators for
bosons and fermions: [

b̂†1α, b̂
†
2α

]
−ε = b̂†1αb̂

†
2α − ε b̂

†
2αb̂
†
1α = 0 . (2.61)
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These anticommute for fermions (ε = −1) and commute for bosons (ε = +1). If there is a
creation operator, there must also be an annihilation operator, which links the Hilbert spaces
H(ε)
N and H(ε)

N−1 to one another, i.e.

b̂α : H(ε)
N → H

(ε)
N−1 . (2.62)

Its action on (anti-)symmetrised states (2.42) can be found e.g. by computing the expectation
value (ε)〈ϕ2β · · ·ϕNβ| b̂γ |ϕ1α · · ·ϕNα〉(ε) (see Ref. [24]):

b̂γ |ϕ1α · · ·ϕNα〉(ε) =
1√
N

{
δ(γ − α1) |ϕ2α · · ·ϕNα〉(ε)

+ ε δ(γ − α2) |ϕ1αϕ3α · · ·ϕNα〉(ε)

...

+ εN−1 δ(γ − αN ) |ϕ1α · · ·ϕ(N−1)α〉(ε)
}

. (2.63)

Thus, if the single-particle state |ϕγ〉 is present in the N -particle state |ϕ1α · · ·ϕNα〉(ε), ap-
plication of the annihilation operator b̂γ yields an (N − 1)-particle state where |ϕγ〉 has been
removed. Consequently, one says that b̂γ annihilates a particle in state |ϕγ〉. If, however, |ϕγ〉
does not occur within the (anti-)symmetrised initial state, then the application of b̂γ causes
the initial state to vanish, i.e. the resulting state is the zero ket |0〉. An important special case
is the annihilation of the vacuum state, where have:

b̂γ |0〉 = 0 . (2.64)

The (anti-)commutation relation for the annihilation operator then follows from (2.61):[
b̂1α, b̂2α

]
−ε = −ε

(
[ b̂†1α, b̂

†
2α]−ε

)†
= 0 . (2.65)

As in the commutation relation for the creation operators, the annihilation operators anticom-
mute for fermions (ε = −1) and commute for bosons (ε = +1). We still have to find the third
commutation relation for creation and annihilation operators, namely the mixed one, which
specifies the (anti-) commutator between an annihilation and a creation operator (again, the
proof can be found in Ref. [24]): [

b̂1α, b̂
†
2α

]
−ε = δ(α1 − α2) , (2.66)

so they (anti-)commute in the case that the operators create and annihilate different particles.
In the case that they create and annihilate the same particle, however, the (anti-)commutator
yields one.

We will now introduce two more operators, which are essential for the description of many-
particle quantum systems. One is the so-called occupation-density operator

n̂α = b̂†αb̂α , (2.67)

the eigenstates of which are the basis states of H(ε)
N , so we have the following eigen equation,

n̂β |ϕ1α · · ·ϕNα〉(ε) =
[ n∑
i=1

δ(β − αi)
]
|ϕ1α · · ·ϕNα〉(ε) , (2.68)
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where the expression in the square brackets represents the microscopic occupation density. The
other one is the particle-number operator N̂ , which is given as a continuous linear combination
in terms of all occupation-density operators:

N̂ =
∫
dα n̂α =

∫
dα b̂†αb̂α . (2.69)

Because of (2.68), the basis states of H(ε)
N are also eigenstates of N̂ ; here, the eigenvalue is

always the total particle number N , so the eigenvalue equation reads

N̂ |ϕ1α · · ·ϕNα〉(ε) = N |ϕ1α · · ·ϕNα〉(ε) . (2.70)

From the commutation relations for the creation and annihilation operators (2.61), (2.65), and
(2.66), we obtain the commutators for both operators. For the occupation-density operator we
get [

n̂α, b̂
†
β

]
− = b̂†αδ(α− β) ,

[
n̂α, b̂β

]
− = −b̂αδ(α− β) , (2.71)

and for the particle-number operator we have[
N̂ , b̂†α

]
− = b̂†α ,

[
N̂ , b̂α

]
− = −b̂α . (2.72)

At the beginning of this section, we made the assumption that the single-particle observable
ϕ̂, from whose eigenstates we constructed the basis of the N -particle Hilbert space H(ε)

N , has a
continuous spectrum. The prominent example of this type of observable is the position operator
x̂. The corresponding creation and annihilation operators are the so-called field operators ψ̂†(x)
and ψ̂(x), for which all of the relations found above hold naturally. Here, the special notation
is as follows:

ψ̂†(x) |x1, . . . ,xN 〉(ε) =
√
N + 1 |x,x1, . . . ,xN 〉(ε) , (2.73)

|x1, . . . ,xN 〉(ε) =
1√
N !

ψ̂†(x1) · · · ψ̂†(xN ) |0〉 , (2.74)

that is, the field operator ψ̂†(x) creates a particle at position x. The commutation relations of
the field operators follow immediately from (2.61), (2.65), and (2.66):[

ψ̂†(x), ψ̂†(x′)
]
−ε =

[
ψ̂(x), ψ̂(x′)

]
−ε = 0 ,[

ψ̂(x), ψ̂†(x′)
]
−ε = δ(x− x′) . (2.75)

We still have to find the relationship between the newly introduced field operators and the
previous creation and annihilation operators (2.57) and (2.63). To this end, we use the single-
particle completeness relation (2.40) for the position states |x〉 with |ϕα〉, obtaining

|ϕα〉 =
∫
dDx |x〉〈x |ϕα〉 =

∫
dDxϕα(x)|x〉 . (2.76)

Thus, due to |ϕα〉 = b̂†α |0〉 and |x〉 = ψ̂†(x̂) |0〉, it follows that one can express the creation and
annihilation operators in terms of the corresponding field operators as

b̂†α =
∫
dDxϕα(x)ψ̂†(x) , b̂α =

∫
dDxϕ∗α(x)ψ̂(x) . (2.77)
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Here, it is important to note that ϕα(x) is the scalar wavefunction of the state |ϕα〉, while
ψ̂†(x) is an operator. The two relations in (2.77) can be reversed. With the completeness
relation of the single-particle states |ϕα〉 one obtains

ψ̂†(x) =
∫
dDxϕ∗α(x)b̂†α , ψ̂(x) =

∫
dDxϕα(x)b̂α . (2.78)

in analogy to (2.77). Finally, we may explicitly write down the (anti-)symmetrised many-
particle states and the corresponding completeness relation in position representation, since
we will refer to them later on in the main part of this thesis. Thus, in position representation,
the (anti-)symmetrised many-particle states (2.42) read

|x1a, . . . ,xNa〉(ε) =
1
N !

∑
P

εp(P ) |xP (1)a, . . . ,xP (N)a〉 , (2.79)

and similarly, the completeness relation (2.55) is given by∫
dDx1a · · ·

∫
dDxNa |x1a, . . . ,xNa〉(ε)(ε)〈x1a, . . . ,xNa| = 1̂ . (2.80)

We now come to the notion of Fock space which is named after the Vladimir Aleksandrovich
Fock and which is a suitable linear combination of the (anti-)symmetrised many-particle Hilbert
spaces, thus allowing for arbitrary particle numbers N . More precisely, Fock space, denoted
by F , is the Hilbert space made from the infinite direct sum of (anti-)symmetrised N -particle
Hilbert spaces H(±)

N for all N :

F = H(±)
1 ⊕ H(±)

2 ⊕ H(±)
3 ⊕ · · · ⊕ H(±)

n ⊕ · · · (2.81)

It follows from the definition of F in (2.81) that the multi-particle Fock space position eigen-
states living in F are of the form

|1;x1b〉(ε) + |2;x1b, x2b〉(ε) + |3;x1b, x2b, x3b〉(ε) + · · · =
∞∑
N=1

|N ;x1b, . . . , xNb〉(ε) ∈ F , (2.82)

where an (anti-)symmetrised N -particle state (2.42) in (2.82) – which we have given an extra
symbol N to distinguish states of different particle numbers – lives in the corresponding N -
particle Hilbert space H(±)

N .

2.3.2 Discrete Fock Space of Occupation Number Eigenstates

We again assume the basis of the Hilbert space H(ε)
N of a system of N identical particles to be

constructed from the eigenstates of the single-particle observable ϕ̂. Whereas in the last section
the single-particle observable ϕ̂ was assumed to possess a continuous spectrum, in the present
section we turn to the case of a discrete spectrum of ϕ̂. The single-particle eigen equation
(2.39) remains the same. The normalisation condition and the completeness relation now read:

〈ϕα |ϕβ〉 = δαβ ,
∑
α

|ϕα〉〈ϕα| = 1 . (2.83)

28



2.3 Identical Particles

Starting again with a non-symmetrised N -particle state of the form (2.41), and applying the
symmetrisation operator (2.36), we obtain the (anti-)symmetrised N -particle state

|ϕ1α · · ·ϕNα〉(ε) = Cε
∑
P

εp(P ) P̂ (P ) |ϕ1α · · ·ϕNα〉 = Cε
∑
P

εp(P ) |ϕP (1)α · · ·ϕP (N)α〉 , (2.84)

which differs formally from (2.42) only by the normalisation constant. Thus, in the next step,
we will determine the above normalisation constant Cε. To this end, it is helpful to introduce
the notion of occupation numbers ni. These reflect the number of identical particles in the
single particle state |ϕiα〉. The sum of these must then yield the total particle number, i.e.∑

i

ni = N . (2.85)

For bosons, where arbitrarily many particles can occupy the same quantum state, all values of
ni are allowed, i.e. ni = 1, 2, 3, . . . . On the contrary, for fermions, due to the Pauli principle,
only the two values ni = 0, 1 are permitted. Note, that we are not taking into account any
spin degrees of freedom here. The constant Cε is determined from the condition that the scalar
product of the (anti-)symmetrised states (2.84) must be unity. Using (2.46)–(2.52) we obtain

1 = (ε)〈ϕ1α · · ·ϕNα |ϕ1α · · ·ϕNα〉(ε) =
C2
ε

N !

∑
P

εp(P ) 〈ψ1α |ϕP (1)α〉〈ψ2α |ϕP (2)α〉 · · · 〈ψNα |ϕP (N)α〉 .

(2.86)
Here, because of the orthonormality (2.83) of the single-particle states, only those permutations
contribute to the sum of (2.86) that have the effect of exchanging the particles in the ni
equivalent single-particle states |ϕiα〉, where every one of these non-vanishing terms yields 1.
Thus, all in all, there are

n1!n2! · · · nN ! (2.87)

such permutation and consequently, there are the same number of terms in the sum of (2.86).
This leads to

(ε)〈ϕ1α · · ·ϕNα |ϕ1α · · ·ϕNα〉(ε) =
C2
ε

N !

N∏
i=1

ni! , (2.88)

and finally, from (2.88) we can read off the normalisation constant. We have

C+ =
1√

N !
∏N
i=1 ni!

for bosons, (2.89)

and, due to 0! = 1! = 1,

C− =
1√
N !

for fermions. (2.90)

We see, that the (anti-)symmetrised many-particle state |ϕ1α · · ·ϕNα〉(ε) is uniquely defined
by specifying the infinitely many occupation numbers n1, n2, . . . . This leads to the so-called
occupation-number representation, or discrete Fock space representation:

|N ;n1, n2, . . . , ni, . . .〉(ε) ≡ |ϕ1α · · ·ϕNα〉(ε) , (2.91)

29



Chapter 2 Many-Particle Quantum Statistics

where in the symbol for the state, i.e. for the ket, all occupation numbers are given and where
the unoccupied single-particle states are denoted by ni = 0. It is clear that two such states are
identical if and only if they have the same occupation numbers, thus from the single-particle
states we obtain the following orthonormalisation relation:

(ε)〈N ; . . . , ni, . . . |N ′; . . . , n′i, . . . 〉(ε) = δN,N ′
∏
i

δni,n′i . (2.92)

Equally, we have the completeness relation∑
n1

∑
n2

· · ·
∑
ni

· · · |N ; . . . , ni, . . .〉(ε)(ε)〈N ′; . . . , n′i, . . . | = 1 . (2.93)

The sum in (2.93) runs over all occupation numbers that satisfy the condition
∑

i ni = N .
In occupation-number representation, the definition of creation and annihilation operators

is straightforward, however, due to the different normalisation constants (2.89) and (2.89), we
must now explicitly distinguish between bosonic and fermionic ones. For bosons, the creation
operator is defined by its action on a state in occupation-number representation:

b̂†i |N ; . . . , ni, . . .〉(+) =
√
ni + 1 |N + 1; . . . , ni + 1, . . .〉(+) ; (2.94)

and similarly, for fermions we have

â†i |N ; . . . , ni, . . .〉(−) = (−1)Ni δni,0 |N + 1; . . . , ni + 1, . . .〉(−) . (2.95)

As in the case of the continuous Fock space, every N -particle state in the discrete Fock space
can be created from the vacuum state by repeated application of the creation operator:

|N ;n1, n2, . . . , ni, . . .〉(ε) =

P
np=N∏
p=1

(b̂†p)np√
np!

εNp |0〉 . (2.96)

The annihilation operator is again defined as the adjoint of the creation operator. Its action is
given by

b̂i |N ; . . . , ni, . . .〉(+) =
√
ni |N − 1; . . . , ni − 1, . . .〉(+) ; (2.97)

for the bosonic case and by

âi |N ; . . . , ni, . . .〉(−) = (−1)Ni δni,1 |N − 1; . . . , ni − 1, . . .〉(−) . (2.98)

for fermions, where the limitations on the particle number are taken into account by the extra
factor δni,1. The fundamental commutation relations for the bosonic and fermionic creation
and annihilation operators can be found by calculating the action of two of these on occupation
number states (2.91), for example, we have

b̂†i b̂
†
j | . . . , ni, . . . , nj , . . .〉

(+) =
√
ni + 1

√
nj + 1 | . . . , ni + 1, . . . , nj + 1, . . .〉(+)

= b̂†j b̂
†
i | . . . , ni, . . . , nj , . . .〉

(+) , (2.99)

for products of bosonic creation operators, and

b̂†i b̂j | . . . , ni, . . . , nj , . . .〉
(+) =

√
nj
√
ni + 1 | . . . , ni + 1, . . . , nj − 1, . . .〉(+)

= b̂j b̂
†
i | . . . , ni, . . . , nj , . . .〉

(+) (2.100)
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2.3 Identical Particles

for products of bosonic creation and annihilation operators. The derivation of the other com-
binations for bosons and for fermions is straightforward and can be found, e.g., in [24]. They
yield the following commutation relations:[

b̂†i , b̂
†
j

]
−ε =

[
b̂i, b̂j

]
−ε = 0 ,

[
b̂i, b̂

†
j

]
−ε = δij , (2.101)

for bosons, and equally:[
â†i , â

†
j

]
−ε =

[
âi, âj

]
−ε = 0 ,

[
âi, â

†
j

]
−ε = δij , (2.102)

for fermions. In analogy to the the occupation density operator (2.67), we have in the discrete
case of the occupation number representation the occupation-number operator

n̂
(+)
i = b̂†i b̂i , n̂

(−)
i = â†i âi , (2.103)

for bosons and fermions, respectively. When dealing with general occupation-number opera-
tors, we will drop the superscript (+) and (−) from now on. From (2.100) we see, that the
occupation-number states are eigenstates of n̂i, as the name already implies:

n̂i |N ; . . . , ni, . . .〉(ε) = ni |N ; . . . , ni, . . .〉(ε) . (2.104)

Here, the eigenvalue ni is, of course, the occupation-number of the ith single-particle state in
(2.104). The particle number operator in occupation-number representation reads in analogy
to (2.69):

N̂ =
∑
i

n̂i . (2.105)

As (2.105) is constructed from a sum of occupation-number operators, it satisfies the same
eigenvalue equation,

N̂ |N ; . . . , ni, . . .〉(ε) = N |N ; . . . , ni, . . .〉(ε) , (2.106)

where the eigenvalue is the total particle number N .
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Chapter 3

Ideal Quantum Gases in Canonical and
Grand-Canonical Ensembles

3.1 Statistical Mechanics

Statistical mechanics is the underlying microscopical theory of thermodynamics. As such it
provides a framework for relating the microscopic properties of the constituent particles, i.e.
atoms or molecules of a given system to its macroscopic or bulk properties. Mathematically, it
results from the application of probability theory to the field of mechanics where the N -particle
system in question is treated as a statistical ensemble, i.e. as the set of all possible microstates
of the system that share the same macrostate. The statistical properties of the ensemble then
depend on a chosen probability measure on the phase space, the choice of which is dictated
by the specific details of the system and the assumptions one makes about the ensemble in
general. The correct probability measure or distribution function ρ for a system is that one
which maximises its entropy; this is in accordance with the second law of thermodynamics,
which states that the entropy, i.e. the amount of disorder, of a closed system can only increase.
The entropy is defined as

S = −kB

∑
i

ρi ln ρi , (3.1)

where kB is the Boltzmann constant. The sum runs over all microstates which are consistent
with the given macrostate and ρi is proportional to the probability of the ith microstate. As ρi
is a probability measure, it is normalized to unity and the normalising factor of ρi is referred
to as the partition function of the ensemble. This is a quantity that encodes the statistical
properties of a system in thermodynamic equilibrium and its importance lies in the fact that
all thermodynamic quantities of the system can be calculated from it.

3.1.1 Microcanonical Ensemble

The most basic ensemble of statistical mechanics is the so-called microcanonical ensemble,
where the possible states of the system all have the same energy and the probability for the
system to be in any given state is the same. Thus, all systems of the ensemble have the same
number of particles N , the same volume V and the same energy U , so a microcanonical ensem-
ble describes an isolated system. If Ω is the number of accessible microstates, the probability
that a system chosen at random from the ensemble would be in a given microstate is 1/Ω.
From Ω we then obtain the entropy of the system via

S = kB ln Ω , or equivalently Ω(U, V,N) = eS/kB . (3.2)
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Chapter 3 Ideal Quantum Gases in Canonical and Grand-Canonical Ensembles

In the microcanonical ensemble, Ω assumes the role of the partition function, as well as that
of the characteristic state function.

3.1.2 Canonical Ensemble

If we couple a system to a heat bath, i.e. to an infinitely large reservoir of thermal energy, the
energy of the system can fluctuate around its mean value, which in turn is fixed by the heat
bath. This type of system, where volume V and particle number N are constant is described
by the canonical ensemble. Extremalisation of the entropy under the above conditions leads
to the Boltzmann distribution and thus to the following distribution function:

ρi =
1

Z(β)
e−βEi . (3.3)

Here, β = 1/(kBT ) is the inverse temperature. The quantum mechanical version of the distri-
bution function is the canonical density operator

%̂ =
1

Z(β)
e−βĤ , (3.4)

where Ĥ is the Hamiltonian that governs the time-evolution of the system. It describes the
mixed state of a canonical ensemble of quantum mechanical systems. The partition function
is then given by the trace of the operator-valued Boltzmann factor in (3.4):

Z(β) = Tr
{

e−βĤ
}

. (3.5)

If we carry out the trace in the eigenbasis of the Hamiltonian, which we assume to be discrete
without loss of generality, we obtain

Z(β) =
∑
i

〈n| e−βĤ |n〉 =
∑
i

e−βEi , (3.6)

where the exponential is called a Boltzmann weight and Ei is the energy of the ith eigenstate.
For a continuous eigenbasis the trace in (3.5) is also continuous, i.e. the sum in the first equation
of (3.6) must be replaced by an integral.

Let Â be a physical observable, then its thermal expectation value is given by the trace with
the density operator, i.e.

〈Â〉 = Tr {%̂ Â} . (3.7)

The characteristic state function of the canonical ensemble is the Helmholtz free energy, or free
energy for short:

F = − 1
β

lnZ(β) , (3.8)

which assumes a minimum in thermodynamic equilibrium.
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3.1.3 Grand-Canonical Ensemble

The grand-canonical ensemble is a generalisation of the canonical ensemble, in that the system
is additionally coupled to a particle reservoir. It describes an open system which can exchange
thermal energy and particles with its environment. Thus a system, where only the volume V is
constant, and both the internal energy U and the particle number N are allowed to fluctuate,
is described by the grand-canonical ensemble. Under these conditions, the extremalization of
the entropy results in the grand-canonical distribution function

ρi =
1
Z(β)

e−β(Ei−µNi) . (3.9)

A mixed state of a grand-canonical ensemble of quantum systems is then described by the
grand-canonical density operator

%̂GK =
1
Z(β)

e−β(Ĥ−µN̂) , (3.10)

Here, µ is the chemical potential, which is a measure for the energy associated with the exchange
of a single particle, N̂ represents the particle number operator, and Z(β) denotes the grand-
canonical partition function

Z(β) = Tr {%̂GK} = Tr
{

e−β(Ĥ−µN̂)
}

. (3.11)

In a basis, where the Hamiltonian is diagonal,the latter reads

Z(β) =
∑
i

e−β(Ei−µNi) , (3.12)

where Ni is the particle number in the ith eigenstate of Ĥ. As in the canonical ensemble in
(3.7), the grand-canonical thermal expectation value of an observable Â is given by the trace
of Â with the grand-canonical density operator (3.10):

〈Â〉 = Tr {%̂GK Â} . (3.13)

The characteristic state function of the grand canonical ensemble is the grand canonical free
energy

F = − 1
β

lnZ(β) . (3.14)

Note, that throughout this thesis, we use calligraphic letters for grand-canonical quantities,
e.g. Z for the grand-canonical partition function and F for the grand-canonical free energy,
which is often called the grand potential.

3.2 One-Particle Time Evolution Amplitude

The most important quantity in the path-integral formulation of quantum statistics is the
quantum mechanical time evolution amplitude

(xb, tb|xa, ta) = 〈xb| e
−iĤ(tb−ta)/h̄ |xa〉 , (3.15)
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which we obtain by sandwiching the time evolution operator of the system of interest between
suitable basis states, e.g. between position eigenstates 〈xb| and |xa〉.

Now, comparing the Boltzmann factor exp {−βĤ} of the canonical ensemble to the quantum
mechanical time evolution operator exp {−iĤ(tb − ta)/h̄}, we observe that they have a similar
form, both containing the Hamiltonian Ĥ, and we obtain the former by an analytic continuation
of exp {−iĤ(tb − ta)/h̄} via

tb − ta = −ih̄β (3.16)

to imaginary time. This procedure is called Wick rotation after the Italian physicist Gian-Carlo
Wick. Thus, Wick rotation connects the equilibrium thermodynamics of statistical mechanics
to the quantum mechanical time evolution of a system by replacing inverse temperature β
with imaginary time it/h̄. It is an invaluable tool that is widely used throughout the field of
theoretical physics as it allows one to use the formalism and the methods of statistical physics
for solving quantum mechanical problems and vice versa.

Performing a Wick rotation on the quantum mechanical real-time evolution amplitude (3.15),
we obtain the so-called imaginary-time evolution amplitude

(xb, τb|xa, τa) = 〈xb| e−βĤ |xa〉 = (xb, tb|xa, ta)
∣∣∣∣tb=h̄β
ta=0

, (3.17)

According to (3.5), its trace yields the partition function

Z(β) =
∫
dDx (x, h̄β|x, 0) , (3.18)

and from (3.4) we see that the density matrix is given by the normalized amplitude (3.17),

%(xb,xa) =
1

Z(β)
(xb, h̄β|xa, 0) . (3.19)

The imaginary-time evolution amplitude (3.17) has the following properties, which it inherits
from its real-time counterpart (3.15):

• Invariance under time translations:

(xb, τb + τ0|xa, τa + τ0) = (xb, τb|xa, τa) . (3.20)

• Invariance under time reversal:

(xa, τa|xb, τb) = (xb, τb|xa, τa)∗ . (3.21)

• It obeys the Schrödinger equation:

ih̄
∂

∂τb
(xb, τb|xa, τa) = 〈xb| Ĥ e−Ĥ(τb−τa) |xa〉 = Ĥ(xb) (xb, τb|xa, τa) , (3.22)

where τb = itb/h̄ and τa = ita/h̄.
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• It solves the initial value problem of the Schrödiger equation (3.22) for ψ0,

ψ(xb, τb) =
∫
dDxa (xb, τb|xa, τa)ψ0(xa, τa) , (3.23)

as it is also the propagator, i.e. the Greens function of the Hamiltonian Ĥ.

• Spectral representation:

(xb, τb|xa, τa) =
∑
n

〈xb |n〉 〈n |xa〉 e
−En(τb−τa) =

∑
n

ψn (xb)ψ∗n(xa) e−En(τb−τa) , (3.24)

where ψn(x) = 〈xb | n〉 are the position eigenfunctions of the Hamiltonian, satisfying
Ĥ(x)ψn(x) = Enψn(x). We obtain (3.24) by inserting into (3.17) the completeness
relation of the eigenstates |n〉.

• Group property:

(xb, τb|xa, τa) =
∫
dDxc (xb, τb|xc, τc) (xc, τc|xa, τa) (3.25)

This is a consequence of the group property of the time evolution operator. It follows
from (3.15) by splitting the time evolution operator into two pieces at some arbitrary
intermediate time tc and inserting the completenes relation of the states |xc〉 in between,
prior to Wick rotating it to imaginary time.

The last property is the most important one, as it enables us to derive a path integral for the
imaginary-time evolution amplitude (3.17).

3.3 Path Integral

The path integral formulation of quantum mechanics, due to Feynman, exploits the group
property (3.25) of the time evolution operator, where the Hamiltonian in its exponent is the
infinitesimal generator of time-translations, together with the superposition principle. The
amplitude for a quantum mechanical particle to go from one point in space to another is given
by (3.15). Because of said group property, the time evolution operator can be split into a
product of N + 1 time evolution operators, each one acting only during a short time step

∆t =
tb − ta
N + 1

, (3.26)

so we have
(xb, tb|xa, ta) = 〈xb| e

−iĤ∆t/h̄ e−iĤ∆t/h̄ · · · e−iĤ∆t/h̄︸ ︷︷ ︸
N factors

|xa〉 . (3.27)

Between these, we may insert N completeness relations, each contributing an integral over
the intermediate states, yielding N D-dimensional integrals of a product of N time-evolution
amplitudes:

(xb, tb|xa, ta) =
∫ ∞
−∞

dDxN · · ·
∫ ∞
−∞

dDx1 〈xb| e
−iĤ∆t/h̄ |xN 〉 〈xN | e−iĤ∆t/h̄ |xN−1〉 · · ·

· · · 〈x1| e−iĤ∆t/h̄ |xa〉 . (3.28)
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Writing this in a more compact way, we have

(xb, tb|xa, ta) =

{
N∏
n=1

∫ ∞
−∞

dDxn

}
N+1∏
n=1

(xn,∆t|xn−1, 0) , (3.29)

where
(xn,∆t|xn−1, 0) = 〈xn| e−iĤ∆t/h̄ |xn−1〉 (3.30)

is referred to as a short-time amplitude, and where we have made the identifications x0 = xa
and xN+1 = xb. If we assume the Hamiltonian in (3.30) to be of the standard form Ĥ =
T̂ (p̂)+ V̂ (x̂), where T̂ and V̂ are the kinetic and potential energy, respectively, we may use the
Baker-Campbell-Hausdorff formula (see [22, appendix 2A]) to write the short-time amplitude
explicitly as

(xn,∆t|xn−1, 0) = 〈xn| e−ip̂
2∆t/2Mh̄ e−iV̂ (x̂)∆t/h̄e−iÔ∆t/h̄ |xn−1〉 . (3.31)

The operator Ô, that appears in the last exponential of (3.31), is of orderO((∆t)2) and contains
nested commutators of p̂ and V̂ . It will tend to zero, when we take the limit ∆t→ 0 later on,
so we will neglect it from now on. We can swap the squared momentum operator in the short
time amplitude above with its eigenvalue squared by inserting the D-dimensional completeness
relation for momentum eigenstates after the first exponential operator in (3.31). Similarly, we
may let the potential energy operator V̂ (x̂) act on the position eigenstate to the right. Here
we note, that up to first order in ∆t it holds that V (xn−1) = V (xn), so V (xn−1) will tend to
V (xn) in the above limit, and we can write

(xn,∆t|xn−1, 0) ≈
∫ ∞
−∞

dDpn 〈xn |pn〉 〈pn |xn−1〉 e−ip
2
n∆t/2Mh̄ e−iV (xn)∆t/h̄ . (3.32)

Using the fact that the momentum eigenstates in terms of x, i.e., ψp(x) = 〈x |p〉, are plane
waves, i.e.

ψp(x) =
eipx/h̄

(2πh̄)D/2
, (3.33)

equation (3.32) becomes a Fresnel integral,

(xn,∆t|xn−1, 0) ≈
∫ ∞
−∞

dDpn
(2πh̄)D

e−ip
2
n∆t/2Mh̄ e−iV (xn)∆t/h̄ eipn(xn−xn−1)/h̄ . (3.34)

Writing the three exponentials in (3.34) as a single one, and recalling from classical mechanics
the form of the inverse Legendre transformation

L(x, ẋ) = p · ẋ−H(x,p) , (3.35)

we find the combined exponent to be i times the discretised classical Lagrangian at timestep
tn, times ∆t, which is equal to the discretised action at step n:

i

h̄

[
pn ·

(xn − xn−1

∆t

)
−
( p2

n

2M
+ V (xn)

)]
∆t =

i

h̄

[
pn(tn) · ẋn(tn)−H(pn,xn)

]
∆t , (3.36)
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that is

An(xn, ẋn) = L(xn, ẋn) ∆t . (3.37)

When we insert this into (3.29), we obtain the expression for the time evolution amplitude as
a discretised path integral in phase space

(xb, tb|xa, ta) = lim
∆t→0

{
N∏
n=1

∫ ∞
−∞

dDxn

}{
N+1∏
n=1

∫ ∞
−∞

dDpn
(2πh̄)D

}
eiA

(N)/h̄ , (3.38)

where

A(N) =
N+1∑
n=1

{
pn ·

[xn − xn−1

∆t

]
−
[ p2

n

2M
+ V (xn)

]}
∆t (3.39)

is the discretised action. In the limit of N → ∞, corresponding to infinitesimal timesteps
∆t→ dt, the sum in (3.39) tends to an integral, yielding the classical action in phase space

A(N)[x,p] =
∫ tb

ta

dt

{
p(t) · ẋ(t)−

[p2(t)
2M

+ V (x(t))
]}

, (3.40)

and (3.38) becomes the phase space path integral

(xb, tb|xa, ta) =
∫ x(tb)=xb

x(ta)=xa

D′xDp
(2πh̄)D

eiA[x,p]/h̄ . (3.41)

Here the calligraphic capital D stands for the infinite product of integrals in (3.38) and the
prime indicates that in the configuration space measure of (3.38) there is one D dimensional
integral less than in the momentum space measure.

Thus the time evolution amplitude is given by a continuous superposition, i.e. a contiuous
sum over all paths connecting the initial and final points xa and xb, where the contribution of
each path is weighed by the classical action along the trajectory. In the path integral picture of
quantum mechanics a particle moves along all possible paths simultaneously; however, for those
paths which do not extremalise the action (3.40), the phase factor in (3.41) oscillates wildly,
leading to destructive interference of the path with itself in accordance with the Riemann-
Lebesgue lemma.

If instead, we solve the Fresnel integral in (3.34), i.e.

(xn,∆t|xn−1, 0) ≈
(

M

2πih̄∆t

)D/2
exp

{
iM(xn − xn−1)2

2h̄∆t
− i

h̄
V (xn)∆t

}
, (3.42)

and insert this into (3.29), we obtain the time-sliced path integral in configuration space

(xb, tb|xa, ta) = lim
∆t→0

{
N∏
n=1

∫ ∞
−∞

dDxn

}(
M

2πih̄∆t

)D(N+1)/2

eiA
(N)/h̄ , (3.43)

where A(N) is the time-sliced action

A(N) =
N+1∑
n=1

{
M

2

[xn − xn−1

∆t

]2
− V (xn)

}
∆t . (3.44)
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Note that, when in (3.43) we take the limit N →∞, ∆t→ dt, there appears a diverging factor
of 1/(∆t)D(N+1)/2, which is removed only after doing the N D-dimensional x-integrals. Thus,
we obtain the path integral in configuration space,

(xb, tb|xa, ta) =
∫ x(tb)=xb

x(ta)=xa

Dx eiA[x]/h̄ . (3.45)

From the definition of the Wick rotation (3.16) we see that the imaginary-time evolution
amplitude (3.17) may equally be calculated from the following path integral:

(xb, h̄β|xa, 0) =
∫ x(h̄β)=xb

x(0)=xa

Dx e−iA[x]/h̄ . (3.46)

Here, the action in the exponential of (3.46) is the Euclidean action

A[x] =
∫ h̄β

0
dτ

{
M

2
ẋ2(τ) + V (x(τ))

}
. (3.47)

3.4 Ideal Quantum Gases in Canonical Ensemble

This section lays the foundations for the canonical description of ideal quantum gases. We begin
by introducing the so-called Van-Vleck-Pauli-Morette formula for the time-evolution amplitude,
with which we then calculate the time evolution amplitude of the harmonic oscillator. Finally,
we derive the canonical partition function, both in cycle-reduced form and in the form of a
recursion.

3.4.1 Van-Vleck-Pauli-Morette Formula

In the following, we sketch briefly what is called the semiclassical expansion within the path
integral formalism [22, Chapter 4.2]; a method that was pioneered by DeWitt-Morette in the
early 1950s [25]. In the end we obtain the general Van-Vleck-Pauli-Morette formula, which we
will use to derive the expression for the time evolution amplitude of the harmonic oscillator in
the next subsection.

This is done by applying the saddle point expansion to the configuration space path integral
(3.45). According to the last section, the contribution of each path to the amplitude (3.15)
is given by an exponential of the ratio of the classical action along the path to the reduced
Planck constant h̄. As long as typical fluctuations of the action are much larger than h̄, i.e.
for paths that deviate significantly from the classical one, the exponential in (3.45) oscillates
strongly, and the amplitudes of these paths effectively cancel each other by interference. Thus,
the dominant contribution to (3.45) comes from the functional regime where oscillations are
weakest, i.e. from the extremum of the action where

δA[x]
δx(t)

= 0 . (3.48)

Consequently, we see that the behaviour of the time evolution amplitude is given by the saddle
point expansion of the path integral around the classical path where (3.48) holds. In other
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words we expand the exponent of (3.45), that is the classical action

A[x, ẋ] =
∫ tb

ta

dt

[
M

2
ẋ2 − V (x)

]
, (3.49)

around the classical particle orbit in powers of the fluctuations δx = x(t) − xcl(t), i.e. of the
deviations from the classical path. This is known as a fluctuation expansion:

A[x, ẋ] = A[xcl]+
∫ tb

ta

dt
δA
δx(t)

∣∣∣∣
x(t)=xcl(t)

δx(t)+
1
2

∫ tb

ta

dt dt′
δ2A

δx(t), δx(t′)

∣∣∣∣
x(t)=xcl(t)

δx(t) δx(t′)+. . . .

(3.50)
In this fluctuation expansion the linear term is zero because of the condition (3.48). If we carry
out the above expansion up to quadratic order, we are left with an exponential of the classical
action A[xcl], times the path integral over an exponential of the quadratic fluctuations of the
action. Thus we find that the leading term in the semiclassical approximation to the time
evolution amplitude is given by

(xb, tb|xa, ta)sc = F (xb, tb;xa, ta) eiA(xb,tb;xa,ta)/h̄ , (3.51)

where F (xb, tb;xa, ta) is called a fluctuation factor. For a point particle, the quadratic term is

1
2

∫ tb

ta

dt dt′
δ2A

δx(t) δx(t′)

∣∣∣∣
x(t)=xcl(t)

δx(t) δx(t′) =
∫ tb

ta

dt

[
M

2
(δẋ)2 +

1
2
V ′′(xcl(t))(δx)2

]
, (3.52)

so the fluctuations are harmonic and the integrand on the right side of (3.52) has the form
of an harmonic oscillator with the time dependent frequency Ω2(t) = V ′′(xcl(t))/M . The
corresponding path integration can be carried out, yielding

F (xb, tb;xa, ta) =
∫ x(tb)=xb

x(ta)=xa

Dδx(t) exp
{
i

h̄

∫ tb

ta

dt
M

2

[
δẋ2 − Ω2(t)δx2

]}

=

√
M

2π ih̄(tb − ta)

√
det (−∂t)

det (−∂t − Ω2(t))
(3.53)

for the fluctuation factor. The functional determinants in (3.53) can be calculated with the
Gelfand-Yaglom method [22, Chapter 2.4]. The determinants are discretized and then Laplace
expanded; this yields a difference equation which can then be solved.

In fact, as all information on the fluctuation determinant in (3.53) is contained in the classical
orbit xcl(t), and thus in the classical action, it can be shown that (3.53) reduces to

F (xb, tb;xa, ta) =

√
1

2π ih̄
−∂2A(xb, tb;xa, ta)

∂xa∂xb
. (3.54)

From this we obtain the Van-Vleck-Pauli-Morette formula for the semiclassical expansion up
to quadratic order of the time evolution amplitude. In D dimensions it is given by

(xb, tb|xa, ta) ≈

√
1

(2π ih̄)D
det
[
−∂

2A(xb, tb; xa, ta)
∂xa∂xb

]
exp

{
i

h̄
A(xb, tb; xa, ta)

}
. (3.55)
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3.4.2 Time Evolution Amplitude for the Harmonic Oscillator

In this section we will calculate the one dimensional time evolution amplitude (3.15) for the
important case of an harmonic oscillator, following the derivation presented in [26, Chapter
2.7]. We note, that the Van-Vleck-Pauli-Morette formula (3.55) is exact in this case, as the
Hamiltonian is quadratic in p and x and thus the arising integrations in (3.45) can be carried
out without the need for a saddle point approximation.

For the sake of generality, we will couple the harmonic oscillator to a current j(t) which acts
as a source. The path integral in configuration space for this system is

(xb, tb|xa, ta)[j] =
∫ x(tb)=xb

x(ta)=xa

Dx eiA[x,j]/h̄ , (3.56)

with the classical action

A[x, j] =
∫ tb

ta

dt

{
M

2
ẋ2(t)− M

2
ω2x2(t) + j(t)x(t)

}
. (3.57)

According to the Van-Vleck-Pauli-Morette formula (3.55), we must evaluate the action (3.57)
along the classical path xcl(t) of the particle, which in turn is the set of all points where the
classical action is stationary, i.e. (3.48), satisfying the boundary conditions xcl(ta) = xa and
xcl(tb) = xb. Carrying out the functional derivative in (3.48) yields the linear inhomogeneous
second order differential equation of the harmonic oscillator:

ẍcl(t) + ω2xcl(t) =
j(t)
M

. (3.58)

Its general solution is a superposition of the solution xhom(t) of the homogeneous equation and
of a particular solution xpart(t) of the inhomogeneous equation (3.58).

Since the homogeneous equation is just that of the harmonic oscillator, it has the well known
solution

xhom(t) = c1 cos (ωt) + c2 sin (ωt) . (3.59)

The boundary conditions xhom(ta) = xa and xhom(tb) = xb for the homogeneous equation
lead to xpart(ta) = xpart(tb) = 0 for the inhomogeneous equation. Including these yields the
coefficients in (3.59). They read

c1 =
xa sin (ωtb)− xb sin (ωta)

sin [ω(tb − ta)]
, c2 =

xb cos (ωta)− xa cos (ωtb)
sin [ω(tb − ta)]

, (3.60)

so the solution of the homogeneous equation is

xhom(t) =
xb sin [ω(t− ta)] + xa sin [ω(tb − t)]

sin [ω(tb − ta)]
. (3.61)

We obtain a particular solution of (3.58) in terms of its associated Green’s function G(t, t′),
reading

xpart(t) =
∫ tb

ta

dt′G(t, t′)
j(t′)
M

, (3.62)
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which solves the differential equation (3.58) with a delta function inhomogenity,(
∂2

∂t2
+ ω2

)
G(t, t′) = δ(t− t′) , (3.63)

with the boundary conditions G(ta, t′) = G(tb, t′) = 0. For t 6= t′, equation (3.63) is solved by

G(t, t′) =

{
A(t′) sin [ω(tb − t)] for t > t′

B(t′) sin [ω(t− ta)] for t < t′
, (3.64)

so, assuming that G(t, t′) is continuous at t = t′, this leads to the condition

A(t′) sin [ω(tb − t′)]−B(t′) sin [ω(t′ − ta)] = 0 . (3.65)

Consequently, the first derivative G′(t, t′) is discontinuous at t = t′, and we may exploit this
jump by integrating (3.63) over a small intervall around t′, which yields the second equation

A(t′) cos [ω(tb − t′)] +B(t′) cos [ω(t′ − ta)] = − 1
ω

. (3.66)

The last two equations determine the unknown functions A(t′) and B(t′). They read

A(t′) = − sin [ω(t′ − ta)]
ω sin [ω(tb − ta)]

, B(t′) = − sin [ω(tb − t′)]
ω sin [ω(tb − ta)]

. (3.67)

Now we can finally write down the expression for the Green’s function. It is

G(t, t′) = −Θ(t− t′) sin [ω(tb − t)] sin [ω(t′ − ta)] + Θ(t′ − t) sin [ω(tb − t′)] sin [ω(t− ta)]
ω sin [ω(tb − ta)]

.

(3.68)
Collecting everything, the classical path xcl(t) of the particle is given by

xcl(t) =
xb sin [ω(t− ta)] + xa sin [ω(tb − t)]

sin [ω(tb − ta)]
− 1
Mω sin [ω(tb − ta)]

∫ tb

ta

dt′ j(t′)

×
{

Θ(t− t′) sin [ω(tb − t)] sin [ω(t′ − ta)] + Θ(t′ − t) sin [ω(tb − t′)] sin [ω(t− ta)]
}

. (3.69)

We now have to evaluate the action (3.57) along this trajectory. To this end we note, that the
aforementioned action may be written as

A(xb, tb;xa, ta)[j] =
M

2

[
ẋcl(tb)xb − ẋcl(ta)xa

]
+

1
2

∫ tb

ta

dt′ j(t′)xcl(t′) , (3.70)

where we have performed an integration by parts. To further resolve this expression, we still
need the velocity ẋcl(t) at the endpoints ta and tb of the classical path. Differentiating (3.69)
yields

ẋcl(tb) =
ω {xb cos [ω(tb − ta)]− xa}

sin [ω(tb − ta)]
+

1
M sin [ω(tb − ta)]

∫ tb

ta

dt′ sin [ω(t′ − ta)] j(t′) (3.71)
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and

ẋcl(ta) =
ω (xb − xa cos [ω(tb − ta)])

sin [ω(tb − ta)]
− 1
M sin [ω(tb − ta)]

∫ tb

ta

dt′ sin [ω(tb − t′)] j(t′) , (3.72)

and thus the classical action (3.57) along the classical trajectory reads

A(xb, tb;xa, ta)[j] =
M ω

2 sin [ω(tb − ta)]

{
(x2
b + x2

a) cos [ω(tb − ta)]− 2xb xa
}

+
∫ tb

ta

dt xhom(t) j(t) +
1

2M

∫ tb

ta

dt

∫ tb

ta

dt′G(t, t′) j(t) j(t′) . (3.73)

Finally, we may insert (3.73) into the Van-Vleck-Pauli-Morette formula to obtain the final
expression for the time evolution amplitude

(xb, tb|xa, ta)[j] =

√
Mω

2π ih̄ sin [ω(tb − ta)]
exp

{
iMω

2h̄

[
(x2
b + x2

a) cos [ω(tb − ta)]− 2xb xa
sin [ω(tb − ta)]

]}
× exp

{
i

h̄

∫ tb

ta

dt xhom(t) j(t) +
1

2M

∫ tb

ta

dt

∫ tb

ta

dt′G(t, t′) j(t) j(t′)
}

. (3.74)

The Wick rotated analogue of (3.74) follows from the path integral expression for the imaginary-
time evolution amplitude (3.46) of the harmonic oscillator

(xb, h̄β|xa, )[j] =
∫ x(h̄β)=xb

x(0)=xa

Dx e−A[x,j]/h̄ , (3.75)

where the action in (3.75) is the Euclidean action

A[x, j] =
∫ h̄β

0
dτ

{
M

2
ẋ2(τ) +

M

2
ω2x2(τ)− j(τ)x(τ)

}
. (3.76)

Otherwise, the derivation is along the same lines as above, yielding

(xb, h̄β|xa, 0)[j] =

√
Mω

2π h̄ sinh (h̄βω)
exp

{
−Mω

2h̄

[
(x2
b + x2

a) cosh (h̄βω)− 2xb xa
sinh (h̄βω)

]}
× exp

{
1
h̄

∫ h̄β

0
dτ xhom(τ) j(τ) +

1
2h̄2

∫ h̄β

0
dτ

∫ h̄β

0
dτ ′G(D)

ω (τ, τ ′) j(τ) j(τ ′)
}

. (3.77)

Here,

xhom(τ) =
xb sinh (ωτ) + xa sinh [ω(h̄β − τ)]

sinh (h̄βω)
(3.78)

is the Wick rotated homogeneous solution of (3.58) and

G(D)
ω (τ, τ ′) =

h̄

Mω sinh (h̄βω)

{
Θ(τ − τ ′) sinh [ω(h̄β − τ)] sinh (ωτ ′)

+ Θ(τ ′ − τ) sinh [ω(h̄β − τ ′)] sinh (ωτ)
}

(3.79)
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denotes the Wick rotated Green’s function.
We note, that integrating out the remaining coordinate in (3.77) yields the partition function

of the one-dimensional single-particle harmonic oscillator:

Z1(β)[j] =
∫ ∞
−∞

dx (x, h̄β|x, 0)[j] . (3.80)

Thus, for vanishing currents j(τ) = 0, we obtain for the density matrix of the harmonic
oscillator

%1(xb, xa) =
1

Z1(β)
(xb, h̄β|xa, 0) (3.81)

the explicit expression

%1(xb, xa) =

√
Mω

πh̄
tanh

(
h̄βω

2

)
exp

{
−Mω

2h̄

[
(x2
b + x2

a) cosh (h̄βω)− 2xb xa
sinh (h̄βω)

]}
, (3.82)

which reduces to a Gaussian for equal initial and final coordinates x = xb = xa. Performing
an integration over the remaining coordinate x then yields the explicit expression

Z1(β) =
1

2 sinh (h̄βω/2)
. (3.83)

for the canonical partition function of the harmonic oscillator.

3.4.3 Canonical Partition Function for Harmonic Potentials

According to (3.19) the one-particle density matrix is given by a normalised imaginary time
amplitude. This is also true for the N -particle density matrix. However, for many particle
systems, we must now sandwich the imaginary time evolution operator between the (anti-)
symmetrised many-particle states (2.42). For noninteracting particles, due to the additivity
of the many particle Hamiltonian, the N -particle imaginary-time evolution amplitude (3.17)
factorises into one-particle amplitudes:

(x1b, . . . ,xNb, τb|x1a, . . . ,xNa, τa)(ε) =
1
N !

∑
P

εp(P )(xP (1)b, . . . ,xP (N)b, τb|x1a, . . . ,xNa, τa)

(3.84)

=
1
N !

∑
P

εp(P )(xP (1)b, τb|x1a, τa) · · · (xP (N)b, τb|xNa, τa) ,

(3.85)

where only the one-particle states of the many-particle bra are permuted, in accordance with
(2.49). For the simplest many particle system with N = 2, i.e. for two particles, we have

(x1b,x2b, τb|x1a,x2a, τa)(ε) =
1
2

[
(x1b, τb|x1a, τa) (x2b, τb|x2a, τa)

+ ε (x2b, τb|x1a, τa) (x1b, τb|x2a, τa)
]

. (3.86)
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With this we obtain the corresponding two-particle partition function via the continuous trace
of (3.86) for τa = 0 and τb = h̄β, i.e. by the integration:

Z2(β) =
∫ ∞
−∞

dDx1

∫ ∞
−∞

dDx2 (x1,x2, h̄β|x1,x2, 0)(ε) . (3.87)

The integration of the first two one-particle amplitudes in (3.86) just yields a product of two
partition functions (3.83), one for each amplitude. In the remaining two amplitudes, we may
first use their invariance under imaginary-time translations (3.20) to shift the imaginary time
argument of the left amplitude by h̄β. Subsequently, we can make use of the group property
(3.25), so that the second integral becomes∫ ∞

−∞
dDx1

∫ ∞
−∞

dDx2 (x2, 2h̄β|x1, h̄β) (x1, h̄β|x2, 0) = (x2, 2h̄β|x2, 0) , (3.88)

yielding a one-particle partition function (3.83) at double imaginary time. Thus, we obtain

Z2(β) =
1
2

[
Z2

1 (β) + ε Z1(2β)
]

(3.89)

for the two-particle partition function.
The three-particle partition function then follows along the same lines, the main difference

being that for three particles there are 3! = 6 permutations instead of the two in (3.86), namely

(x1b,x2b,x3b, τb|x1a,x2a,x3a, τa)(ε) =
1
3!

[
(x1b, τb|x1a, τa) (x2b, τb|x2a, τa) (x3b, τb|x3a, τa)

+ε(x1b, τb|x1a, τa) (x3b, τb|x2a, τa) (x2b, τb|x3a, τa)+ε(x2b, τb|x1a, τa) (x1b, τb|x2a, τa) (x3b, τb|x3a, τa)
+ε(x3b, τb|x1a, τa) (x2b, τb|x2a, τa) (x1b, τb|x3a, τa)+(x3b, τb|x1a, τa) (x1b, τb|x2a, τa) (x2b, τb|x3a, τa)

+ (x2b, τb|x1a, τa) (x3b, τb|x2a, τa) (x1b, τb|x3a, τa)
]

. (3.90)

The trace of (3.90), i.e.

Z3(β) =
∫ ∞
−∞

dDx1

∫ ∞
−∞

dDx2

∫ ∞
−∞

dDx3 (x1,x2,x3, h̄β|x1,x2,x3, 0)(ε) , (3.91)

then yields the three-particle partition function

Z3(β) =
1
3!

[
Z3

1 (β) + 3 ε Z1(β)Z1(2β) + 2Z1(3β)
]

. (3.92)

Here, in analogy to the two-particle case, the first term in the sum of (3.90) stems from the
identity permutation ( 1 2 3

1 2 3 ) and yields a product of three partition functions in (3.92). In
the second, third and fourth term of (3.90), corresponding to the three permutations with
one transposition, we have an integral of the type (3.88), in addition to a one-particle par-
tition function. These yield the second term in the sum of (3.92). Finally, the last term
in (3.92) comes from the two permutations ( 1 2 3

2 3 1 ) and ( 1 2 3
3 1 2 ), for which we have triple in-

tegrals of the type (3.88), respectively, yielding two one-particle partition functions at three
fold imaginary time. When we examine the cycle structure of the permutations that yield the
different contributions to the two- and three-particle partitions functions above, we make the
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(a) (b) (c)

Figure 3.1: Example of the paths of three particles for a cycle of length n = 3 contributing to
the partition function (3.93): (a) in the single-zone scheme, corresponding to the
product of amplitudes (x1, h̄β|x2, 0)(x2, h̄β|x3, 0)(x3, h̄β|x1, 0), (b) the same situa-
tion in an extended zone scheme, corresponding to single amplitude (x1, 3h̄β|x2, 0)
at a temperature that is scaled down by a factor of three, and (c) wrapped around
an imaginary-time cylinder of circumference h̄β.

following important observation: For the two-particle amplitude (3.86), the first product of
two one-particle amplitudes on the right side corresponds to the identity permutation with the
cycle structure (1)(2), i.e. it consists of two one-cycles, yielding a product of two one-particle
partition functions in (3.89). In contrast, the second product of two one-particle amplitudes
corresponds to a permutation which consists of the single two-cycle (12). This in turn yields a
one-particle partition function at double frequency in the two-particle partition function (3.89),
which we have printed in blue.

This pattern continues in the three-particle case: The identity permutation for three parti-
cles has the trivial cycle decomposition (1)(2)(3), and consequently this permutation yields a
product of three one-particle partition functions in (3.92). In the three permutations (3)(12),
(1)(23) and (2)(13), we have a one-cycle and a two-cycle, so these permutations each contribute
a product of a single one-particle partition function with a one-particle partition function at
double imaginary time. As in (3.89), we have printed the contribution of a two-cycle in blue.
Finally, the two three-cycle permutations (231) and (312) each contribute a one-particle parti-
tion function, printed in green, at an imaginary time that is three times the original value.

Thus, the contributions to the many-particle partition functions come from the conjugation
classes of the corresponding symmetric group. This does not come unexpectedly, as the original
many particle states (2.42) are by construction invariant under the action of the symmetric
group SN .

Due to the indistinguishability of the particles, there are now one-particle amplitudes con-
tributing to the partition function, whose final coordinates coincide with the initial coordinates
of other particles, giving rise to many-particle formations, which are described by permutation
cycles. Thus within these cycles, the particles change places with one another in a circular
fashion. As an example, take the three amplitudes in (3.91) that correspond to a single three-
cycle permutation, i.e. (x1, h̄β|x2, 0)(x2, h̄β|x3, 0)(x3, h̄β|x1, 0). Here, the particle at x1 goes
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to x2, the particle that was at x2 goes to x3, and the one at x3 goes to the original position of
the first particle at x1. This situation is depicted in Fig. 3.1. In the first image (a), the three
particle paths are displayed in a reduced zone scheme: Particle 1 does not arrive at its initial
point after an imaginary time of τ = h̄β, but at the initial position of particle 2, which in turn
arrives at the initial position of particle 3 at τ = h̄β. Furthermore, within the same imaginary
time step, particle 3 goes to the starting point of particle 1, thus completing the cycle. Image
(b) of Fig 3.1, depicts the same situation, but now in an extended zone scheme. The situation
in (b) thus corresponds to the single imaginary time amplitude (x1, 3h̄β|x1, 0) at a temperature
that is scaled down by a factor of three; in other words, it corresponds to a single particle going
from x1 to x1 in an imaginary time τ = 3h̄β. Image (c) shows the ”reduced” three-particle
path wrapped around an imaginary-time cylinder of circumference h̄β.

With the help of these insights, it is straightforward to generalise our derivation to the case
of an N -particle ensemble. The trace of the (anti-) symmetrised N -particle amplitude (3.84)
reads:

ZN (β) =
1
N !

∑
P

εp(P )

∫ ∞
−∞

dDx1 · · ·
∫ ∞
−∞

dDxN (xP (1), h̄β|x1, 0) · · · (xP (N), h̄β|xN , 0) . (3.93)

As we have seen above, the contribution of a single permutation cycle of length n to the
N -particle partition function leads to an integral of the type

hn(β) =
∫ ∞
−∞

dDx1 · · ·
∫ ∞
−∞

dDxn (x1, h̄β|xn, 0)(xn, h̄β|xn−1, 0) · · · (x3, h̄β|x2, 0)(x2, h̄β|x1, 0) .

(3.94)
Using the imaginary time translation invariance (3.20), this can be brought into the form

hn(β) =
∫ ∞
−∞

dDx1 · · ·
∫ ∞
−∞

dDxn (x1, nh̄β|xn, (n− 1)h̄β)(xn, (n− 1)h̄β|xn−1, (n− 2)h̄β)

· · · (x3, 2h̄β|x2, h̄β)(x2, h̄β|x1, 0) , (3.95)

where we may now use the group property (3.25) of the one-particle amplitude to obtain

hn(β) =
∫ ∞
−∞

dDx1 (x1, nh̄β|x1, 0) = Z1(nβ) . (3.96)

With (3.94) and (3.96), we may rewrite the canonical N -particle partition function (3.93) as

ZN (β) =
1
N !

∑
P

εp(P )

P
n nCn(P )=N∏

n=1

[
Z1(nβ)

]Cn(P )
. (3.97)

Here, Cn(P ) is the number of n-cycles of the current permutation P . Instead of taking the num-
ber of n-cycles Cn to be a function of P , we may equally fix P by specifying the N -tuple of cycle
numbers (C1, C2, . . . , CN ). In this cycle number notation, the sum over permutations in (3.97)
can be rewritten in terms of a sum over all N -tuples that satisfy the condition

∑N
n=1 nCn = N .

In doing so, we must take into account that a certain N -tuple may occur multiple times in the
permutation group, thus we must include a multiplicity factor M(C1, . . . , CN ) in (3.97). With
this, we obtain

ZN (β) =
1
N !

P
n nCn=N∑

(C1,...,CN )

εp(P )M(C1, . . . , CN )
∞∏
n=1

[
Z1(nβ)

]Cn
, (3.98)
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3.4 Ideal Quantum Gases in Canonical Ensemble

where we have formally extended the product to all integers by setting Cn = 0 for all n > N ,
due to the condition

∑N
n=1 nCn = N .

The derivation of the above multiplicity factor M(C1, . . . , CN ) goes as follows: There are a
total of N ! different N -tuples, corresponding to the order of the symmetric group SN ; however
not all of these represent different permutations. According to Section 2.1.2, the following
applies:

1. A cyclic permutation, i.e. a rotation of an n-cycle does not lead to a new permutation,
so we have n irrelevant combinations for every n-cycle, or nCn irrelevant combinations
for Cn n-cycles.

2. Reordering cycles of the same length does not lead to a new permutation, so for the
number of Cn n-cycles we have Cn! irrelevant combinations.

Thus, we obtain for the above multiplicity factor the Cauchy formula of the permutation group
[18],

M(C1, . . . , CN ) =
N !∏

nCn!nCn
. (3.99)

Inserting (3.99) into (3.98) and observing that the parity εp(P ) of a permutation P can be
written as the product of the parities εn+1 of individual n-cycles in (3.98), we finally arrive at
the expression for the N -particle partition function in cycle reduced form:

ZN (β) =

P
n nCn=N∑

(C1,...,CN )

∞∏
n=1

1
Cn!

[
εn+1Z1(nβ)

n

]Cn
. (3.100)

The cycle representation (3.100) allows us to calculate the canonical partition function for
any number of particles. In practice, however, this approach is not feasible for large particle
numbers N as the computational effort grows with N !. Additionally, it is not straightforward
to figure out all cycle numbers Cn which satisfy the condition

∑
n nCn = N , so a more efficient

algorithm for determining canonical partition functions is needed [28]. As a starting point in
this direction, we note that the grand canonical partition function is the generating function
of all canonical partition functions.

If we define the fugacity by z = eβµ, with the chemical potential µ, the grand canonical
partition function reads

Z(β, z) =
∞∑
N=0

ZN (β) zN . (3.101)

This serves as the generating function of canonical partition functions which we obtain by
Taylor-expanding (3.101), yielding the ZN (β) as expansion coefficients:

ZN (β) =
1
N !

∂N

∂zN
Z(β, z)

∣∣∣∣
z=0

. (3.102)

In order to evaluate (3.101), we insert the cycle representation (3.100) and rewrite the exponent
of the fugacity z using N =

∑
n nCn. Thus, we have

Z(β, z) =
∞∑
N=0

P
n nCn=N∑

(C1,...,CN )

∞∏
n=1

1
Cn!

[
εn+1Z1(nβ) zn

n

]Cn
(3.103)
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in a first step. As in the above expression we are summing over all particle numbers from zero
to infinity, we may drop the condition

∑
n nCn = N and instead sum over all cycle numbers

from 0 to ∞, yielding

Z(β, z) =
∞∑

C1=0

∞∑
C2=0

· · ·
∞∏
n=1

1
Cn!

[
εn+1Z1(nβ) zn

n

]Cn
. (3.104)

We may write this more compactly by rewriting the multiple sum over cycle numbers as a
product over the individual sums, i.e.

Z(β, z) =
∞∏
n=1

∞∑
Cn=0

1
Cn!

[
εn+1Z1(nβ) zn

n

]Cn
. (3.105)

The Cn sum is an exponential, so we have

Z(β, z) = exp

{ ∞∑
n=1

εn+1Z1(nβ) zn

n

}
. (3.106)

From (3.102) and (3.106) we find that the partition function of the vacuum, where no particles
are present, i.e. N = 0, is given simply by

Z0(β) = 1 . (3.107)

Going on with our task of finding an alternative expression for the canonical partition function,
we observe, that for N ≥ 1 the grand canonical partition function (3.106) obeys the differential
equation

∂

∂z
Z(β, z) = Z(β, z)

∞∑
k=1

Z1(kβ) zk−1 , (3.108)

which we may solve recursively. To that end, we first form the Nth derivative of (3.101) via
the Leibnitz rule of differentiation,

∂N

∂zN
Z(β, z)

∣∣∣∣
z=0

=
N∑
n=0

(N − 1)!
(n− 1)!(N − n)!

∂N−n

∂zN−n
Z(β, z)

∣∣∣∣
z=0

×
∞∑
k=1

Z1(kβ)
∂n−1zk−1

∂zn−1

∣∣∣∣
z=0

,

(3.109)
and take into account that for the (n−1)st derivative of zk−1 in the rightmost sum of equation
(3.109) we have the identity

∂n−1zk−1

∂zn−1
= (k − 1)(k − 2) · · · (k − n+ 1)zk−n =

{
(k−1)!
(k−n)!z

k−n for k ≥ n
0 for 1 ≤ k < n

. (3.110)

With this, (3.109) reduces to

∂N

∂zN
Z(β, z) = (N − 1)!

N∑
n=1

1
(N − n)!

∂N−n

∂zN−n
Z(β, z)

1
(n− 1)!

∞∑
k=1

Z1(kβ)
(k − 1)!
(k − n)!

zk−n . (3.111)
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Finally, taking (3.111) at z = 0 yields

∂N

∂zN
Z(β, z)

∣∣∣∣
z=0

= (N − 1)!
N∑
n=1

εn+1

(N − n)!
∂N−n

∂zN−n
Z(β, z)

∣∣∣∣
z=0

Z1(nβ) , (3.112)

and using (3.102) leaves us with the following recursion relation for the canonical partition
functions ZN (β):

ZN (β) =
1
N

N∑
n=1

εn+1Z1(nβ)ZN−n(β) . (3.113)

We note, that even though (3.113) is better suited for calculating the canonical partition
function, its numerical evaluation possesses some additional difficulties: In (3.113) products of
partition functions of different particle numbers N appear. For low enough temperatures we
would thus be multiplying very small numbers with larger ones, which is not feasible due to
the issues with numerical precision when computing with floating point numbers. However,
this problem can be circumvented by rewriting and rescaling (3.113) in a suitable way [28].

3.5 Ideal Quantum Gases in Grand-Canonical Ensemble

We now turn to the description of ideal quantum gases in the grand canonical ensemble. The
grand canonical formalism is considerably more popular with the BEC community, as it allows
one to obtain analytical results for the different thermodynamic quantities, which do not involve
the (anti) symmetrised many particle states (2.42). Thus, by working in the grand canonical
ensemble, the considerable complications due to the permutation group can be avoided. In the
thermodynamic limit of an infinitely large system, both the canonical and the grand canonical
description coincide, whereas for finite, and particularly for small particle numbers, there can
be significant deviations between both.

The starting point for the calculation of the grand canonical partition function Z(β) is the
trace (3.11) of the grand canonical density operator (3.10). Here, it turns out to be best when
one works in the formalism of the so called ”second quantisation”, i.e. with a field-theoretic
approach, where in Fourier space the Hamiltonian and the particle number operator read

Ĥ =
∑
k

Ekn̂k , N̂ =
∑
k

n̂k , (3.114)

respectively, with the occupation number operator n̂k = b̂+k b̂k , which is given in terms of the
bosonic creation and anihilation operators (2.94) and (2.97). As we are dealing with ideal
particle, there is no interaction, and consequently the Hamiltonian in (3.114) is additive in the
single particle Hamiltonians. Here, the index k is a shorthand for all quantum numbers that
are associated with the specific single-particle state. The trace of the partition function is then
most conveniently carried out in the eigenbasis of n̂k, namely in the discrete or occupation
number basis of Fock space (2.91), that was introduced in Section 2.3.2. With this we have

Z(β) = Tr
{

e−β
P

k(Ek−µ)n̂k
}

=
∑
N

∑
nk

〈N ;n1, n2, . . . | e
−β

P
k(Ek−µ)n̂k |N ;n1, n2, . . .〉 .

(3.115)
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Thus, grand canonically, a certain microstate in the ensemble, i.e. the corresponding quantum
state is characterised by specifying the occupation numbers (nk) = (n1, n2, n3, . . . ) of the
single-particle states that are specified by k.

With (3.115) the grand-canonical partition function (3.12) then reads

Z(β) =
∑
N

∑
nk

e−β
P

k(Ek−µ)nk =
∑
N

∑
nk

∏
k

e−β(Ek−µ)nk . (3.116)

We note, that the occupation numbers in the first equation of (3.116) still sum up to a fixed
particle number, that is, they obey the condition

N =
∑
k

nk , (3.117)

which is simply the eigenvalue of the particle number operator in (3.114) and this is the reason
for the additional N sum in equations (3.115) and (3.116). We may now also get rid of this
sum, by observing that we can ”generate” the quantum states of the system with arbitrary
total particle number N , by exchanging in (3.116) the nk sum and the product. Thus, the
grand canonical partition function factorises into a product of one-particle partition functions:

Z(β) =
∏
k

[∑
nk

e−β(Ek−µ)nk

]
. (3.118)

This result is valid both for bosons and fermions. The different statistic for these two particle
species manifest themselves in the conditions imposed on the respective occupation numbers
nk, as we found in Section 2.3.2.

In the case of an ensemble of ideal bosons, the sum in (3.118) is a geometric series, which
yields

Z(β) =
∏
k

[
1− e−β(Ek−µ)

]−1
. (3.119)

For fermions, inserting nk = 0, 1 into (3.118) then gives us

Z(β) =
∏
k

[
1 + e−β(Ek−µ)

]
, (3.120)

and we may then combine both cases into a single formula by writing

Z(β) =
∏
k

[
1− ε e−β(Ek−µ)

]ε
. (3.121)

As an example for a thermodynamic expectation value in the grand canonical ensemble, let us
calculate the important case of the expectation of the occupation number nk: From (3.118)
we first have

〈nk〉 =
1
Z(β)

∏
k′

∑
nk′

e−β(Ek′−µ)nk′

nk , (3.122)

where we may pull out the single factor with k′ = k, thus factorising the product in (3.122):

〈nk〉 =
1
Z(β)

∏
k′ 6=k

∑
nk′

e−β(Ek′−µ)nk′

∑
nk

nke−β(Ek−µ)nk . (3.123)
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Now, the sum over nk is easily evaluated via a partial derivative of the partition function,∑
nk

nke−β(Ek−µ)nk = − 1
β

∂

∂Ek

∑
nk

e−β(Ek−µ)nk , (3.124)

so, by using (3.14), (3.123) reduces to

〈nk〉 = − 1
βZ(β)

∂

∂Ek
Z(β) . (3.125)

With this, we finally obtain the mean particle number

〈nk〉 =
1

e−β(Ek−µ) − ε
, (3.126)

which for bosons represents the Bose-Einstein and for fermions the Fermi-Dirac distribution
function.
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Chapter 4

Quench Dynamics of Harmonically Trapped
Ideal Quantum Gases

In this Chapter we consider the problem of an ideal quantum gas of N particles, confined
within a harmonic trap, with time-dependent trap frequency ω(t). The trapping potential is
then that of the harmonic oscillator

V (x, t) =
M

2
ω2(t)x2 . (4.1)

In the following, we restrict ourselves to the case of a quench, that is, a sudden change of trap
frequency, at time ta (see Fig. 4.2):

ω(t) =

{
ω for t < ta

Ω for t ≥ ta .
(4.2)

This is one of the simplest possible non-equilibrium problems and we expect the quantum gas
to respond to the quench with some kind of oscillatory behaviour. To this end, we work out
expressions for the time-dependent density matrix and for the reduced one-particle density
matrix, since the latter is related to the condensate’s density function and is thus a quantity
that can be experimentally observed.

x

VHxL

Figure 4.1: Harmonic potential V (x) for trap frequencies ω and Ω.
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4.1 One-Particle Time Dependent Density Matrix

In standard quantum mechanics and for a general time-dependent Hamiltonian Ĥ(t), a density
operator %̂, which is taken to be in the Schrödinger picture, evolves in time according to the
von Neumann equation

ih̄
∂

∂t
%̂ =

[
Ĥ(t), %̂

]
, (4.3)

which is analoguous to the Liouville equation in classical physics. Equation (4.3) is solved by

%̂(tb) = Û(tb, ta) %̂(ta) Û−1(tb, ta) , (4.4)

where the unitary time evolution operator Û(tb, ta) is formally given by the Dyson series

Û(tb, ta) = T̂ exp
{
− i
h̄

∫ tb

ta

dt′ Ĥ(t′)
}

, (4.5)

and where T̂ denotes the time-ordering operator. For the simpler case of a time-independent
Hamiltonian, e.g. for the time-dependence (4.2), the time-evolution operator reduces to Û(tb, ta) =
exp {−iĤΩ(tb − ta)/h̄}, and the time-evolution of the density operator reads

%̂(tb) = e−
i
h̄
ĤΩ(tb−ta) %̂(ta) e+ i

h̄
ĤΩ(tb−ta) . (4.6)

We obtain the corresponding density matrix by going to the standard coordinate basis, i.e. by
sandwiching %̂(tb) between position eigenstates 〈xb| and |xb′〉:

%1(xb, xb′ ; tb) = 〈xb|e−
i
h̄
ĤΩ(tb−ta) %̂(ta) e+ i

h̄
ĤΩ(tb−ta)|xb′〉. (4.7)

We have given the density matrix an index 1 to clarify that it represents a one-particle quantity,
and note, that the underlying Hamiltonian in coordinate representation reads

ĤΩ = − h̄2

2M
d2

dx2
+
M

2
Ω2x2 . (4.8)

For fixed xb, xb′ the expression above is an amplitude and we may insert the identity operator
1̂ twice in form of the completeness relation

1̂ =
∫
dxa|xa〉〈xa| (4.9)

for xa and xa′ , respectively, obtaining

%1(xb, xb′ ; tb) =
∫
dxa

∫
dxa′(xb, tb|xa, ta) %1(xa, xa′ ; ta) (xa′ , ta|xb′ , tb) . (4.10)

Here the time evolution is described by the real-time evolution amplitude

(xb, tb|xa, ta) = 〈xb| e−
i
h̄
ĤΩ(tb−ta) |xa〉 . (4.11)
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T

Ñ

2 M Ω

Σ1
2HTL

Figure 4.2: Harmonic oscillator equilibrium width σ2(T ) together with its asymptote (dashed)
which correspond to the law of Dulong Petit.

Our initial condition is the density matrix of the one-particle harmonic oscillator, %1 (xa, xa′ ; ta),
at initial time ta, that was calculated from the semi-classical expansion of the path-integral in
Section 3.4 and which is given in Wick-rotated imaginary time as

%1(xa, xa′ ; ta) =

√
Mω

πh̄
tanh

(
h̄βω

2

)
exp

{
−Mω

2h̄

[(
x2
a + x2

a′
)

cosh (h̄βω)− 2xaxa′
sinh (h̄βω)

]}
.

(4.12)
Thus, by using the above ansatz, we completely separate the (imaginary time) equilibrium
dynamics from the non-equilibrium dynamics (real time) in parameter space. The full time-
dependent non-equilibrium density matrix for the one-particle harmonic oscillator is then given
by equation (4.10), where

(xb, tb|xa, ta) =

√
MΩ

2π ih̄ sin [Ω (tb − ta)]
exp

{
iMΩ
2 h̄

[(
x2
b + x2

a

)
cos [Ω (tb − ta)]− 2xbxa
sin [Ω (tb − ta)]

]}
(4.13)

and

(xa′ , ta|xb′ , tb) =

√
MΩ

2π ih̄ sin [Ω (ta − tb)]
exp

{
iMΩ
2 h̄

[(
x2
a′ + x2

b′
)

cos [Ω (ta − tb)]− 2xa′xb′
sin [Ω (ta − tb)]

]}
(4.14)

are the corresponding real-time forward- and backward-evolution amplitudes, respectively. Af-
ter inserting (4.12)–(4.14), we may rewrite (4.10) as the two-dimensional Gaussian integral

%1(xb, xb′ ; tb) =

√
M3Ω2ω tanh (h̄βω/2)
4π3h̄3 sin2 [Ω(tb − ta)]

exp
{
iMΩ(x2

b − x2
b′) cot [Ω(tb − ta)]
2h̄

}
×
∫ ∞
−∞

d2xa exp
{
−x†Ax− b†x

}
, (4.15)
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with the abbreviation d2xa = dxadxa′ , and with the matrix A and constant vector b† given by

b† = −i MΩ
h̄ sin [Ω (tb − ta)]

(
−xb
+xb′

)
,

A =


Mω

2h̄
coth (h̄βω)− iMΩ

2h̄
cot [Ω(tb − ta)] − Mω

2h̄ sinh (h̄βω)

− Mω

2h̄ sinh (h̄βω)
Mω

2h̄
coth (h̄βω) +

iMΩ
2h̄

cot [Ω(tb − ta)]

 .

(4.16)

Using the formula for multi-dimensional Gaussian integrals∫ ∞
−∞

dNx exp
{
−x†Ax + b†x

}
=

√
πN

det (A)
exp

{1
4
b†A−1b

}
, (4.17)

we obtain the following expression for the time-dependent one-particle harmonic density matrix:

%1(xb, xb′ ; tb) =

√
Mω tanh (h̄βω/2)
πh̄f(tb − ta)

exp
{

−Mω

2h̄f(tb − ta)

[
(x2
b + x2

b′) cosh (h̄βω)− 2xbxb′
sinh (h̄βω)

]}
.

(4.18)
Comparing (4.18) above with the initial thermodynamic time-independent density matrix
(4.12), we note that the former differs from the latter only by the factor

f(tb − ta) =
ω2 sin2 [Ω (tb − ta)] + Ω2 cos2 [Ω (tb − ta)]

Ω2
, (4.19)

which is present both in the prefactor and in the exponential. Note that if we set Ω = ω in
(4.18), it reduces to the time-independent expression (4.12). Equally, when setting tb− ta = 0,
it reduces to (4.12), as expected.

The diagonal elements of (4.18) are Gaussian distributed and, as expected, setting xb′ = xb
yields

%1(xb, xb; tb) =

√
2Mω tanh (h̄βω/2)

2π h̄ f(tb − ta)
exp

{
− 2Mω

2π h̄ f(tb − ta)
tanh (h̄βω/2)x2

b

}
, (4.20)

which has the form of a Gaussian,

1√
2πσ2

exp
{
− x2

2σ2

}
, (4.21)

with width

σ2
1(tb, ta;T ) =

h̄

2Mω
coth (h̄βω/2)

(
ω2 sin2 [Ω (tb − ta)] + Ω2 cos2 [Ω (tb − ta)]

Ω2

)
. (4.22)

The factor in front is h̄/(2Mω) = x2
0/2 where x0 is the well-known oscillator width, which is a

measure for the typical length scale of the system. We note that when setting Ω = ω, (4.22) be-
comes time-independent and we obtain the equilibrium width σ2

1(T ) = (h̄/2Mω) coth (h̄βω/2)
as expected.
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Ω > W

tb

1

Ω2

W2

fHtbL

Ω < W

tb

1

Ω2

W2

fHtbL

Figure 4.3: Oscillatory behaviour of the time-dependence function f(tb − ta) for ω > Ω (left)
and ω < Ω (right).

As is depicted in Fig. 4.2, σ2(T ) grows linearly with T sufficiently large, corresponding to
the law of Dulong Petit, and departs from this asymptote for T ≈ 0, approaching h̄/(2Mω),
as dictated by the uncertainty relation. We also note that (4.22) may be written as a product

σ2
1(t;T ) = σ2

1(0;T )f(tb − ta) , (4.23)

where σ2
1(0;T ) ≡ σ2

1(T ), and for ta = 0, we may rewrite f(tb) as

f(tb) =
1
2

(
1 +

ω2

Ω2

)
+

1
2

(
1− ω2

Ω2

)
cos (2Ωtb) , (4.24)

which oscillates between 1 and ω2/Ω2 as is illustrated in Fig. 4.3.

4.2 Two-Particle Time Dependent Density Matrix

In this section we extend our ansatz from the previous section to the case of two particles,
taking into account that we now have a true many-particle system. Consequently, as we are
dealing with identical particles, we must sandwich our two-particle density operator between
(anti-) symmetrized two-particle position eigenstates. The many-particle position eigenstates
(2.79) were introduced in Section 2.3.1

Following the procedure for the one-particle case, we insert two two-particle complete-
ness relations of the form (2.80) and, pulling out the normalisation factor 1/Z2(β) from the
two-particle density matrix, rewrite our expression for the two-particle time-dependent non-
equilibrium density matrix as

%2(x1b, x2b;x1b′ , x2b′ ; tb) =
1

Z2(β)

∫
dx1a

∫
dx2a

∫
dx1a′

∫
dx2a′ (x1b, x2b; tb|x1a, x2a; ta)

(ε)

× (x1a, x2a; τa|x1a′ , x2a′ ; τa′)
(ε) (x1a′ , x2a′ ; ta|x1b′ , x2b′ ; tb)

(ε) . (4.25)

The three properly (anti-)symmetrized two-particle amplitudes amplitudes read as follows:

(x1b, x2b; tb|x1a, x2a; ta)
ε =

1
2!

[
(x1b, tb|x1a, ta) (x2b, tb|x2a, ta)

+ ε (x1b, tb|x2a, ta) (x2b, tb|x1a, ta)
]

, (4.26)
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(x1a, x2a; τa|x1a′ , x2a′ ; τa′)
ε =

1
2!

[
(x1a, τa|x1a′ , τa′) (x2a, τa|x2a′ , τa′)

+ ε (x1a, τa|x2a′ , τa′) (x2a, τa|x1a′ , τa′)
]

, (4.27)

(x1a′ , x2a′ ; ta|x1b′ , x2b′ ; tb)
ε =

1
2!

[
(x1a′ , ta|x1b′ , tb) (x2a′ , ta|x2b′ , tb)

+ ε (x1a′ , ta|x2b′ , tb) (x2a′ , ta|x1b′ , tb)
]

, (4.28)

They factorise into products of one-particle amplitudes (4.13) and (4.14), as we are dealing
with ideal, i.e. non-interacting particles.

We see that the situation is already more complicated for the two-particle case, as we must
now take into account that the particles are quantum objects which are naturally indistinguish-
able. As it was said in Section 2.3, the amplitudes are subject to (anti-) symmetrisation, and
for two particles there are the two possible permutations of coordinates displayed in (4.26)–
(4.28), resulting in a sum of two terms in every two-particle amplitude. Putting these into
(4.25), we get

%2(x1b, x2b;x1b′ , x2b′ ; tb) =
1

Z2(β)
1
8

∫
dx1a

∫
dx2a

∫
dx1a′

∫
dx2a′

×
[
(x1b, tb|x1a, ta) (x2b, tb|x2a, ta) + ε (x1b, tb|x2a, ta) (x2b, tb|x1a, ta)

]
×
[
(x1a, τa|x1a′ , τa′) (x2a, τa|x2a′ , τa′) + ε (x1a, τa|x2a′ , τa′) (x2a, τa|x1a′ , τa′)

]
×
[
(x1a′ , ta|x1b′ , tb) (x2a′ , ta|x2b′ , tb) + ε (x1a′ , ta|x2b′ , tb) (x2a′ , ta|x1b′ , tb)

]
, (4.29)

and multiplying out gives the following eight terms

=
1

Z2(β)
1
8

∫
dx1a

∫
dx2a

∫
dx1a′

∫
dx2a′[

(x1b, tb|x1a, ta) (x2b, tb|x2a, ta) (x1a, τa|x1a′ , τa′) (x2a, τa|x2a′ , τa′) (x1a′ , ta|x1b′ , tb) (x2a′ , ta|x2b′ , tb)

+ε (x1b, tb|x1a, ta) (x2b, tb|x2a, ta) (x1a, τa|x1a′ , τa′) (x2a, τa|x2a′ , τa′) (x1a′ , ta|x2b′ , tb) (x2a′ , ta|x1b′ , tb)

+ε (x1b, tb|x1a, ta) (x2b, tb|x2a, ta) (x1a, τa|x2a′ , τa′) (x2a, τa|x1a′ , τa′) (x1a′ , ta|x1b′ , tb) (x2a′ , ta|x2b′ , tb)

+ε2 (x1b, tb|x1a, ta) (x2b, tb|x2a, ta) (x1a, τa|x2a′ , τa′) (x2a, τa|x1a′ , τa′) (x1a′ , ta|x2b′ , tb) (x2a′ , ta|x1b′ , tb)

+ε (x1b, tb|x2a, ta) (x2b, tb|x1a, ta) (x1a, τa|x1a′ , τa′) (x2a, τa|x2a′ , τa′) (x1a′ , ta|x1b′ , tb) (x2a′ , ta|x2b′ , tb)

+ε2 (x1b, tb|x2a, ta) (x2b, tb|x1a, ta) (x1a, τa|x1a′ , τa′) (x2a, τa|x2a′ , τa′) (x1a′ , ta|x2b′ , tb) (x2a′ , ta|x1b′ , tb)

+ε2 (x1b, tb|x2a, ta) (x2b, tb|x1a, ta) (x1a, τa|x2a′ , τa′) (x2a, τa|x1a′ , τa′) (x1a, ta|x1b′ , tb) (x2a′ , ta|x2b′ , tb)

+ε3 (x1b, tb|x2a, ta) (x2b, tb|x1a, ta) (x1a, τa|x2a′ , τa′) (x2a, τa|x1a′ , τa′) (x1a′ , ta|x2b′ , tb) (x2a′ , ta|x1b′ , tb)
]

.

(4.30)

Using the relation

Z1(β) %1(x1b, x1b′ ; tb) =
∫
dx1a

∫
dx1a′ (x1b, tb|x1a, ta) (x1a, τa|x1a′ , τa′) (x1a′ , ta|x1b′ , tb) ,

(4.31)
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4.3 Two-Particle Partition Function

which follows from the definition of the one-particle density matrix (4.18), we can now rearrange
and combine terms and obtain the following expression for the non-equilibrium, two-particle
density matrix:

%2(x1b, x2b;x1b′ , x2b′ ; tb) =
Z2

1 (β)
Z2(β)

1
2

[
%1(x1b, x1b′ ; tb) %1(x2b, x2b′ ; tb)

+ ε %1(x1b, x2b′ ; tb) %1(x2b, x1b′ ; tb)
]

. (4.32)

4.3 Two-Particle Partition Function

Our next task is to check that %2(x1b, x2b;x1b′ , x2b′ ; tb) is normalised, i.e. that integrating out
all coordinates of (4.32) yields the two-particle partition function Z2(β). We set x1b = x1b′

and x2b = x2b′ , use (4.12), and integrate over both coordinates:

Z2(β) =
Z2

1 (β)
2

Mω tanh(h̄βω/2)
πh̄f(tb − ta)

[∫
dx1b

∫
dx2b exp

{
−Mω tanh(h̄βω/2)

h̄f(tb − ta)
(
x2

1b + x2
2b

)}
+ ε

∫
dx1b

∫
dx2b exp

{
− Mω

h̄f(t)

[
(x2

1b + x2
2b) cosh(h̄βω)− x1bx2b

sinh(h̄βω)

]}]
.

(4.33)

The first integral in (4.33) is straightforward to calculate, since it is a simple Gaussian. The
second integral can be written as a two-dimensional Gaussian integral (4.17) without the linear
term. The off-diagonal terms in the corresponding matrix must be distributed symmetrically,
since multidimensional Gaussian integrals are defined only for symmetric matrix exponentials.
The symmetrised matrix A reads

A =
(

a −b
−b a

)
, (4.34)

with the abbreviations

a =
[

Mω

h̄f(tb − ta)

]
coth(h̄βω) b =

[
Mω

h̄f(tb − ta)

]
1

sinh(h̄βω)
. (4.35)

Its determinant is given by

det (A) = a2 − b2 =
[

Mω

h̄f(tb − ta)

]2 cosh2(h̄βω)− 1
sinh2(h̄βω)

=
[

Mω

h̄f(tb − ta)

]2

. (4.36)

When we insert the solution, according to (4.17), of the second integral into (4.33), we may pull
out the time-dependent factor from the square brackets, cancelling the same factor in front.
We get

Z2(β) =
1
2

[
Z2

1 (β) + ε Z2
1 (β) tanh(h̄βω/2)

]
. (4.37)

Here we may now use sinh(x) = 2 sinh(x/2) cosh(x/2) and the expression for the canonical
one-particle partition function (3.83), to obtain

Z2(β) =
1
2

[
Z2

1 (β) + ε Z1(2β)
]

, (4.38)

which is the correct expression for the two-particle harmonic oscillator partition function from
(3.89).
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Chapter 4 Quench Dynamics of Harmonically Trapped Ideal Quantum Gases

4.4 One-Particle Time Dependent Reduced Density Matrix in
Two-Particle Ensemble

We now turn to the computation of the reduced one-particle density matrix in a two-particle
ensemble, %(r)

2 (x1b, x1b′ ; tb), which is a one-particle quantity, i.e. a function of the first particle’s
coordinates. We obtain it by tracing out the degrees of freedom of the second particle, thus
including the effects of the second particle on particle number one. Here we have chosen the
coordinates of particle number one to be left out from integration, but this choice is without
loss of generality, as we are always free to change the overall numbering of particle coordinates
when we are dealing with indistinguishable particles. In order to simplify a later generalisation
to N particles, it is useful to observe that the two permutations of coordinates in (4.32), i.e.
P1 = ( 1 2

1 2 ) and P2 = ( 1 2
2 1 ), have the cycle-decomposition (1)(2) and (12), i.e. the first consists

of two one-cycles and the latter of one two-cycle, and that we are effectively breaking the
two-cycle in (4.32), by setting the second particle’s coordinates equal, x2b = x2b′ , and leaving
x1b 6= x1b′ .

%
(r)
1 (x1b, x1b′ ; t) =

Z2
1 (β)
Z2(β)

1
2

[
%1(x1b, x1b′ ; tb)

∫
dx2b %1(x2b, x2b′ ; tb)︸ ︷︷ ︸

=1

+ ε

∫
dx2b %1(x1b, x2b; tb) %1(x2b, x1b′ ; tb)︸ ︷︷ ︸

broken two-cycle

]
(4.39)

In order to evaluate (4.39) further, we must find a way to integrate products of one-particle den-
sity matrices that correspond to broken cycles. To this end we will integrate the simplest non-
trivial broken n-cycle, namely the broken two-cycle in (4.39), i.e. %1(x1b, x2b; tb)%1(x2b, x1b′ ; tb),
and derive a master integral that may be later on applied to the integration of a general broken
n-cycle. In order to apply this master integral to a general n-cycle later, we will be more gen-
eral with the two-cycle, and take the two one-particle density matrices at different imaginary
time, β and β′:

Z1(β)Z1(β′)
∫ ∞
−∞

dx2b %1(x1b, x2b; tb, β)%1(x2b, x1b′ ; tb, β′)

=

√
tanh (h̄βω/2) tanh (h̄β′ω/2)

4 sinh (h̄βω/2) sinh (h̄β′ω/2)
Mω

πh̄f(tb − ta)

∫ ∞
−∞

dx2b

× exp
{
− Mω

2h̄f(tb − ta)

[
x2

1b coth (h̄βω) + x2
2b coth (h̄βω)− 2

x1bx2b

sinh (h̄βω)

]}
× exp

{
− Mω

2h̄f(tb − ta)

[
x2

1b coth (h̄β′ω) + x2
2b coth (h̄β′ω)− 2

x1bx2b

sinh (h̄β′ω)

]}
.

(4.40)
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4.4 One-Particle Time Dependent Reduced Density Matrix in Two-Particle Ensemble

Performing the Gaussian integral yields

=

√
tanh (h̄βω/2) tanh (h̄β′ω/2)

4 sinh (h̄βω/2) sinh (h̄β′ω/2)

√
1

coth (h̄βω) + coth (h̄β′ω)

√
2Mω

πh̄f(tb − ta)

× exp
{
− Mω

2h̄f(tb − ta)

[
x2

1b coth (h̄βω) + x2
1b′ coth (h̄β′ω)

]}
× exp

{
− Mω

2h̄f(tb − ta)

[
x1b

sinh (h̄βω)
+

x1b′

sinh (h̄β′ω)

]2 [ 1
coth (h̄βω) + coth (h̄β′ω)

]}
.

(4.41)

Before going on, let us simplify the prefactor of the exponentials in the first line of (4.41). Step
by step we get

√
tanh (h̄βω/2) tanh (h̄β′ω/2)

4 sinh (h̄βω/2) sinh (h̄β′ω/2)

√
1

coth (h̄βω) + coth (h̄β′ω)

√
2Mω

πh̄f(tb − ta)
(4.42)

=

√
2Mω

πh̄f(tb − ta)

√
sinh (h̄βω/2) sinh (h̄β′ω/2)
cosh (h̄βω/2) cosh (h̄β′ω/2)

1
4 sinh (h̄βω/2) sinh (h̄β′ω/2)

×

√
4 sinh (h̄βω/2) sinh (h̄β′ω/2) cosh (h̄βω/2) cosh (h̄β′ω/2)

cosh (h̄βω) sinh (h̄β′ω) + cosh (h̄β′ω) sinh (h̄βω)

(4.43)

=

√
Mω

2πh̄f(tb − ta)

√
1

sinh [h̄ω(β + β′)]
. (4.44)

Now we can continue with the exponentials. After expanding the fractions in the argument of
the first and second exponential of (4.41), we have

Z1(β)Z1(β′)
∫ ∞
−∞

dx2b %1(x1b, x2b; tb, β)%1(x2b, x1b′ ; tb, β′) =

=

√
Mω

2πh̄f(tb − ta)

√
1

sinh [h̄ω(β + β′)]

×exp
{
− Mω

2h̄f(tb − ta)

[
x2

1b cosh (h̄βω) sinh (h̄β′ω) + x2
1b′ cosh (h̄β′ω) sinh (h̄βω)

sinh (h̄βω) sinh (h̄β′ω)

]}
×exp

{
Mω

2h̄f(tb − ta)

[
x2

1b sinh2 (h̄β′ω) + x2
1b′ sinh2 (h̄βω) + 2x1bx1b′ sinh (h̄βω) sinh (h̄β′ω)

sinh (h̄βω) sinh (h̄β′ω) sinh [h̄ω(β + β′)]

]}
.

(4.45)
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Taking the common denominator in both exponentials of (4.41), and collecting separately the
prefactors of x2

1b and x2
1b′ , yields

=

√
Mω

2πh̄f(tb − ta)

√
1

sinh [h̄ω(β + β′)]

×exp
{

Mω

2h̄f(tb − ta)

[
x2

1b

(
sinh2 (h̄β′ω)− cosh2 (h̄βω) sinh2 (h̄β′ω)− (1/4) sinh (2h̄βω) sinh (2h̄β′ω)

sinh (h̄βω) sinh (h̄β′ω) sinh h̄ω(β + β′)

)
+x2

1b′

(
sinh2 (h̄βω)− cosh2 (h̄β′ω) sinh2 (h̄βω)− (1/4) sinh (2h̄βω) sinh (2h̄β′ω)

sinh (h̄βω) sinh (h̄β′ω) sinh [h̄ω(β + β′)]

)
+

2 x1b x1b′

sinh [h̄ω(β + β′)]

]
.

(4.46)

We may now use the hyperbolic Pythagoras’ theorem cosh2 (h̄βω)− sinh2 (h̄βω) = 1 for β and
β′ in the prefactor of x2

1b and x2
1b′ . Now two pairs of hyperbolic sines cancel in every prefactor,

one with primed and one with unprimed beta, and we are left with

=

√
Mω

πh̄f(tb − ta)
1

4 tanh [h̄ω (β + β′) /2]

× exp
{
− Mω

2h̄f(tb − ta)

[
(x2

1b + x2
1b′) cosh [h̄ω(β + β′)]− 2 x1b x1b′

sinh [h̄ω(β + β′)]

]}
(4.47)

= Z1(β + β′) %1

(
x1b, x1b′ ; tb, (β + β′)

)
, (4.48)

where we have used the double angle formula sinh (2x) = 2 sinh (x) cosh (x) and have expanded
the fraction in the square root of the overall prefactor. In the next step, we may now use our
master equation

Z1(β)Z1(β′)
∫ ∞
−∞

dx2b %1(x1b, x2b; tb, β)%1(x2b, x1b′ ; tb, β′) = Z1(β+β′)%1

(
x1b, x1b′ ; tb, (β + β′)

)
,

(4.49)
to evaluate the above expression for the one-particle reduced density matrix (4.39). We obtain

%
(r)
1 (x1b, x1b′ ; t) =

1
Z2(β)

1
2

[
Z2

1 (β) %1(x1b, x1b′ ; tb) + ε Z1(2β) %1(x1b, x1b′ ; tb, 2β)
]

. (4.50)

We are also interested in the expression for the one-particle width in a two-particle ensemble,
since we would like to compare it to the corresponding one-particle width (4.22). Just as with
the reduced one-particle density matrix above, in a two-particle ensemble we must include the
effect of the environment on the particle of interest. Thus, we must take the thermodynamic
expectation value of x2

1b, but with the reduced one-particle density matrix (4.50) instead of
(4.18). Consequently, the reduced one-particle width in a two-particle ensemble follows from
its trace:

σ
(r)2
1 (β) = Tr

{
%

(r)
1 (x1b, x1b′ ; tb = 0) x2

1b

}
=

1
Z2(β)

1
2
[
σ2

1(0, β) Z2
1 (β) + ε σ2

1(0, 2β) Z1(2β)
]

.

(4.51)
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4.5 N-Particle Time Dependent Density Matrix

We will now generalise our calculation to the case of N ideal particles, following closely the
path of the previous sections. In complete analogy to the one- and two-particle cases, we
begin by multiplying the N -particle harmonic oscillator density operator with the N -particle
time-evolution operator exp {− i

h̄(Ĥ(1)
Ω + Ĥ

(2)
Ω + · · ·+ Ĥ

(N)
Ω )(tb − ta)} from the left, and with its

Hermitian conjugate from the right, and thereafter sandwiching the resulting time-dependent
density operator between N -particle position eigenstates. When we insert two N -particle
completeness relations (2.80), we know that we will end up with a product of three N -particle
time-evolution amplitudes, as in (4.25) for the two-particle case, and with the inverse N -particle
partition function Z−1

N (β) as the corresponding normalisation factor. Thus, our ansatz for the
N -particle time dependent density matrix is

%N (x1b, . . . , xNb;x1b′ , . . . , xNb′ ; tb) =
1

ZN (β)

∫
dNxa

∫
dNxa′ (x1b, . . . , xNb; tb|x1a, . . . , xNa; ta)

(ε)

× (x1a, . . . , xNa; τa|x1a′ , . . . , xNa′ ; τa′)
(ε) (x1a′ , . . . , xNa′ ; ta|x1b′ , . . . , xNb′ ; tb)

(ε) , (4.52)

where we insert an (anti-)symmetrised imaginary-time evolution amplitude of the form (2.49),
respective (2.48), i.e.

(x1b, . . . , xNb; tb|x1a, . . . , xNa; ta)
(ε) =

1
N !

∑
P

εp(P )
[(
xP (1)b, tb|x1a, ta

)
· · ·
(
xP (N)b, tb|xNa, ta

)]
(4.53a)

=
1
N !

∑
P

εp(P )
[(
x1b, tb|xP (1)a, ta

)
· · ·
(
xNb, tb|xP (N)a, ta

)]
,

(4.53b)

expressed in terms of one-particle amplitudes, for each of the three N -particle amplitudes in
equation (4.52). From (2.46)–(2.49) in Section 2.3.1 we know, that it makes no difference in
(4.53), whether the permutation is in the left coordinate’s index, as in (4.53a), or in the right
coordinate’s index as in (4.53b). We now substitute the above relation (4.53b) for the left
real-time amplitude, and the other relation (4.53a) for the middle imaginary-time as well as
the right-hand real-time amplitudes, respectively. With this we obtain

%N (x1b, . . . , xNb;x1b′ , . . . , xNb′ ; tb) =
1

ZN (β)

(
1
N !

)3 ∫
dNxa

∫
dNxa′

∑
P,P ′,P ′′

εp(P )+p(P ′)+p(P ′′)

×
[(
xP (1)b; tb|x1a; ta

) (
x1a; τa|xP ′(1)a′ ; τa′

) (
x1a′ ; ta|xP ′′(1)b′ ; tb

)
· · ·

· · ·
(
xP (N)b; tb|xNa; ta

) (
xNa; τa|xP ′(N)a′ ; τa′

) (
xNa′ ; ta|xP ′′(N)b′ ; tb

)]
(4.54)

with the triple sum over the permutations P, P ′, P ′′, respectively. Note that we have rearranged
the one-particle amplitudes in (4.54), so that we now have N groups of one-particle amplitudes,
each one consisting of a real-time amplitude to the left, an imaginary-time amplitude in the
centre, and another real-time amplitude to the right.

We will now fit the left coordinates of the respective right real-time amplitudes to the
neighbouring P ′-permuted coordinates of the imaginary-time amplitudes. In other words:
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Chapter 4 Quench Dynamics of Harmonically Trapped Ideal Quantum Gases

we permute the coordinates x1a′ , . . . , xNa′ according to P ′. This has the effect of changing
the right coordinates of the respective right real-time amplitude from xP ′′(1)b′ , . . . , xP ′′(N)b′ to
xP ′′(P ′(1))b′ , . . . , xP ′′(P ′(N))b′ . This change corresponds to a rearrangement of the right real-time
amplitudes, so that their left coordinates correspond to the right coordinates of the unchanged
imaginary-time amplitudes.

To clarify this procedure, consider the nth group of three one-particle amplitudes in (4.54):(
xP (n)b; t| xna; 0

) (
xna;β| xP ′(n)a′ ; 0

) (
xna′ ; 0| xP ′′(n)b′ ; t

)
(4.55)

We may use the relation (4.18), where the one-particle equilibrium density matrix is given as
a normalised imaginary time amplitude

%1(xb, xb′ ; tb) =
1

Z1(β)
(xb;β| xb′ ; 0) , (4.56)

to write every group of amplitudes (4.55) as a time-dependent density matrix (4.18), if we can
bring the above group into the required form. To this end, we make the opposing coordinates
between two amplitudes equal. The opposing coordinates in the first two amplitudes from the
left of (4.55) are already the same, so the second pair of coordinates remains. The suitable
right amplitude for our three-group (4.55) certainly exists, since all permutations of coordinates
appear in (4.54). It is the real-time amplitude where the left coordinate is permuted according
to P ′(n), so its right coordinate must be permuted according to P ′′(P ′(n)). Swapping the
wrong right amplitude in (4.55) with the suitable one, we have(

xP (n)b, t| xna, 0
) (
xna, β| xP ′(n)a′ , 0

) (
xP ′(n)a′ , 0| xP ′′(P ′(n))b′ , t

)
, (4.57)

which has the appropriate form. Carrying out this procedure for all N three-groups of ampli-
tudes in (4.54), we arrive at

%N (x1b, . . . , xNb;x1b′ , . . . , xNb′ ; t) =
1

ZN (β)

(
1
N !

)3 ∫
dNxa

∫
dNxa′

∑
P,P ′,P ′′

εp(P )+p(P ′)+p(P ′′)

×
[(
xP (1)b; tb|x1a; ta

) (
x1a; τa|xP ′(1)a′ ; τa′

) (
xP ′(1)a′ ; ta|xP ′′(P ′(1))b′ ; tb

)
· · ·

· · ·
(
xP (N)b; tb|xNa; ta

) (
xNa; τa|xP ′(N)a′ ; τa′

) (
xP ′(N)a′ ; ta|xP ′′(P ′(N))b′ ; tb

)]
. (4.58)

Now, for n = 1, . . . , N , we may write every group of three amplitudes as a one-particle density
matrix (4.10) times a partition function:

Z1(β) %1(xP (n)b, xP ′′(P ′(n))b′ ; tb) =
∫
dxna

∫
dxP ′(n)a′

×
(
xP (n)b, tb|xna, ta

) (
xna, τa|xP ′(n)a′ , τa′

) (
xP ′(n)a′ , ta|xP ′′(P ′(n))b′ , tb

)
. (4.59)

Defining P̃ = P ′′P ′ for the combination of permutations thus leads to

%N (x1b, . . . , xNb;x1b′ , . . . , xNb′ ; tb) =
1

ZN (β)

(
1
N !

)2∑
P

∑
P̃

εp(P )+p(P̃ )

×
[
ZN1 (β) %1

(
xP (1)b, xP̃ (1)b′ ; tb

)
· · · %1

(
xP (N)b, xP̃ (N)b′ ; tb

)]
. (4.60)
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We may now also get rid of another of the remaining two permutations, by permuting the N
one-particle density matrices according to P̃ , for example. This is possible, of course, as we
may permute groups of one-particle amplitudes, as well as the amplitudes themselves:

%N (x1b, . . . , xNb;x1b′ , . . . , xNb′ ; tb) =
ZN1 (β)
ZN (β)

(
1
N !

)2∑
P

∑
P̃−1

εp(P )+p(P̃−1)

× %1(xP (P̃−1(1))b, x1b′ ; tb) · · · %1(xP (P̃−1(N))b, xNb′ ; tb). (4.61)

We again define a composite permutation P̄ = PP̃−1, and, dropping the superfluous sum
over permutations P̃ , as well as another factor of 1/N !, arrive at the final expression for the
N -particle density matrix

%N (x1b, . . . , xNb;x1b′ , . . . , xNb′ ; tb) =
ZN1 (β)
ZN (β)

1
N !

∑
P̄

εp(P̄ )%1(xP̄ (1)b, x1b′ ; tb) · · · %1(xP̄ (N)b, xNb′ ; tb)

(4.62)
in terms of one-particle density matrices and one-particle partition functions.

4.6 N-Particle Partition Function

We now turn to the partition function of our quenched ideal gas and note that – as the partition
function is a time-independent quantity – we expect to recover the well-known expression for
the partition function of the ideal gas, either in cycle reduced form (3.100), or as a recursion
relation (3.113), thus taking the same road as for the one-particle and the two-particle cases in
the previous Sections 4.1 and 4.3. We start with the normalisation condition for the N -particle
density matrix (4.62),

1 =
∫
dNxb %N (x1b, . . . , xNb;x1b, . . . , xNb; tb) . (4.63)

We insert (4.62) and bring the normalisation factor to the left side. Then, performing the
N -dimensional integration yields the following equation for the N -particle partition function
in terms of an integral over a sum of permuted one-particle density matrices:

ZN (β) = ZN1 (β)
1
N !

∑
P

εp(P )

∫
dNxb %1(xP (1)b, x1b; tb) · · · %1(xP (N)b, xNb; tb) . (4.64)

Inserting (4.18), we obtain

ZN (β) = ZN1 (β)
1
N !

∑
P

εp(P )

[
Mω tanh (h̄βω/2)

πh̄f(tb − ta)

]N/2 ∫
dNxb

× exp

{
−Mω

h̄f(tb − ta)

[(
x2

1b + · · ·+ x2
Nb

)
cosh(h̄βω)−

(
x1b xP (1)b + · · ·+ xNb xP (N)b

)
sinh(h̄βω)

]}
,

(4.65)

where we note that the expression (x2
1b + · · · + x2

Nb + x2
P (1)b + · · · + x2

P (N)b) in the exponent
of (4.65) contains the sum of all squared coordinates twice, and we have pulled out a factor of
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2 which cancels the factor 1/2 present in all one-particle density matrices (4.18). The integral
in (4.65) can be written as an N -dimensional Gaussian

ZN (β) = ZN1 (β)
1
N !

∑
P

εp(P )

[
Mω tanh (h̄βω/2)

πh̄f(tb − ta)

]N/2 ∫
dNxb exp

{
−x†A(P )x

}
, (4.66)

with the matrix A(P ) depending on the permutation in the outer sum; i.e. we must sum over
all possible permutations P , and – for every term in this sum – integrate a matrix exponential
with a different matrix A corresponding to the respective permutation P . In the following, we
will abbreviate the above expression by noting that the N -dimensional Gaussian above yields

πN/2√
det (A(P ))

, (4.67)

so our task is to construct the matrices A(P ) and to find an expression for their determinants.
To this end we write

ZN (β) = ZN1 (β)
1
N !

[
Mω tanh (h̄βω/2)

h̄f(tb − ta)

]N/2
×
∑
P

εp(P )

∫
dNxb exp

{
−a
(
x2

1b + · · ·+ x2
Nb

)
+ b

(
x1b xP (1)b + · · ·+ xNb xP (N)b

)}
(4.68)

and obtain

ZN (β) = ZN1 (β)
1
N !

[
Mω tanh (h̄βω/2)

h̄f(tb − ta)

]N
2 ∑

P

εp(P )

[
πN

det (A(P ))

]1/2

(4.69)

where we have used the abbreviations

a =
[

Mω

h̄f(tb − ta)

]
coth (h̄βω) , b =

[
Mω

h̄f(tb − ta)

]
1

sinh (h̄βω)
. (4.70)

The symmetric and positive definite matrices A(P ) will contain N a’s along the diagonal and
(N − k) entries of −b, as well as 2k entries of −b/2, with k ∈ {0, . . . N}. As an example, some
matrices for N = 4 and different permutations P are given below:

A(P1) =


(a− b) 0 0 0

0 (a− b) 0 0
0 0 (a− b) 0
0 0 0 (a− b)

 , A(P10) =


a − b

2 0 − b
2

− b
2 a − b

2 0
0 − b

2 a − b
2

− b
2 0 − b

2 a

 ,

(4.71)

A(P15) =


a 0 −b 0
0 (a− b) 0 0
−b 0 a 0
0 0 0 (a− b)

 , A(P17) =


a 0 −b 0
0 a 0 −b
−b 0 a 0
0 −b 0 a

 , (4.72)

where P1 = ( 1 2 3 4
1 2 3 4 ) is the identity permutation and P10 = ( 1 2 3 4

2 3 4 1 ), P15 = ( 1 2 3 4
3 2 1 4 ), P17 =

( 1 2 3 4
3 4 1 2 ). We note, that in general the matrices A(P ) are of the following form

A(P ) = a1− b

2
[
P + PT

]
= a1− b

2
[
P + P−1

]
, (4.73)

68



4.6 N-Particle Partition Function

N Factor per n-Cycle
1 (a− b)
2 (a− b)(a+ b)
3 (a− b)

(
a+ b

2

)2
4 a2(a− b)(a+ b)

5 (a− b)
[
−a2 +−a b2

(
b
2

)2]2

6 (a− b)
(
a− b

2

)2
(a+ b)

(
a+ b

2

)2
7 (a− b)

(
−a3 − a2 b

2 + ab2

2 −
b
2

3
)2

8 a2(a− b)(a+ b)
(
a2 − b2

2

)2

9 (a− b)
(
a+ b

2

)2 [
a3 − 3a

(
b
2

)2
+
(
b
2

)3]2

10 (a− b)(a+ b)
[
a2 − a b2 −

(
b
2

)2]2 [
a2 + a b2 −

(
b
2

)2]2

Table 4.1: Factor in the determinant det (A(P )) per n-cycle in the cycle decomposition of the
permutation P .

where P is the permutation matrix corresponding to permutation P . In the following we will
show that every n-cycle in the cycle expansion of P , yields one and the same expression in the
determinant of A. This means that det (A(P )) has a cycle decomposition, i.e. the determinant
decomposes into a product of cycle factors, each of which is a subdeterminant according to the
multiplication rule for determinants det (AB) = det (A) det (B), and which can therefore be
written as a determinant of a single-cycle matrix. Table 4.1 gives an overview of these factors
up to N = 10.

In order to understand why det (A(P )) decomposes in the above way, it is useful to recall
some of the properties of the symmetric group. First, we know from Section 2.1 that the group
of (N ×N) permutation matrices is a faithful representation of the symmetric group SN and
that the notion of conjugacy in SN carries over to the representation group of these matrices,
where it is called similarity (2.15). Thus, it follows that the representation group decomposes
into similarity classes as well, i.e. into classes of permutation matrices where all matrices in the
same similarity class are related by a similarity transformation (2.15). We know that similar
matrices have the same determinant, so we may conjecture that our matrices (4.73) “inherit”
the properties of the permutation matrices that they were constructed from. In order to verify
our conjecture, we must show that they, too, obey a similarity relation which is analogous to
(2.15).

In fact, this is straightforward to see: We simply apply the similarity relation for permutation
matrices (2.15) to (4.73) and obtain

P̃−1A(P )P̃ = a1− b

2

[
P̃−1PP̃ + P̃−1P−1P̃

]
(4.74)

= a1− b

2

[
P′ + P′−1

]
, (4.75)

where P̃ is the respective transformation matrix for which P̃−1PP̃ = P′. Thus our matrices
A(P ) obey the similarity relation of the permutation matrices. This, of course, follows from
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the fact that they are just a linear combination of the identity matrix, a permutation matrix
and its inverse.

Secondly, we observe that for every similarity class of the group of permutation matrices,
there is at least one matrix AD(PD) of the form (4.73) that is block diagonal:

AD(PD) =


B1

B2

. . .
Bn

 , (4.76)

where Bi denotes the ith sub-matrix and the empty places in (4.76) stand for sub-matrices
filled with zeros. These sub-matrices may have different sizes and every one corresponds to a
single cycle in the cycle decomposition of the permutation PD, so a cycle length of d gives rise
to a d× d sub-matrix in AD(PD).

As an example, forN = 4, take the matrices A(P4) and A(P8) corresponding to permutations
P4 = (1, 3, 4, 2) = (1)(234) for the former and P8 = (2, 1, 4, 3) = (12)(34) for the latter. Both
are of block diagonal form; and as the cycle structure of their respective permutations is
inequivalent, they belong to two different similarity classes:

A(P4) =


(a− b) 0 0 0

0 a − b
2 − b

2

0 − b
2 a − b

2

0 − b
2 − b

2 a

 , A(P8) =


a −b 0 0
−b a 0 0
0 0 a −b
0 0 −b a

 . (4.77)

Now, according to our first point, any matrix (4.73) is similar to a block diagonal matrix (4.76)
within the same equivalence class. Then, we can use the fact that the determinant of a block
diagonal matrix is the product of determinants of the constituent sub-matrices,

det AD(PD) = det (B1) det (B2) · · · det (Bn) , (4.78)

yielding the explanation for the cycle decomposition of det (A(P )): Since every matrix A(P )
within a certain similarity class, that is given by the cycle structure of the corresponding
permutation P , is equivalent to a block diagonal matrix within the same class, they share
the same determinant, which in turn, is given by the product of determinants of single-cycle
sub-matrices of A(P ).

Having explained the cycle decomposition of the determinant of the matrices (4.73), our
task is now to find an explicit expression for all single-cycle subdeterminants. To simplify
things, we may choose the simplest single-cycle n× n matrix, corresponding to a permutation
PCn that has just one single n-cycle in its cycle decomposition. We would like to call this
matrix a “modified tridiagonal matrix”, since it is a tridiagonal matrix, i.e. a matrix with
only entries in the main diagonal and the first diagonal below, as well as in the first diagonal
above, with two additional entries at a1,n and an,1, and denote its determinant by Mn. Note
that these determinants always appear in the context of the calculation of quantities related to
the harmonic oscillator in imaginary time within the path-integral formalism. The additional
elements in the lower left-hand and upper right-hand corners of (4.79) are due to the periodic
boundary condition τ = τ + h̄β in imaginary time [22, Chapter 2.11]. This is because the
partition function is defined as the path integral over all closed cycles in imaginary time, and
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these two additional entries are attributed to the fact that the cycle is closed. The determinant
Mn reads

Mn = det (An(P )) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a − b
2 0 . . . . . . − b

2

− b
2 a − b

2 0 . . . 0

0 − b
2 a − b

2

...
... 0 − b

2 a
. . .

...
...

. . . . . . − b
2

− b
2 0 . . . − b

2 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.79)

and corresponds to the permutation P (Cn) =
(

1 2 3 ... N−1 N
2 3 4 ... N 1

)
. Expanding it along the first

row, yields a difference equation for Mn:

Mn = a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a − b
2 0 . . . . . . 0

− b
2 a − b

2 0 . . . 0

0 − b
2 a − b

2

...
... 0 − b

2 a
. . .

...
...

. . . . . . − b
2

0 0 . . . − b
2 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Tn−1

−
(
− b

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− b
2 − b

2 0 . . . . . . 0
0 a − b

2 0 . . . 0

0 − b
2 a − b

2

...
... 0 − b

2 a
. . .

...
...

. . . . . . − b
2

− b
2 0 . . . − b

2 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Cn−1

+ (−1)n+1

(
− b

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− b
2 a − b

2 0 . . . 0

0 − b
2 a − b

2 0
...

... 0 − b
2 a − b

2 0
0 − b

2 a − b
2

. . . . . . − b
2
a

− b
2 0 . . . 0 − b

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Dn−1

. (4.80)

The first subdeterminant in (4.80) is the determinant of a tridiagonal matrix, which we will
denote in the following by Tn−1. It obeys the difference equation

Tn = aTn−1 −
(
b

2

)2

Tn−2 (4.81)

with the initial values

T1 = a , T2 = a2 − (b/2)2 . (4.82)

Going on, we expand the second subdeterminant – which we have named Cn−1 – along its first
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row and obtain

Cn−1 =
(
− b

2

)
Tn−2 −

(
− b

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 − b
2 0 · · · · · · 0

0 a − b
2 0

...
0 − b

2 a − b
2 0

0 − b
2 a

. . .
...

. . . . . . − b
2

− b
2 0 · · · − b

2 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
C̃n−2

. (4.83)

The resulting determinant, C̃n−2, reduces to C̃n−2 = (−1)n−1(−b/2)Cn−3, where we find that
Cn−3 obeys the trivial recursion Cn = Cn−1 with the initial condition C1 = (−b/2), which
leads to Cn = (−b/2)n. Thus, the second subdeterminant gives C̃n−2 = (−1)n−1(−b/2)n−2 =
−(b/2)n−2 , yielding the result

Cn−1 =
(
− b

2

)
Tn−2 + (−1)n−2

(
− b

2

)n−1
. (4.84)

The third subdeterminant Dn−1 in (4.80) is more involved. Expanding it along the first row,
we obtain

Dn−1 =
(
− b

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− b
2 a − b

2 0 · · · 0

0 − b
2 a − b

2

...
... 0 − b

2 a
. . .

...
... 0 − b

2

. . . − b
2

...
. . . . . . a

0 · · · · · · · · · 0 − b
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Dn−2

−a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a − b
2 0 · · · 0

0 − b
2 a − b

2

. . .
...

0 0 − b
2 a

. . . 0
... 0 − b

2

. . . − b
2

...
. . . . . . a

− b
2 0 · · · · · · − b

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
D̃n−2

+
(
− b

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 − b
2 − b

2 0 · · · 0

0 0 a − b
2

. . .
...

0 0 − b
2 a

. . . 0
... 0 − b

2

. . . − b
2

...
. . . . . . a

− b
2 0 · · · · · · − b

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸˜̃
Dn−2

, (4.85)

where again we find that Dn−2 obeys a simple recursion since all but one of the subdeterminants
in its Laplace expansion are zero, the only surviving one being Dn−3, so we have Dn−2 =
(−b/2)Dn−3, with the initial condition D1 = −b/2, which yields Dn−2 = (−b/2)n−2. The
next term in (4.85), i.e., D̃n−2, may be expanded along the first column, yielding D̃n−2 =
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(−1)n(b/2)Tn−3. Finally, the third subdeterminant ˜̃DN−2 may be expanded once along the

first column, and then again along the first row, giving ˜̃DN−2 = (−1)n+1(b2/4)Tn−4. Inserting
everything into (4.80), we find that the determinant Mn for the one n-cycle matrix can be
exclusively expressed in terms of only the determinant of the tridiagonal matrix Tn:

Mn = aTn−1 +
b

2

[
− b

2
Tn−2 −

(
b

2

)n−1

︸ ︷︷ ︸
Cn−1

]

+ (−1)n
b

2

[(
− b

2

)n−1

+ (−1)n−1a
b

2
Tn−3 + (−1)n

(
b

2

)3

Tn−4︸ ︷︷ ︸
Dn−1

] (4.86a)

= aTn−1 −
b2

4
Tn−2 − a

b2

4
Tn−3 +

(
b

2

)4

Tn−4 − 2
(
b

2

)n
. (4.86b)

Applying the difference equation (4.81) twice, even reduces (4.86b) to

Mn = Tn −
b2

4
Tn−2 − 2

(
b

2

)n
. (4.86c)

We must now find the solution to (4.81), with the initial values (4.82). Our method of pref-
erence for solving this linear difference equation with constant coefficients is the so-called
Z-transform (see Appendix A), which represents a discrete Laplace-transform. Just as linear
differential equations are most easily solved using Fourier or Laplace-transform, linear differ-
ence equations may be solved by employing the Z-transform. The idea contained within it
was previously known as “generating function method“ and today it is used extensively in
applied mathematics, digital signal processing and control theory. For our purposes, using
this method has two main advantages: First, the initial values of the difference equation to be
solved are automatically incorporated into the solution. Secondly, going to partial fractions in
the transformed equation, yields, upon performing the inverse transformation, its solution in
closed form.

We will first outline in general the method of solving a linear difference equation of order
k with constant coefficients with the help of the Z-transform, and then specialise to our case
of the equation for Tn. Let yn be the original sequence and let Y (z) = Z{yn} denote its Z-
transform (A.4). Also, let the sequence gn be given and let G(z) = Z{gn} be its Z-transform.
A general k-th order linear difference equation with constant coefficients is of the form

akyn+k + ak−1yn+k−1 + · · ·+ a2yn+2 + a1yn+1 + a0yn = gn , n = 0, 1, 2, . . . , (4.87)

where ak are real- or complex-valued coefficients that do not depend on n, and k ∈ R denotes
the number of initial conditions y0, y1, . . . yk−1. By applying the second translation theorem
(A.7) to (4.87), we obtain a general expression for yn in the z-domain:

akz
k
[
Y (z)− y0 − y1z

−1 − · · · − yk−1z
−(k−1)

]
+ · · ·+a1z [Y (z)− y0]+a0Y (z) = G(z) . (4.88)

With the abbreviation p(z) = akz
k + ak−1z

k−1 + · · · + a1z + a0, the solution of (4.88) in the
z-domain is given by

Y (z) =
G(z)
p(z)

+
1
p(z)

k−1∑
i=0

yi

k∑
j=i+1

ajz
j−i (4.89)
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and the desired result, the expression for yn in the n-domain, either as a sequence or in closed
form, is obtained, according to Section A.3, by performing the inverse Z-transform of (4.89).

In our case, keeping the notation introduced above, we have a linear, homogeneous difference
equation of the form

yn+2 + a1yn+1 + a0yn = 0 , (4.90)

with given initial values y1 and y2. The second translation theorem (A.7) yields in this case

Z{yn+2} = z2
[
Y (z)− y1z

−1 − y2z
−2
]

, (4.91)

Z{yn+1} = z
[
Y (z)− y1z

−1
]

, (4.92)
Z{yn} = Y (z) (4.93)

for the three occurrences of yi in (4.90). Inserting these into (4.90) gives us

z2
[
Y (z)− y1z

−1 − y2z
−2
]

+ a1z
[
Y (z)− y1z

−1
]

+ a0Y (z) = 0 , (4.94)

and solving for Y (z) yields

Y (z) =
(a1 + z)y1 + y2

z2 + a1z + a0
. (4.95)

We now go to partial fractions of (4.95), where z1 and z2 are the roots of the denominator of
(4.95),

Y (z) =
(a1 + z1)y1 + y2

(2z1 + a1)(z − z1)
+

(a1 + z2)y1 + y2

(2z2 + a1)(z − z2)
, (4.96)

and may now use the identity

Z−1

{
z

z − a

}
= Z−1

{ ∞∑
n=0

(a
z

)n}
= Z−1

{ ∞∑
n=0

an z−n

}
= an , (4.97)

which follows for instance from (A.14), the linearity of the Z-transform (A.5) yielding the
relation Z−1{aY (z)} = ayn, and the first translation theorem (A.6) to obtain the formula

Z−1

{
1
z

z

(z − zi)

}
= zn−1

i ; i = 1, 2 (4.98)

for transforming (4.96) back to the n-domain. Thus, we obtain the following solution to (4.90)
in closed form:

yn =
(a1 + z1)y1 + y2

(2z1 + a1)(z − z1)
zn−1

1 +
(a1 + z2)y1 + y2

(2z2 + a1)(z − z2)
zn−1

2 . (4.99)

Inserting y0 = T1 = a, y1 = T2 = a2 − (b2/4) and a1 = a and a0 = −(b2/4) yields the solution
to our difference equation (4.81) for Tn:

Tn =
1

2n+1

[(
a+
√
a2 − b2

)n+1 −
(
a−
√
a2 − b2

)n+1

√
a2 − b2

]
. (4.100)
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We may now insert (4.100) into the difference equation (4.86c) for Mn, obtaining

Mn =
1

2n+1

[(
a+
√
a2 − b2

)n+1 −
(
a−
√
a2 − b2

)n+1

√
a2 − b2

]

− b2

4
1

2n−1

[(
a+
√
a2 − b2

)n−1 −
(
a−
√
a2 − b2

)n−1

√
a2 − b2

]
− 2

(
b

2

)n
. (4.101)

This can be rewritten by using b2 =
(
a+
√
a2 − b2

)(
a−
√
a2 − b2

)
in the second term:

Mn =
1

2n+1

[(
a+
√
a2 − b2

)(
a+
√
a2 − b2

)n − (a−√a2 − b2
)(
a−
√
a2 − b2

)n
√
a2 − b2

−
(
a−
√
a2 − b2

)(
a+
√
a2 − b2

)n − (a+
√
a2 − b2

)(
a−
√
a2 − b2

)n
√
a2 − b2

− 4 bn
]

. (4.102)

Now, resolving the round brackets in front of every term in (4.102), six of the resulting terms
cancel and we are left with

Mn =
1

2n+1

[(
a+

√
a2 − b2

)n+1 +
(
a−

√
a2 − b2

)n+1 − 2 bn
]

. (4.103)

We may now reinsert the values of a and b, (4.70), and use the well known formulae (eϕ)n =(
sinh (ϕ) + cosh (ϕ)

)n = sinh (nϕ) + cosh (nϕ) = enϕ to obtain

Mn =
[

M ω

h̄ f(tb − ta)

]n 2
2n sinhn (h̄βω)

[cosh (nh̄βω)− 1] . (4.104)

Applying the half angle formula of the hyperbolic sine gives us

=
[

M ω

h̄ f(tb − ta)

]n 1
2n sinhn (h̄βω)

4 sinh2

(
nh̄βω

2

)
, (4.105)

which we rewrite, using the expression (3.83) for the canonical one-particle harmonic partition
function Z1(β):

Mn =
[

M ω

h̄ f(tb − ta)

]n 1
2n sinhn (h̄βω)

(
1

Z1(nβ)

)2

. (4.106)

Finally, we may rewrite (4.69) in cycle number notation, summing over the permutation’s cycle
number configuration (C1, . . . , CN ), where Cn denotes the number of cycles with length n, and
including a multiplicity factor M(C1, . . . , CN ), as in (3.98) in Section 3.4.3, in order to be able
to insert detA(CN ). We find that the factor (2N sinhN (x))−1 from above cancels the prefac-
tors ZN1 (β) and tanhN/2 (h̄βω/2), as well as the time-dependent one in square brackets there,
so we are left with (3.100), i.e. with the well-known expression for the N -particle harmonic
partition function, ZN (β), in cycle number notation. Thus, we have finally seen that equation
(4.63) above is fulfilled, and our expression for the N -particle time-dependent density matrix
is normalised, as expected.
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4.7 Time Dependent Reduced One-Particle Density Matrix in
N-Particle Ensemble

The main goal of the present section is to derive an explicit expression for the one-particle
reduced density matrix %(r)

1 (x1b, x1b′ ; tb) which we obtain by integrating out all of the coordinate
dependencies of the N -particle density matrix except for one:

%
(r)
1 (x1b, x1b′ ; tb) =

∫ ∞
−∞

dN−1xb %N (x1b, x2b, . . . , xNb;x1b′ , x2b, . . . , xNb; tb) . (4.107)

Inserting the expression for the N -particle density matrix (4.62) yields at first

%
(r)
1 (x1b, x1b′ ; tb) =

ZN1 (β)
ZN (β)

1
N !

∑
P

εp(P )

×
∫ ∞
−∞

dN−1xb %1(xP (1)b, x1b′ ; tb) · · · %1(xP (N)b, xNb; tb) . (4.108)

We recall that the main problem with integrating out permuted coordinates of one-particle
density matrices (4.18) was the presence of coordinate cross terms of the form xnb xP (n)b. In
order to carry out these integrations, the integrals must be rearranged for every permutation,
which is not feasible for the general case of N particles. Moreover, we cannot expect to integrate
closed cycles by simply rearranging integrals because of the circular coordinate dependency of
said cross terms. In the preceding subsection, we circumvented this problem by doing an N -
dimensional Gaussian integral, at the cost of having to find an expression for the determinant
of the permutation-dependent matrices A(P ). We expect, from the insight gained previously,
that the necessary N − 1 integrations of the remaining particle coordinates are most easily
done with the N -particle density matrix in some cycle reduced form, i.e. we want to integrate
products of one-particle density matrices, where the coordinates are permuted according to
one full cycle of the current permutation.

The additional intricacy in calculating the one-particle reduced density matrix is that now,
for every permutation P , the cycle containing the remaining coordinates x1b and x1b′ is bro-
ken, a situation that we encountered before for the reduced density matrix in a two-particle
ensemble, so we have to find a way to integrate arbitrary broken cycles. This fact solves the
problem mentioned above, since for broken cycles the circular coordinate dependency is gone
and the order of integration is straightforward, as for all coordinate cross terms within one
cycle, the coordinates are now in ascending order.

Since it gives us a hint at how to proceed in this matter, we will start off by recalling the
recursion relation (3.113) for the canonical partition function that was derieved in Section
3.4.3. We note that in expression (4.108) for the reduced one-particle density matrix, in every
permutation, one cycle, namely the one containing the coordinates x1b and x1b′ is broken and
that we arrive at an expression similar to (3.113) for the reduced one-particle density matrix,
by pulling out the broken cycle of every permutation. In analogy to (3.94) in Section 3.4.3, we
define the function

h(q)
n (x1b, x1b′ ;β, t) =

∫ ∞
−∞

dx2b · · ·
∫ ∞
−∞

dxnb %1(xP (1)b, x1b; t)

× %1(xP (2)b, x2b; t) · · · %1(xP (N)b, xNb; t) , (4.109)
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for the contribution of such a broken n-cycle to the reduced density matrix, where the super-
script label q indicates that it is the quenched version of (3.94). Here we see that for t = 0
and x1b = x1b′ , we have

h(q)
n (β) =

∫ ∞
−∞

dx1b h
(q)
n (x1b, x1b;β, t) = hn(β) = Z1(nβ) , (4.110)

which represents the corresponding contribution of a normal, i.e. a closed cycle to the canonical
partition function, in accordance with (3.96). With the above considerations and definitions,
we may write down the following schema for the reduced one-particle density matrix:

%
(r)
1 (x1b, x1b′ ; tb) =

ZN1 (β)
ZN (β)

1
N !

{
h

(q)
1 (x1b, x1b′ ;β, tb)︸ ︷︷ ︸

Broken one-cycle

ZN−1(β)

+ ε h
(q)
2 (x1b, x1b′ ;β, tb)︸ ︷︷ ︸

Broken 2-cycle

ZN−2(β)

...
...

+ εN−1 h
(q)
N−1(x1b, x1b′ ;β, tb)︸ ︷︷ ︸
Broken (N − 1)-cycle

Z1(β)

+ εN h
(q)
N (x1b, x1b′ ;β, tb)︸ ︷︷ ︸

Broken N -cycle

Z0(β)

}
. (4.111)

Now, the kth line in (4.111) corresponds to all those permutation in the sum of the original
N -particle density matrix in (4.108), where the cycle that contains the coordinate x1b is a
k-cycle. The factor on the right in the kth line of (4.111) is then a multiple integral over all
remaining closed cycles in the original permutation, each of which reduces to an n-particle
partition function Zn(β), where n = N − k. When pulling out the contribution of a broken
n-cycle in the above way, we must also pull out a factor of εn+1. This is quite easy to see:
A two-cycle corresponds to a single transposition and thus comes with one single factor of ε.
Then, a three-cycle, which corresponds to two transpositions, comes with a factor of ε2, and
so on. Thus, we have to pull out the above factor of εn+1 together with every n-cycle. Writing
down (4.111) in a more compact way then yields

%
(r)
1 (x1b, x1b′ ; tb) =

1
N

1
ZN (β)

N∑
n=1

εn+1Zn1 (β) h(q)
n (x1b, x1b′ ;β, tb) ZN−n(β) . (4.112)

In order to evaluate (4.112) further we must carry out the multiple integrals over broken cycles
(4.109), i.e. we must integrate the product of one-particle density matrices with coordinates
permuted according to a one broken-cycle permutation. We already have the right tool at hand
to do this, since we obtained a master integral for integrating the broken two-cycle in Section
4.4, which is easily generalized to the case of an n-cycle. In order to see that this works, let us
first calculate the master integral for a three-cycle. This is done along the same lines as in the
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two-particle case in equations (4.40)–(4.49), and we obtain

Z1(β1)Z1(β2)Z1(β3)
∫ ∞
−∞

dx2b

∫ ∞
−∞

dx3b %1(x1b, x2b;β1, tb)%1(x2b, x3b;β2, tb)%1(x3b, x1b′ ;β3, tb)

= Z1(β1 + β2 + β3) %1 (x1b, x1b′ ; (β1 + β2 + β3), tb) . (4.113)

Comparing (4.113) with the two-particle master integral (4.49), we see that everything is
additive in β, and generalising to an n-cycle, and setting all βs equal, i.e. β = β1 = β2 = · · · =
βn, yields the master integral for arbitrary broken cycles:

Zn1 (β)
∫ ∞
−∞

dx2b · · ·
∫ ∞
−∞

dxnb %1(x1b, x2b;β, tb)%1(x2b, x3b; tb, β, tb) · · · %1(xnb, x1b′ ;β, tb)

= Z1(nβ) %1(x1b, x1b′ ;nβ, tb) . (4.114)

Finally, using (4.114) with (4.112) gives us the expression for the one-particle reduced density
matrix in an N -particle ensemble, as the following recursion relation:

%
(r)
1 (x1b, x1b′ ; tb) =

1
N

1
ZN (β)

N∑
n=1

εn+1%1(x1b, x1b′ ;nβ, tb) Z1(nβ) ZN−n(β) . (4.115)

In order to check that (4.115) is properly normalised, we integrate out the remaining coordinate
and see, that indeed, the right-hand side evaluates to one, since the one-particle density matrix
%1(x1b, x1b′ ;nβ, tb) is normalised. What remains is the canonical recursion relation (3.113) for
the partition function which cancels the normalisation factor Z−1

N (β).
We are now in the position to calculate the reduced one-particle width in an N -particle

ensemble. It is given as the thermodynamic expectation value of x2
1b, i.e. as the trace of the

reduced density matrix (4.115) with the squared particle coordinate, namely

σ
(r)2
1 (tb, β) =

〈
x2

1b

〉
=
∫ ∞
−∞

x2
1b %

(r)
1 (x1b, x1b;β; tb) dx1b . (4.116)

This is straightforward to calculate using only results from the previous sections. We obtain

σ
(r)2
1 (tb, β) =

1
N

1
ZN (β)

N∑
n=1

εn+1σ2
1(tb, nβ) Z1(nβ) ZN−n(β) , (4.117)

where σ2
1(tb, nβ) is the time-dependent one-particle width (4.22) at an imaginary time that is

scaled by the cycle length n. Pulling out the time-dependence factor f(tb − ta), we see that,
as in the one-particle case in (4.23), the reduced one-particle width (4.117) factorises into a
product of the time-dependence factor above and the thermodynamic one-particle width σ2

1(β),
i.e.

σ
(r)2
1 (tb, β) = f(tb − ta) σ2

1(β) . (4.118)

The two plots in Figure 4.4 show the thermal behaviour of (4.117) at t = 0 for different particle
numbers together with the one-particle equilibrium width σ2

1(T ) to which (4.117) reduces for
N = 1, and for the case of bosons on the left and fermions on the right.
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T

Ñ

2 M Ω

Σ1
HrL2

H0,TL

T

Ñ

2 M Ω
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2 M Ω

3 Ñ

2 M Ω

4 Ñ

2 M Ω

Σ1
HrL2

H0,TL

Figure 4.4: Plot of the reduced one-particle width σ
(r)2
1 (0, β) at t = 0 for bosons (left) and

fermions (right) for particle numbers N = 1 (blue), N = 2 (purple), N = 3 (brown),
and N = 4 (green), together with their asymptotes (4.142) (dashed), indicating the
law of Dulong-Petit.

For bosons, just as in fig. 4.2, (4.117) tends to the constant value of h̄/(2Mω) for T −→ 0, and
approaches a linear asymptote in the high-temperature limit. At fixed temperature, the reduced
one-particle width becomes smaller for increasing particle numbers, which is the expected
behaviour for bosonic particles, as they can all occupy a common ground state. Note that we
are assuming our system to be an ideal gas, i.e. we are treating the particles as point-like, so
they do not take up any volume.

For fermions, (4.117) shows the same asymptotic behaviour, the only difference being that at
fixed temperature, the reduced one-particle width is larger for increasing particle numbers. We
also see, that in an N -particle ensemble, σ(r)2

(0, β) starts off at a ground state width that scales
with N . This in turn is the behaviour that we expect from an ideal gas of fermionic particles,
which is subject to the Pauli principle and thus features a non-zero degeneracy pressure even
at T = 0.

Note that the curves in the right plot of Fig. 4.4 oscillate strongly for low temperatures.
This seems to be a numerical problem, i.e. an artefact of finite numerical resolution which
indicates that a different numerical approach is necessary in the fermionic case. Here, we
include the fermionic plot for the sake of completeness. The above curves were obtained
by directly programming the recursions (3.113) and (4.117) in Mathematica, which worked
reasonably well only for very small particle numbers up to approximately N = 6.

For both plots in Fig. 4.2, the linear asymptotes for different particle numbers seem to have
the same slope, but different y-intercepts and we naturally expect the y-intercepts of the graph
of (4.117) to depend on the particle number N . The difference between bosonic and fermionic
gases seems to manifest itself in the sign, where the asymptotes for bosons have negative and
the asymptotes for fermions positive y-intercepts.

In the following, we will derive the expression for these high-temperature asymptotes. Look-
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ing at equation (4.117), it is clear that we need to know the asymptotic behaviour of the
N -particle partition function in order to evaluate the reduced one-particle width in this limit.
To that end, let us recall the canonical partition function in cycle reduced form (3.98), and,
for a start, let us take the simplest term in the sum of (3.98), namely the one where n = 1,
C1 = N , and Cn = 0 for n > 1, for a permutation that consists only of one-cycles. In the limit
T →∞ we may expand the hyperbolic sine in the expression for Z1(β) in equation (3.83) and
neglect all higher order terms in T , obtaining

Z1(β) T→∞−−−−→
(
Mω

h̄

)(
kBT

Mω2

)
. (4.119)

Using this with (3.98) for the simple permutation above, we see that it contributes a term that
is proportional to (Mω

h̄ )N ( kBT
Mω2 )N to ZN (β). In fact, because of the condition

∑
nCnn = N

that is imposed on the sum over cycle configurations in (3.98), the product over all cycle
numbers of [Z1(nβ)]Cn yields the same asymptotic contribution to ZN (β) (up to a factor) for
every permutation. Thus, we have found that asymptotically, i.e. for T → ∞, β → 0 and to
leading order in T , the N -particle partition function is given by

ZN (β) =
1
N !

ZN1 (β) =
1
N !

(
Mω

h̄

)N ( kBT

Mω2

)N
. (4.120)

We are also interested in the next-to-leading order of the asymptotic expression for ZN (β),
since we expect its prefactor to be important for the y-intercepts of the linear asymptotes of
(4.117). Thus, our ansatz for ZN (β) is:

ZN (β) ≈ 1
N !

(
Mω

h̄

)N ( kBT

Mω2

)N
+AN

(
Mω

h̄

)N−1( kBT

Mω2

)N−1

. (4.121)

We plan to insert this expression into the recursion relation for (3.113) ZN (β), and by com-
paring coefficients, obtain a corresponding recursion for AN . Solving this recursion and using
our ansatz (4.121) with the time-independent version of (4.117) should then yield the prefactor
mentioned above. Putting (4.121) into (3.113) we get

1
N !

(
Mω

h̄

)N ( kBT

Mω2

)N
+AN

(
Mω

h̄

)N−1( kBT

Mω2

)N−1

=
1
N

N∑
n=1

[
1
n

εn+1

(N − n)!

(
Mω

h̄

)N−n+1( kBT

Mω2

)N−n+1

+ εn+1AN−n
n

(
Mω

h̄

)N−n( kBT

Mω2

)N−n]
,

(4.122)

and comparing powers of T on both sides, it is clear that on the right-hand side of (4.122) the
first term contributes only for n = 1 and n = 2, and the second term only for n = 1. Thus we
obtain

1
N !

(
Mω

h̄

)N ( kBT

Mω2

)N
+AN

(
Mω

h̄

)N−1( kBT

Mω2

)N−1

=
ε2

N !

(
Mω

h̄

)N ( kBT

Mω2

)N
+
ε3

2
(N − 1)
N !

(
Mω

h̄

)N−1( kBT

Mω2

)N−1

+ ε2
AN−1

N

(
Mω

h̄

)N−1( kBT

Mω2

)N−1

, (4.123)
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which reduces to the following recursion for AN :

AN −
AN−1

N
= ±1

2
(N − 1)
N !

, (4.124)

where the plus sign of the right-hand side of (4.124) is for bosons and the minus sign for
fermions. The initial condition for AN must be A0 = A1 = 0, in order for our ansatz (4.121) to
be consistent with the values of Z0(β) = 1 and the asymptote (4.119) for Z1(β). The recursion
above may be solved by employing the generating function method, which can be thought of as
the precursor of the Z-Transform from Appendix A. The idea contained within this method
is to extend the given recursion to a formal power series, whose coefficients are those of the
recursion, thus “transforming” it into a holomorphic function.

First, for typographical and aesthetic reasons, we rename N to n. Now we will define the
generating function of An to be

f(z) =
∞∑
n=1

Anz
n . (4.125)

Multiplying (4.124) with zn and formally summing from n = 1 to n =∞ yields

∞∑
n=1

Anz
n −

∞∑
n=1

An−1

n
zn = ±1

2

∞∑
n=1

(n− 1)
n!

zn . (4.126)

We this rewrite in the following form, using an integration in the second sum of (4.126) to get
rid of the factor 1/n there:

f(z)−
∞∑
n=1

An−1

∫ z

0
z′n−1 dz′ = ±1

2

[
z
∞∑
n=1

zn−1

(n− 1)!
−
∞∑
n=1

zn

n!

]
. (4.127)

We swap sum and integral in the second term on the left-hand side of (4.127), and pull out
the term with n = 0 from the sum, noting that it vanishes because of the initial condition
A0 = A1 = 0. In the first sum on the right-hand side we adjust the summation index and in
the last sum we may add and subtract one, to turn both sums into exponentials:

f(z)−
∫ z

0

(
A0z

′0 +
∞∑
n=1

Anz
′n

)
dz′ = ±1

2

[
z

∞∑
n=0

zn

n!
−

( ∞∑
n=0

zn

n!
− 1

)]
. (4.128)

Thus we are left with an integral equation for f(z)

f(z)−
∫ z

0
f(z′) dz′ = ±1

2

[
zez − ez + 1

]
. (4.129)

Differentiating (4.129) removes the integral and yields a linear inhomogeneous first-order con-
stant coefficient differential equation for f(z) with:

f ′(z)− f(z) = ±1
2
z ez . (4.130)

This may be solved by the method of variation of parameters.
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Such an inhomogeneous first-order linear differential equation with constant coefficients is
of the form

y′(z) + p y(z) = q(z) (4.131)

and has the general solution in terms of a constant c and a variable parameter c(z)

y(z) = c e−pz + c(z) e−pz , (4.132)

where c = y(z0) and c(z) =
∫ z
z0
q(z′) epz

′
dz′. In our case, we have p = −1, q(z) = ±1

2 z ez and
because of A1 = 0 and the initial condition f(0) = 0, the general solution of (4.130) consists
only of the second term of (4.132). It is

f(z) = ±1
4
z2 ez . (4.133)

Now, transforming (4.133) back to the n-domain is straightforward: We must rewrite every
term as a sum

∑∞
n=1 cnz

n and simply read off the coefficients cn:

∞∑
n=1

Anz
n = ±1

4
z2
∞∑
n=0

zn

n!
= ±1

4

[z2

0!
+
z3

1!
+
z4

2!
+ · · ·

]
(4.134)

and because of 1/(−1)! = 0 we may rewrite the right-hand side of (4.134) as

∞∑
n=1

Anz
n = ±1

4

[ z1

(−1)!
+
z2

0!
+
z3

1!
+
z4

2!
+ · · ·

]
= ±

∞∑
n=1

1
4

zn

(n− 2)!
, (4.135)

to obtain

AN = ±1
4

1
(N − 2)!

, (4.136)

where we have renamed the index variable n back to N again.
We are now in the position to insert our ansatz (4.121) for ZN (β) into the recursion relation

(4.117) for the reduced one-particle width. Using

Z1(nβ) ≈ 1
n

(
Mω

h̄

)(
kBT

Mω2

)
, σ2

1(nβ) ≈ 1
n

(
kBT

Mω2

)
(4.137)

we have

σ
(r)2
1 (β) ≈

(
kBT
Mω2

) (
Mω
h̄

) (
kBT
Mω2

)[
1

(N−1)!

(
Mω
h̄

kBT
Mω2

)N−1
± (N−1)(N−2)

4(N−1)!

(
Mω
h̄

kBT
Mω2

)N−2
]

N

[
1
N !

(
Mω
h̄

kBT
Mω2

)N
± N(N−1)

4N !

(
Mω
h̄

kBT
Mω2

)N−1
]

+
1
2

(
kBT
Mω2

)
1
2

(
Mω
h̄

) (
kBT
Mω2

)
1

(N−2)!

(
Mω
h̄

kBT
Mω2

)N−2

N

[
1
N !

(
Mω
h̄

kBT
Mω2

)N
± N(N−1)

4N !

(
Mω
h̄

kBT
Mω2

)N−1
] . (4.138)
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In a first step, we may pull out equal factors of 1
(N−1)!(

Mω
h̄ )N−1( kBT

Mω2 )N−1 from the numerator
and denominator on the right-hand side of (4.138), which cancel. What remains is

σ
(r)2
1 (β) ≈

(
Mω
h̄

) (
kBT
Mω2

)2
± (N−1)(N−2)±(N−1)

4

(
kBT
Mω2

)
[(

Mω
h̄

) (
kBT
Mω2

)
± N(N−1)

4

] . (4.139)

A polynomial long division of the right-hand side of (4.139) yields

ax2 ± (N−1)2 x
4

ax± N(N−1)
4

= x∓ (N − 1)
4a

+O(x−1) (4.140)

with the abbreviations
a =

Mω

h̄
, x =

kBT

Mω2
. (4.141)

Using this result, we obtain the following expression for the asymptotic behaviour of the reduced
one-particle width:

σ
(r)2
1 (β) T→∞−−−−→

(
kBT

Mω2

)
∓ (N − 1)

4

(
h̄

Mω

)
, (4.142)

where again, the upper sign is for bosons and the lower sign is for fermions.

4.8 Comparison with Grand Canonical Ensemble

In the grand canonical ensemble, the grand canonical density operator is given by (3.10) with
the Hamiltonian in coordinate representation Ĥ = Ĥω = − h̄2

2M
d2

dx2 + M
2 ω

2x2 where ω is the
equilibrium trap frequency. A quench in trap frequency (4.2) is then described by the time
evolution with the harmonic oscillator Hamiltonian (4.8) with trap frequency Ω, i.e.

%̂GK(tb) =
1
Z(β)

e
− i
h̄
ĤΩ(tb−ta)

e−β(Ĥω−µN̂e
i
h̄
ĤΩ(tb−ta)

. (4.143)

Now, going to the coordinate base matrix representation by sandwiching (4.143) between posi-
tion eigenstates is not as straightforward as in (4.7), since in the grand canonical ensemble the
particle number is not fixed but left free to fluctuate. Consequently, we must use multiparticle
states with a variable or unknown number of particles and these are precisely the continuous
Fock space position eigenstates (2.82) that were introduced in Section 2.3.1. Now, sandwiching
the time-dependent density operator (4.143) between these multi-particle states (2.82) yields

%GK(x1b, . . . ;x1b′ , . . . ;β, tb) =

1
Z(β)

∞∑
N=1

∞∑
N ′=1

(ε)〈N ;x1b, . . . , xNb| e
− i
h̄
ĤΩ(tb−ta)

e−β(Ĥω−µN̂)e
i
h̄
ĤΩ(tb−ta) |N ′;x1b′ , . . . , xNb′〉(ε) .

(4.144)

As, according to (2.53), two many-particle states (2.79) in (2.82) with different particle numbers
N and N ′ are orthogonal, and as there are no operators in the two Hamiltonians in (4.143)
that change particle numbers, the two sums in (4.144) reduce to one. We may now insert the
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Chapter 4 Quench Dynamics of Harmonically Trapped Ideal Quantum Gases

Fock space completeness relation (2.80) twice, between time evolution operator and density
operator in (4.144), once with x1a, . . . and once with x1a′ , . . . to obtain

%GK(x1b, . . . ;x1b′ , . . . ;β, tb) =

1
Z(β)

∞∑
N=1

∫
dx1a · · · dxNa

∫
dx1a′ · · · dxNa′ (ε)〈N ;x1b, . . . , xNb| e

− i
h̄
ĤΩ(tb−ta) |N ;x1a, . . . , xNa〉(ε)

(ε)〈N ;x1a, . . . , xNa| e−β(Ĥω−µN̂) |N ;x1a′ , . . . , xNa′〉(ε)

(ε)〈N ;x1a′ , . . . , xNa′ | e
i
h̄
ĤΩ(tb−ta) |N ′;x1b, . . . , xNb〉(ε) . (4.145)

In the centre amplitude in (4.145), we may factorise the operator exponential exp {−β(Ĥω − µN̂)},
since Ĥω and N̂ commute and let exp {βµN̂} act on the state to the right. We see that the
remaining three amplitudes are the same ones as in our ansatz for the canonical N -particle
time-dependent density matrix (4.52). The only differences between the canonical ansatz (4.52)
and the grand canonical analogue in (4.145) are, that in the latter the normalisation factor
is the inverse of the grand canonical partition function Z(β), instead of the canonical one,
and that in (4.145) we have a sum of (4.52) over all possible particle numbers, weighted with
exp {−βµN}, which is the unnormalised probability for a state with particle number N to
occur. Thus, the time-dependent grand canonical density matrix reads:

%GK(x1b, . . . ;x1b′ , . . . ;β, tb) =
1
Z(β)

∞∑
N=1

eβµN %N (x1b, . . . , xNb;x1b′ , . . . , xNb′ ; tb) ZN (β) .

(4.146)
Setting xnb = xnb′ for all n and subsequently integrating out all coordinates in (4.146) should
then yield the grand canonical partition function, however, there remains the question of how
to define this integration on the states (2.82). A sensible choice is to take the infinite direct
sum of tensor products between integral operators over xnb for all n, that is to define the
integration operator

Î =
∫ ∞
−∞

dx1b ⊕
(∫ ∞
−∞

dx1b

∫ ∞
−∞

dx2b

)
⊕
(∫ ∞
−∞

dx1b

∫ ∞
−∞

dx2b

∫ ∞
−∞

dx3b

)
⊕ · · · . (4.147)

Applying Î to (4.146) then yields the well-known expression (3.101) for the grand canonical
partition function in terms of canonical partition functions:

Z(β) =
∞∑
N=0

ZN (β) eβµN . (4.148)

Equally, we obtain an expression for the reduced grand canonical time-dependent density
matrix by applying to (4.146) an integration operator, that acts on the coordinates x2b, . . . and
leaves out x1b, x1b′ from integration. In analogy to (4.147), we define the reduced integration
operator

Î(r) = 1̂⊕
∫ ∞
−∞

dx2b⊕
(∫ ∞
−∞

dx2b

∫ ∞
−∞

dx3b

)
⊕
(∫ ∞
−∞

dx2b

∫ ∞
−∞

dx3b

∫ ∞
−∞

dx4b

)
⊕· · · , (4.149)
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so that applying Î(r) to (4.146) yields

%
(r)
GK(x1b, x1b′ ;β, tb) =

1
Z(β)

∞∑
N=1

eβµN %
(r)
1,N (x1b, x1b′ ; tb) ZN (β) . (4.150)

Here we have given the reduced canonical density matrix in (4.150) an extra index N , to
indicate that it is the reduced canonical density matrix in an N -particle ensemble. We may
simplify (4.150) further by inserting the right side of (4.115) for the reduced canonical density
matrix, where we find that the canonical partition function ZN (β) there cancels and we are
left with

%
(r)
GK(x1b, x1b′ ;β, tb) =

1
Z(β)

∞∑
N=1

eβµN

N

N∑
k=1

εk+1%1(x1b, x1b′ ; kβ, tb) Z1(kβ) ZN−k(β) . (4.151)

In order to compare our result (4.151) to grand-canonical expressions we note, that we have
calculated the density matrix, i.e. the quantum mechanical expectation value for the frequency-
quenched density operator (4.143), which is normalised to unity. In contrast, the reduced
grand-canonical one-particle particle density is normalised to the particle number N , as we
will see in the following.

For an introduction to the grand-canonical description of local quantities, such as density
matrices and propagators, see, e.g. [29, Section 2.3], and for a more complete treatment we refer
the reader to the thesis [30, Chapter 2]. The single-particle imaginary-time grand-canonical
propagator G(x1, τ1;x2, τ2), which is here taken to be in one dimension, represents the prob-
ability for a single particle created at point x2 in imaginary time τ2 to go to point x1 at
imaginary time τ1, where it is annihilated. It is given as the thermal expectation value of the
time-ordered product T̂

[
â(x1, τ1)â†(x2, τ2)

]
of the annihilation and creation operators, i.e. as

the trace
G(x1, τ1;x2, τ2) = Tr

{
%̂GK T̂

[
â(x1, τ1)â†(x2, τ2)

]}
. (4.152)

For bosons, the above expression (4.152) may be evaluated via its spectral representation in
Matsubara space. The lengthy calculation yields

G(x1, τ1;x2, τ2) =
∞∑

n=−∞
Θ(τ2 − τ1 + nh̄β) (x2, τ2 − τ1 + nh̄β | x1, 0)

∣∣∣
Ek→Ek−µ

, (4.153)

so the grand-canonical propagator is given in terms of an imaginary-time evolution amplitude
(3.17). From this we obtain the corresponding bosonic grand-canonical particle density at
point x1 by taking the diagonal elements of (4.153) in the limit τ2 ↗ τ1, which leaves us with

nGK(x1, β) = lim
τ2↗τ1

G(x1, τ1;x2, τ2) =
∞∑
n=1

(x1, nh̄β | x1, 0) enβµ . (4.154)

We obtain the time-dependent canonical version of (4.154) by multiplying our result for the
canonical one-particle density matrix by N :

n(x1b, β, tb) = N %1,N (x1b, x1b;β, tb) . (4.155)
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Inserting (4.155) into (4.151) cancels the factor 1/N and yields the time-dependent grand-
canonical particle density

nGK(x1b, β, tb) =
1
Z(β)

∞∑
N=1

eβµN
N∑
k=1

εk+1%1(x1b, x1b; kβ, tb) Z1(kβ) ZN−k(β) . (4.156)

The two sums in (4.156) are a Cauchy product of the form
∑∞

n=0

∑n
k=0 akbn−k = (

∑∞
n=0 an)(

∑∞
k=0 bk)

and by setting N ′ = N − k we obtain

nGK(x1b, β, tb) =
1
Z(β)

( ∞∑
N ′=1

eβµN
′
ZN ′(β)

) ∞∑
k=1

εk+1 eβµk %1(x1b, x1b; kβ, tb) Z1(kβ) , (4.157)

where in the first sum in round braces we recognise the expression for the grand canonical
partition function (4.148). Thus, we are left with

nGK(x1b, β, tb) =
∞∑
n=1

εn+1 eβµn %1(x1b, x1b;nβ, tb) Z1(nβ) , (4.158)

which reduces to the above expression (4.154) for the grand canonical density by taking (4.158)
at t = 0 and using (4.18) and (4.56) to write the combination of canonical one-particle density
matrix and canonical one-particle partition function above as a one-particle imaginary time
amplitude:

nGK(x1b, β) =
∞∑
n=1

εn+1 (x1b, nβ | x1b, 0) enβµ , (4.159)

where our result is valid both for bosons and fermions.
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Chapter 5

Summary

In this thesis, we investigated the effect of a quench, i.e. of a sudden change, of trap frequency
on harmonically trapped ideal quantum gases in the canonical ensemble.

The introductory Chapter 1 was devoted to ideal quantum gases in equilibrium and non-
equilibrium situations. Here, we first gave a short historical introduction to Bose-Einstein
condensation, presenting a simple argument for the occurrence of this purely quantum statisti-
cal phase transition. We then briefly reviewed the experimental challenges of BEC research, e.g.
the metastability of the BEC regime and the techniques of both laser cooling and evaporative
cooling that finally led to the realisation of the first condensates in 1995.

We then passed on to non-equilibrium phenomena in Section 1.2, noting, that the notion
of equilibrium state is only an approximation and that in reality, all systems are constantly
in a non-equilibrium state. We mentioned two general classes of experimental situations and
their mathematical description. The first is perturbation theory, where the Hamiltonian of
the system can be split into a time-independent and a perturbation part, and the second is
that of a quench, i.e. a sudden change in a parameter of the Hamiltonian. As an experimental
motivation, then gave two important examples of the latter in the following two subsections:
time-of-flight imaging, where the trapping potential is quenched to zero and where subsequently
images of the expanding atomic cloud are taken, and secondly the observation of collapse and
revival of the coherent matter-wave interference pattern in optical lattices, following a quench
of the optical lattice potential. At the end of Chapter 1, we then presented a short overview
of this thesis.

In Chapter 2, we laid the foundations for the canonical description of ideal quantum gases.
We began by introducing permutations and the symmetric group in Section 2.1, as well as
permutation matrices, which are faithful representations of the symmetric group. We then
defined the notion of permutation cycles, the importance of which lie in the fact that every
permutation has a unique decomposition in terms of cycles, i.e. a unique cycle structure. We
introduced the equivalence relation of conjugacy in the symmetric group, which partitions it
into conjugacy classes, where the conjugacy classes correspond to the cycle structure of group
members. We found that the notion of conjugacy carries over to the representation group
of permutation matrices, where it is called similarity. In Section 2.2 we then reviewed the
quantum mechanics of a many-particle system, introducing the notion of distinguishable and
identical particles. From the defining equation for the states of systems of identical particles
(2.20), we found that these states must be invariant under the action of the symmetric group in
the form of the permutation operator (2.37), which therefore commutes with every observable
of the system. We then introduced the continuous and the discrete Hilbert space of (anti-
)symmetrised particles and the Fock space of variable particle numbers.

Chapter 3 then deals with the canonical and grand-canonical description of ideal quantum
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gases. In Section 3.1 we first gave a brief introduction to statistical mechanics, introducing
the micro-canonical, canonical, and grand-canonical ensembles. In the following sections, we
then introduced the one-particle time evolution amplitude as the expectation value of the time-
evolution operator and its properties, as well as the notion of Wick rotation. We then turned
to the path integral representation of quantum mechanics, motivating the Van-Vleck-Pauli-
Morette formula (3.55), which we use to derive the one dimensional time evolution amplitude
of the harmonic oscillator and the single-particle, one-dimensional density matrix in imaginary
time (3.82), as well as the explicit expression for the one-particle partition function (3.83).
From this we calculated the many-particle partition function in cycle reduced form (3.100),
and in the form of a recursion (3.113).

In Chapter 4 we presented our own main results. Starting with the single-particle density
operator of the harmonic oscillator in imaginary time (3.82), we calculated the time-evolution
with the real time Hamiltonian of the harmonic oscillator (4.8), thus separating the equilibrium
dynamics from the non-equilibrium dynamics in parameter space. After taking the expecta-
tion value in coordinate representation and by inserting corresponding completeness relations
between the initial density operator and the time-evolution operators, we obtained the time-
dependent one-particle density matrix as the normalised product (4.10) of three time-evolution
amplitudes. The subsequent integration (4.15) then yielded the explicit expression (4.18) for
the time-dependent one-particle density matrix. This was found to have the same form as the
equilibrium density matrix (3.82) up to the function (4.19), which appears in the prefactor
and in the exponential of (4.18) and which carries the time-dependence. The time-dependent
oscillator width (4.22) was found to factorise into the well-known thermodynamic width, which
we display in Fig. 4.2, and the above time-dependence function. For a quench at time t = 0,
this function can be brought into the form (4.24), where the two-fold final frequency Ω appears
in the argument of a cosine. Its oscillatory behaviour is depicted in the two plots of Fig. 4.3.
Thus, the time-dependent single-particle width oscillates in time with twice the frequency of
the final harmonic potential without damping.

In Section 4.2, we extended our discussion to the case of a two-particle system. We used
the same ansatz as for the one-particle case, except that the density matrix (4.25) now con-
sisted of many-particle time-evolution amplitudes (4.26)–(4.28) in terms of the two different
permutations (12) and (21). By rearranging the one-particle amplitudes and using the relation
(4.31), we obtained the expression (4.32) for the two-particle time-dependent density matrix in
terms of one-particle ones. In Section 4.3 we then verified that the two-particle partition func-
tion follows from the continuous trace of (4.32), and in Section 4.4 we calculated the reduced
one-particle density matrix in a two-particle ensemble (4.50) by performing a partial trace of
(4.32), as well as the time-dependent two-particle width (4.51)

In Section 4.5, the above steps were repeated for the general case of an N -particle ensemble.
The ansatz (4.52) for the N -particle time-dependent density matrix in terms of a product of
three (anti-) symmetrised time-evolution amplitudes, normalised by the N -particle partition
function, led to the expression (4.62) for the density matrix of N particles in terms of a product
of one-particle ones.

In the following Section 4.6, we calculated the N -particle partition function from the trace
(4.64) of the N -particle time-evolution amplitude. In contrast to the two-particle case, we now
had to integrate a sum of N ! products of permutation dependent one-particle time-evolution
amplitudes, which had the explicit form of the N -dimensional Gaussian integral (4.66) with
permutation-dependent matrices of the form (4.73). In order to solve this integral, we had to

88



find an expression for the corresponding permutation-dependent determinants. As these ma-
trices consist of a linear combination of the corresponding permutation matrix and its inverse,
they obey the same similarity relation as the permutation matrices themselves. Secondly, we
observed that for every similarity class of permutation matrices, there is at least one matrix
of the form (4.73) that is block diagonal. Since all permutation matrices within the same
similarity class share the same determinant, and as the determinant of a block diagonal matrix
factorises into the determinants of the constituent sub-matrices, there is a cycle decomposition
of the above permutation-dependent determinants into per n-cycle determinants of single-cycle
matrices (4.73). Thus, in the next step, we had to find the general expression for the determi-
nant of a single-n-cycle matrix. To this end, we performed a Laplace expansion of the special
single-cycle determinant (4.79), which yielded the difference equation (4.86) in terms of only
the determinant of a tridiagonal matrix. As a consequence, we only had to find the general
solution of its difference equation (4.81), which we obtained in closed form by performing a Z-
transform, the properties of which are summarised in Appendix A. Using the general solution
(4.106) then yielded the N -particle canonical partition function in cycle-reduced form (3.100).

In Section 4.7 we calculated the reduced time-dependent one-particle density matrix in an
N -particle ensemble as a recursion analogous to that for the canonical partition function.
Here, however, contributions from broken cycles (4.109) appeared and we first had to derive
the master equation (4.114) in order to further evaluate the reduced density matrix, for which
we then obtained the recursion (4.115). From this, it was straightforward to calculate the
corresponding reduced time-dependent one-particle width in an N -particle using only the one-
particle results. For said width, we obtained the recursion (4.117), which, as in the one-particle
case, factorised into a product of the thermodynamic one-particle width and the above time-
dependent function (4.19).

We displayed a plot of the time-independent part in Fig. 4.4 for bosons, as well as for fermions.
For bosons, the curves for N particles have the same general behaviour as the one-particle
width: they start off at one half the oscillator width squared and approach linear asymptotes
of equal slope in the high-temperature limit. However for particle numbers N greater than one,
these asymptotes have lower lying and N -dependent y-intercepts. For fermions the picture is
similar, with the exception that now the asymptotes have positive N -dependent intercepts, and
consequently the reduced width starts off at N times the value for bosons. In the following,
we derived the form of these intercepts for bosons and fermions by starting with the ansatz
(4.121) for the N -particle partition function and deriving the recursion relation (4.124) for the
unknown coefficients. We obtained its solution (4.142) via the generating function method and
inserting this into the reduced one-particle width (4.117) finally yielded the expression (4.142)
for the above asymptotes.
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Chapter 6

Outlook

The work that was presented in this thesis has only laid the foundations for the treatment of
the simple non-equilibrium phenomenon of a trap-frequency quench in the canonical formalism.
Thus, it is by no means complete and there remain many interesting questions to be pursued.
In this outlook we will give a brief overview of some ideas for the generalisation end extension
of the present work.

We start with the most obvious generalisation, namely the inclusion of weak particle inter-
actions, which would enable the comparison of results between theory and present as well as
future experiments. This may be done by generalising the canonical perturbation theory that
is presented in Ref. [31] to density matrices. In the following, we briefly outline this ansatz.
In the many-particle path-integral formalism, the imaginary-time evolution amplitude for a
weakly interacting Bose system is given by the following N -fold path-integral:

(x1, . . . , xN | x′1, . . . , x′N )(+)
int =

1
N !

∑
P

N∏
n=1

[∫ xn(τb)=xP (n)

xn(τa)=x′n

Dxn(τ)

]

× exp
{
−1
h̄

(
A(0)[x1, . . . , xN ] +A(int)[x1, . . . , xN ]

)}
, (6.1)

where

A(0)[x1, . . . , xN ] =
N∑
n=1

∫ τb

τa

dτ

[
M

2
ẋ2
n(τ) + V (xn(τ))

]
(6.2)

is the free part of the Euclidean action, and

A(int)[x1, . . . , xN ] =
1
2

N∑
n,m=1

∫ τb

τa

dτ V (int)
(
xn(τ)− xm(τ)

)
(6.3)

is the interaction part. Here we note that any self-interaction is to be avoided, i.e. n 6= m
and that the interaction is modelled by a contact s-wave scattering potential of the form
V (int)(x) = (4πh̄2as/M)δ(x), with the s-wave scattering length as. We then obtain the per-
turbation expansion of the interacting bosonic N -particle amplitude (6.1) simply by Taylor
expanding the exponential that contains the interaction part (6.3). Of course, the fundamen-
tal quantities that interact in (6.1) are the permutation cycles. For example, in the above
amplitude for the case of the partition function, and in first order, we have one contribution
per n-cycle that comes from the single interaction between two different cycles, and one con-
tribution per n-cycle that comes from the interaction of the cycle with itself. Here it remains
to be worked out, how this approach can be used to describe a trap-frequency quench.
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Another interesting aspect would be to have two quenched BECs close together and to study
the interactions between both. Modelling this situation could be interesting for the study of
large atomic nuclei.

Also, recalling the discussion in the introduction to non-equilibrium phenomena in Section
1.2, we must remind ourselves that a quench cannot allways be considered as taking place
instantly. Consequently, we must assume that the quench happens on a short but finite time-
scale δtq. It would then be interesting to investigate the effect of said timescale on the resulting
dynamics after the quench has taken place.

Last, in our approach we have assumed that the equilibrium density matrix evolves in time
according to the usual unitary, i.e. reversible quantum dynamics given by the Von-Neumann
equation (4.3). Another interesting field would be opened by dropping the assumption of
unitary dynamics in favour of the very general non-unitary and thus irreversible dynamics of
the Lindblad type. The Lindblad equation or master equation in the Lindblad form,

d

dt
%̂(t) = − i

h̄

[
Ĥ, %̂(t)

]
+

1
2h̄

∑
i

([
V̂j %̂(t), V̂ †j

]
+
[
V̂j , %̂(t)V̂ †j

])
, (6.4)

is the most general type of Markovian and time-homogeneous master equation describing the
non-unitary, i.e. dissipative evolution of the density operator that is trace preserving and com-
pletely positive. In (6.4), the operators V̂j represent the coupling of the dissipative environment
to the density operator %̂(t). There are no further general restrictions on these operators and
their choice in physical applications is often heuristic.
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Appendix A

Z -Transform

In nature and technology, one can distinguish between discrete and continuous processes.
Whereas many continuous processes may be described mathematically by differential equa-
tions, the description of discrete ones often leads to difference equations or recursion relations.
Differential equations are most easily solved by taking the Fourier or Laplace transforms for pe-
riodic and non-periodic processes respectively, whereas for difference equations, more suitable
operator methods were developed; the most well known of which is the Z -transform, which is
closely related to the Laplace transform.

The Z -transform [32] was introduced, under this name, by Ragazzini and Zadeh in 1952 [33].
The so-called modified or advanced Z -transform, that we refer to in the following, was later
developed by E. I. Jury, and is presented in his book [34]. He writes:

The techniques of z -transform method are not new, for they can actually be traced
back as early as 1730 when DeMoivre [35] introduced the concept of the ”generating
function” (which is actually identical to the z -transform) to probability theory.

In the following, we briefly summarise the main properties of the Z-transform which will be
useful for solving the recursion relation (4.81) for the determinant Tn of the tridiagonal matrix.

A.1 Formal Power Series and the Generating Function Method

The notion of formal power series allows one to employ much of the analytical machinery of
power series in settings that do not have natural notions of convergence. A generating function
is then a formal power series whose coefficients encode information about a sequence that is
indexed by the natural numbers. The idea behind the generating function method is thus
both simple and powerful: Given some equation involving sequences, e.g. recursion relations
or difference equations etc., such as

an = bn + cn + d , where n ∈ N, (A.1)

we may turn it into an equation of holomorphic functions by multiplying the whole equation by
a complex variable z, and formally summing (A.1) from zero, or some other starting number,
such as 1, to infinity:

∞∑
n=0

anz
n =

∞∑
n=0

bnz
n +

∞∑
n=0

cnz
n + d

∞∑
n=0

zn . (A.2)

Thus, the power series in (A.2) uniquely defines holomorphic functions on the complex plane,
so by this straightforward manipulation we have effectively ”transformed” our original equation
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(A.1) from the discrete n-domain into the continuous complex z-domain:

A(z) = B(z) + C(z) +D(z) , where A(z) =
∞∑
n=0

anz
n , etc. (A.3)

This allows us to use the whole machinery of complex analysis to solve our problem.

A.2 Z -Transform: Definition and Properties

The Z -transform converts a discrete n-domain signal, which is a sequence of real or complex
numbers, into a complex frequency-domain representation. The series

Y (z) =
∞∑
n=0

yn z
−n (A.4)

is assigned to the sequence {yn}. If the above series is convergent, the sequence yn is said
to be Z -transformable and, thus, the Laurent series Y (z) = Z{yn} defines a holomorphic
function on the field of complex numbers, which is called the Z -transform of {yn}. For every
Z -transformable sequence {yn}, there exists a number R ∈ R, such that for |z| > R−1 the
Laurent series (A.4) converges absolutely and diverges for |z| < R−1. Here, R is called the
region of convergence (ROC) of (A.4) with respect to z−1. If the above Laurent series converges
for all |z| > R−1, we define R =∞. In contrast, if the sequence is not Z -transformable, we set
R = 0.

The Z -transform has the following properties, which follow straightforwardly from its defi-
nition (A.4):

1. Linearity For all constants a and b it holds that

Z {a yn + b xn} = a Y (yn) + b Y (xn) . (A.5)

2. First Translation Theorem

Z {yn−k} = z−k Y (z) k = 0, 1, 2, . . . , (A.6)

where we have made the obvious definition yn−k = 0 for n− k < 0.

3. Second Translation Theorem

Z {yn+k} = zk

[
Y (z)−

k−1∑
ν=0

yν z
−ν

]
k = 1, 2, . . . (A.7)

Here, the coefficients yν in the sum on the right side are the initial values of the difference
equation.

4. Scaling in the Z -domain
Z {an yn} = Y

(
a−1 yn

)
(A.8)
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5. Summation For |z| > max {1, R−1} we have

Z
{n−1∑
ν=0

yν

}
=

1
z − 1

Y (y) . (A.9)

6. Differentiation

Z {n yn} = −z d
dz
Y (z) . (A.10)

7. Integration Under the condition that y0 = 0, we have

Z
{
n−1 yn

}
=
∫ ∞
z

Y (ζ)
ζ

dζ . (A.11)

8. Convolution The discrete convolution of two sequences {xn} and {yn} is defined as the
operation

xn ∗ yn =
n∑
ν=0

xν yn−ν . (A.12)

In case the Z -transforms Z{xn} = X(z) with ROC Rx, and Z{yn} = Y (z) with ROC
Ry exist, it holds that

Z{xn ∗ yn} = X(z)Y (z) , (A.13)

for |z| > max {R−1
x , R−1

y }. This corresponds to the Cauchy product of two series.

A.3 Inverse Z -Transform

The application of the inverse Z -transform corresponds to finding the unique original sequence
{yn} of the holomorphic z -domain function Y (z) from (A.4), which we write as Z−1{Y (z)} =
{yn}. For transforming back to the n-domain there are several methods:

1. Via the Laurent series of Y (z), provided that the Laurent series is known or can be easily
determined. The contour integral

yn = Z−1{Y (z)} =
1

2πi

∮
C
Y (z) zn−1dz (A.14)

yields yn as the residues of Y (z)zn−1, where the contour C is to be taken counterclockwise,
encircling the origin and all of the poles of Y (z), and lying entirely in the region of
convergence.

2. Via the Taylor series of Y (1/z). As Y (1/z) is a power series in raising powers of z, and
because of the definition (A.4) of Y (z), we obtain yn from the Taylor formula

yn =
1
n!

dn

dzn
Y
(1
z

)∣∣∣∣
z=0

for n = 1, 2, . . . (A.15)
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3. By using limit theorems. In analogy to the limit theorems for the Laplace transform of
a function, the following limit theorems hold for the Z -transform Y (z) = Z{yn} of a
sequence {yn}:

y0 = lim
z→∞

Y (z) , y1 = lim
z→∞

Z{Y (z)− y0} , y2 = lim
z→∞

Z{Y (z)− y0 − y1z
−1}, . . .

(A.16)
Thus, we obtain the original sequence {yn} from Y (n). The above statement is also known
as initial value theorem. If and only if the limit limz→∞ yn exists, the corresponding final
value theorem reads

lim
n→∞

yn = lim
n→1+0

(z − 1)Y (z) . (A.17)

4. By using tables of Z -transform pairs. Many common pairs of sequences and their re-
spective Z -transforms are tabulated(see e.g. [32]). Here, one tries to write Y (z) as a
sum,

Y (z) = Y1(z) + Y2(z) + Y3(z) + Y4(z) + . . . , (A.18)

where for all terms Yi(z) the inverse Z -transform yi is known. With the linearity property
(A.5) one then obtains

yn = y(1)
n + y(2)

n + y(3)
n + y(4)

n + . . . . (A.19)

5. By writing Y (z) in terms of partial fractions and the transforming back to the n-domain.
This method is important, as it often allows one to obtain a solution in closed form of
difference equations and recursions.

A.4 Relation to Fourier and Laplace Transforms

The so-called bilateral Z -transform is the two-sided, doubly infinite Z -transform defined by

Y (2)(z) = Z(2)
{
{yn}∞n=−∞

}
=

∞∑
n=−∞

yn z
−n . (A.20)

The bilateral transform is generally less commonly used than the unilateral Z -transform, since
only the latter finds widespread application as a technique essentially equivalent to generating
functions, as was discussed above. By evaluating the bilateral Z -transform at z = eiω, i.e. on
the unit circle, we obtain the discrete version of the Fourier transform, which is referred to as the
discrete-time Fourier transform (DTFT). Thus, the bilateral Z -transform is a generalisation
of the DTFT.

If we describe a discrete function y(t) as step function, we have

y(t) = y(nT ) = yn , for nT ≤ t < (n+ 1)T n = 1, 2, . . . , (A.21)

so y(t) is continuous and constant inbetween the sampling points nT . We may then apply the
Laplace transform L to this piecewise continuous function, which yields for T = 1:

L{y(n)} = Y (p) =
∞∑
n=0

∫ n+1

n
dt yn e−nt =

∞∑
n=0

yn
e−np − e−(n+1)p

p
=

1− e−p

p

∞∑
n=0

yn e−np .

(A.22)
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A.4 Relation to Fourier and Laplace Transforms

The infinite series in (A.22) is known as the discrete Laplace transform of a sequence yn and
is denoted by the symbol D:

D {y(n)} = D {yn} =
∞∑
n=0

yn e−np . (A.23)

If in (A.23) one sets z = ep, the Z-transform (A.4) is recovered. This leads to the following
relationship between the Laplace and Z-transforms for step functions:

p Y (p) =
(

1− 1
z

)
Y (z) , i.e. pL{y(t)} =

(
1− 1

z

)
Z {yn} . (A.24)
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[12] C. Kollath, A.M. Läuchli and E. Altman, Quench Dynamics and Nonequilibrium Phase
Diagram of the Bose-Hubbard Model, Phys. Rev. Lett. 98, 180601 (2007)

99



Appendix A Bibliography

[13] E. Santos and A. Pelster, in preparation

[14] B. Bradlyn, F. E. A. dos Santos, and A. Pelster, Effective Action Approach for Quantum
Phase Transitions in Bosonic Lattices, Phys. Rev. A 79, 013615 (2009)

[15] L. Pitaevskii and S. Stringari, Bose-Enstein Condensation, Oxford Science Publications,
Clarendon Press, Oxford, 2003

[16] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd. Ed., Cam-
bridge University Press, Cambridge, 2008

[17] A. Griffin, T. Nikuni and E. Zaremba, Bose-Condensed Gases at Finite Temperatures,
Cambridge University Press, Cambridge, 2009

[18] M. Hamermesh, Group Theory and its Application to Physical Problems, Addison-Wesley,
London, 1962

[19] J. S. Lomont, Applications of Finite Groups, 3rd. Ed., Academic Press, New York, London,
1970

[20] W.-K. Tung, Group Theory in Physics, World Scientific, Singapore, 1985

[21] V. Krishnamurthy, Combinatorics–Theory and Applications Wiley, New York, 1986

[22] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Fi-
nancial Markets, 5th Ed., World Scientific, Singapore, 2008

[23] W. Pauli, The Connection Between Spin and Statistics, Phys. Rev. 58, 716 (1940)

[24] W. Nolting, Fundamentals of Many-Body Physics Principles and Methods, Springer-
Verlag, Berlin, Heidelberg, 2009

[25] C. DeWitt-Morette, On the Definition and Approximation of Feynman’s Path Integrals,
Phys. Rev. 81, 848 (1951)

[26] A. Pelster, Bose-Einstein-Kondensation, lecture notes (in German), Universität Duisburg-
Essen, 2004

[27] K. Glaum, H. Kleinert, and A. Pelster, Condensation of ideal Bose gas confined in a box
within a canonical ensemble, Phys. Rev. A 76, 063604 (2007)

[28] F. Brosens, J. T. Devreese and L. F. Lemmens, Thermodynamics of coupled identical
oscillators within the path-integral formalism Phys. Rev. E 55, 227 (1997)

[29] W. Korolevski, Bose-Einstein-Kondensation in kanonischen Ensembles (in German)
Diploma thesis, Freie Universität Berlin, 2009

[30] K. Glaum, Bose-Einstein-Kondensation in endlichen Systemen (in German) PhD thesis,
Freie Universität Berlin, 2008
http://www.diss.fu-berlin.de/2008/117/index.html

100



Appendix A Bibliography

[31] K. Glaum, A. Pelster and H. Kleinert, Thermodynamical Properties for Weakly Inter-
acting Dipolar Gases Within Canonical Ensemble in W. Janke and A. Pelster (Editors):
Proceedings of the 9th International Conference Path Integrals – New Trends and Per-
spectives; Max-Planck Institute for the Physics of Complex Systems, Dresden, Germany,
September 23–28, 2007; World Scientific, 403-408 (2008)

[32] I. A. Bronstein, K. A Semendjajew, G. Musiol and H. Mühlig, Taschenbuch der Mathe-
matik (in German) 3rd Ed., Verlag Harry Deutsch, Frankfurt am Main, 1997

[33] L. A. Zadeh and J.R. Ragazzini, The Analysis of Sampled-Data Systems, Applications and
Industry (AIEE) 1, 224-234, (1952)

[34] E. I. Jury, Theory and Application of the z-Transform Method, John Wiley & Sons, 1964

[35] A. de Moivre, Miscellanes Analytica de Seriebus et Quatratoris (in Latin), London, 1730

101



102



Acknowledgements

First of all, I am much obliged to Priv.-Doz. Dr. Axel Pelster for supervising my thesis. He
always took the time to help me out when I was lost in the hell of never ending, erroneous
calculations. His ability to find mistakes, being able to adapt to every handwriting and math-
ematical notation in seconds, is legendary and his enthousiasm and motivation, paired with
mathematical knowledge and experience as a supervisor helped me enormously during the last
year. Additionally, I am grateful that he spent his weekends and his vacation with correcting
the manuscript of this thesis.

I would also like to thank Prof. Dr. Dr. h.c. mult. Hagen Kleinert for giving me the opportu-
nity to work on my thesis in his group. His physical insight and his ability to intuitively explain
advanced topics from quantum field theory, general relativity and cosmology in simple terms
has helped me greatly in “getting the big picture”, i.e. in understanding the foundations of
modern theoretical physics. Of course, I also want to thank Annemarie Kleinert, who, together
with her husband and Michael, hosted the group’s garden party in August.

I would like to thank my former room mates Matthias Ohliger and Tobias Graß, as well as
my later room mates Walja Korolevski, Nathalie Pfitzinger and Hendrik Ludwig for their help
and for all the useful discussions concerning theoretical physics and the universe in general.
Here, special thanks go to Walja for spending her afternoon diving into my calculations and
finding the bug in my programme. Furthermore, I very much enjoyed the pleasant working
atmosphere during my time in the AG-Kleinert. This might have been due in part to the strong
Brasilian ”vibrations”. Thus, I am grateful to my Brasilian colleagues Victor Bezerra, Aristeu
Lima, Francisco Ednilson Alves dos Santos and Flavio Nogueira for causing these vibrations.
Additional thanks go to Jürgen Dietel for answering my numerous questions concerning the
permutation group and for our long discussions about his own work, about stocks, investment
and many other things. I also want to thank Ednilson and Victor for reading part of the
manuscript and, last but not least, my very special thanks go to Graeme Cunningham for
proofreading it and correcting the spelling and english grammar mistakes.

103


