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Abstract
The ability to trap and manipulate atoms at lower dimensions with laser light has had a tremendous de-

velopment in generating coherent matter waves in the realm of the emerging field of atomtronics. The present
thesis provides a detailed theoretical investigation of different quasi one-dimensional traps in view of how
to sculpt both static and dynamic properties of confined Bose-Einstein condensates (BECs). Apart from the
introductory part, this thesis is divided into three parts, which gradually follow on from one to another.

In the second part of the thesis, we focus on studying 87Rb atoms in a quasi one-dimensional trap geometry,
which consists of a harmonic trap together with a red- or blue-detuned Gaussian or Hermite-Gaussian dimple
trap (dT or HGdT). This represents an advanced confinement, which has recently been used in Innsbruck to
obtain quantum degeneracy for the first strontium BEC without the traditional evaporating cooling technique.
After outlining the system geometry, we compare analytical with numerical equilibrium results and show that
the dT or HGdT yields either a bump or a dip upon the condensate depending on whether the laser-beam
mode is either red- or blue-detuned, respectively. Following the time-of-flight (TOF) dynamics we obtain that
the bump upon the condensate does not decay, but the dip decreases. Furthermore, after having switched off
the red- or blue-detuned optical dipole trap (ODT) potential, shock-waves or gray(dark) pair-soliton bi-trains
emerge, which oscillate with a characteristic frequency in the remaining harmonic trap. It turns out that the
generation of gray/dark pair-solitons bi-trains represents a generic phenomenon stemming from collisions of
the moderately/fully fragmented BEC. It is astonishing to find that the special shape of the generated solitons
in the harmonically trapped BEC can be sculptured by imposing a specific ODT geometry.

With this we continue to part III of our thesis, where we analyze a quasi one-dimensional BEC in a non-
linear gravito-optical surface trap. In order to solve such a nonlinear boundary value problem, we apply the
mirror principle, which is usually used to deal with linear boundary value problems in the realm, for instance, of
electrostatics. Combining analytical and numerical results we show that the condensate wave function changes
from a Gaussian to a triangular shape for increasing the atom number. Later, we numerically analyze in detail
two non-ballistic expansions of the BEC cloud due to gravity, when the confining evanescent laser beam is
shut off. In the first case we assume that particles are lost when they hit the prism, yielding a decrease of the
particle number, which quantitatively agrees with previous Innsbruck experimental results. In the second case
we consider the reflection of the BEC cloud from a hard-wall mirror, which we model by using a blue-detuned
far-off resonant sheet of light, and obtain qualitative agreement with experimental results from Hanover.

In the final part, we investigate the sculpting of a trapped 87Rb BEC due to the presence of a single 133Cs
impurity. To this end, we determine the equilibrium phase diagram, which is spanned by the intra- and inter-
species coupling strengths. Furthermore, we show that a localized impurity at the trap center induces a bump
or dip in the condensate in case of an attractive or repulsive interspecies interaction strength, respectively.
Conversely, we obtain due to the condensate environment an effective mass of the impurity, which increases
quadratically for small interspecies interaction strength. During the resulting TOF expansion it turns out that
the bump in the condensate starts decreasing marginally, whereas the dip starts decaying after a characteristic
time scale, which decreases with increasing repulsive impurity-BEC interaction. In addition, once the attrac-
tive or repulsive interspecies coupling strength is switched off we find that white shock-waves or bi-solitons
emerge, which oscillate within the remaining harmonic confinement with a characteristic frequency. This is a
phenomenon similar to the above discussed BEC in an ODT, although this time we have not seen bi-soliton
trains but only bi-solitons. Presumably, the reason behind the generation of bi-solitons instead of bi-soliton
trains is that the width of the sculpted portion of the BEC is smaller in the impurity than in the ODT case.

All our findings show that in special circumstances a BEC can be recognized as an atom laser which
represents one of the key ingredients for experiments in quantum atom optics, much like the laser is central to
the field of a quantum optics.
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Zusammenfassung
Die Fähigkeit, Atome in niedrigen Raumdimensionen mit Laserlicht fangen und manipulieren zu kön-

nen, hat zu einer gewaltigen Entwicklung in der Erzeugung kohärenter Materiewellen im Bereich des auf-
kommenden Atomtronik-Gebietes geführt. Die vorliegende Doktorarbeit beinhaltet eine detaillierte theoreti-
sche Untersuchung von verschiedenen quasi-eindimensionalen Fallen im Hinblick darauf, wie sowohl statische
als auch dynamische Eigenschaften gefangener Bose-Einstein-Kondensate (BEK) beeinflusst werden können.
Abgesehen vom einleitenden Teil ist die Doktorarbeit in drei Teile gegliedert, die sukzessive aufeinander auf-
bauen.

Im zweiten Teil der Doktorarbeit beschränken wir uns darauf, 87Rb-Atome in einer quasi-eindimensionalen
Fallengeometrie zu untersuchen, die aus einer harmonischen Falle sowie einer rot- oder blau-verstimmten
Gaußschen oder Hermite-Gaußschen Dimpelfalle besteht. Es handelt sich hierbei um eine erweiterte Falle,
die kürzlich in Innsbruck verwandt wurde, um die Quantenentartung des ersten Strontium Bose-Einstein-
Kondensates ohne die traditionelle Verdampfungskühlung zu erreichen. Nach der Erläuterung der System-
geometrie vergleichen wir analytische und numerische Gleichgewichtsresultate und zeigen, dass die Falle ent-
weder zu einer Beule oder einer Delle im Kondensat führt, abhängig davon, ob die Lasermode entweder rot-
oder blau-verstimmt ist. Verfolgt man die Expansionsdynamik des Kondensates, so zeigt sich, dass die Beule
erhalten bleibt, während sich die Delle mit der Zeit verkleinert. Nachdem das rot- bzw. blau-verstimmte opti-
sche Dipolfallenpotential ausgeschaltet wird, entstehen Schockwellen bzw. graue (dunkle) Bi-Soliton-Züge,
die mit einer charakteristischen Frequenz in der verbleibenden harmonischen Falle oszillieren. Es stellt sich
heraus, dass die Erzeugung der Bi-Soliton-Züge ein generisches Phänomen darstellt, das auf Kollisionen des
teilweise oder vollständig fragmentierten Bose-Einstein-Kondensates zurückzuführen ist. Es ist erstaunlich,
dass die Form der erzeugten Solitonen in dem harmonisch gefangenen Bose-Einstein-Kondensat durch ein be-
stimmtes optischen Dipolfallenpotential bestimmt werden kann.

Anschließend analysieren wir im zweiten Teil der Doktorarbeit ein quasi-eindimensionales Bose-Einstein-
Kondensat in einer gravito-optischen Oberflächenfalle. Um solch ein nichtlineares Randwertproblem zu lösen,
wenden wir das Spiegelprinzip an, das üblicherweise verwendet wird, um lineare Randwertprobleme zum
Beispiel im Bereich der Elektrostatik zu behandeln. Durch Kombination analytischer und numerischer Resul-
tate zeigen wir, dass sich die Kondensatwellenfunktion von einer Gauß- zu einer Dreiecksform verändert, wenn
man die Atomzahl erhöht. Außerdem untersuchen wir numerisch im Detail zwei nicht-ballistische Expansio-
nen einer BEK-Wolke unter dem Einfluß der Gravitation, wenn das evaneszente Fallenpotential ausgeschaltet
wird. Im ersten Falle nehmen wir an, dass die Teilchen verloren gehen, wenn sie auf das Prisma auftreffen, so
dass die Teilchenzahl in quantitativer Übereinstimmung mit einem früheren Innsbruck-Experiment abnimmt.
Im zweiten Falle betrachten wir die Reflektion einer BEK-Wolke an einem Spiegel, den wir durch eine blau-
verstimmten Laserlichtschnitt modellieren, und reproduzieren damit qualitativ frühere experimentelle Resultate
von Hannover.

Im letzten Teil untersuchen wir, wie ein gefangenes 87Rb Bose-Einstein-Kondensat in Anwesenheit einer
einzelnen 133Cs Verunreinigung verformt werden kann. Hierzu bestimmen wir das Gleichgewichtsphasendia-
gramm, das von der Wechselwirkungsstärke zwischen den Rb-Atomen sowie zwischen den Rb-Atomen und
dem Cs-Atom aufgespannt wird. Außerdem zeigen wir, dass eine im Fallenzentrum lokalisierte Verunreini-
gung eine Beule oder Delle im Kondensat erzeugt, falls eine attraktive oder repulsive Rb-Cs Wechselwirkung
vorliegt. Umgekehrt erhalten wir aufgrund des Kondensatumgebung eine effektive Masse der Verunreinigung,
die quadratisch mit der Rb-Cs-Wechselwirkungsstärke anwächst. Während der Expansion zeigt sich, dass sich
die Beule im Kondensat marginal verkleinert, während sich die Delle mit einer charakteristischen Zeitskala
verringert, die mit zunehmend repulsiver Rb-Cs-Wechselwirkungsstärke abnimmt. Wenn die attraktive oder re-
pulsive Rb-Cs-Wechselwirkungsstärke ausgeschaltet wird, finden wir weiße Schockwellen oder Bi-Solitonen,
die mit einer charaktieristischen Frequenz in der verbleibenden Falle oszillieren. Es handelt sich hierbei um ein
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ähnliches Phänomen wie bei dem zuvor diskutierten Bose-Einstein-Kondensat in einer optischen Dipolfalle,
obwohl dieses Mal keine Bi-Soliton-Züge sondern nur Bi-Solitonen auftreten. Vermutlich liegt die Ursache
für die Erzeugung von Bi-Solitonen anstelle von Bi-Soliton-Zügen darin, dass die Breite der Verformung des
Bose-Einstein-Kondensates im Falle der Verunreinigung viel kleiner als im Falle des optischen Dipolpotentials
ist.

All unsere Ergebnisse zeigen, dass unter speziellen Umständen ein Bose-Einstein-Kondensat als ein Atom-
laser angesehen werden kann, der genau so ein Schlüsselelement für Experimente im Bereich der Quanten-
atomoptik darstellt, wie der Laser für die Quantenoptik zentral ist.
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Chapter 1

Introduction to Bose-Einstein
condensates

1.1 Historical importance of Bose-Einstein condensate

The story of the Bose-Einstein condensate (BEC) starts back in 1900. In this special year,
Planck obtained the formula for describing black-body radiation by assuming the discretiza-
tion of energy and introducing the idea of photons. Two decades later, in 1924, while working
at the Physics Department of the University of Dhaka, Satyendra Nath Bose wrote a paper
rederiving Planck’s quantum radiation formula by proposing a new distribution for identical
particles with integer spin. Initially, the distribution was applied to massless bosonic par-
ticles only, in which the number of particles is unconstrained. Though, that paper was not
accepted at once for publication, he sent the article precisely to Albert Einstein. Einstein,
recognizing the value of that paper, translated it into German and submitted on Bose’s behalf
to the prestigious Zeitschrift für Physik [3]. Later, Einstein generalized the idea to massive
bosonic atoms by introducing the chemical potential, and predicted the existence of a new
phase for matter, which is known as Bose-Einstein condensate, that applies to all particles
with integer spin [4].

70 years later1, atomic BEC was created experimentally in dilute vapors of 87Rb [2],
which triggered an explosion of related research activities. In the BEC state, all atoms in the
bosonic gas fall into a single quantum-mechanical ground state. For the 3D homogeneous
case, the transition to the BEC occurs if the atomic density n, and the deBroglie wavelength
λth, corresponding to the characteristic velocity of the thermal motion of the atoms, satisfy
the following condition [6]:

1Historical note: world’s first BEC consisted of about 2000 87Rb atoms and was achieved at 10:54 AM on
June 5, 1995 in a laboratory at JILA (Boulder, USA) as shown in Fig. 1.1 [5].
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Figure 1.1: Images of velocity distributions for trapped rubidium atoms taken from [1].
On the left is the distribution for the thermal cloud, taken when the system is at a larger
temperature of about 400 nK than the critical temperature for BECs, the center frame shows
partly condensate and partly a thermal cloud at about 200 nK, and the final image is purely
a condensate within the density peak at the temperature 50 nK. The physical size of each
image amounts to 200 µm× 270 µm and is taken after a period of about 0.04 s. The color
represents density, with red as low density and white as high density and the lower the peak
the more the atoms have moved since being released from the trap [2].

nλ
3
th ≈ 1, (1.1)

here, λth =
√

h̄2/3mkBT is the thermal deBroglie wavelength2 for particles of mass m at
a temperature T , and kB is Boltzmann’s constant. Equation (1.1) implies that the deBroglie
wavelength is comparable to the mean distance between atoms, thus making the gas a macro-
scopic degenerate quantum state. This condition is only realizable at temperatures less than
milli-Kelvin (mK)3, hence, as a matter of fact, the atomic BECs are the coldest objects ex-
isting in labs. BEC’s creation became only possible after the development of appropriate
experimental techniques needed to reach the necessary ultra-low temperatures. Mainly, we
can divide the cooling procedure of atoms into two main steps. First: the method of laser
cooling is applied to the gas loaded into a magneto-optical trap, this method was rewarded
with the Nobel Prize in Physics for 1997 [7–9]. This method makes it possible to create
a moderately cool state, at temperature ∼ 100 µK. Second: this step undergoes forced
evaporative cooling, where about 90% of atoms are lost, and the remaining atomic cloud

2The deBroglie wavelength connects classical particle physics and quantum mechanical wave physics via
the Heisenberg uncertainty relation λth =

h̄
mv . We can determine the mean velocity of a particle in a gas from

the temperature of the gas via the equipartition theorem of thermodynamics: m
2 < v >2=< Ekin >=

3
2 kBT

yields < v>=
√

3kBT
m . Comparing both relations determines the deBroglie wavelength of a particle < λth >=√

h̄2/3mkBT .
3The mean distance between particles in a gas at room temperature is of the order of 10 nm. In order to

observe quantum mechanical effects in a gas of similar density, we have to reduce the temperature drastically.
Roughly, we can calculate this temperature by demanding that the thermal deBroglie wavelength has to become
equal to the mean particle distance, i.e. λth ≈ 10 nm, yielding T ≈ 0.002 K.
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Figure 1.2: (a) Pseudo-3D images of the angular distribution of the spectrally integrated
emission of polaritons. With increasing excitation power, a sharp and intense peak is formed
in the center of the emission distribution, corresponding to the lowest momentum state k|| =
0. b) Same data as in (a) but resolved in energy. The polariton thermal cloud is found to
be at 19 K without significant changes when increasing the excitation to twice the threshold
power. The low-energy part of the polariton occupancy cannot usually be properly fitted by
a Bose-Einstein distribution function, as expected for a BEC of interacting particles. Results
are taken from Ref. [10].

spontaneously forms the BEC.

Just as a reminder of the relevant parameter regime: the total number of atoms can range
from a few hundred to about 108, although in principle, both smaller and larger numbers
of atoms are possible and the size of the domain in which the gas is trapped is of the order
of 100 µm in diameter, the maximal density ranges from 1011 cm−3 to 5× 1015 cm−3 and
the temperatures required to achieve the BEC phase range typically from 10−7 K to 10−5 K,
which means that the atomic velocities in the BEC phase can be as low as 1 mm/s [11]. Cer-
tainly, for longer times the BEC phase of atoms is unstable against recombination processes
and it will ultimately go into a solid state, but in practice, with a suitable selection of the
hyperfine states, the lifetime of the condensate can be raised to the order of minutes [11].

The advanced technology of the laser-cooling methods has made it possible to achieve the
Bose-Einstein condensation in alkali metals, for example, rubidium [2], sodium [12], lithium
[13], hydrogen [14], potassium [15], cesium [16], in alkaline-earth metals such as calcium
[17] and strontium [18, 19], rare-earth elements like ytterbium atoms in optical trap is done
in 2003 [20] and BEC in a dilute gas of helium was observed in 2001 [21, 22]. Further-
more, strong dipolar BECs were observed in chromium [23], erbium [24], and dysprosium
[25]. Macroscopic phase coherence of the BEC is one of the most remarkable manifesta-
tions of quantum mechanics. In the last decade, engineering of optical microcavities make
use of the mixing of electronic excitations with photons to create a composite boson called a
polariton that has a very light mass, and recent experiments provide good evidence for a high-
temperature Bose-Einstein condensate as shown in Fig. 1.2 [10]. Polariton [26] and magnon
[27] systems also offer an opportunity to study quantum dynamics of non-equilibrium states
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of many-body systems, which turn out to be a new kind of cold atoms laboratory.

1.2 Optical dipole trap

The ability to manipulate and trap atoms with laser light has had a tremendous development
in many fields of physics. The very first experimental success of trapping 500 sodium atoms
for several seconds in the tight focus of a Gaussian red-detuned laser beam occurred in
1986 [28]. The physical mechanism behind such an optical dipole trap is the electric dipole
interaction of the trapped atoms with the intense laser light, which is far detuned from the
nearest optical transition of the atoms. They are hence largely independent from magnetic
sublevels of the confined atoms, in contrast to a magneto-optical trap (MOT), which can
only trap atoms with a certain internal state [29, 30]. The so called dimple trap (dT) or
Hermite-Gaussian dimple trap (HGdT) is nothing but a small tight optical dipole trap [31–
33]. Cooling and trapping of atoms with these dT’s has a strong impact on the study of
Bose-Einstein condensates [34, 35], the observation of long decay times for atoms in their
ground state [36], and the research of trapping other atomic species or molecules [37].

A straightforward method for realizing a dT is to rely on the potential created by a freely
propagating laser beam. The detuning of the laser frequency versus the atomic resonances
determines, whether the atoms are red/blue-detuned, i.e. the laser frequency is below/above
the atomic resonance frequency, respectively [29]. The red-detuned dT was particularly used
for realizing matter wave traps in the focus of a Gaussian laser beam [38–40]. On the other
hand, the blue-detuned Gaussian laser beam was used in optical waveguides [41–46], where
the creation of repulsive potentials was demonstrated by using a Laguerre-Gaussian laser
beam [47–52]. A focused or well-collimated Gaussian laser beam with a large red-detuning
[53] or a dark hollow laser beam with a large blue-detuning [51] has been used to form 3D
optical dipole trap’s, which can be widely applied to the accurate, non-contact manipulation
and control of cold atoms [33, 54, 55].

A more recent application of an optical dipole trap is the optical tweezer. Adam Kauf-
man and his colleagues demonstrated an assembling of quantum matter one atom at a time.
Actually they controlled two atoms of 87Rb by using an optical tweezer trap, which was cre-
ated by using two separate far-detuned laser beams [56]. This experiment is the first step in
engineering a brand new quantum system. It may well open the door to systematically using
single-trapped atoms to assemble BECs or other quantum systems. Such designer quantum
systems have exciting future prospects, including highly sensitive nanoscale force detection,
tiny optical devices based on the control of neutral atoms, and quantum simulators based on
laser-cooled atoms in arrays of optical tweezers.

Another state-of-the-art application of optical dipole traps is to attain to quantum de-
generacy without the traditional evaporating colling technique used for bosonic alkali-metal
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Figure 1.3: Three absorption images of 10 million strontium atoms trapped in a dipole trap
and cooled to about 800 nK by laser light. The left image shows the reservoir of atoms, which
is used to dissipate heat. For the central image, a transparency beam was applied, such that
atoms located within this beam cannot absorb photons from the cooling light. The density in
this region is greatly enhanced by a dimple beam, as can be seen on the right image, where
the transparency beam has been turned off. This image is taken from Ref. [35].

gases. The first steps have been taken at the institute for quantum optics and quantum in-
formation (IQOQI) in Innsbruck, where they used a dimple trap to create the first 84Sr BEC
as shown in Fig. 1.3. This scheme has two main regions: the outside “reservoir” region, in
which atoms are gently cooled by laser light and a central dimple region, in which the BEC
is formed. This simple technique paves a relatively simple path towards a truly continuous
atom laser. Here, a thermal source of atoms would be converted into a coherent beam of
atoms, constantly out-coupled from the dimple region. The dimple would be continuously
fed by the reservoir region, which in turn would be refilled by pre-cooled atoms from a
MOT. Such truly continuous atom lasers are highly desired in various schemes of precision
measurements [35].

1.3 Gravito-optical surface trap

From the physical point of view, all known experimental techniques for trapping neutral
atoms can be classified with few basic methods. These basic methods are: optical trapping
of atoms, which can be implemented by using electric dipole interaction between atoms and
laser fields, magnetic trapping of atoms, which is based on magnetic dipole interaction
of atoms and external magnetic-field, combined magneto-optical trapping, which can be
achieved by using the interaction between atoms, magnetic and laser fields, and also mixed
gravito-optical and gravito-magnetic trapping.

Gravito-optical trapping idea, was first introduced by Cook and Hill in 1982, which
greatly influenced the development of the methods of trapping cold atoms near to a sur-
face. The idea was to use an evanescent laser wave propagating along a dielectric–vacuum
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Figure 1.4: (a) Experimental setup of fiber-based atom trap. The blue-detuned running
wave in combination with the red-detuned standing wave creates the trapping potential. A
resonant laser is used for probing the atoms via the evanescent field. (b) Fluorescence image
of the trapped atomic ensemble. This image is copied from [57].

interface as a reflecting mirror for atoms [58]. Since the evanescent light wave penetrates
into the vacuum to a distance of the order of the optical wavelength, the high gradient of
the evanescent wave field produces a substantial dipole gradient force on the atom. In the
case of a large blue detuning, the gradient force produces in the vacuum region a repulsive
barrier, which reflects atoms. This barrier is not very high, but it is quite sufficient to reflect
cold atoms [59]. The first experiment on the reflection of a thermal beam of sodium atoms
[60, 61] and on the reflection of normally incident cold atoms [62, 63] confirmed that an
evanescent wave can effectively reflect atoms. It was also shown that the reflection coeffi-
cient of the atom mirror may be high even at a low intensity of the laser wave. It was found
that, introducing metal coatings of additional dielectric layers in the vicinity of the dielec-
tric–vacuum interface, substantially enhanced the evanescent wave field as a consequence of
exciting surface plasmons [64] or on account of the formation of a dielectric waveguide [65].

The interaction of ultra-cold atoms at low dimensions with surfaces has attracted much
attention in the past few years, as there enhanced quantum and thermal fluctuations have
turned out to play an important role for various technological applications [67–69]. Un-
der such circumstances also the influence of gravity has to be taken into account, therefore
atomic mirrors were constructed in the presence of the gravitational field by using repulsive
evanescent waves, at which both atomic beams and cold atomic clouds are reflected [70].
The trapping of atoms in a gravitational cavity, which consists of a single horizontal concave
mirror placed in the gravitational field, is discussed in detail in Refs. [71, 72]. The inherent
losses of atoms in a gravitational cavity can be reduced by using a higher detuning between
the evanescent wave and the atomic resonance frequency in a gravitational trap [63]. In 1996,
Marzlin and Audretsch studied the trapping of three-level atoms in a gravito-optical trap by
using the trampolining technique without trampoline [73]. Another approach is proposed
by Saif et al., where a spatially periodic modulated atomic mirror yields either a localiza-
tion [74, 75] or a coherent acceleration [76, 77] of material wave packets depending on the
chosen initial conditions and the respective system parameters. In 2002, Nesvizhevsky et al.
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reported the evidence of gravitational quantum bound states of neutrons in a gravitational
cavity [78]. A good trap geometry is not the only issue in trapping and observing the dy-
namics of atoms but an efficient loading scheme is also necessary. The experimental group
of Rudi Grimm from Innsbruck demonstrated both the loading of cesium atoms [79, 80] and
the subsequent creation of a BEC in a 2D gravito-optical surface trap (GOST) [81, 82]. More
recently, Colombe et al. studied the scheme for loading a 87Rb BEC into a 2D evanescent
light trap and for observing the diffraction of a BEC in the time domain [83, 84]. Afterwards
Perrin et at. studied the diffuse reflection of a BEC from a rough evanescent wave mirror
[85].

Figure 1.5: a) A set of absorption im-
ages showing the dark soliton position at var-
ious times after phase imprinting. b) Re-
sults of a numerical calculation solving the 1D
Gross–Pitaevskii equation. c) Axial positions
of the soliton (dark blue dots) with respect to
the center of mass and normalized to the width
of the condensate. Results are taken from Ref.
[66].

Neutral cesium atoms have been trapped
in a one-dimensional optical lattice created
by a two-color evanescent field surrounding
an optical nanofiber a shown in Fig. 1.4 [57].
Because the atoms are with a distance of
230 nm quite close to the nano fiber surface,
the atoms efficiently interface with resonant
light sent through the nanofiber. This exper-
imental work not only provides a platform to
study the collective states of light and mat-
ter but also paves the way towards nonlinear
optics and quantum communication applica-
tions with fiber-coupled atomic ensembles.

1.4 From simple to com-
plex: nonlinear dynamics of
sculpted BEC

The state-of-the-art BEC experiments pro-
vide the freedom to control and manipulate
a BEC easily and efficiently by means of
external magnetic and optical laser fields.
This circumstance facilitates various exper-
iments, and provides a foundation for quite
accurate theoretical models. As a result,
ultra-cold gases can be used to establish many phenomena, which originate, e.g., in
condensed-matter physics, but turn out to be too complex in the original settings [86]. From
a theoretical point of view, the static and dynamic properties of a BEC can be described by
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Figure 1.6: The condensate spreads for a > 0, while for a < 0 non-spreading occurs and
localized structures (solitons) are formed. Such bright solitons have been observed for times
exceeding 3s. The images are copied from [91].

means of an effective mean-field equation, known as the Gross-Pitaevskii equation [6, 87],
which is also recognized in literature as the nonlinear Schrödinger equation (NLSE). The
GPE became a universal model to describe the evolution of complex field envelopes in non-
linear dispersive media [88–90].

One miraculous property of a BEC is its coherence similar to laser light, which makes it
a leading candidate for the realization of “atom lasers”. In this manner, BEC is recognized
as one of the key ingredients for experiments on nonlinear and quantum atom optics, much
like the laser is central to the fields of nonlinear and quantum optics [92, 93]. Dispersion and
diffraction cause localized wave packets to spread as they propagate. Solitons may be formed
when a nonlinear interaction produces a self-focusing of the wave packet that compensates
for dispersion [91]. The term ‘soliton’ is used to describe any solution of a nonlinear equa-
tion or system which (i) represents a wave of permanent form; (ii) is localized, decaying or
becoming constant at infinity; and (iii) may interact strongly with other solitons so that after
the interaction it retains its form, almost as if the principle of superposition were valid [94].
A weakly interacting BEC obeys GPE that supports dark solitons, in the case of repulsive
intrinsic interaction of atoms, which were predicted theoretically [95] and created experi-
mentally [66, 96–98] as shown in Fig. 1.5 and multiple dark solitons were created in [97],
while their interactions and collisions were also studied theoretically [99] and experimen-
tally [100]. For an attractive intrinsic interaction of atoms, coherent matter waves are called
bright solitons as shown in Fig. 1.6 [91]. In experiment [91, 101] bright solitons have been
created by magnetically tuning the interactions in a stable 7Li Bose–Einstein condensate
from repulsive to attractive for a quasi one-dimensional optical trap, the creation of bright
solitons for 87Rb BEC has been also experimentally observed [102, 103]. The creation of
dark–bright solitons by filling the dark soliton with atoms in another hyperfine state were
predicted theoretically for binary BEC [104] and observed in experiments [66] as well as
shown in Fig. 1.7.

In this thesis, we will focus on studying neutral 87Rb atoms within a quasi one-dimensio-

nal harmonic trap with an additional dimple trap. Experimentally, a highly elongated quasi-
1D regime can be reached by tightly confining the atoms in the radial direction, effectively
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freezing-out the transverse dynamics [6, 105–112]. It is worth mentioning that, when the
transverse length scales are of the order of or less than the atomic interaction length, the one-
dimensional system can only be described within the Tonks-Girardeau or within the super-
Tonks-Girardeau regime [113–115], which is experimentally realizable near a confinement-
induced resonance [116–118].

Figure 1.7: a) Cartoon picture shows the hy-
perfine states of 87Rb BEC. b) Density pro-
file of two BECs at t = 0. c) A set of double-
exposure absorption images showing the den-
sity distributions of the two components that
undergo slow oscillations in the axial direc-
tion. d) Time series of the axial positions of
the dark (blue circles) and bright (red trian-
gles) components of the soliton in addition to
corresponding sinusoidal fits to the position.
Results are taken from Ref. [66].

On the other hand, when the transverse
confinement is larger than the atomic in-
teraction strength, the GPE can be reduced
to an effective quasi 1D model [119]. In
one spatial dimension (1D), this equation is
well-known to feature bright and dark soli-
tons for attractive and repulsive s-wave scat-
tering lengths, respectively [86, 120–122].
Many experiments investigate the collision
of two Bose-Einstein condensates, where
the celebrated matter-wave interference pat-
tern appears [123] or shock-waves are gen-
erated [124]. For lower collisional ener-
gies, the repulsive interaction energy be-
comes significant, and the interference pat-
tern evolves into an array of gray soli-
tons [91, 101, 125–129]. Dark solitons can
be created by manipulating the condensate
density using external potentials [66, 96,
130, 131].

1.5 BECs with impurities

Until this section, we have discussed prop-
erties of the quasi one-dimensional GPE de-
scribing a condensate consisting of alike
atoms, i.e. atoms of the same species in the
same internal state. In this section we briefly
discuss the case of a BEC with impurities, where a single impurity in a BEC can consist of a
different bosonic atom or alike atom but in a different internal hyperfine state. Recent devel-
opments in theoretical and experimental research focus on controlling a single or few particle
impurities in an ultra-cold quantum gas in view of detecting and engineering strongly cor-
related quantum states [132–135]. This research direction paths the way for a huge number

1.5 BECs with impurities 9



of proposals for novel applications. For example, a well-localized single spin atom impurity
allows to study the Kondo effect [136]. Dressed spin-down impurities in a spin-up Fermi sea
of ultra-cold atoms in balanced or imbalanced mixtures even offer to investigate the quan-
tum transport of spin impurity atoms through a strongly interacting Fermi gas [137, 138].
Furthermore, realizations of a single trapped ion impurity in a BEC features a spatial resolu-
tion on the micrometer scale, which is advantageous in comparison with absorption imaging
[139, 140]. Atomtronics applications are envisioned with single atoms acting as switches
for a macroscopic system in an atomtronic circuit [141]. Two impurity atoms immersed in a
quantum gas can entangle by an effective long-range interaction mediated by the gas [142],
or individual qubits can be cooled preserving internal state coherence [142, 143]. By adding
impurities one by one, experimentalists can track, in principle, the transition from the one-
body to the many-body regime, which ultimately yields information about cluster formation
[144]. By implementing a single atom within a Bose-Einstein condensate also fundamental
questions of quantum mechanics can be addressed with remarkable precision, for instance,
to which extent a single impurity can act as a local and nondestructive probe for a strongly
correlated quantum many-body state [145, 146]. In addition, the experimental achievement
to trap a single impurity within a BEC [147–149] allows for investigating polaronic physics
within the realm of ultracold quantum gases. Polarons can be defined as the excitations
created through the interaction of the impurity with the BEC atoms [150, 151].

1.6 Structure of the thesis

This thesis consists of four parts, which practically succeed from one to another. Part I gives
a detailed summary of optical-dipole traps and outlines the second quantization formalism to
calculate the zero-temperature Gross-Pitaevskii mean-field equation. A professional reader
in ODT and in mean-field theory can frankly skip part I, and simply use it as a reference.
Part II covers the physics of the creation of complex coherent matter waves in a harmon-
ically trapped BEC by assuming a specific geometrical configuration of the external ODT.
Part III presents results of a BEC in a gravito-optical surface trap including an experimental
comparison. And part IV exhibits how to control a single impurity atom in a BEC cloud.
With this general overview, we introduce the reader to the outline of the particular chapters.

In Chapter 2 we start with the introduction of optical dipole traps. Due to the presence
of the electric field of the laser, the positive and negative charges in the atom experience
opposing forces. The dipole potentials and the scattering rate depend on the intensity of
the laser beam I(r) and the atomic polarizability α (ω). To derive the atomic polarizability
we use a classical Abraham–Lorentz model and compare its results with the semi-classical
model. Furthermore, we describe how to trap atoms near to dielectric surfaces with the
help of the evanescent wave potential. Afterwards, we formulate many-particle systems, and
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consider the second quantization formalism to calculate the free energy and the number of
particles for a homogeneous and a trapped BEC. Later on, we work out a D-dimensional
Gross-Pitaevskii equation (DGPE) for the harmonically confined Bose-Einstein condensa-
tion within a semi-classical frame work. At the end of this chapter, as a special case, we
briefly discuss the dynamics of quasi one-dimensional Bose-Einstein condensates, which
display many distinctive nonlinear features as solitons or shock-waves.

After a brief introduction, in Chapter 3 we start with the fact that the underlying Gross-
Pitaevskii equation for a condensate wave function can be formulated as the Hamilton prin-
ciple of least action with a corresponding action functional. In particular, we will focus on a
quasi one-dimensional trapping of neutral 87Rb atoms in a harmonic trap with an additional
ODT, which can be generated by a red/blue-detuned Gaussian laser beam. Within a zero-
temperature Gross-Pitaevskii mean-field description we provide a one-dimensional physical
intuitive model, which we solve by both a time-independent variational approach and numer-
ical calculations. With this we obtain at first equilibrium results for the emerging condensate
wave function, which reveal that a dimple trap (dT) potential induces a bump or a dip in
case of a red- or a blue-detuned Gaussian laser beam, respectively. Afterwards, we investi-
gate how this dT induced bump/dip-imprint upon the condensate wave function evolves for
two quench scenarios. At first we consider the generic case that the harmonic confinement
is released. During the resulting time-of-flight expansion it turns out that the dT induced
bump in the condensate wave function remains present, whereas the dip starts decaying after
a characteristic time scale, which decreases with increasing blue-detuned dT depth. Sec-
ondly, once the red- or blue-detuned dT is switched off, we find that white shock-waves or
gray/dark bi-soliton trains emerge, which oscillate within the harmonic confinement with a
characteristic frequency. The outcome of this chapter has been summarized in a manuscript
with the title Statics and dynamics of quasi one-dimensional Bose-Einstein condensate
in harmonic and dimple trap [152].

Then in Chapter 4 we explore sculpting the dynamics of a quasi one-dimensional har-
monically trapped Bose-Einstein condensate (BEC) due to an additional red- and blue-
detuned Hermite-Gaussian dimple trap (HGdT). Our system is modeled by a time-dependent
Gross-Pitaevskii equation, which is numerically solved by the Crank-Nicolson method in
both imaginary and real time. For equilibrium, we obtain a condensate with two bumps/dips,
which are induced by the chosen TEM01 mode for the red/blue-detuned HGdT, respec-
tively. Afterwards, in time-of-flight dynamics, we examine the adherence/decay of the two
bumps/dips in the condensate, which are induced by the still present red/blue-detuned HGdT,
respectively. On the other hand, once the red/blue HGdT potential is switched off, white
shock-waves or bi-trains of gray/dark pair-solitons are created. During this process it is
found that the generation of gray/dark pair-solitons bi-trains are generic phenomena of col-
lisions of moderately/fully fragmented BEC. Additionally, it turns out that the special shape
of generated solitons in the harmonically trapped BEC firmly depends upon the geometry
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of the HGdT. The results of this chapter will soon be published as a regular article with the
title Sculpting a quasi one-dimensional Bose-Einstein condensate to generate calibrated
matter-waves [153].

Chapter 5 describes both static and dynamic properties of a weakly interacting Bose-
Einstein condensate in a quasi one-dimensional gravito-optical surface trap, where the down-
ward pull of gravity is compensated by the exponentially decaying potential of an evanescent
wave. At first we work out approximate solutions to the Gross-Pitaevskii equation for small
number of atoms using a variational Gaussian ansatz and for larger number of atoms using
the Thomas-Fermi limit. Then we confirm the accuracy of these analytic solutions by com-
paring them to numerical results. From there, we numerically analyze how the BEC cloud
expands non-ballistically when the confining laser beams are turned off, showing agreement
between our theoretical and previous experimental results. Furthermore, we analyze how the
BEC cloud expands non-ballistically due to gravity after switching off the evanescent laser
field in the presence of a hard-wall mirror. There we find that the BEC shows significant
self-interference patterns for a large number of atoms, whereas for a small number of atoms,
a revival of the BEC wave packet with few matter-wave interference patterns is observed.
This chapter is based on a manuscript with the title Quasi one-dimensional Bose-Einstein
condensate in gravito-optical surface trap [154], which is currently refereed.

Later in Chapter 6 we investigate a single 133Cs impurity in the center of a trapped 87Rb
Bose-Einstein condensate. Within a zero-temperature mean-field description we solve nu-
merically two coupled quasi one-dimensional differential equations (1DDEs) for the conden-
sate and the impurity wave function, and plot the resulting phase diagram, which is spanned
by inter- and intra-species coupling strengths. With this we obtain at first equilibrium results
for the emerging condensate wave function, which reveals an impurity-induced bump or dip
in case of an attractive or a repulsive Rb-Cs interaction strength. Afterwards, we investi-
gate how the impurity imprint upon the condensate wave function evolves for two quench
scenarios. At first we consider the case that the harmonic confinement is released. During
the resulting time-of-flight expansion it turns out that the impurity imprint marginally de-
creases for an attractive s-wave coupling but considerably decreases for a repulsive s-wave
scattering. Secondly, once the interspecies coupling strength is switched off, we find that
bi-solitons emerge, which oscillate within the harmonic confinement with a characteristic
frequency. The results of this chapter have been sent to a journal as a regular article, under
the title Numerical study of localized impurity in a Bose-Einstein condensate [155].

Lastly, in Chapter 7, we conclude with a summary of the key results of this thesis and
indicate future possible research directions.
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Chapter 2

Theoretical foundations

At low temperatures, when the two-particle interactions are weak, the lowest energy level of
a Bose gas is macroscopically occupied, yielding a Bose–Einstein condensate. It is described
by a condensate wave function, which solves a nonlinear Schrödinger equation (NLSE)
known as the Gross–Pitaevskii equation (GPE). The GPE model has proven to be a good
description of many static and dynamic properties for both single condensate systems and
condensate mixtures [6, 87], even though thermal contributions and quantum fluctuations are
not taken into account.

In order to cool down a Bose gas to quantum degeneracy, one has to isolate it via a trap-
ping confinement from its laboratory environment, which has room temperature. To this end
this chapter starts with introducing the optical dipole trap (ODT) in Sec. 2.1. Furthermore,
we describe how to trap atoms near to dielectric surfaces with the help of the evanescent
wave potential in Sec. 2.2. Subsequently, in Sec. 2.3 we determine the semi-classical free
energy and the number of particles for D dimensions and, as a special case, we calculate
the critical temperature for a three-dimensional and for a one-dimensional Bose gas both for
the homogeneous and the trap case. Furthermore, we derive the Gross–Pitaevskii equation
for D dimensions in Sec. 2.4. For weak interactions we solve it by using a Gaussian varia-
tional ansatz for the condensate wave function, where we determine the equations of motion
for the respective variational parameters for the D-dimensional harmonic trap. For strong
interactions GPE is solved with the Thomas-Fermi (TF) approximation. At the end of this
chapter in Sec. 2.5, we then discuss the time-independent quasi one-dimensional GPE as a
special case, where we compare Gaussian variational ansatz, as well as Thomas-Fermi and
numerical solution of the 1DGPE. And finally, as a non-trivial example for the condensate
dynamics, we describe the physics of a black and a gray soliton.
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2.1 Optical dipole trap

To build an optical dipole trap, a laser beam, which represents an intensity gradient in the
light field, is focused on a cloud of cold atoms. Due to the presence of the electric field of the
laser, the positive and negative charges in the atom experience opposing forces. This causes
a separation of the charges, which induces an atomic dipole moment. The interaction of this
atomic dipole moment with the intensity gradient of the laser beam creates an optical dipole
force, which is conservative, i.e. it can be written as the negative gradient of the potential.
In the following we derive that ODT potential as well as the scattering rate first in a classical
and then in a semi-classical approach. Note that, in view of experiments, the scattering rate
should be low in an ODT, as scattering leads to heating.

2.1.1 Classical model

To start the quantitative analysis, suppose a laser beam flashes on an atom. Here, the elec-
tric field E(r, t) = ĵ [E(r)exp(−iωt)+E⋆(r)exp(iωt)] induces due to charge separation an
atomic dipole electric moment d(r, t) = ĵ [d(r)exp(−iωt)+d⋆(r)exp(iωt)], which oscillates
at the driving frequency ω . The unit polarization vector is ĵ and the magnitude of the elec-
tric field and dipole moment are denoted by E(r) and d(r), respectively. The atomic dipole
moment and the electric field are related via d(r,ω) = α(ω)E(r,ω), with α(ω) being the
complex atomic polarizability. The interaction potential of the dipole moment is [29],

Udip(r) =−1
2
< d ·E>=−Re[α]|E|2 =− 1

2ε0c
Re[α]I(r) . (2.1)

Here I(r) = 2ε0c|E|2 represents the field intensity in vacuum, < •>= 1
T
∫ T

0 •dt denotes the
time average over the period T = 2π/ω , c is the speed of light, and ε0 stands for the vacuum
permittivity. The factor 1/2 in Eq. (2.1) arises from the fact that the dipole moment is induced
by the field and is not permanently there.

The second important quantity, the scattering rate, is proportional to the amount of power
that is absorbed from the driving field. As the imaginary part of the polarizability is the
component, that is out of phase with the driving field, it is responsible for the absorption.
The absorbed power is given by the average change in the dipole potential over time [29],

Pabs =<
dd
dt

·E>= 2ωIm[α]|E|2 = ω

ε0c
Im[α]I(r) . (2.2)

In order to obtain the scattering rate, this power needs to be divided by the energy of one
photon. With h̄ω denoting the energy of a photon, the scattering rate results in

Γsc(r) =
Pabs

h̄ω
=

Im[α]I(r)
h̄ε0c

. (2.3)
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The dipole potential (2.1) and the scattering rate (2.3) depend upon the position dependent
intensity of the laser-beam I(r) and the atomic polarizability α (ω). To derive the atomic
polarizability one can use a classical Lorentz-oscillator approach.

In the late nineteenth century, when quantum mechanics had not yet been established,
Hendrik Antoon Lorentz modelled atom-field interactions with the help of classical mechan-
ics and electromagnetic theory. To this end, he defined the question of atom-field interactions
in these terms. Lorentz thought that an atom mainly consists of two masses, the heavy nu-
cleus mass which is connected to the electron mass by a spring. The spring can be set into
motion with the help of an external electric field, which is interacting with the charge of the
electron. The external field would either attract or repel the electron, which causes a stretch-
ing or a compressing of the spring. In this classical model an electron is bound elastically to
the nucleus of the atom and oscillates with the eigenfrequency ωA. With keeping above sce-
nario in mind, the classical equation of motion of an electron reads according to Ref. [156]

mer̈(t) =−meΓṙ(t)−meω
2
Ar(t)− eE(r, t) . (2.4)

The first term on the right-hand-side is a damping term, with Γ representing the classical
damping rate and me the mass of the electron. It represents the rate at which the polarization
decays after the electric field has been removed. The second term on the right-hand-side is
the restoring force of the electron. The third term on the right-hand-side is the driving force,
originating from the external electric field E(r, t), where e stands for the elementary charge.

Later in 1902, Max Abraham connected the radiated power to the damping term in the
Lorentz model. When a charged particle such as an electron accelerates, it radiates away
energy in form of electromagnetic waves. For velocities, that are small relative to the speed
of light, the total power radiated is given by the Larmor formula PLr = e2 (r̈)2 /6πε0c3 [157,
p. 489] and [158, p. 748]. The average work by the radiation-reaction force Frr must balance
the energy emitted into the field [159]

∫ t

t0
Frrṙ

(
t ′
)

dt ′ =−
∫ t

t0
PLrdt ′ =− e2

6πε0c3

∫ t

t0
r̈
(
t ′
)

r̈
(
t ′
)

dt ′

=− e2

6πε0c3

[
ṙ
(
t ′
)

r̈
(
t ′
)∣∣∣∣t

t0

−
∫ t

t0
ṙ
(
t ′
) ...r
(
t ′
)

dt ′
]
=
∫ t

t0

[
e2

6πε0c3
...r (t ′)

]
ṙ
(
t ′
)

dt ′ . (2.5)

If we pick t − t0 to be an integer multiple of the optical period, the boundary term ṙ(t ′) r̈(t ′)
vanishes. Note that it is also negligible for large t− t0. Thus, we conclude from (2.5) that the
radiation-reaction force is given by

Frr =
e2

6πε0c3
...r (t). (2.6)
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For most atoms the spontaneous decay rate is best obtained from experimental data, but
this classical approach nevertheless provides a good approximation in certain cases, and
is accurate to within a few percent for the D lines of the alkali atoms. The on-resonance
damping rate Γ, which results from radiative energy loss in the classical harmonic oscillator
approach, is defined as

Γ =
e2ω2

A
6πε0mec3 . (2.7)

In the classical approach, the decay rate (2.7) can be determined by calculating the absorption
and emission of an atomic oscillator radiation [160]. Therefore we can rewrite the radiation-
reaction force (2.6) as

Frr =
meΓ

ω2
A

...r (t). (2.8)

The Abraham–Lorentz model of radiation reaction amounts now to replace the damping term
in Eq. (2.4) with the radiation-reaction force (2.8). With this the equation of motion (2.4)
reads [161, 162]

mer̈(t) =− meΓ

ω2
A

...r (t)−meω
2
Ar(t)− eE(r, t) . (2.9)

By inserting E(r, t) = ĵ [E(r)exp(−iωt)+E∗(r)exp(iωt)] and r(t) = ĵ [r0exp(−iωt)+
r∗0exp(iωt)

]
in Eq. (2.9), we obtain the position amplitude to be

r0 =
−eE(r)

me
[
ω2

A −ω2 − i
(
ω3/ω2

A

)
Γ
] . (2.10)

The polarization of the atom is nothing but the density (per volume) of the dipole moment,
which is defined as the product of the charge and the displacement vector from the negative
to the positive charge, that is, from the electron to the nucleus d(r) = −er = α(ω)E(r).
Therefore, we obtain for the atomic polarizability

α(ω) =
e2

me
[
ω2

A −ω2 − i
(
ω3/ω2

A

)
Γ
] . (2.11)

With the polarizability (2.11), the final expressions for the dipole potential and the scattering
rate can be found, by separating the real part and the imaginary part of the polarizability

Re[α] =6πε0c3 Γ/ω2
A
(
ω2

A −ω2)(
ω2

A −ω2
)2

+
(
ω3/ω2

A

)2
Γ2
, (2.12)

Im[α] =6πε0c3

(
ω3/ω4

A
)

Γ2(
ω2

A −ω2
)2

+
(
ω3/ω2

A

)2
Γ2
. (2.13)
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In the above equation, we used again (2.7). By inserting Re[α] into equation (2.1), we find
that, within a classical approach, the dipole potential is

Udip(r) =−3πc2

ω2
A

Γ
(
ω2

A −ω2)[(
ω2

A −ω2
)2

+
(
ω3/ω2

A

)2
Γ2
]I(r) . (2.14)

This can be rewritten as follows:

Udip(r) =−3πc2

ω2
A

Γ

(ωA +ω)(ωA −ω)

[
1+ (ω3/ω2

A)
2
Γ2

(ωA+ω)2(ωA−ω)2

]I(r) . (2.15)

For simplification we assume that the absolute value of the detuning ∆ = ω −ωA is much
larger than the natural line width of the transition i.e. |∆| ≫ Γ, so we have ω2

A (ω +ωA)∆ ≫
ω3Γ and the expression reduces to

Udip(r) =−3πc2

2ω3
A

(
Γ

ωA −ω
+

Γ

ωA +ω

)
I(r) . (2.16)

By using the same procedure we obtain for the scattering rate from (2.3) and (2.13)

Γsc(r) =
3πc2

2h̄ω3
A

(
ω

ωA

)3(
Γ

ωA −ω
+

Γ

ωA +ω

)2

I(r) . (2.17)

To understand the physics of ODT’s, these equations can be simplified even further by using
the rotating wave approximation (RWA) [163]. This approximation is valid when the fre-
quency of the beam is relatively close to the resonance frequency of the atomic transition,
i.e. ω ≈ ωA. Then the second term on the right-hand side of equations (2.16) and (2.17) be-
comes much smaller than the first term due to ω +ωA ≫ ∆, and can therefore be neglected.
Note that this approximation can be used as the ODT in the experiment is relatively far from
resonance. By using the rotating wave approximation, we write the dipole potential (2.16)

Udip(r) =
3πΓc2

2ω3
A∆

I(r), (2.18)

and the scattering rate (2.17) becomes

Γsc(r) =
3πc2

2h̄ω3
A

(
Γ

∆

)2

I(r) . (2.19)

For negative detuning ∆, i.e. light frequencies ω below the atomic resonance frequency ωA,
the ODT potential is negative and atoms are attracted into the light field (red-detuned trap).
For positive detuning, i.e. light frequencies above the atomic resonance frequency, the ODT
potential is positive and atoms are repelled from the light field (blue-detuned trap) as shown
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Figure 2.1: A cartoon illustration the dipole trap with (a) red- and (b) blue-detuning [29].

in Fig. 2.1. Traps operating within the validity of the RWA are called far-off-resonant optical
traps (FORT). The dipole potential scales as I(r)/∆, whereas the scattering rate scales as
I(r)/∆2, therefore it is favorable to choose in an experiment a large detuning of the laser
beam. In order to compensate for the decrease in the dipole potential, the intensity of the
laser beam can be increased.

2.1.2 Semi-classical two-level atomic model

A quantum description of an optical dipole trap involves the complex energy level structure
of atoms. At the beginning, to avoid the complexity of the problem, we introduce a simplified
two-level atom model, which consists of a ground state |e > and an excited state |g > with
the excitation frequency ωA. Note that, in order to treat a real atom as a two-level atom
with all its complex energy level structure, a large detuning as compared to the natural line
width of the transition, i.e. |∆| ≫ Γ, is required, so that the hyperfine structure of the atom
cannot be distinguished. Nevertheless, the incident laser light frequency ω must be close
enough to a specific resonance to ensure that we are in the region of the particular two-level
approximation. This is same kind of physical analogy which was used to derive equation
(2.18).

The effect of laser light on the energy levels of the atomic system can be evaluated using
time-independent perturbation theory [29]. The Hamiltonian of the system for the perturbed
case is given by H = H0 +H1, where H1 describes the perturbation from the unperturbed
Hamiltonian H0. In our special case we have H1 = −d̂E, where d̂ = −er is the electric
dipole operator. As a general result of second-order time-independent perturbation theory
for non-degenerate states, an interaction Hamiltonian leads to an energy shift of the i-th state
that is given by [29]

∆Ei = ∑
i ̸= j

|< i|H1| j > |2
Ξi −Ξ j

. (2.20)
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Note that the first-order perturbation < i|H1|i > vanishes due to symmetry reasons. Here,
Ξi represents the unperturbed energies of the atom plus the electromagnetic field [29]. For
a two-level system, the ground state level has zero internal energy and the light field energy
is nh̄ω , according to the number of photons n, so the total energy of the unperturbed ground
state is Ξi = nh̄ω . On the other hand, when an atom absorbs a photon and gets into an
excited state, the sum of its internal energy h̄ωA and the field energy Ξi = (n−1) h̄ω yields
Ξ j = h̄ωA +(n−1) h̄ω =−h̄∆+Ξi. Thus (2.20) reduces to

∆E =±|< i|d̂| j > |2
h̄∆

|E|2 . (2.21)

Here, the ± signs correspond to the ground (+) and excited state (−) shifts, respectively.
From the Weisskopf-Wigner theory of the atomic spontaneous emission [164, Eq. 6.3.14],
the decay rate is defined according to

Γ =
ω3

A

∣∣< e|d̂|g>
∣∣2

3πε0h̄c3 , (2.22)

where < e|d̂|g > is the dipole matrix element between the ground and the excited state.
Note that the semi-classical result (2.22) goes over into the classical one (2.7) by identifying∣∣< e|d̂|g>

∣∣ with e
√

h̄/2mωA. Taking into account (2.22), we can rewrite (2.21) as

∆E =±3πε0Γc3

ω3
A∆

|E|2 . (2.23)

The energy shift ∆E for the ground (excited) state is either positive (negative) for blue or
negative (positive) for red detuning, which is also known as ‘light shift’ or ‘Stark shift’. And
the corresponding scattering rate is calculated due to |E|2 = I(r)/(2cε0) by using the linear
dielectric susceptibility of a two-level atom [161, Eq. 2.178] and [165, Eq. 3.2.23]:

Γsc =
3πε0c3

h̄ω3
A

(
Γ

∆

)2

|E|2 . (2.24)

This result coincides with the classical one in Eq. (2.19).

AC Stark Shift: If the incident light is defined by an oscillating electric field, then it can
be drafted as |E|2 = I(r)/(2cε0) and the energy shift in Eq. (2.23) gets

∆E =±3πΓc2

2ω3
A∆

I(r) . (2.25)

This result, coincides with the one in Eq. (2.18) which was derived with the help of classical
model for the rotating wave approximation. For red-detuning ∆< 0 or blue-detuning ∆> 0,
the atom interacts with the external light and shifts the ground state energy downwards or
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Figure 2.2: A cartoon diagram of AC Stark shift in a two-level atom. (a) For red-detuned
light i.e. ∆ < 0, the ground state is shifted down and the excited state is shifted up by the
same amount ∆E. (b) For blue-detuned light i.e. ∆> 0, the ground state is shifted up and the
excited state is shifted down by the same amount ∆E.

upwards, respectively, as shown in Fig. 2.2.

DC Stark Shift: If the incident light is described by a DC electric field, which amounts
to the limit ω → 0, and the light intensity takes the form |E|2 = I(r)/(ε0c), so we obtain
from Eq. (2.23)

∆E =∓3πΓc2

ω4
A

I(r) . (2.26)

Note that the sign changed because of the detuning term ∆ ≈−ωA.

2.1.3 Multi-level atomic model

Extending the previous results from a two-level to a multi-level atomic system only requires a
slight modification. For the two-level system, we assumed the rotating wave approximation,
which is naturally not valid anymore for the multi-level atomic system. Defining the dipole
moment matrix elements Dmn =< m|d̂|n > between states m and n of the atom, the decay
rate for a two-level atom in (2.22) is generalized for the multi-level system according to [29]

Γmn =
ω3

mn
3πε0h̄c3 |Dmn|2 . (2.27)

By summing the energy shifts from all the transitions of the atom, the dipole trapping poten-
tial can be calculated from the semi-classical result (2.25),

Udip =− ∑
m ̸=n

3πc2

2ω3
mn

(
Γmn

ωmn −ω
+

Γmn

ωmn +ω

)
I(r) . (2.28)
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Following the same steps, we get instead of the semi-classical results (2.24)

Γsc = ∑
m̸=n

3πc2

2h̄ω3
mn

(
ω

ωmn

)3(
Γmn

ωmn −ω
+

Γmn

ωmn +ω

)2

I(r) . (2.29)

The multi-level atom results (2.28) and (2.29) are the true results to measure the accurate
trap depth and the scattering rate for the optical dipole traps. But on the other hand the
two-level approximated semi-classical results (2.23) and (2.24) are helpful to understand the
basic physics of the optical dipole traps.

2.2 Evanescent wave

The manipulation of ultra-cold atoms with optical or magnetic fields close to dielectric sur-
faces is broadly explored in the context of constructing atom optics devices. An evanescent
wave has the special aspect that its electromagnetic field decays exponentially with increas-
ing distance from the dielectric boundary. Under a special circumstance, an evanescent
field allows to reflect and to cool atoms near to dielectric surfaces. To create the evanes-
cent wave, experimentalists use a fused silica prism, where the laser beam undergoes a to-
tal internal reflection at the surface of the prism [79]. This reflection follows Snell’s law
ni sinΘi = nr sinΘr, with ni and nr denoting the respective refractive indices as well as Θi

and Θr being the angle of incidence and the angle of refraction. All the light is reflected
internally, if the angle between the incident wave vector and the surface normal exceeds the
critical angle, which is given according to Snell’s law by Θc = arcsin(nr/ni). As a result of
the total internal reflection of the light and because the electric field must be continuous at the
boundary of dielectric surface, some amount of the field “leaks out” into the vacuum region
which is known as the evanescent wave. The strength of this field is larger at the boundary
of the surface and falls off exponentially as it penetrates into the vacuum. The transmitted
electric field vector reads

Et (r, t) = Etete−i(ktxx+ktzz−ωt) , (2.30)

where, Et denotes the amplitude of the electric field, et stands for the polarization of the
electric field, ktx and ktz are the wave vectors as shown in Fig. 2.3. Note that the wave
vector along the y-axis is zero, while it is perpendicular to the electric field. Due to the
boundary condition between the dielectric media and the air, the transversal components of
the respective wave vectors coincide:

kix = krx = ktx. (2.31)

2.2 Evanescent wave 21



Figure 2.3: A picture description of Snell’s law. An evanescent wave occurs for a total
internal reflection at the dielectric interface, i.e. when Θr = π/2 .

This can be rewritten according to

ki sinΘi = kr sinΘr = kt sinΘt , (2.32)

with the wave vectors

ki =
ω

c
ni , kr =

ω

c
ni , kt =

ω

c
nr . (2.33)

After some algebra, the wave vectors are rewritten as

ktx =
ω

c
ni sinΘi, (2.34)

ktz = i
ω

c
nr

√(
ni

nr
sinΘi

)2

−1 . (2.35)

By putting these values in equation (2.30), the expression for the evanescent wave field reads
[79, 80, 82]

Et (r, t) = Etete−z/Λ e−i(ktxx−ωt) . (2.36)

where

Λ = λ/

2π

√(
ni

nr
sinΘi

)2

−1

 (2.37)

represents the decay length of the evanescent wave. Ovchinnikov et al. in experiment [79]
used ni = 1.45 and nr = 1, which represents the index of refraction of the fused silica medium
and the air, respectively.

Trapping of atoms near to dielectric surfaces has some disadvantages, for example, some
unwanted forces start to play a vital role, when the distance between atoms and the surface
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becomes about 100nm [166], these forces are known as van-der-Waals (vdW) forces. The
attractive vdW force is based upon the electromagnetic interaction of an atomic dipole with
its mirror image on the dielectric surface. We will not describe the complex calculation
of this effect, because we assume that atoms are trapped far away from the prism surface,
therefore for more detailed analysis, please see Ref. [167]. The van-der-Waals potential can
be divided into two special cases, which differ depending on the distance of the atoms from
the surface. The regime, where the atoms are close to the dielectric surface, i.e. z ≪ λeff/2π ,
is called the Lennard-Jones regime [168, 169], here λeff is the effective transition wave length
for the two-level atom. In the other case, where the atoms are far away from the surface, i.e.
z ≫ λ/2π , the regime is called Casimir-Polder regime [166, 170].

2.3 Free energy

Although the second quantization is a representation of a system but not a solution, its appli-
cation often leads to a considerable simplification of the analysis of many-particle systems.
Somehow, second quantization provides a basic and efficient language in which we formulate
many-particle systems. The description of bosons starts from defining the second-quantized
Hamiltonian operator [6, 87, 171],

ĤS =
∫

d3xΨ̂
† (x)h(x)Ψ̂ (x)+

1
2

∫
d3xΨ̂

† (x)
∫

d3x′Ψ̂ † (x)U
(
x,x′

)
Ψ̂
(
x′
)
Ψ̂ (x) ,

(2.38)

where the first-quantized Hamiltonian operator h(x) = −h̄2
∆/(2mB) +V (x) contains the

kinetic term plus an external potential V (x) and U (x,x′) denotes the interaction potential
between bosons. In the above expression, the field operators Ψ̂ † (x) and Ψ̂ (x) obey the usual
commutator relations for bosonic particles, i.e.[

Ψ̂
† (x) ,Ψ̂ † (x′)]

−
=
[
Ψ̂ (x) ,Ψ̂

(
x′
)]

− = 0, (2.39)[
Ψ̂
(
x′
)
,Ψ̂ † (x)

]
−
= δ

(
x−x′

)
.

The many-body Hamiltonian can be generalized according to the grand-canonical ensemble

Ĥ =
∫

d3xΨ̂
† (x) [h(x)−µ]Ψ̂ (x)+

1
2

∫
d3xΨ̂

† (x)
∫

d3x′Ψ̂ † (x)U
(
x,x′

)
Ψ̂
(
x′
)
Ψ̂ (x) ,

(2.40)

where µ represents the chemical potential. The grand-canonical formalism defines the parti-
tion function Z as

Z = e−βF = Tr
[
e−βĤ

]
, (2.41)
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where F is the free energy of the system, β = 1/kBT is the inverse temperature and the trace
in the expression has to be taken over all states of the Fock space. We introduce a one-particle
basis, which is characterized by discrete quantum numbers n, and write the field operator as
an expansion with respect to these functions Ψn(x) as

Ψ̂ (x) = ∑
n

ânΨn(x), Ψ̂
† (x) = ∑

n
â†

nΨ
∗

n (x) . (2.42)

The one-particle basis is chosen to be orthonormal∫
d3xΨn(x)Ψ ∗

m(x) = δnm, (2.43)

and complete

∑
n

Ψn(x)Ψ ∗
n (x

′) = δ
(
x−x′

)
. (2.44)

The expansion coefficients â†
n =

∫
d3xΨn(x)Ψ̂ † (x) and ân =

∫
d3xΨ ∗

n (x)Ψ̂ (x) represent the
creation and annihilation operators of a particle with the quantum number n as they obey the
canonical commutator relations[

â†
n, â

†
m

]
−
= [ân, âm]− = 0,

[
ân, â†

m

]
−
= δnm . (2.45)

2.3.1 Non-interacting particles

For simplicity reason we assume at the moment that the bosons are non-interacting particles,
i.e. U (x,x′) = 0. Without loss of generality we can choose the one-particle basis such that
h(x)Ψm(x) = EmΨm(x), therefore we insert (2.42) into the Hamiltonian operator (2.40) and
get

Ĥ =
∫

d3x
[
∑
n

â†
nΨ

∗
n (x)

]
[h(x)−µ]

[
∑
m

âmΨm(x)
]

︸ ︷︷ ︸
∑m âm(Em−µ)Ψm(x)︸ ︷︷ ︸

∑n ∑m â†
nâm(En−µ)δnm

. (2.46)

We rewrite the Hamiltonian in terms of these creation and annihilation operators as

Ĥ = ∑
n
(En −µ) â†

nân. (2.47)
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Here, we formulated our system in terms of one-particle energies En. A basis in Fock space
is provided by the occupation number basis ∏n |Nn >n with the property

â†
n|Nn >n=

√
Nn +1|Nn +1>n, ân|Nn >n=

√
Nn|Nn −1>n . (2.48)

Because we have a large number of particles in the ground state, we obtain â†
0|N0 >0≈√

N0|N0 >0 and â0|N0 >0≈
√

N0|N0 >0 or â0 ≈ â†
0 ≈

√
N0 =Ψ0. As T decreases, more and

more bosons occupy the ground state, as it has the lowest energy. Thus we should take into
account the ground state separately. Therefore, we divide the Hamiltonian into two parts,
one for the ground state and one for the excited states

Ĥ = (E0 −µ)Ψ 2
0 + ∑

n ̸=0
(En −µ) â†

nân . (2.49)

Using (2.49), the partition function (2.41) can be written as

Z = Tr
[
e−β [(E0−µ)Ψ 2

0 +∑n ̸=0(En−µ)â†
nân]
]
, (2.50)

here the trace in Fock space is defined as

TrÔ =

(
∏
n̸=0

∞

∑
Nn=0

)
< ......,Nn, ....|Ô|......,Nn, .... > . (2.51)

With this, we rewrite the partition function

Z =< N0|e−β [(E0−µ)Ψ 2
0 ]|N0 >

(
∏
n̸=0

∞

∑
Nn=0

)
< ......,Nn, ....|e−β ∑

∞
n ̸=0(En−µ)â†

nân|......,Nn, .... >︸ ︷︷ ︸
∏n ̸=0 ∑

∞
Nn=0 e

−β ∑
∞
n ̸=0(En−µ)Nn

,

(2.52)

or more simplified

Z = e−β [(E0−µ)Ψ 2
0 ] ∏

n̸=0

1
1− e−β (En−µ)

. (2.53)

By evaluating the geometric series we have to impose

En > µ for all n ̸= 0 . (2.54)

After some algebra, the free energy of the system takes the form
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F =− 1
β

lnZ = (E0 −µ)Ψ 2
0 +

1
β

∑
n̸=0

ln
[
1− e−β (En−µ)

]
. (2.55)

Following Landau [87] the physically realized order parameter follows from extremizing the
free energy F :

2(E0 −µ)Ψ0 = 0 V


Ψ0 = 0 ≡ N0 Gas phase, E0 ̸= µ

E0 = µ BEC phase, N0 ̸= 0 .
(2.56)

Here, the first case describes the high-temperature phase, wherein the bosons do not oc-
cupy the ground state macroscopically, while the second case represents the low-temperature
phase, wherein a Bose-Einstein condensate is present. We see the fact that in the grand-
canonical ensemble one has to investigate the thermodynamic properties of the respective
phases separately.

With the use of the thermodynamic relation N ≡−∂F/∂ µ , we calculate from Eq. (2.55)
the Bose-Einstein distribution for the excited states:

N = N0 + ∑
n̸=0

1
eβ (En−µ)−1

. (2.57)

2.3.2 Semi-classical limit

In this section, we show how the properties of a trapped cloud of non-interacting particles
may be described semi-classically. This approximation holds, provided that the typical de-
Broglie wave lengths of particles are small compared with the length scales over which the
trapping potential and the particle density vary significantly. Locally, the gas may then be
treated as quasi-uniform. Properties of non-condensed particles may be calculated using a
semi-classical distribution function Fth. In a semi-classical limit, when h̄ → 0, T → ∞ and
(2.54), we determine for the thermal part of the free energy (2.55)

Fth =
1
β

∑
n ̸=0

ln
(

1− e−β (En−µ)
)

︸ ︷︷ ︸
−∑

∞
m=1

e−mβ (En−µ)

m

=− 1
β

∞

∑
m=1

emβ µ

m ∑
n̸=0

e−mβEn. (2.58)

Here ∑n̸=0 e−mβEn = Z1 (mβ )−e−mβE0 , and Z1 (β ) represents the one-particle partition func-
tion. In a semi-classical approximation, we identify the quantum number n with a point in
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phase space

n → x,p, (2.59)

∑
n ̸=0

→
∫

∞

−∞

dDx
∫

∞

−∞

dDp
(2π h̄)D ,

En → E0 +H (x,p) ,

where D represents the number of dimensions. By using above mentioned approximations
we write the semi-classical free energy (2.55)

F = (E0 −µ)Ψ 2
0 +

1
β

∫
∞

−∞

dDx
∫

∞

−∞

dDp
(2π h̄)D ln

{
1− e−β [H(x,p)+E0−µ]

}
. (2.60)

Thus, the first term describes the contribution of those bosons, which are in the ground state.
This condensate contribution depends on the number N0 =Ψ 2

0 , which defines the condensed
bosons. The second term describes the contribution of the non-condensed bosons within the
semi-classical approximation. Finally, using the thermodynamic relation N ≡−∂F/∂ µ , we
obtain for the number of particles

N = N0 +
∫

∞

−∞

dDx
∫

∞

−∞

dDp
(2π h̄)D

1
eβ [H(x,p)+E0−µ]−1

. (2.61)

2.3.3 Ideal Bose gas

As an example of the Bose-Einstein distribution, let us consider an ideal Bose gas. An ideal
Bose gas consists of a large number of identical non-interacting bosons in a box with rigid
walls and fixed volume V . We consider an ideal Bose gas in a three-dimensional box with
length L in the thermodynamic limit L→∞, with the Hamiltonian H (x,p)= p2/2mB+V (x).
For this ensemble, obviously a homogeneous Bose gas is considered V (x) = 0, E0 = 0 with
dimensions D = 3, with this we write free energy of the system from Eq. (2.60)

F = (E0 −µ)Ψ 2
0 +

1
β

∫
∞

−∞

d3x
∫

∞

−∞

d3p
(2π h̄)3 ln

[
1− e−β(p2/2mB−µ)

]
. (2.62)

By using the Taylor series expression ln(1− e−y) =−∑
∞
m=1 e−my/m and the Gaussian inte-

gral
∫

∞

−∞
d3pe−mβ(p2/2mB) = 2

√
2(πmB/mβ )3/2, we simplify above relation as

F = (E0 −µ)Ψ 2
0 − V

βλ 3 ξ5/2

(
eβ µ

)
. (2.63)
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Herein, λ =
√

2π h̄2
β/mB denotes thermal deBroglie wave length and ξν (z) = ∑

∞
m=1 zm/mν

is the polylogarithm function, which has the important identity

d
dz

ξν (z) =
ξν−1 (z)

z
. (2.64)

Thus, the number of atoms in an ideal Bose gas turns out to be

N = N0 +
V
λ 3 ξ3/2

(
eβ µ

)
. (2.65)

At a critical temperature Tc in a uniform 3D system, we have due to (2.56) N0 = 0 and µ = 0.
To derive a relation between the density n = N/V and the critical thermal deBroglie wave
length, we use the Robinson formula [172]

ξν (ea) = (−a)ν−1
Γ(1−ν)+

∞

∑
k=0

(a)k

k!
ξ (ν − k) (2.66)

with ν = 3/2

ξ3/2

(
eβ µ

)
=−2

√
−πβ µ +ξ (3/2)+β µξ (1/2)+ ..., (2.67)

which yields

lim
µ�0

ξ3/2

(
eβ µ

)
= ξ (3/2) . (2.68)

Thus we conclude from (2.65)

N =
V
λ 3

Tc

ξ3/2 (1) , (2.69)

which gives us the critical point with density n = N/V ,

nλ
3
Tc
= 2.612 , (2.70)

as was already calculated qualitatively in (1.1). At lower temperatures than Tc, the thermal
population is

NT =
V
λ 3

T
ξ3/2 (1) . (2.71)

Taking the ratio of last two equations λ 3
T/λ 3

Tc
= N/NT , we write the number of particles in

the condensate for a homogeneous Bose gas as

N0 = N −NT = N

[
1−
(

T
Tc

) 3
2
]
. (2.72)
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Figure 2.4: Homogeneous (solid red-line) and three-dimensional harmonic trapped (blue-
circles) condensate fraction N0/N versus normalized temperature T/Tc. Here, Tc represents
the respective critical temperatures.

Figure 2.4 shows the condensate fraction N0/N versus normalized temperature T/Tc. We en-
counter here a “two-fluid” system for which the total particle density splits into a condensed
fraction N0 and a normal fraction NT .

2.3.4 3D harmonically trapped Bose gas

We now consider a non-interacting Bose gas in a three-dimensional harmonic trap V (x) =
mB ∑

3
i=1 ω2

i x2
i /2, which is described by the Hamiltonian H (x,p)= p2/2mB+V (x). We write

the free energy of the system from Eq. (2.60) as

F = (E0 −µ)Ψ 2
0 − 1

β

∞

∑
m=1

emβ (µ−E0)

m

∫
∞

−∞

d3x
∫

∞

−∞

d3p
(2π h̄)3 e−mβ [p2/2mB+mB ∑

3
i=1 ω2

i x2
i /2].

(2.73)

Evaluating the Gaussian phase space integral and using the polylogarithm function, we derive
the following expression for the free energy

F = (E0 −µ)Ψ 2
0 −

ξ4

(
eβ (µ−E0)

)
β (h̄βω̃)3 , (2.74)

where ω̃ = (ω1ω2ω3)
1/3 expresses the geometric mean of the trap frequencies. With this we

obtain the relation for the number of atoms in a 3D harmonic trap Bose gas

N = N0 +
ξ3

(
eβ (µ−E0)

)
(h̄βω̃)3 . (2.75)
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To determine the relation for number of atoms at T = Tc, we use the condition µ = E0 and
N0 = 0, which yields

N =

(
kBTc

h̄ω̃

)3

ξ (3) . (2.76)

Furthermore, we read off from (2.75) that for T ≤ Tc the thermal population is given by

NT =

(
kBT
h̄ω̃

)3

ξ (3) . (2.77)

By taking the ratio of the last two equations NT/N = (T/Tc)
3, we write the number of

particles in the condensate as

N0 = N −NT = N

[
1−
(

T
Tc

)3
]
. (2.78)

The condensate fraction as shown in Fig. 2.4 was confirmed by experimental results [173].

2.3.5 1D homogeneous and harmonic trapped Bose gas

According to the Mermin–Wagner theorem [174] a BEC does not exist in the two-dimensional
(2D) or in the one-dimensional (1D) homogeneous case. As we will restrict ourselves to the
1D system we show in this section that the BEC transition can happen for the trapped case
but not for the homogeneous case. With this, first we discuss the homogeneous case by
redefining the free energy of the system (2.60) for the one-dimensional scenario

F = (E0 −µ)Ψ 2
0 − L

β

∞

∑
m=1

em(µ−E0)

m

∫
∞

−∞

d p
2π h̄

e−mβ(p2/2mB). (2.79)

By using the polylogarithm function, we write the simplified expression for the free energy
of the system as

F = (E0 −µ)Ψ 2
0 −L

ξ3/2

(
eβ (µ−E0)

)
β h̄

√
2π (β/mB)

1/2 . (2.80)

With this we yield the relation for the number of atoms N ≡−∂F/∂ µ in a 1D homogeneous
Bose gas

N = N0 +L
ξ1/2

(
eβ (µ−E0)

)
h̄
√

2π (β/mB)
1/2 . (2.81)
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Figure 2.5: Condensate fraction N0/N versus normalized temperature T/Tc, for N = 102

(solid red-line) and N = 106 (blue-circles) harmonically trapped bosons in 1D. Here, Tc
represents the respective critical temperatures.

To determine the relation for the number of atoms at the T = Tc, we use the condition µ = E0

and N0 = 0, yielding

N = L
ξ1/2 (1)

h̄
√

2π (βc/mB)
1/2 . (2.82)

We know that the polylogarithm function ξ1/2 (1) diverges, therefore we cannot see the tran-
sition for the 1D homogeneous case. For the critical temperature Eq. (2.82) can be rewritten
Tc = 2π h̄2 [N/Lξ1/2 (1)

]2
/kBmB, so we derive the Mermin–Wagner theorem, which states

that Tc = 0 for the 1D homogeneous case [174].

Now let’s calculate the transition temperature for the trapped one-dimensional BEC start-
ing from (2.60):

F = (E0 −µ)Ψ 2
0 − 1

β (2π h̄)

∞

∑
m=1

em(µ−E0)

m

∫
∞

−∞

dx
∫

∞

−∞

d pe−mβ [p2/2mB+mBω2x2/2]︸ ︷︷ ︸
2π/mβω

. (2.83)

The simplified free energy is

F = (E0 −µ)Ψ 2
0 −

ξ2

(
eβ (µ−E0)

)
h̄β 2ω

. (2.84)

By using the above relation, we define the number of atoms N ≡ −∂F/∂ µ in a 1D trapped
Bose gas

N = N0 +
ξ1

(
eβ (µ−E0)

)
h̄βω

. (2.85)

In order to evaluate (2.85) at the initial point, we use the specialized Robinson formula

ξ1 (ea) = − ln(−a)+
∞

∑
k=1

akξ (1− k)/k! [171], and get ξ1 (1) = ∞. From this we conclude
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that, by using the semi-classical approach, we can not find the particle number for the one-
dimensional trapped case. Therefore we need to calculate the number of particles with an
advanced technique [175], which takes into account finite-size effects and yields for the one-
dimensional condensate fraction

N0 = N
[

1− T
Tc

(
1+

ln(T/Tc)

γ − ln(h̄ωβc)

)]
+ .... , (2.86)

Here the critical temperature is approximately defined as Tc = {N/ [γ − ln(h̄ωβc)]} h̄ω/kB

with γ = 0.5772 being Euler’s constant [175]. For the different number of atoms, we plot the
one-dimensional condensate fraction versus the normalized critical temperature as shown in
Fig. 2.5. For the harmonic oscillator frequency ω = 2π ×100Hz, the critical temperature for
N = 102 and N = 106 particles are Tc = 0.124 µK and Tc = 0.402mK, respectively.

2.4 Gross-Pitaevskii equation

At zero temperature for weak two-particle interaction, one can consider the Bose gas to be
governed by a single wave function. In the following we sketch its derivation starting from
the Heisenberg picture formulation Ψ̂H (r, t) = e−iĤSt/h̄Ψ̂S (r)eiĤSt/h̄ where Ψ̂S (r) defines
the Schrödinger state and ĤS describes the second-quantization Hamiltonian (2.38). In the
following we restrict ourselves to a contact interaction, i.e. U (r,r′) = GD

Bδ (r− r′), where
the two-particle contact interaction strength GD

B depends on the D dimensions of the system.
We rewrite the second-quantization Hamiltonian (2.38) by using the Heisenberg picture for-
mulation Ĥ= e−iĤSt/h̄ĤSeiĤSt/h̄ as

Ĥ=
∫

dDrΨ̂ † (r, t)h(r)Ψ̂ (r, t)+
GD

B
2

∫
dDrΨ̂ † (r, t)Ψ̂ † (r, t)Ψ̂ (r, t)Ψ̂ (r, t) . (2.87)

The Heisenberg equation of motion of the field operator Ψ̂ (r′, t) is given by

ih̄
∂

∂ t
Ψ̂
(
r′, t
)
=
[
Ψ̂
(
r′, t
)
,Ĥ
]
= Ψ̂

(
r′, t
)
Ĥ− ĤΨ̂

(
r′, t
)
, (2.88)

= Ψ̂
(
r′, t
)
Ĥ−

∫
dDrΨ̂ † (r, t)h(r)Ψ̂ (r, t)Ψ̂

(
r′, t
)

− GD
B

2

∫
dDrΨ̂ † (r, t)Ψ̂ † (r, t)Ψ̂ (r, t)Ψ̂ (r, t)Ψ̂

(
r′, t
)
,

= Ψ̂
(
r′, t
)
Ĥ−

∫
dDr

[
Ψ̂
(
r′, t
)
Ψ̂

† (r, t)−δ
(
r− r′

)]
h(r)Ψ̂ (r, t)

− GD
B

2

∫
dDr

[
Ψ̂
(
r′, t
)
Ψ̂

† (r, t)−2δ
(
r− r′

)]
Ψ̂

† (r, t)Ψ̂ (r, t)Ψ̂ (r, t) ,

= Ψ̂
(
r′, t
)
Ĥ−Ψ̂

(
r′, t
)
Ĥ+

∫
dDrδ

(
r− r′

)
h(r)Ψ̂ (r, t)

+GD
B

∫
dDrδ

(
r− r′

)
Ψ̂

† (r, t)Ψ̂ (r, t)Ψ̂ (r, t) .
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This then simplifies to

ih̄
∂

∂ t
Ψ̂
(
r′, t
)
=

[
− h̄2

∆

2mB
+V (r′)+GD

BΨ̂
† (r′, t)Ψ̂ (r′, t)]Ψ̂

(
r′, t
)
. (2.89)

We can derive the Gross-Pitaevskii equation (GPE) for dilute Bose gases by decomposing
the field operator Ψ̂ (r, t) = ψ (r, t) + δψ̂ (r, t), here ψ (r, t) is a complex wave function,
which corresponds to the macroscopic occupation of the ground state, and δψ̂ (r, t) describes
the non-condensed fraction, which corresponds either to excited atoms due to thermal or
quantum-mechanical fluctuations. The equation of motion for the condensate wave function
is obtained by substituting the decomposed field operator into Eq. (2.89) and neglecting the
non-condensate fraction δψ̂ (r, t), so we obtain

ih̄
∂

∂ t
ψ (r, t) =

[
− h̄2

∆

2mB
+V (r)+GD

B ∥ ψ(r, t) ∥2
]

ψ (r, t) . (2.90)

This is the time-dependent Gross-Pitaevskii equation, which has become the main tool for
theoretical studies of Bose-Einstein condensates. Here, the term on the left-hand-side (LHS)
corresponds to the time dependent dynamics of the system, the first term on the right-hand-
side (RHS) represents the kinetic energy of the system, middle term on the RHS describes
the potential of the system and the last term on the RHS defines the two-particle interaction
in the system. We can also derive the underlying GPE for a condensate wave function by
using the Hamilton principle of least action with the action functional [171, 176]

AD =
∫

dt
∫

LD dDr, (2.91)

where the Lagrangian density reads for three spatial dimensions as

LD =
ih̄
2

[
ψ
⋆ (r, t)

∂ψ (r, t)
∂ t

−ψ (r, t)
∂ψ⋆ (r, t)

∂ t

]
− h̄2

2mB
∇ψ

⋆ (r, t)∇ψ (r, t)

−V (r)ψ⋆ (r, t)ψ (r, t)− GD
B

2
∥ ψ (r, t) ∥4 . (2.92)

Here ψ (r, t) describes the BEC wave function with the coordinates r = (x1,x2,x3, .....,xD).
To this end, we consider the D-dimensional action

AD =
∫

∞

−∞

∫
∞

−∞

LD

(
ψ
⋆ (r, t) ,

∂ψ⋆ (r, t)
∂ t

,
∂ψ⋆ (r, t)

∂r
;ψ (r, t) ,

∂ψ (r, t)
∂ t

,
∂ψ (r, t)

∂r

)
dDrdt

(2.93)

and determine the time-dependent D-dimensional Gross-Pitaevskii equation (DDGPE) ac-
cording to the Euler-Lagrangian equation

δAD [ψ⋆,ψ]

δψ⋆ (r, t)
=

∂LD

∂ψ⋆ (r, t)
− ∂

∂r
∂LD

∂
∂ψ⋆(r,t)

∂r

− ∂

∂ t
∂LD

∂
∂ψ⋆(r,t)

∂ t

= 0 . (2.94)
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By using the D-dimensional Lagrangian density (2.92), the DDGPE reads (2.90). Strictly
speaking, the Gross-Pitaevskii equation (GPE) is only valid for nDaD ≪ 1, where nD is the
density of particles and a is the s-wave scattering length, the validity range calculated by
using Bogoliubov theory [177].

2.4.1 Variational method

We now study the condensate function ψ(r, t) for the anisotropic harmonic oscillator V (r) =
mB ∑

D
i=1 ω2

i x2
i /2. As (2.90) can not be solved exactly, we follow [178] and work out an

approximative variational solution, which is reasonable for weak interactions. To this end
we perform the following ansatz for the condensate wave function

ψ(r, t) =
1

πD/4Ã(t)D/2 exp

{
−

D

∑
i=1

(
1

2Ai (t)
2 + iBi (t)

)
x2

i

}
. (2.95)

Here, Ai (t) corresponds to the width of the BEC and Bi (t) is a time-dependent variational
parameter, the normalization condition is

∫
dDr|ψ(r, t)|2 = 1 and Ã=(A1A2.....AD)

1/D. With
this the Lagrangian Eq. (2.92) decomposes into four contributions

LD = Ltime +Lkin +Lpot +Lint . (2.96)

The kinetic energy part of the Lagrangian reads

Lkin =− h̄2

2mB

∫
dDr∇ψ

⋆ (r, t)∇ψ (r, t) =−
D

∑
i=1

{
h̄2

4mBAi (t)
2 +

h̄2

mB
Ai (t)

2 B2
i (t)

}
. (2.97)

Accordingly, the interaction energy part of the Lagrangian yields

Lint =−GD
B

2

∫
dDr|ψ(r, t)|4 =−

D

∑
i=1

GD
B

2(2π)D/2 Ã(t)D
. (2.98)

The Lagrangian function for potential energy can be calculated as

Lpot =−
∫

dDrV (r)|ψ(r, t)|2 =−mB

4

D

∑
i=1

ω
2
i Ai (t)

2 . (2.99)

And finally, the time dependent part of the Lagrangian function is given by

Ltime =− ih̄

πD/2Ã(t)D

D

∑
i=1

∫
dDr

{
− Ȧi (t)

2Ai (t)
+

[
Ȧi (t)

Ai (t)
3 − iḂi (t)

]
x2

i

}
exp

{
−

D

∑
i=1

x2
i

2Ai (t)
2

}
,

(2.100)
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which can be simplified as

Ltime =
h̄
2

D

∑
i=1

Ai (t)
2 Ḃi (t) . (2.101)

With this, we get for the entire Lagrangian (2.96):

LD =
D

∑
i=1

{
h̄
2

Ai (t)
2 Ḃi (t)−

h̄2

4mBAi (t)
2 −

h̄2

mB
Ai (t)

2 B2
i (t)−

mB

4
ω

2
i Ai (t)

2

}
− GD

B

2(2π)D/2 Ã(t)D
.

(2.102)
We extermize the action for the variation functions Ai (t) and Bi (t), which leads to the Euler-
Lagrange equations

δAD

δAi (t)
=

∂LD

∂Ai (t)
− d

dt
∂LD

∂ Ȧi (t)
= 0, (2.103)

δAD

δBi (t)
=

∂LD

∂Bi (t)
− d

dt
∂LD

∂ Ḃi (t)
= 0 .

By inserting the Lagrangian (2.102) we obtain

−h̄Ai (t) Ḃi (t)+ 2h̄2

mB
Ai (t)B2

i (t)+
mBω2

i
2 Ai (t)

2 = h̄2

2mBAi(t)
3 +

GD
B

2(2π)D/2Ã(t)DAi(t)
, (2.104)

Bi (t) =−mBȦi(t)
2h̄Ai(t)

. (2.105)

By eliminating Bi (t) from above equations, we obtain the dynamical equations of the varia-
tional parameters Ai (t)

Äi (t)+ω
2
i Ai (t) =

h̄2

m2
BAi (t)

3 +
GD

B

(2π)D/2 mBÃ(t)D Ai (t)
. (2.106)

These coupled equations correspond to the dynamics of the Bose-Einstein condensate in any
dimension.

2.4.2 Thomas-Fermi approximation

In the last subsection, we noticed that the many-body system can be reduced to the ques-
tion of finding a condensate wave function of the many-body system. The overall shape
of this wave function can be determined by solving numerically the Gross-Pitaevskii equa-
tion (2.90). The Gross-Pitaevskii equation is a non-linear second order differential equa-
tion to which we do not have an exact solution. Therefore, it is worthwhile to discuss the
simplest possible solution for the time-independent Gross-Pitaevskii equation in the pres-
ence of a harmonic trap. To this end, we use of the condensate wave function the ansatz
ψ(r, t) = ψ(r)e−iµt/h̄, insert it into the time-dependent DDGPE (2.90), which yields the
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D-dimensional time-independent Gross-Pitaevskii equation

µψ(r) =
{
− h̄2

2mB
∇

2 +V (r)+GD
B ∥ ψ(r) ∥2

}
ψ(r) . (2.107)

here, V (r) = mB ∑
D
i=1 ω2

i x2
i /2 is the anisotropic harmonic oscillator. If the effect of interac-

tions is significantly large, the width of the BEC will become so large and the density profile
so smooth that the kinetic energy term in the Gross-Pitaevskii equation can be ignored. This
limit is called the Thomas-Fermi approximation and is well satisfied in most experiments
[173]. In this limit the density profile is given by

n(r) =

√
1

GD
B
[µ −V (r)]Θ [µ −V (r)] , (2.108)

where the Heaviside function Θ prevents the density becoming negative. Thus the density
profile in the Thomas-Fermi approximation takes the form of an inverted parabola. The
chemical potential can be fixed by the normalization condition

∫ ∥ ψ (r) ∥2 dr = 1. The
characteristic radii (also called the Thomas-Fermi radii) Ri of the cloud are given by the
relation

R2
i =

2µ

mBω2
i
, i = 1,2....,D , (2.109)

and, thus, depend on the chemical potential.

2.5 A special case: one-dimensional regime

In this thesis, we focus on studying neutral atoms within a quasi one-dimensional trap ge-
ometry. A highly elongated quasi-1D regime can be reached by tightly confining the atoms
in the radial direction, effectively freezing-out the transverse dynamics [6, 105–112]. In this
section we calculate the quasi-1D Gross-Pitaevskii equation.

From the previous section, we know that the underlying Gross-Pitaevskii equation for a
condensate wave function can be formulated as the Hamilton principle of least action with
the action functional, where the Lagrangian density reads for three spatial dimensions

L3D =
ih̄
2

[
ψ
⋆ (r, t)

∂ψ (r, t)
∂ t

−ψ (r, t)
∂ψ⋆ (r, t)

∂ t

]
+

h̄2

2mB
ψ
⋆ (r, t)△ψ (r, t)

−V (r)ψ⋆ (r, t)ψ (r, t)− G3D
B
2

∥ ψ (r, t) ∥4 . (2.110)

Here ψ (r, t) describes the BEC wave function with the coordinates r = (x, y, z) and the two-
particle interaction strength reads G3D

B = NB4π h̄2a3D
B /mB, where NB denotes the number of

bosonic atoms, and a3D
B is the three-dimensional s-wave scattering length of bosons. For
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instance, a MOT yields a harmonic confinement V (r) = mBω2
z z2/2+mBω2

r
(
x2 + y2)/2,

which has rotational symmetry with respect to the z-axis.

In the following we assume that the MOT provides a quasi one-dimensional setting due
to a3D

B ≪ lr ≪ lz, here lr =
√

h̄/mBωr is the radial oscillator length and lz =
√

h̄/mBωz

the oscillator length along the z-axis. Then we follow Ref. [119] and decompose the BEC
wave-function ψ(r, t) = ψ(z, t)φ(r⊥, t) with r⊥ = (x, y) and

φ(r⊥, t) =
1√
πlr

e
− x2+y2

2l2r e−iωrt . (2.111)

Subsequently, we integrate out the two transversal dimensions of the three-dimensional La-
grangian according to

L1D =
∫

∞

−∞

∫
∞

−∞

L3D dxdy . (2.112)

After a straight-forward calculation the resulting quasi one-dimensional Lagrangian reads

L1D =
ih̄
2

[
ψ
⋆ (z, t)

∂ψ (z, t)
∂ t

−ψ (z, t)
∂ψ⋆ (z, t)

∂ t

]
+

h̄2

2mB
ψ
⋆ (z, t)

∂ 2ψ (z, t)
∂ z2

−V (z)ψ⋆ (z, t)ψ (z, t)− G1D
B
2

∥ ψ (z, t) ∥4, (2.113)

where V (z) = mBω2
z z2/2 represents the effective one-dimensional harmonic potential from

the MOT, and the one-dimensional two-particle interaction strength is

G1D
B = 2NBa3D

B h̄ωr . (2.114)

By using the one-dimensional Lagrangian density (2.113) and the Euler-Lagrangian equation
(2.94), we write the 1DGPE

ih̄
∂

∂ t
ψ(z, t) =

{
− h̄2

2mB

∂ 2

∂ z2 +
mBω2

z

2
z2 +G1D

B ∥ ψ(z, t) ∥2
}

ψ(z, t) . (2.115)

Depending on the value of G1D
B and the transversal harmonic trap such a system can be

divided into two regimes, one is called of the Tonks-Girardeau regime and the quasi one-
dimensional regime.

2.5.1 Tonks-Girardeau regime

Normally, one-dimensional (1D) systems are obtained in cylindrically symmetric traps by
considering strong confinement in the transverse direction and weak confinement along the
longitudinal direction. The inter-particle scattering length from Eq. (2.114) can be expressed
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Figure 2.6: A cartoon figure of 1D atom distributions [117].

as

G1D
B =

2Na3D
B h̄2

mBl2
r

. (2.116)

By using this relation, we define the so-called one-dimensional scattering length a1D
B =

l2
r /a3D

B [114], which is inversely proportional to the three-dimensional scattering length. The
kinetic energy of the 1D-system reads Ekin = h̄2/2mBξ 2 = h̄2n2

1D/2mB, where we used the
relation n1D(z) =∥ ψ(z) ∥2 and write the inverse coherence length as n1D(0) = 1/ξ . The
kinetic energy can be compared to the interaction energy Eint = G1D

B n1D of the ground state
[114–117] as

γ =
Eint

Ekin
= 2

mBG1D
B

h̄2n1D
. (2.117)

The behavior of the one-dimensional Bose gas can be described by using the γ parameter.
For example, in the case of high densities the system is weakly interacting γ ≪ 1, there-
fore the mean-field regime is well described by the GPE and Bose-Einstein condensation is
possible [114–117]. On the other hand, when the longitudinal density is decreased γ ≫ 1
the one-dimensional system enters the Tonks-Girardeau regime where the bosons exhibit
fermionic properties as illustrated in Fig. 2.6 [117]. In the figure, three shaded drawings
represent the atomic density in a one-dimensional tube. In the experiment, γ can be changed
by transversely squeezing the tube. To describe the difference between the quasi and Tonks-
Girardeau regimes, Petrov et al. introduced a complementary dimensionless quantity by
comparing the longitudinal size of the trap to the one-dimensional scattering length a1D

B

[179]:

α = 2
lz

a1D
B

= 2a3D
B

lz
l2
r
. (2.118)

The different possible regimes for a one-dimensional system at zero temperature are sketched
in Fig. 2.7 [180]. Petrov et al. investigated at first the boundary between the Gaussian and
the Thomas-Fermi BEC regime. From the condition that the chemical potential µ is much
larger than the level spacing h̄ωz, i.e µ ≫ h̄ωz, in the trap they obtained the defining relation
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Figure 2.7: Depending on the parameter α and the atom number N for trapped one-
dimensional gases three regions are possible [180]. The dashed lines indicate the cross-over
regions between Gaussian BEC, Thomas-Fermi BEC, and Tonks-Girardeau gas.

Nα ≫ 1 for the Thomas-Fermi regime as depicted in Fig. 2.7 [180]. If we let α ≫ 1 and the
number of particles are small, then the trapped 1D gas is in the strongly interacting Tonks-
Girardeau regime. In this regime bosons act as hard-core bosons, which have the properties
of free fermions, therefore these bosons are described by a Fermi-Dirac distribution. Thus,
for this scenario the chemical potential is equal to µ =Nh̄ωz, so by using the condition γ = 1,
Petrov et al. specified between the Thomas-Fermi and the Tonks-Girardeau regime, which
yields N = α2 as illustrated in Fig. 2.7 [180].

2.5.2 Quasi one-dimensional regime

In the previous subsection we discussed in detail the difference between the Tonks-Girardeau
and the quasi one-dimensional regime. As we noticed the quasi one-dimensional regime can
be divided further into two regimes namely: the Gaussian and the Thomas-Fermi regimes.
In this subsection we argue that the difference between the Gaussian and the Thomas-Fermi
regimes can be determined by calculating the equilibrium energy of the system by using the
numerical simulation of the quasi-1D GPE (2.115). In order to make Eq. (2.115) dimension-
less, we introduce the dimensionless time as t̃ = ωzt, the dimensionless coordinate z̃ = z/lz,
and the dimensionless wave function ψ̃ = ψ

√
lz. With this Eq. (2.115) can be written in the

form

i
∂

∂ t̃
ψ̃ (z̃, t̃) =

{
−1

2
∂ 2

∂ z̃2 +
1
2

z̃2 + G̃1D
B ∥ ψ̃ (z̃, t̃) ∥2

}
ψ̃ (z̃, t̃) , (2.119)

where we have G̃1D
B = 2NBωra3D

B /(ωzlz). From here on, for this section, we will drop all
tildes for simplicity. For the equilibrium case, by following the Gaussian ansatz (2.95), we
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Figure 2.8: Quasi one-dimensional energy E1D vs G1D
B , solid black-line represents the nu-

merical 1DGPE, blue stars represents the Gaussian variational solution (2.120) and the red
circles correspond to the Thomas-Fermi approximation equilibrium energy (2.122).

write the dimensionless energy of the system

E1D =
1

4A2
1
+

A2
1

4
+

G1D
B

2
√

2πA1
. (2.120)

Here, A1 is the width of the Bose-Einstein condensate, which can be determined by mini-
mizing the energy function

A1

2
=

1
2A3

1
+

G1D
B

2
√

2πA2
1
. (2.121)

To investigate the Thomas-Fermi approximation for quasi one-dimensional case, we argue
that, due to G1D

B ≫ 1, the TF approximation is valid qualitatively. Therefore we write the
energy of the system by using the equation (2.108)

E1D =
A2

1
5

+
3G1D

B

10
√

2A1
. (2.122)

Here, the width of the condensate turns out to be A1 =
(
3G1D

B
)1/3

/25/6. In this thesis, we
will focus our attention on the quasi one-dimensional Bose-Einstein condensate, therefore
we provide now a comparison between previously described variational, Thomas-Fermi and
numerical solution of the 1DGPE, where for the latter we used the split operator technique
as described in Appendix A. To this end, we plot the energy of the system versus the two-
particle interaction strength G1D

B , as shown in Fig. 2.8. As we read off from Fig. 2.8, for
small values of G1D

B , the numerical solution of 1DGPE (2.119) agrees quite well with the
Gaussian variational solution and for larger values of G1D

B it agrees with the Thomas-Fermi
approximated solution.
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2.5.3 Nonlinear waves: solitons

The dynamics of nonlinear systems displays many distinctive features from solitons to shock-
waves. Solitons were first observed in the year 1834 by John Scott Russel at the Union canal
in Scotland as traveling water waves. Gray/dark solitons have a characteristic property that
they can pass through one another without any change of shape, amplitude, or speed. There
are various types of nonlinear partial differential equations that support soliton solutions.
Solitons were discovered as solutions to the Korteweg-de Vries equation [181], the Sine-
Gordon equation [182], and including the Gross-Piteavskii equation [183, 184] which will
be investigated within this thesis. To review the study of the solitons, we rewrite the dimen-
sionless quasi one-dimensional Gross-Piteavskii equation in the homogeneous case for the
one soliton case:

i
∂

∂ t
ψ1Sol (z, t) =

{
−1

2
∂ 2

∂ z2 +G1D
B ∥ ψ1Sol (z, t) ∥2

}
ψ1Sol (z, t) , (2.123)

where, ψ1Sol is the one-soliton wave function. On the RHS the first term corresponds to
the dispersion of the system for the massive particles, and the second term on the RHS is
a nonlinear interaction term. In the case of nonlinear matter waves, bright solitons are ex-
pected only for an attractive inter-particle interaction G1D

B < 0 [185, 186], whereas gray/dark
solitons are predicted for repulsive interactions G1D

B > 0 [66, 125–129, 187]. The shape of
the soliton does not change due to the balance between the inter-particle interaction and the
dispersion. In the repulsive case G1D

B > 0, solution of the homogeneous quasi 1DGPE leads
to gray/dark solitons [121],

ψ1Sol (z, t) =
√

n

(
i
v
c
+

√
1− v2

c2 tanh

{
√

n

√
1− v2

c2 [z− z0 (t)]

})
e−iµt . (2.124)

Here z0 (t) = z0 − vt is the dimensionless time dependent soliton center, z0 is an arbitrary
dimensionless real constant describing the initial location of the gray/dark soliton, v is the
velocity of the soliton, and n is the dimensionless background density of the BEC, µ = G1D

B n
defines the dimensionless chemical potential, and c represents the dimensionless speed of

sound c =
√

G1D
B n =

√
µ . The corresponding one-soliton time independent density is

n1Sol (z) = n

{
v2

c2 +

(
1− v2

c2

)
tanh2

(
√

n

√
1− v2

c2 z

)}
. (2.125)

The minimum of the density depends on the speed of the soliton

nmin = n
v2

c2 . (2.126)
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Figure 2.9: a) Density and b) phase profile of a gray/dark soliton for various speeds. Here
black-solid line represents v/c = 0 , green-dashed-circles describes v/c = 0.5 and the red-
circles depicts v/c = 0.9.

Here, we emphasize two limiting cases, a complete black soliton is called a dark soliton with
v/c = 0, i.e. it has always a node of zero density with phase slip of π , on the other hand the
gray soliton 0 < v/c < 1 has a smaller node as compared to the dark solitons, with a phase
slip less than π and it moves faster than the dark soliton as shown in Fig. 2.9. The number of
particles in one soliton is

N1Sol =
∫

∞

−∞

dz [n−n1Sol (z)] = 2
√

n

√
1− v2

c2 . (2.127)

And the total energy of one soliton can be calculated as

E1Sol =
∫

∞

−∞

dz

{
1
2

∣∣∣∣∂ψ1Sol (z)
∂ z

∣∣∣∣2 + G1D
B
2

[n−n1Sol (z)]
2

}
, (2.128)

=
4
3

n3/2
(

1− v2

c2

)3/2

.

From the energy of the one soliton, we conclude the important feature, that a stationary
soliton has a maximum soliton energy, while at the velocity v = c the soliton has a vanishing
energy. This observation leads to the idea that the soliton has a negative effective mass.
Indeed, for small velocities we write the energy (2.128) of a gray solitons as

E1Sol ≈
4
3

n3/2
(

1− 3
2

v2

c2

)
. (2.129)

From the above equation follows that the dimensionless negative mass of one gray soliton is
m1Sol =−2n3/2 [188].
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Chapter 3

Bose-Einstein condensate in harmonic
and dimple trap

In this chapter, we investigate a quasi one-dimensional Bose-Einstein condensate in a har-
monic trap with an additional dimple trap (dT) in the center. Within a zero-temperature
Gross-Pitaevskii mean-field description we provide a one-dimensional physical intuitive
model, which we solve by both a time-independent variational approach and numerical
calculations. This chapter is organized as follows: in Sec. 3.1, we start with a model
which describes the dynamical evolution of a quasi-1D Bose-Einstein condensate (BEC)
in a magneto-optical trap with an additional red/blue-detuned dimple trap in the center. Af-
terwards in Sec. 3.2, we justify a Thomas-Fermi approximation for the condensate wave
function and compare it with numerical results. With this we show that the dT induces a
bump or a dip upon the condensate wave function depending on whether dT laser beam is
red- or blue-detuned. Subsequently, in Sec. 3.3, we discuss the dynamics of the dT induced
bump/dip-imprint upon the condensate wave function for two quench scenarios. After having
released the trap, the resulting time-of-flight expansion shows that the dT induced imprint
remains conserved for a red-detuned dT but decreases for a blue-detuned dT. Furthermore,
when the initial red/blue-detuned dT is switched off, we observe the emergence of white
shock-waves or gray/dark bi-soliton trains. Finally, Sec. 3.4 summarizes our findings for the
proposed quasi-1D harmonically confined BEC with an additional dimple trap in the center
in view of a possible experimental realization.

3.1 Quasi 1D model

We start with the fact that the underlying Gross-Pitaevskii equation for a condensate wave
function can be formulated as the Hamilton principle of least action with the action functional

A3D =
∫

dt
∫

L3D d3r,
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where the three spatial dimensions Lagrangian density reads from (2.110)

L3D =
ih̄
2

[
ψ
⋆ (r, t)

∂ψ (r, t)
∂ t

−ψ (r, t)
∂ψ⋆ (r, t)

∂ t

]
+

h̄2

2mB
ψ
⋆ (r, t)△ψ (r, t)

−V (r)ψ⋆ (r, t)ψ (r, t)−U3D
dT (r)ψ

⋆ (r, t)ψ (r, t)− G3D
B
2

∥ ψ (r, t) ∥4 . (3.1)

Here ψ (r, t) describes the BEC wave function with the coordinates r = (x, y, z) and the
two-particle interaction strength reads G3D

B = NB4π h̄2aB/mB, where NB denotes the number
of bosonic atoms. In case of 87Rb atoms, the s-wave scattering length is aB = 94.7 a0 with
the Bohr radius a0. We assume that the bosons are confined by a harmonic potential with an
additional dT potential in the center. For instance, a MOT yields a harmonic confinement
V (r) = mBω2

z z2/2+mBω2
r
(
x2 + y2)/2, which has rotational symmetry with respect to the

z-axis. In the following, we consider the experimentally realistic trap frequencies ωr = 2π ×
160Hz ≫ ωz = 2π ×6.8Hz [30], so we have a cigar-shaped condensate, where the oscillator
lengths amount to the values lr = 0.84 µm ≪ lz = 4.12 µm.

An additional three-dimensional narrow Gaussian laser beam polarizes the neutral atoms
and, thus, yields according to (2.18) the dT potential U3D

dT = U0I (r), where within the
rotating-wave approximation the amplitude U0 is given by [163, 164, 189, 190]

U0 =
3πc2Γ

2ω3
A∆

. (3.2)

Here the damping rate Γ is defined by from (2.22), ∆ = ω −ωA represents the detuning of
the laser, where ω is the laser frequency and ωA stands for the frequency of the D1- or D2-
line of 87Rb atoms, which are the transitions 52S1/2 → 52P1/2 or 52S1/2 → 52P3/2 with the
wave lengths λD1 = 794.76nm and λD2 = 780.03nm, respectively. The intensity profile of
the Gaussian laser beam, which is assumed to move in y-direction, is determined via

I (r) =
2P

πWx (y)Wz (y)
e
−
[

2x2

W2
x (y)

+ 2z2

W2
z (y)

]
, (3.3)

where P denotes its power. Furthermore, Wx/z(y) = W0x/z

√
1+ y2/y2

Rx/z defines the beam

radius in x- and z-direction, where the intensity decreases to 1/e2 of its peak value, and
the Rayleigh lengths yRx/z = πW 2

0x/z/λ with wave length λ = 2πc/ω define the distances
where the beam radius increases by a factor of

√
2 [189]. We use for the Gaussian laser

beam width along the x-axis W0x = 1.1 µm and along the z-axis W0z = 3.2 µm, which are
about ten times smaller than the corresponding ones used in Ref. [30]. The corresponding
Rayleigh lengths for the red-detuned laser light with λ = 840nm [30] yield yRx = 4.526 µm
and yRz = 38.29 µm and for the blue-detuned laser light with λ = 772nm [191] we get
yRx = 4.92 µm and yRz = 41.6 µm. Note that near the origin the dT potential U3D

dT = U0I (r)
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turns out to be approximately harmonic

Udip (x,y,z) =−U1 +
1
2

mBΩ
2
xx2 +

1
2

mBΩ
2
zz2 +

1
2

mBΩ
2
yy2 (3.4)

with the depth U1 = 2PU0/π
√

W0xW0z and the dipole trap frequencies

Ωx

2π
=

√
4U0

mBW 2
0x

,
Ωy

2π
=

√
2U0

mBy2
R

,
Ωz

2π
=

√
4U0

mBW 2
0z
, (3.5)

where the Rayleigh range for this elliptical Gaussian beam is given by yR = yRxyRz/√(
y2

Rx + y2
Rz
)
/2. Due to the fact yRx/z ≫ lr, we can approximate the widths of the beam

in x- and z-direction according to Wx/z(y)≈W0x/z. This simplifies the dimple trap potential
to

U3D
dT (r) =

2U0P
πW0xW0z

e
−
(

2x2

W2
0x
+ 2z2

W2
0z

)
. (3.6)

As the MOT provides a quasi one-dimensional setting due to aB ≪ lr ≪ lz, we can follow
Ref. [119], and decompose the BEC wave-function ψ(r, t) =ψ(z, t)φ(r⊥, t) with r⊥ = (x, y)
and

φ(r⊥, t) =
e
− x2+y2

2l2r√
πlr

e−iωrt . (3.7)

Subsequently, we integrate out the two transversal dimensions of the three-dimensional La-
grangian (3.1) according to

L1D =
∫

∞

−∞

∫
∞

−∞

L3D dxdy. (3.8)

After a straight-forward calculation the resulting quasi one-dimensional Lagrangian reads

L1D =
ih̄
2

[
ψ
⋆ (z, t)

∂ψ (z, t)
∂ t

−ψ (z, t)
∂ψ⋆ (z, t)

∂ t

]
+

h̄2

2mB
ψ
⋆ (z, t)

∂ 2ψ (z, t)
∂ z2

−V (z)ψ⋆ (z, t)ψ (z, t)−Ue
− 2z2

W2
0z ψ

⋆ (z, t)ψ (z, t)− GB

2
∥ ψ (z, t) ∥4, (3.9)

where V (z) = mBω2
z z2/2 represents an effective one-dimensional harmonic potential from

the MOT, and the one-dimensional two-particle interaction strength is

GB = 2NBaBh̄ωr . (3.10)
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Furthermore, the one-dimensional dT depth turns out to be

U =
2U0P

πW0z

√
W 2

0x +2l2
r

, (3.11)

which depends on the power of the laser beam P as well as via (3.2) on the detuning ∆ =

ω −ωA of the laser wave length λ . Note that the latter not only changes the absolute value
of the dT depth but also its sign. For red detuning, i.e. when the laser frequency is smaller
than the atomic frequency, the dT is negative and atoms are sucked into the dT potential. In
the opposite case of blue detuning the atoms are repelled from the dT potential. Thus, the dT
induces an imprint on the BEC wave function, which can be either a bump for red detuning
or a dip for blue detuning. In the following we will analyze this interesting effect in more
detail. To this end we consider the 1D action

A1D =
∫

∞

−∞

∫
∞

−∞

L1D

(
ψ
⋆ (z, t) ,

∂ψ⋆ (z, t)
∂ t

,
∂ψ⋆ (z, t)

∂ z
;ψ (z, t) ,

∂ψ (z, t)
∂ t

,
∂ψ (z, t)

∂ z

)
dzdt

(3.12)

and determine the time dependent one-dimensional Gross-Pitaevskii equation (1DGPE) ac-
cording to the Euler-Lagrangian equation

δA1D [ψ⋆,ψ]

δψ⋆ (z, t)
=

∂L1D

∂ψ⋆ (z, t)
− ∂

∂ z
∂L1D

∂
∂ψ⋆(z,t)

∂ z

− ∂

∂ t
∂L1D

∂
∂ψ⋆(z,t)

∂ t

= 0. (3.13)

By using the one-dimensional Lagrangian density (3.9) the 1DGPE reads

ih̄
∂

∂ t
ψ(z, t) =

{
− h̄2

2mB

∂ 2

∂ z2 +
mBω2

z

2
z2 +Ue

− 2z2

W2
0z +GB ∥ ψ(z, t) ∥2

}
ψ(z, t). (3.14)

On the right-hand side the first term represents the kinetic energy of the atoms with mass
mB, the second term describes the harmonic MOT potential, the third term stands for the dT
potential, and the last term represents the two-particle interaction. In order to make Eq. (3.14)
dimensionless, we introduce the dimensionless time as t̃ = ωzt, the dimensionless coordinate
z̃ = z/lz, and the dimensionless wave function ψ̃ = ψ

√
lz. With this Eq. (3.14) can be written

in the form

i
∂

∂ t̃
ψ̃ (z̃, t̃) =

{
−1

2
∂ 2

∂ z̃2 +
1
2

z̃2 + Ũe−
z̃2

w̃2 + G̃B ∥ ψ̃ (z̃, t̃) ∥2
}

ψ̃ (z̃, t̃) , (3.15)

where we have G̃B = 2NBωraB/(ωzlz) and Ũ = U/(h̄ωz). For the above mentioned experi-
mental parameters and NB = 20×104 atoms of 87Rb, we obtain the dimensionless coupling
strength G̃B = 11435.9. Furthermore, the typical dT depth |U|/kB = 210nK yields the di-
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Figure 3.1: Numerical density profile of BEC for the experimental coupling constant value
GB = 11435.9 and for the dT depth U which increases from top to bottom according to the
inlets. For (a) negative values of U, the bump in the condensate wave function decreases,
whereas for (b) positive values the corresponding dip increases.

mensionless value
∣∣Ũ∣∣ = 643.83, and w̃ = W0z/

(√
2lz
)
= 0.548 represents the ratio of the

width of the dT potential along the z-axis and the longitudinal harmonic oscillator length.
From here on, we will drop all tildes for simplicity.

In order to clarify that we are in the regime where the mean-field theory is valid, we divide
our argument into two parts. Firstly, in order to distinguish between the weakly interacting
quasi-1D and the strongly interacting Tonks-Girardeau regime, Petrov et al. [114] introduced
a dimensionless quantity α = (2aBlz)/l2

r as mentioned in Eq. (2.118). By using the above
mentioned experimental parameters, we get the dimensionless quantity α = 0.057, so ac-
cording to Fig. 2.7 we are far in the weakly interacting regime, where the Gross-Pitaevskii
mean-field theory is applicable. Secondly, the ratio of atoms N1D

QF , which are depleted due to
quantum fluctuations, with respect to the number of particles NB = 20×104 can be calculated
according to Eq. (B.10) of Appendix B

N1D
QF

NB
=

31/3

4
(
a4

BNBΞ
2)1/3

= 0.022, (3.16)

where Ξ = lz/lr is the ratio of the axial and the longitudinal harmonic oscillator lengths.
Thus the quantum fluctuations are, indeed, negligible.

3.2 Dimple trap induced bump/dip-imprint upon station-
ary condensate wave function

In order to determine the dT induced imprint on the condensate wave function in equilibrium,
we solve the 1DGPE (3.15) in imaginary time numerically by using the split-operator method
[192, 193]. In this way we find that the dT-imprint leads to a bump/hole in the BEC density

3.2 Dimple trap induced bump/dip-imprint upon stationary condensate wave function 47



−1000 −500 0 500 1000
0

1

2

3

4

5

6

7

x 10
4

E
in
t,
p
ot
/E

ki
n

U

Figure 3.2: Ratio Eint,pot/Ekin versus U from solving 1DGPE (3.15).

at the trap center for negative/positive values of U as shown in Fig. 3.1. For stronger red-
detuned dT depth values the bump increases further, but for stronger blue-detuned dT the
dip in the BEC density gets deeper and deeper until no more BEC atoms remain in the trap
center. After this qualitative overview on the numerical results, we now work out an analytic
approach for describing this red/blue-detuned dT induced bump/dip on the BEC density in
a more quantitative way. To this end we present two arguments why the seminal Thomas-
Fermi (TF) approximation is also applicable in our context.

At first we provide a rough estimate in the case of an absent dT, i.e. U= 0, so the BEC
density is characterized by the TF profile ψ (z) =

√
(µ − z2/2)/GBΘ

(
µ − z2/2

)
, where

the Heaviside function Θ prevents the density to become negative. Thus, the Tomas-Fermi
radius

√
2µ follows from the dimensionless chemical potential µ , which is determined by

normalization to be µ = 1
2

(3
2

)2/3
(GB)

2/3. As the red/blue-detuned dT is supposed to be
inserted at the trap center, we then calculate the dimensionless BEC coherence length ξ

at the trap center. It is defined by comparing the kinetic energy 1/2ξ 2 with the interaction
energy GBn(0) in the trap center, which is given by µ . For the above mentioned experimental
parameters this yields the dimensionless BEC coherence length ξ = 1/

√
2µ = 0.038, which

is about 14.4 times smaller than the dT width w = 0.548. This indicates that the dT induced
imprint upon the BEC wave-function occurs on a length scale which is much larger than its
coherence length, so the TF approximation seems to be reasonable even in the presence of
the red/blue-detuned dT.

In view of a more quantitative justification for the applicability of the Thomas-Fermi
approximation, Fig. 3.2 presents the numerical result how the ratio of the sum of interaction
and potential energy Eint,pot = Epot +Eint versus the kinetic energy Ekin of the condensate
wave function changes with increasing or decreasing the red/blue-detuned dT depth U. We
read off that the inequality

(
Epot +Eint

)
/Ekin ≫ 1 holds within the whole region of interest

for U, so the TF approximation seems to be, indeed, valid. Note that the maximal value
of this energy ratio occurs for U= 0 and amounts to 7.5×104, which is of the order of the
number of particles.

3.2 Dimple trap induced bump/dip-imprint upon stationary condensate wave function 48



−1000 −500 0 500 1000
0

5

10

15

20

25

U

R
T
F BEC Frag. BEC

U c

Figure 3.3: Outer Thomas-Fermi radius RTF1 (red solid) and inner Thomas-Fermi radius
RTF2 (blue dashed) versus dimple trap depth U. BEC fragments into two parts above Uc ≈
339.5.

Therefore, we investigate in the following the TF approximation in more detail for non-
zero red/blue-detuned dT depth U. To this end we use for the condensate wave function the
ansatz ψ(z, t) = ψ(z)e−iµt , insert it into the 1DGPE (3.15), and neglect the kinetic energy
term, which yields the density profile

ψ (z) =

√
1

GB

(
µ − z2

2
−Ue−

z2

w2

)
Θ

(
µ − z2

2
−Ue−

z2

w2

)
. (3.17)

In view of the normalization
∫+∞

−∞
∥ ψ (z) ∥2 dz = 1, which fixes the chemical potential µ , we

have to determine the Thomas-Fermi radii RTF from the condition that the condensate wave
function vanishes:

µ =
R2

TF
2

+Ue−
R2

TF
w2 . (3.18)

As can be read off from Fig. 3.1 (b) the number of solutions of Eq. (3.18) changes for
increasing dT depth at a critical value Uc which we determine as follows. We put µc = Uc

and utilize the normalization condition 2
∫ RTF

0 ∥ ψ (z) ∥2 dz = 1 with assuming one TF radius
RTF ≈√

2µ . This yields the implicit equation

Uc =
1
2

(
3
2

) 2
3

(GB +
√

πwUc)
2
3 . (3.19)

This produces the result Uc ≈ 339.5 for the experimental coupling constant GB = 11435.9,
which compares well with the value Uc ≈ 342 determined from solving 1DGPE (3.15). In
the case that U is smaller than Uc Eq. (3.18) defines only the cloud radius RTF1. But for the
case U > Uc the dT drills a hole in the center of the 87Rb condensate, so it fragments into
two parts. Thus, we have then, apart from the outer cloud radius RTF1, also an inner cloud
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radius RTF2. With this the normalization condition 2
∫ RTF1

RTF2
∥ ψ (z) ∥2 dz = 1 yields

µ (RTF1 −RTF2)− 1
6

(
R3

TF1 −R3
TF2
)
= GB

2 +
√

πwU
2

[
Erf
(

RTF1
w

)
−Erf

(
RTF2

w

)]
, (3.20)

where Erf(y) = 2√
π

∫ y
0 e−x2

dx denotes the error function. In case of U≤Uc the inner cloud ra-
dius RTF2 vanishes and the cloud radius is approximated via RTF1 ≈

√
2µ due to Eq. (3.18) as

it is much larger than the dimple trap width w. Thus, by using the approximation Erf(RTF1/w)
≈ 1 for RTF1/w ≫ 0, the chemical potential is determined explicitly from

µ ≈ 1
2

(
3
2

)2/3 (
GB +

√
πwU

)2/3
, U ≤ Uc . (3.21)

Provided that U ≥ Uc, the inner cloud radius RTF2 has to be taken into account according
to Fig. 3.1 and, due to the fact that R2

TF2 ≪ U, we get from Eq. (3.18) the approximation

µ ≈ Ue−
R2

TF2
w2 , which reduces to

RTF2 ≈ w

√
log
(

U
µ

)
. (3.22)

Thus, we conclude that RTF2 vanishes, indeed, at Uc according to Eq. (3.19) and Eq. (3.21).
With this we obtain from Eq. (3.20) that the chemical potential follows from solving

3
[√

πwU+GB +2wµ

√
log
(

U
µ

)]
≈ 3

√
πwUErf

(√
log
(

U
µ

))
+w3 log

3
2

(
U
µ

)
+4

√
2µ3/2 , U ≥ Uc . (3.23)

Figure 3.3 shows the resulting outer and inner Thomas-Fermi radius as a function of the
dT depth U. We read off that RTF1 ≈

√
2µ remains approximately constant for U ≥ Uc, so
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Figure 3.5: (a) Height/depth and (b) width of the dT induced bump/dip according to
Eqs. (3.24)–(3.26), versus the red/blue-detuned dT depth U for the experimental BEC cou-
pling constant GB = 11435.9 calculated numerically by solving 1DGPE (3.15) in imagi-
nary time (blue circles) and analytically (black stars) from the TF condensate wave function
(3.17).

we conclude that the chemical potential µ is locked to its critical value µc ≈ Uc = 339.5.
Furthermore, we note that the inner Thomas-Fermi radius RTF2 increases up to about 5.4w
for the considered range of U.

Figure 3.4 compares the resulting TF condensate wave function (3.17) with a numerical
solution of the 1DGPE (3.15) in imaginary time at U= 1000 and we read off that both agree
quite well. Thus, our TF approximation describes the equilibrium properties of the conden-
sate wave function in the presence of the red/blue-detuned dT even quantitatively correct. In
view of a more detailed comparison, we characterize the red/blue-detuned dT induced im-
print upon the condensate wave function ψ(z) by the following two quantities. The first one
is the height/depth (HD) of the dT induced imprint

HD =


∥ ψ (0) ∥2

U − ∥ ψ (0) ∥2
U=0 U ≤ 0

Max
(
∥ ψ (z) ∥2

U
)
− ∥ ψ (0) ∥2

U U ≥ 0
(3.24)

and the second one is the red/blue-detuned dT induced imprint width W, which we define as
follows. For U ≤ 0 we use the full width half maximum

∥ ψ (W/2) ∥2
U=

∥ ψ (0) ∥2
U + ∥ ψ (0) ∥2

U=0
2

U ≤ 0 , (3.25)

whereas for U> 0 we define the equivalent width [194]:

W =
2I0zMax −

∫ zMax
−zMax

∥ ψ (z) ∥2
U dz

I0− ∥ ψ (0) ∥2
U

U> 0 , (3.26)

where we have I0 = Max
(
∥ ψ (z) ∥2

U
)
. Figure 3.5 (a) shows the red/blue-detuned dT induced
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Figure 3.6: (a) Height/depth of the dT induced imprint after having released the harmonic
trap versus time for (a) increasing negative and (b) decreasing positive values of dT depth U
from top to bottom. Inlet: relaxation time trel decreases with increasing U.

imprint height/depth as a function of U. At first, we read off that for U = 0, i.e. when we
have not switched on the dT, that the bump/dip vanishes. Furthermore, in the range U ≤ Uc

we observe that the height/depth of the dT induced imprint bump/dip changes linearly with
U according to

HD ≈ |U|
GB

. (3.27)

In case of U>Uc the height/depth of the dT induced imprint has approximately the constant
value HDc = Uc/GB ≈ 0.029 as follows from the TF wave function (3.17) and the above
mentioned locking of the chemical potential to its critical value. Note that this constant
value only slightly deviates from the corresponding numerical value HDc = 0.03.

Correspondingly, Figure 3.5 (b) depicts the dimple trap induced width W as a function of
U. From our TF approximation we obtain for the width transcendental formulas, which read
in case of U ≤ 0

W2

4
+2Ue−

W2

4w2 −U+
1
2

(
3
2

)2/3 [
(GB)

2/3 −
(
GB +

√
πwU

)2/3
]
= 0 , (3.28)

and for U> w2/2

W =

2w3
√

log
(

2U
w2

)[
2log

(
2U
w2

)
+3
]
−6

√
πwUErf

(√
log
(

2U
w2

))
3
[
w2 +w2 log

(
2U
w2

)
−2U

] . (3.29)

As shown in Fig. 3.5 (b), for a red-detuned dT depth, the width remains approximately con-
stant and is determined by the FWHM of the dimple Gaussian. Just before U = 0 the width
W starts to decrease to zero. For a blue-detuned dT the width of the dip continuously in-
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Figure 3.7: Width of the dT induced imprint after having released the trap versus time for
decreasing positive values of dT depth U from top to bottom.

creases with an intermediate plateau at Uc with the value Wc ≈ 1.91, which agrees well with
the numerically obtained one Wc ≈ 1.99. After the critical blue-detuned laser beam strength
Uc the width of the imprint of the dT on the condensate increases drastically according to
Fig. 3.5 (b), as more and more BEC atoms move away from the center of the condensate.

Note that the Thomas-Fermi approximation would break down when the dimensionless
healing length ξ in the trap center would be larger than the dimensionless dimple trap width
w. This is the case for several previous studies treating experimentally relevant localized
dimples, which can well be modeled by Dirac delta potentials [195, 196].

3.3 Dimple trap induced imprint upon condensate dynam-
ics

In the following we investigate two quench scenarios numerically in more detail. The first
one is the standard time-of-flight (TOF) expansion after having switched off the harmonic
trap when the amplitude of the red/blue-detuned dT is still present. In the second case we
consider the inverted situation that the red/blue-detuned dT is suddenly switched off within a
remaining harmonic confinement. The latter turns out to give rise to the emergence of white
shock-waves or bi-solitons trains, i.e. two trains of more than one soliton each, respectively.

3.3.1 Time-of-flight expansion

Time-of-flight (TOF) absorption pictures represent an important diagnostic tool to analyze
dilute quantum gases since the field’s inception. By suddenly turning off the magnetic trap,
the atom cloud expands with a dynamics which is determined by both the momentum dis-
tribution of the atoms at the instance, when the confining potential is switched off, and by
inter-atomic interactions [197, 198]. We have investigated the time-of-flight expansion dy-
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namics of the BEC in the presence of the dT by solving numerically the 1DGPE (3.15) and
by analyzing the resulting evolution of the condensate wave function. It turns out that, de-
spite the continuous broadening of the condensate density, its dT induced imprint remains
qualitatively preserved both for red- and blue-detuned dT. Therefore, we focus a more quan-
titative discussion upon the dynamics of the corresponding dT induced imprint height/depth
and width.

For a red-detuned dT, it turns out that the bump height even remains constant in time.
This is shown explicitly in Fig. 3.6 (a), which roughly preserves its initial value at t = 0.
This is due to the fact that a fraction of atoms remains trapped in the dimple trap while the
rest of the cloud expands. This physical picture also explains the bump width, we even find
that no significant changes do occur neither in time nor for varying U, therefore we do not
present a corresponding figure. Note that the latter finding originates from Fig. 3.5 (b), where
the width is shown to be roughly constant for all dT depths in the red-detuned case.

Instead, in case of a blue-detuned dT, the dip decays after a characteristic time scale as
shown in Fig. 3.6 (b). Defining that relaxation time trel according to HD(trel) = HD(0)/2,
the inlet reveals that the dip relaxes with a shorter time scale for increasing blue-detuned dT
depth U. These results are explained by the fact that an increasing blue-detuned dT potential
pushes the expanding cloud even faster apart. This physical picture is confirmed by the
dynamics of the dT induced imprint width shown in Fig. 3.7. At the beginning of TOF it
remains at first constant and then increases gradually. This change of W occurs on the scale
of the relaxation time of HD, which is depicted in the inlet of Fig. 3.6 (b).

3.3.2 Wave packets versus solitons

Due to their quantum coherence, BECs exhibit rich and complex dynamic patterns, which
range from the celebrated matter-wave interference of two colliding condensates [123, 124]
over Faraday waves [199, 200] to the particle-like excitations of solitons [66, 125–129, 187].
For our 1D model of a BEC with a harmonic and a dimple trap in the center, we investigated
the dynamics of the condensate wave function which emerges after having switched off the
dT. To this end, Fig. 3.8 depicts the resulting density profile of density n = |ψ|2 and phase
φ = tan−1 (ψIm/ψRe) of the condensate wave function ψ at different instants of time. Both
for an initial red- and blue-detuned dT, we observe that two excitations of the condensate are
created at the dT position, which travel in opposite direction with the same center-of-mass
speed, are reflected at the trap boundaries, and then collide at the dT position. Furthermore,
we find that these excitations qualitatively preserve their shape despite the collision and that
the BEC wave function reveals characteristic phase slips between −π/2 and π/2. All these
findings are not yet conclusive to decide whether these excitations represent wave packets
in the absence of dispersion or solitons. Therefore, we investigate their dynamics in more
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Figure 3.8: Density (phase) profile of BEC after having switched off the red/blue-detuned dT:
in blue-dashed line at t=0, and in red-solid line at t=0.45 (1st column), t=0.75 (2nd column),
t=1.1 (3rd column), t=3.6 (4th column), and t=5.2 (5th column) for (a) U=-100 and (b) U=100.

detail by determining their center-of-mass motion via

z̄L,R (t) =

∫ 0,∞
−∞,0 z

(
∥ ψ (z, t) ∥2

U − ∥ ψ (z, t) ∥2
U=0
)

dz∫ 0,∞
−∞,0

(
∥ ψ (z, t) ∥2

U − ∥ ψ (z, t) ∥2
U=0
)

dz
, (3.30)

which are plotted in Fig. 3.9. Note that the mean positions z̄L and z̄R of the excitations
are uncertain in the region where they collide. Nevertheless Fig. 3.9 demonstrates that the
excitations oscillate with the frequency Ω = 2π ×4.87 Hz irrespective of sign and size of U.
As we have assumed the trap frequency ωz = 2π ×6.8 Hz, we obtain the ratio Ω/ωz ≈ 0.72,
which is quite close to Ω/ωz = 1/

√
2 ≈ 0.707.

Despite these similarities of the cases of an initial red- and blue-detuned dT, we observe
one significant difference. Whereas the oscillation amplitudes of the excitations do not de-
pend on the initial value U < 0 according to Fig. 3.9 (a), we find decreasing oscillation
amplitudes of the excitations with increasing the initial value U > 0 in Fig. 3.9 (b). The
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Figure 3.9: Center of mass positions of excitations z̄L (filled circles) and z̄R (empty circles)
according to Eq. (3.30) versus time after having switched off the dT with increasing abso-
lute value of the depth |U| from top to bottom, for (a) red-detuning and (b) blue-detuning.
Black filled circles represent the region of colliding excitations, where mean positions are
not perfectly detectable.

latter amplitude dependence on the initial condition is characteristic for gray/dark solitons
according to Ref. [187]. Indeed, for an increasing dT potential the gray soliton acquires a
larger depth, which corresponds to a smaller velocity, so its oscillation amplitude is reduced.
This particle-like interpretation of the excitations is also confirmed by the other theoretical
prediction of Ref. [187] that gray/dark solitons oscillate in a harmonic confinement with the
frequency Ω/ωz = 1/

√
2, which was already confirmed in the Hamburg experiment of Ref.

[66] and in the Heidelberg experiment of Ref. [97] and is also seen in Fig. 3.9 (b).

Conversely, for an initial red-detuned dT the excitations can not be identified with bright
solitons as the dynamics is governed by a GPE with a repulsive two-particle interaction. Here
the excitations have to be interpreted as wave packets which move without any dispersion
as follows from a Bogoliubov dispersion relation and the smallness of the coherence length.
Thus, for U < 0 the excitations propagate like sound waves in the BEC [123] and, within a
TF approximation, their center-of-mass motion is described by the evolution equation [201]

dz(t)
dt

=

√
µ − z2(t)

2
. (3.31)

Solving (3.31) with the initial condition z(0) = 0 yields the result z(t) =
√

2µ sin t/
√

2. Thus,
we read off that the oscillation amplitude coincides with the TF radius and that the dimen-
sionless oscillation frequency turns out to be 1/

√
2 in agreement with Fig. 3.9 (a).

Thus, we conclude that switching off the red/blue-detuned dT leads to physically differ-
ent situations. For an initial red-detuned dT, we generate wave packets which correspond to
bright shock waves [202], whereas for the corresponding blue-detuned case bi-soliton trains
emerge [91, 125, 203], due to the collision of the two fragmented parts of the condensate.
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Note that gray bi-solitons trains are generated for a partially fragmented BEC, i.e. U < Uc.
On the other hand the dark bi-solitons trains turn out to be only generated for U ≥ Uc, where
initially in equilibrium the BEC is well fragmented into two parts.

3.4 Summary and conclusion

In this chapter we studied within a quasi 1D model both analytically and numerically how a
dimple trap in the center of a harmonically trapped BEC affects the condensate wave func-
tion. At first, we showed for the equilibrium properties of the system that the Thomas-Fermi
approximation agrees quantitatively with numerical solutions of the underlying 1D Gross-
Pitaevskii equation. For an increasing red-detuned dT depth, it turns out for the induced
bump that the height decreases linearly, whereas the width remains approximately constant.
In contrast to that we found for an increasing blue-detuned dT that depth and width of the
induced dip initially increase. Beyond a critical value Uc, the BEC even fragments into two
parts and, if U is increased beyond Uc, the dT induced imprint yields a condensate wave
function whose width increases further, although the dip height/depth remains constant. Af-
terwards, we investigated the dT induced bump/dip upon the condensate dynamics for two
quench scenarios.

At first, we considered the release of the harmonic confinement, which leads to a time-of-
flight expansion and found that the dT induced imprint remains conserved for a red-detuned
dT but decreases in the blue-detuned case. This result suggests that it might be experimen-
tally easier to observe the bump for a red-detuned dT. A more realistic description of the
experiment needs to consider the loss of condensate atoms by adding damping terms to the
1DGPE (3.15), which are of the form iϒ2 ∥ ψ (z, t) ∥2 and iϒ3 ∥ ψ (z, t) ∥4, where the positive
constants ϒ2 and ϒ3 denote two- and three-body loss rates, respectively. We note that these
additional terms may have nontrivial effects on the dT properties [204].

In addition, we analyzed the condensate dynamics after having switched off the red/blue-
detuned dT. This case turned out to be an interesting laboratory in order to study the physi-
cal similarities and differences of white shock-waves and gray/dark bi-soliton trains, which
emerge for an initial red- and blue-detuned dT, respectively. The astonishing observation,
that the oscillation frequencies of both the white shock-waves and the bi-soliton trains coin-
cide, is presumably an artifact of the harmonic confinement. Thus, it might be rewarding to
further investigate these different dynamical features also in anharmonic confinements [205–
207]. Additionally, we have also found that the generation of gray/dark bi-soliton trains is a
generic phenomenon on collisions of partially/fully fragmented BEC, respectively, and the
partially/fully fragmented BEC is strongly depending upon the equilibrium values of the
dimple trap depth.
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Chapter 4

Sculpting quasi one-dimensional
Bose-Einstein condensate

In this chapter we explore how to tune the dynamics of a quasi-one-dimensional harmon-
ically trapped Bose-Einstein condensate (BEC) due to an additional red- and blue-detuned
Hermite-Gaussian dimple trap (HGdT). We organize this chapter as follows. We derive the
underlying quasi one-dimensional Gross-Pitaevskii equation (1DGPE) in Sec. 4.1, where we
also outline the system geometry and relate our simulation parameters to tunable experimen-
tal parameters. Afterwards in Sec. 4.2, for the equilibrium properties of the system, we com-
pare a Thomas-Fermi approximate solution with numerical results and show that the HGdT
imprint upon the condensate wave function strongly depends upon whether the HGdT is red-
or blue-detuned. Later, the time-of-flight (TOF) dynamics of the red/blue-detuned HGdT
imprint upon the condensate wave function is discussed in detail in Sec. 4.3. We obtain that
for red-detuning the HGdT imprint does not decay, but for the blue-detuning HGdT imprint
decreases during TOF. In Sec. 4.4, we discuss the formation of shock-waves/gray(dark) pair-
soliton bi-trains in the harmonic trap, after having switched off the red/blue-detuned HGdT
potential. There, we also find out that the generation of gray/dark pair-solitons bi-trains
represents a generic phenomenon of collisions of moderately/fully fragmented BEC, respec-
tively, where the latter is strongly depending upon the equilibrium values of the red/blue-
detuned HGdT depth. Finally, Sec. 4.5 provides a summary and conclusions.

4.1 Modified quasi 1D model

We consider a one-component BEC with time-dependent two-particle interactions described
by the three-dimensional GPE

ih̄
∂

∂ t
ψ (r, t) =

{
− h̄2

2mB
∇

2 +V (r)+U3D
dT +G3D

B ∥ ψ (r, t) ∥2
}

ψ (r, t) , (4.1)
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where ψ (r, t) denotes the macroscopic condensate wave function for the 87Rb BEC with
the spatial coordinates r = (x, y, z). Here mB stands for the mass of the 87Rb atom, G3D

B =

NB4π h̄2aB/mB represents the three-dimensional 87Rb coupling constant, where NB = 20×
104 denotes the number of 87Rb atoms, and the s-wave scattering length is aB = 94.7 a0

with the Bohr radius a0. Furthermore, V (r) = mBω2
z z2/2+mBω2

r
(
x2 + y2)/2 describes a

three-dimensional harmonic confinement, which has rotational symmetry with respect to the
z-axis. The oscillator lengths for experimental parameters are lz =

√
h̄/mBωz = 4.12 µm and

lr =
√

h̄/mBωr = 0.84 µm for the trap frequencies ωz = 2π ×6.8Hz and ωr = 2π ×160Hz,
respectively.

An additional three-dimensional narrow Hermite-Gaussian laser beam polarizes the neu-
tral atoms which yields the HGdT potential U3D

dT = U0Inm (r) according to (2.18). Within the
rotating-wave approximation its amplitude is U0 = 3πc2Γ/

(
2ω3

A∆
)

[163, 164, 189, 190],
where Γ denotes the damping rate due to energy loss via radiation (2.22), which is depends
on the dipole matrix element between ground and excited state. Furthermore, ∆ = ω −ωA

represents the detuning of the laser, here ω is the laser frequency and ωA stands for the atomic
frequency. And Inm (r) describes the intensity profile of the TEMnm Hermite-Gaussian laser
beam, which is assumed to propagate in y-direction and is determined via

Inm (r) =
2P

2n+mn!m!π
Hn

( √
2x

Wx (y)

)2

Hm

( √
2z

Wz (y)

)2
e
−
[

2x2

W2
x (y)

+ 2z2

W2
z (y)

]
Wx (y)Wz (y)

, (4.2)

with P =
∫ ∫

Inm (r)dxdz denoting the total intensity. Furthermore Wx/z(y) denotes the Gaus-
sian beam radius in x- and z-direction, where the intensity decreases to 1/e2 of its peak value,
yRx/z = πW 2

0x/z/λ represents the so-called Rayleigh-lengths, which are defined as the dis-

tance from the focus W0x/z position where the beam radius increases by a factor of
√

2 [189].
Here Hn (x) and Hm (z) are Hermite polynomials of order n and m in x- and z-direction, re-
spectively. In the following we restrict ourselves to a HGdT potential for a BEC, which is
based on a Hermite-Gaussian TEM01 laser beam mode and thus carries a dark spot in the
center of the profile:

I01 (r) =
8Pz2

πWx (y)W 3
z (y)

e
−
[

2x2

W2
x (y)

+ 2z2

W2
z (y)

]
. (4.3)

For the TEM01 laser beam, we use the width along the x-axis W0x = 1.1 µm and along the
z-axis W0z = 3.2 µm. Therefore, the Rayleigh lengths for the red-detuned laser light with
λ = 840nm [30] yield yRx = 4.526 µm and yRz = 38.29 µm as well as for the blue detuned
laser light with λ = 772nm [191] we get yRx = 4.92 µm and yRz = 41.6 µm. With keeping
in mind the fact that yRx/z ≫ lr, we can approximate the widths of the HG laser beam in x-
and z-direction according to Wx/z(y)≈W0x/z. This simplifies the HGdT potential to
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Figure 4.1: Outer Thomas-Fermi radius RTF1 (red solid), central Thomas-Fermi radius RTF2
(blue circles) and inner Thomas-Fermi radius RTF3 (dashed black) as a function of HGdT
depth U for the coupling constant value GB = 11435.9. Below the critical value HGdT depth
U < Uc, the BEC is moderately (Mod.) fragmented (Frag.), with one exceptional case at
U=0, where the BEC is completely confined in one-dimensional harmonic trap. The BEC
fully fragments into three parts above the critical value Uc ≈ 3079, as can be seen in the
specific regional inset density plots.

U3D
dT (r) =

8U0Pz2

πW0xW 3
0z

e
−
(

2x2

W2
0x
+ 2z2

W2
0z

)
. (4.4)

As we have an effective one-dimensional setting due to ωz ≪ ωr, which implies lz > lr,
and yRx/z ≫ lr, we factorize the BEC wave-function via Eq. (3.7). We follow Ref. [119]
and integrate out the two transversal dimensions of the three-dimensional GPE. After some
algebra, the resulting quasi one-dimensional GPE reads

ih̄
∂

∂ t
ψ (z, t) =

{
− h̄2

2mB

∂ 2

∂ z2 +V (z)+Uz2e
− 2z2

W2
0z +GB ∥ ψ (z, t) ∥2

}
ψ (z, t) , (4.5)

where V (z) = mBω2
z z2/2 represents an effective one-dimensional harmonic potential from

the MOT, and the one-dimensional two-particle interaction strength turns out to be Eq. (3.10).
Furthermore, the one-dimensional HGdT depth results in

U =
8U0P

πW 3
0z

√
W 2

0x +2l2
r

, (4.6)

4.1 Modified quasi 1D model 61



−20 −10 0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

z

‖ψ
(z
)
‖2

-1000
-900
-800
-700
-600
-500
-400
-300
-200
-100
0

−20 −10 0 10 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

z

‖ψ
(z
)
‖2

1000
900
800
700
600
500
400
300
200
100
0

(a) (b)

Figure 4.2: Numerical density profile of BEC for the experimental coupling constant value
GB = 11435.9 and for the dT depth U which decreases from top to bottom according to the
inlets. For (a) negative values of U, the bumps in the condensate wave function decreases,
whereas for (b) positive values the corresponding dips increases.

In order to make the 1DGPE in (4.5) dimensionless, we introduce the dimensionless time as
t̃ = ωzt, the dimensionless coordinate z̃ = z/lz, and the dimensionless wave function ψ̃ =

ψ
√

lz. With this Eq. (4.5) can be written in dimensionless form

i
∂

∂ t̃
ψ̃ (z̃, t̃) =

{
−1

2
∂ 2

∂ z̃2 +
1
2

z̃2 + Ũz̃2e−
z̃2

w̃2 + G̃B ∥ ψ̃ (z̃, t̃) ∥2
}

ψ̃ (z̃, t̃) , (4.7)

here G̃B = 2NBωraB/ωzlz, and Ũ = 8U0Plz/
(

πωzW 3
0z

√
W 2

0x +2l2
r

)
are the dimensionless

two-particle coupling strength and the dimensionless HGdT depth, respectively. The above
mentioned experimental values yield the dimensionless coupling strength G̃B = 11435.9 and
w̃ = W0z/

(√
2lz
)
= 0.548 represents the ratio of the width of the HGdT potential and the

harmonic oscillator length along the z-axis. Furthermore, the typical depth of the dipole
potential trap ranges from micro-kelvin to nano-kelvin [46, 208], which yields Ũ to be of the
order of up to few thousands. From here on, we will drop all tildes for simplicity.

4.2 Stationary condensate wave function

In order to determine the equilibrium properties of the red/blue-detuned HGdT potential
imprint on the condensate wave function, we solve the quasi 1DGPE (4.7) numerically by
using the split-operator method in imaginary time [192, 193]. The HGdT imprint induces
two bumps/dips at the center of the BEC density for red/blue-detuned HGdT as shown in
the insets of Fig. 4.1. For stronger red-detuned HGdT depth values the two bumps increase
further, but for stronger blue-detuned HGdT depth the two dips in the BEC density get deeper
and deeper until the BEC fragments into three parts as shown in the inset of Fig. 4.1. To
investigate this scenario in more detail, we argue that, due to GB ≫ 1, the TF approximation
is valid, as the inequality Eint,pot/Ekin ≫ 1 holds within the whole region of interest for the
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Figure 4.3: (a) Height/depth and (b) width of red/blue-detuned HGdT induced bumps/dips
according to Eq. (4.11) and W = 2zMax, respectively, versus red/blue-detuned HGdT depth U
for the experimental BEC coupling constant GB = 11435.9 determined numerically by solv-
ing the quasi 1DGPE (4.7) in dimensionless imaginary time (blue circles) and analytically
(red stars) from the TF wave function (4.8).

HGdT depth U [152].

Therefore we perform for the condensate wave function the ansatz ψ(z, t) = ψ(z)e−iµt ,
insert it into the modified quasi 1DGPE (4.7), and neglect the kinetic energy term, yielding
the density profile

ψ (z) =

√
µ

GB

(
1− z2

2µ
− Uz2

µ
e−

z2

w2

)
Θ

(
1− z2

2µ
− Uz2

µ
e−

z2

w2

)
. (4.8)

In view of the normalization 2
∫

∞

0 ∥ ψ (z) ∥2 dz = 1, which fixes the chemical potential µ , we
determine the Thomas-Fermi radii RTF from the condition that the condensate wave function
vanishes:

µ =
R2

TF
2

+R2
TFUe−

R2
TF

w2 . (4.9)

As can be read off from the inset of the Fig. 4.1 the number of solutions of Eq. (4.8) changes
for increasing red/blue-detuned HGdT depth U. In the case, when U is smaller than Uc,
Eq. (4.8) defines only the BEC cloud radius RTF1. But for the case U>Uc, the blue-detuned
HGdT drills two holes at the center of the 87Rb condensate, so the BEC fragments into three
parts as shown in Fig. 4.1 and Fig. 4.2. Thus, we have then, apart from the outer condensate
radius RTF1, also two inner condensate radii RTF2 and RTF3. With this the normalization
condition 2

∫ RTF3
0 ∥ ψ (z) ∥2 dz+2

∫ RTF1
RTF2

∥ ψ (z) ∥2 dz = 1 yields

µ (RTF1 −RTF2 +RTF3)−
1
6
(
R3

TF1 −R3
TF2 +R3

TF3
)
+

w2U
2

(
RTF1e−

R2
TF1
w2 −RTF2e−

R2
TF2
w2

+RTF3e−
R2

TF3
w2

)
=

w3√πU
4

[
Erf
(

RTF1

w

)
−Erf

(
RTF2

w

)
+Erf

(
RTF3

w

)]
, (4.10)
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Figure 4.4: Height/depth versus dimensionless time during TOF for different (a) red-
detuned and (b) blue-detuned HGdT depths U.

where Erf(y) = 2√
π

∫ y
0 e−x2

dx denotes the error function. In case of U< Uc, the BEC’s inner
two radii RTF2 and RTF3 vanish and the BEC outer radius is approximated via RTF1 ≈

√
2µ

due to Eq. (4.9). Thus, for U < Uc the chemical potential is determined explicitly from
(4.10): µ ≈ 32/3/27/2 (2GB +

√
πw3U

)2/3. Provided that U > Uc, two inner cloud radii
RTF2 and RTF3 have to be taken into account according to Fig. 4.1. We observe that the
Thomas-Fermi value of the critical red/blue-detuned HGdT depth Uc ≈ 3079 is close to the
numerical one Uc ≈ 3090. Figure 4.1 also shows the resulting outer and inner Thomas-Fermi
radius as a function of the red/blue-detuned HGdT depth U. Here, the two inner radii behave
symmetric, e.g., for U> 3079 the RTF2 is increasing and RTF3 is decreasing correspondingly,
however after U & 4500, they both become approximately constant as shown in Fig. 4.1. We
also read off that RTF1 ≈

√
2µ remains approximately constant for U > Uc, so we conclude

that the chemical potential µ is then sealed to its critical value µc ≈ 341.28.

In the perspective of a quantitative comparison between the analytical and the numerical
calculation, we characterize the red/blue-detuned HGdT induced imprint upon the conden-
sate wave function by the following two quantities. The first one is the red/blue-detuned
HGdT induced imprint height/depth

HD =


Max

(
∥ Ψ(z) ∥2)− ∥ Ψ(0) ∥2 U ≤ 0

∥ Ψ(0) ∥2 −Min
(
∥ Ψ(z) ∥2

z→0
)

U> 0
(4.11)

and the second one is the red/blue-detuned HGdT induced imprint width W = 2zMax, where
zMax denotes the coordinate of maximal density. To find out a one-to-one resemblance be-
tween analytical and numerical calculation of HD and W, we determine the solution of the
dimensionless 1DGPE (4.7) and compare it with the TF solution of Eq. (4.8), as shown in
Fig. 4.3. The case U = 0, i.e., when the HGdT potential is switched off, corresponds to a
BEC in a quasi one-dimensional harmonic trap. Furthermore, in the range U < Uc we ob-
serve that the red/blue-detuned HGdT induced imprint height/depth changes linearly with
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the optical dipole trap depth U according to

HD ≈ w2|U|eT (−e/2|U|)−1

GB
U ̸= 0 ,w ̸= 0 , (4.12)

where T = xex abbreviates the productlog function. In case of U > Uc the blue-detuned
HGdT induced imprint depth yields the constant value HDc ≈ 0.0296 due to Eq. (4.12),
which slightly deviates from the corresponding numerical value HDc = 0.027. Similarly,
the red/blue-detuned HGdT induced imprint width follows from W = 2w

√
1−T (−e/2|U|)

according to the TF approximation, which reduces at the critical blue-detuned optical dipole
depth to Wc ≈ 3.60 whereas the corresponding numerical value is Wc ≈ 3.64, as shown in
Fig. 4.3.

4.3 Time-of-flight dynamics of red/blue-detuned Hermite-
Gaussian dimple trap induced imprint

The time-of-flight (TOF) expansion has been used to measure various BEC properties. By
suddenly turning off the magnetic trap, when the HGdT is still present, the atom cloud is
allowed to expand in all directions. This expansion proceeds according to the momenta of the
atoms at the initial time t = 0 and an additional tiny acceleration results from inter-particle
interactions. The red-detuned HGdT induced two bumps remain approximately constant
during the temporal evolution as shown in Fig. 4.4(a). But the blue-detuned HGdT induced
two dips at the center of the condensate start decaying with a characteristic time scale after
having switched off the trap as shown in Fig. 4.4(b). Furthermore, the dips of the HGdT
induced imprint start decaying faster with increasing blue-detuned HGdT depth for smaller
time as shown in Fig. 4.4(b). Note that the relative speed of the bumps or dips from each
other turns out to vanish.

Furthermore, we investigate the possible occurrence of matter wave stripes at the top
of the condensate during the evolution of the moderately/fully fragmented BEC cloud by
plotting the density distribution of the released cloud during non-ballistic expansion as shown
in Fig. 4.5. According to Fig. 4.5(a) we do not observe matter wave stripes for the red-
detuned HGdT induced imprint, but Fig. 4.5(b-d) shows that they occur for the blue-detuned
HGdT induced imprint. For small blue-detuned HGdT depth, the generation of matter wave
stripes can be seen at a later time, as compared to higher blue-detuned HGdT depth, as shown
in Fig. 4.5(b-d). The matter wave stripes are directly visible for U<Uc, as can be explained
as follows. In Fig. 4.5(b), the height of the blue-detuned HGdT induced two dips is smaller
as compared to Fig. 4.5(c), therefore they need more time to drill a hole in the condensate
during TOF. For the HGdT potential depth U=1500, the BEC fragments into three parts at
the dimensionless time t = 2.4, afterwards the three fragmented condensates start to interact
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as separate identities with the HGdT potential, which leads to the formation of characteristic
matter wave stripes. The similar phenomenon happens in Fig. 4.5(c), but in this example the
initial HGdT potential depth U=2500 is larger than the previous one in Fig. 4.5(b), so the
BEC becomes fragmented at the earlier time t = 1.3. In the example of Fig. 4.5(d), when
U > Uc, the BEC is already initially, i.e. at time t = 0, fragmented according to Fig. 4.1.
Therefore the matter wave stripes can be seen just after t > 0, but the stripes are not as visible
as in the two previous cases, although these stripes are quite visible in the BEC density plot
Fig. 4.6 at time t = 1.7.

4.4 White shock-waves and gray/dark pair-solitons bi-trains

(a)

(b)

(c)

(d)

Figure 4.5: Time-of-flight evolution of de-
pleted density ∥ ψ (z, t) ∥2

DD=∥ ψ (z, t) ∥2
U −

∥ψ (z, t) ∥2
U=0 from solving the modified quasi

1DGPE equation for different values of |U|:
(a) U = −500, (b) U = 1500, (c) U = 2500,
and (d) U = 3500.

In this section, we show that matter-
wave self-interferences emerge, once the
red/blue-detuned HGdT potential is sud-
denly switched off, within the remaining
harmonic confinement, as this leads to white
shock-waves and gray/dark pair-solitons bi-
trains, respectively as shown in Fig. 4.7(a-
d). A shock-wave is a special kind of prop-
agating disturbance in the BEC, whose am-
plitude, unlike for solitons, decreases rela-
tively quickly with large distance. Further-
more, gray/dark solitons have a characteris-
tic property that they can pass through one
another without any change of shape, ampli-
tude, or speed. We can see from Fig. 4.7(b-
d) that the pair-solitons bi-trains do, indeed,
pass through one another and that they are
reflected from the end of the trapping poten-
tial.

Once the red/blue-detuned HGdT poten-
tial is switched off, the system quasi instan-
taneously adjusts its energy to the new equi-
librium, paving the way for the creation of
white shock-waves and bi-trains of gray/dark pair-solitons, respectively. The total normal-
ized energy E(t) = E(t)/Max{E(t)} as shown in Fig. 4.7(i-l) changes quite quickly from
its initial value to a new equilibrium value, thus generating the white shock-waves or the
pair-solitons bi-trains. For an initial red- and blue-detuned HGdT depth, we observe that
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Figure 4.6: The BEC density during the time-of-flight at time t = 1.7 for U = 3500.

two excitations of the condensate are created at the position of the red/blue-detuned HGdT
potential, which travel in the opposite direction with the same center-of-mass speed, are re-
flected back from the harmonic trap boundaries, and then collide at the red/blue-detuned
HGdT potential position as shown in Fig. 4.7(a-d).

We have performed calculations for different red-detuned HGdT potential depths U < 0
and in all cases we observe the formation of the shock-wave structures as shown in Fig. 4.7(a).
The density of atoms around the shocks is mostly enhanced in comparison with the density
far away from these perturbations. And for the blue-detuned HGdT potential trap, we de-
tect gray/dark pair-solitons bi-trains, traveling in opposite directions with the same speed
as shown in Fig. 4.7(b-d). The creation of these calibrated gray/dark pair-solitonic bi-trains
are generic collision phenomena of moderately/fully fragmented BEC, which is strongly
depending upon the equilibrium values of the red/blue-detuned HGdT potential depth, re-
spectively.

The dynamics of one soliton in a BEC cloud is well described by z̈ = (−1/2)∂Vext/∂ z,
where Vext is the dimensionless confining potential and z denotes the position of the gray/dark
soliton [104]. In the case of harmonic confinement with a potential Vext = z2/2 the so-
lution of this evolution equation leads to an oscillation of the soliton described by z(t) =
RTF1 sin

(
t/
√

2
)

. Thus the frequency of the oscillating soliton and the frequency of the

dipole oscillation of the Bose-Einstein condensate in the trap differ by the factor
√

2 [104].
In our system, pair-solitons bi-trains generally oscillate with the average frequency Ω =

2π × 4.80 Hz irrespective of the sign and the size of U as shown in Fig. 4.7. With this,
we get the ratio Ω/ωz ≈ 0.705, which is quite close to the dimensionless soliton frequency
1/
√

2 ≈ 0.707 in a harmonic trap as presented in Ref. [104]. Note that previously the gener-
ation of solitons was studied theoretically by investigating the collision of two condensates
[127] and experimentally for different quasi one-dimensional trap geometries [97, 129]. Al-
though in the latter experiments only one potential maximum occurs instead of two as in our
work, so there single solitons and not pairs of solitons as here are observed, the basic physics
is the same.
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Figure 4.7: Coherent matter-waves evolution in the BEC density, when red/blue-detuned
HGdT potential is switched off, versus time and position for different values of (a) U =
−500, (b) U = 1500, (c) U = 2500, and (d) U = 3500. Graphs (e-h) show the BEC density
at time t = 5.3, and in graphs (i-l) we plotted the corresponding dimensionless energies
E(t) = E(t)/Max{E(t)} versus dimensionless time for the HGdT depths U of the graphs
(a-d).

We also observe an intriguing substructure of each soliton, which we call pair-soliton.
Normally, we find that there are solitons which always move in pairs, and the mean dis-
tance between each other is less than the neighboring solitons as shown in Fig. 4.7(b-d)
and Fig. 4.7(f-h). Numerically, we have observed that the averaged distance between pair-
solitons is less for dark solitons as compared to the gray solitons as shown in Fig. 4.7(f-h).
We also observe that, in general, a minimal time of about 4.6ms is required to generate white
shock-waves/pair-solitons bi-trains as shown in Fig. 4.7. The number of white shock-waves
are not effected by the red-detuned HGdT potential depth, but the number of interference
fringes increases. On the other hand, we observe that the number of gray/dark pair-solitons
depends on the depth of the blue-detuned HGdT potential as shown in Fig. 4.8, the highest
number of pair-solitons in every train is 7. For the blue-detuned HGdT depth U < Uc, the
number of pair-solitons grows linearly in the condensate and after the critical value Uc, the
number of pair-solitons remains approximately constant.

Note that in case of the collision of two condensates in Ref. [127], it turned out that the
number of observable solitons depends sensitively on the initial phase difference of both con-
densates. Thus, if the two condensates have an initial phase difference of 0(π), the number of
solitons is even(odd). In our case, we have a single BEC fragmenting into three parts, which
have the same phase, therefore we observe an even number of pair-solitons in the condensate
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Figure 4.8: Number of pair-solitons NSol in each solitonic train versus HGdT potential depth
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in agreement with Ref. [127]. Indeed, Fig. 4.8 shows the number of pair-solitons in each
solitonic train, so the total number of pair-solitons in the whole condensate is twice as large.
But, in Fig. 4.8 it turns out that the number of pair-solitons depends crucially on the depth
of the red/blue-detuned HGdT potential. Furthermore, we remark by adjusting the position
of the red/blue-detuned HGdT potential near to the outer Thomas-Fermi radius RTF1, at the
same time gray and dark pair-solitons can be generated in the BEC.

4.5 Summary and conclusion

We have developed a simple quasi 1D model both analytically and numerically to calculate
the statics and dynamics of the red/blue-detuned HGdT imprint upon the 87Rb condensate.
First of all, we showed a quantitative comparison between the Thomas-Fermi approximation
and numerical solutions for the underlying 1D Gross-Pitaevskii equation for the equilibrium
properties of the proposed system. Later we discussed that the HGdT potential imprint upon
the condensate wave function strongly depends upon whether the effective HGdT is red- or
blue-detuned. With this we found out that the HGdT imprint generates two bumps/dips at
the center of the BEC density of the red/blue-detuned HGdT. Later we discussed that the
red-detuned HGdT induced two bumps did not decay when we switched off the harmonic
trap but the blue-detuned HGdT induced two dips decay. During the time of flight, we
saw the emergence of matter-wave interference stripes in the condensate, which arise as
the BEC decomposes into a fraction at rest in the center and two moving condensates at
the borders. We have used the quasi one-dimensional time-dependent GPE to analyze the
creation of gray/dark pair-solitons bi-trains within the moderately/fully fragmented BEC,
which is strongly depending upon the HGdT potential depth. The Hermite-Gaussian dimple
trap geometry maybe more applicable to soliton interferometry rather than the Gaussian
barrier adopted in Refs. [152, 209], because one can shape solitons. Additionally, we also
showed that the number of pair-solitons in the system is depending on the initial HGdT
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potential depth U. During the generation of pair-solitons it was astonishing to find that the
special shape of the newly generated solitons in the harmonically trapped BEC is sculptured
by the external potential and the generation of gray/dark pair-solitons bi-trains is a generic
phenomenon of collisions of moderately/fully fragmented BEC. With this we conclude that it
maybe possible in the future to frame complex shapes of solitons in the harmonically trapped
BEC by imposing a unique geometrical configuration for the external potential.

The ability of sculpting a quasi one-dimensional harmonic trapped Bose-Einstein con-
densate by a HGdT has many exciting prospects. For instance, it can be used to generate a
truly continuous atom laser, which has many applications in atom interferometry [210, 211].
To construct such an atom laser one needs a device that continuously converts a source of
condensed atoms into a laser-like beam. In Sec. 4.4, we saw in the time-of-flight picture for
the case U > Uc that a BEC reservoir occurs at the center of the trap. By suitably tuning
the HGdT depth a fraction of this fragmented condensate could be coupled out, serving as a
source for an atomic beam.
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Chapter 5

Bose-Einstein condensate in
gravito-optical surface trap

Motivated by the crucial relevance of gravito-optical surface traps (GOST) in atomic waveg-
uides [212–214] and atomic chips [215–218], in this chapter we study the special case of a
quasi one-dimensional Bose-Einstein condensate which is trapped orthogonal to the prism
surface along the vertical axis as shown in Fig. 5.1. In our proposed model the downward
pull of gravity is compensated by an exponentially decaying evanescent wave (EW), which
can be thought of as a mirror as it repels the atoms upward against gravity as shown in
Fig. 5.2. In order to deal with the hard-wall boundary condition, we apply the mirror solu-
tion analogy to the BEC context, and obtain analytical results, which agree with those from
numerically solving the underlying one-dimensional Gross-Pitaevskii equation (1DGPE).
Later on, as an interesting application, we compare our numerical simulation results for a
time-of-flight dynamics with the Innsbruck experiment for a quasi-2D BEC in a GOST [82].
Surprisingly, our proposed quasi one-dimensional model agrees even quantitatively with the
Innsbruck experiment. Although this Innsbruck experiment uses a 2D pancake shaped BEC,

Figure 5.1: The systematic diagram of the GOST experiment.
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Figure 5.2: Anharmonic GOST potential (solid line) from Eq. (5.2) in dimensionless units,
which are explained at the end of the Sec. 5.1. It consists of a superposition of an exponen-
tially decaying optical potential (red circles) due to an evanescent light field above a mirror
and a linear gravitational potential (green circles). When the atoms are cold enough, they
stay in the vicinity of the potential minimum.

when performing the time-of-flight expansion vertically the transversely confining beam is
kept constant, so our quasi-1D model for a BEC should apply in this case. The underlying
fundamental model for such a quasi-1D BEC is reviewed in Sec. 5.1. Further, we provide
estimates for experimentally realistic parameters, which we use in our quantitative analysis.
Afterwards, we work out approximate solutions for the 1DGPE wave function in the ground
state of the system. To this end, Sec. 5.2 performs a modified Gaussian variational ansatz
for weak interactions, which corresponds to a small number of atoms. For a larger number
of atoms, the interaction strength becomes so strong that the Thomas-Fermi solution turns
out to be valid, as described in Sec. 5.3. Then, in Sec. 5.4, we outline our numerical method
and compare numerical results with the previous analytical solutions. In Sec. 5.5, we deal
with the time-of-flight expansion of the BEC when the EW is removed, showing quantita-
tive agreement with previous experimental results. In Sec. 5.6 we discuss further dynamical
properties of the BEC in a GOST after switching off the evanescent laser field in the presence
of the hard-wall mirror. Lastly, we summarize our findings and end with brief concluding
remarks.

5.1 Model

For our 1D model of the BEC in a GOST, we assume that we have a dilute Bose gas and that
the radial frequency is much larger than the axial frequency, i.e. the BEC is cigar-shaped.
With this assumption, we arrive at the 1DGPE [219, 220]

ih̄
∂

∂ t
ψ(z, t) =

{
− h̄2

2mB

∂ 2

∂ z2 +V (z)+GB|ψ(z, t)|2
}

ψ(z, t). (5.1)
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On the right-hand side of the equation, the first term represents the kinetic energy of the
atoms with mass mB, while the last term describes the two-particle interaction, where its
strength GB = 2NBaBh̄ωr is related to the s-wave scattering length aB according to (2.114),
and the particle number NB, whereas ωr denotes the radial trapping frequency. The anhar-
monic potential energy V (z) in Eq. (5.1) is produced by both gravity and the exponentially
decaying evanescent wave as shown in Fig. 5.2 [221]:

V (z) =V0e−κz +mBgz. (5.2)

Here, g is the gravitational acceleration and the constant V0 = Γλ 3
0 I0/(8π2cδ3)

1 denotes
the strength of the evanescent field, where Γ is the natural linewidth of 133Cs atoms, λ0 =

852 nm is the wavelength of the optical transition, I0 stands for the peak intensity of the
EW, and δ3 corresponds to the detuning frequency of the hyperfine sub-level F = 3 of the
133Cs atom [79, 80, 82]. Furthermore, according to Eq. (2.37) the decay length is denoted by
1/κ = Λ/2 = λ/4π

√
n2 sin2

θ −1, where λ is the wavelength of the EW, n stands for the
refractive index of the medium and θ is the angle of incidence. The potential Eq. (5.2) has
a minimum at zmin

0 = (1/κ) ln(V0κ/mBg) with the axial frequency ωz =
√

gκ . Note that this
potential yields a hard-wall condition with V (z≤ 0) =∞, because the atoms cannot penetrate
the prism, as it is a macroscopic object.

In order to have a concrete set-up in mind for our analysis, we adapt parameter values
from the GOST experiments [79, 82]. For the EW, we consider the inverse decay length to
be κ = 2/Λ = 1.43×106 m−1, i.e. Λ ≈ 1.4 µm. Additionally, we assume an axial frequency
of ωz ≈ 2π ×600 Hz. For our atoms in the F = 3 state, the strength of the EW is given by
V0 ≈ 100× kB µK, where kB is the Boltzmann constant. This potential value is within an
order of magnitude of the Innsbruck experiments [79, 82]. In view of the quasi-1D model,
we must satisfy the condition ωz ≪ ωr, so we assume ωr = 2π ×3 kHz, which corresponds
to the radial oscillator length lr = 0.158 µm. The experiment uses a magnetic field for
Feshbach resonance, such that the s-wave scattering length amounts to aB = 440 a0 with
the Bohr radius a0. As both ωz ≪ ωr and lr > aB are fulfilled, we have, indeed, a quasi
one-dimensional setting.

In order to explain that we are in the regime where the mean-field theory is valid, we
argue as follows. Firstly, in order to distinguish between the weakly interacting quasi-1D
and the strongly interacting Tonks-Girardeau regime, Petrov et al. [114] introduced a dimen-
sionless quantity α = (2aBlz)/l2

r as discussed in Eq. (2.118). By using above mentioned
experimental parameters, we get the dimensionless quantity α = 0.65, therefore according
to Fig. 2.7 we are far in the weakly interacting regime, where the Gross-Pitaevskii mean-field
theory is applicable. Secondly, the ratio of the quantum depleted atoms with respect to the

1We rewrite Eq. (2.18) with using c = λA fA, i.e. Udip =
3Γc2

16π2 f 3
A∆

I(z) = 3Γλ 3
A

16π2c∆
I(z), and I(z) = I0e−κz.
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Figure 5.3: Width A (triangles) and mean position z0 (circles) as a function of the number
of atoms NB. Note that the mean position gives meaningless values for NB > 3000. Thus,
the variational ansatz is only successful for quite a small number of particles.

number of particles can be calculated according to Eq. (B.10)

N1D
QF

NB
=

31/3

4
(
a4

BNBΞ
2)1/3

= 0.0002. (5.3)

Here Ξ = lz/lr is the ratio of the axial and the longitudinal harmonic oscillator lengths and
we consider NB = 104 as a special case. Thus equation (5.3) shows that quantum fluctuations
are negligible for our proposed model.

When the atoms are close to the dielectric surface of the prism, we would have to add
an additional potential contribution due to the van-der-Waals interaction. Here we have
to distinguish two special cases depending on the distance of the BEC from the surface.
The regime, where the BEC is close to the dielectric surface, i.e. z ≪ λ/2π , is called the
Lennard-Jones regime [168, 169]. In the case where the BEC is far away from the surface,
i.e. z ≫ λ/2π , the regime is called Casimir-Polder regime. In the latter case the Casimir-
Polder potential can be described within a two-level approximation of the Cesium atoms
according to VCP = −C4/z4, where the Casimir-Polder coefficient is C4 = 1.78×10−55Jm4

[166, 170, 222]. As the BEC does not penetrate very far into the repulsive EW, it is hardly
influenced by the van-der-Waals potential, which follows from the above values of the GOST
experiment. Indeed, for the wavelength λ = 839 nm [82] and the distance being estimated by
the minimal distance of the BEC from the surface zmin

0 = 4.761 µm, we are in the Casimir-
Polder regime. Thus, the value of the Casimir-Polder potential is of the order VCP = 24.9×
kB pK, which is negligible in comparison with the EW potential V0 ≈ 100× kB µK.

In view of the forthcoming discussion we use dimensionless parameters as follows. First
we introduce the dimensionless spatial coordinate z̃ = κz. Further, we multiply all terms in
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Figure 5.4: Energy of the BEC as a function of imaginary time for a decreasing number of
particles from the top to the bottom.

Eq. (5.1) by κ/(mBg), yielding the dimensionless GPE,

i
∂

∂ t̃
ψ̃(z̃, t̃) =

{
− k̃

2
∂ 2

∂ z̃2 + z̃+Ṽ0e−z̃ + G̃B|ψ̃(z̃, t̃)|2
}

ψ̃(z̃, t̃), (5.4)

where the dimensionless kinetic energy constant reads k̃ = (h̄2
κ3)/(gm2

B), the dimension-
less time t̃ = t(mBg)/(h̄κ) and the two-particle dimensionless interaction strength G̃B =

2NBω̃rãB with ãB = aBκ being a dimensionless s-wave scattering length. Additionally, we
measure energies in units of the gravitational energy mBg/κ and get ω̃z = h̄κωz/gmB as a
dimensionless frequency, and Ṽ0 = κV0/gmB as a dimensionless strength of the evanescent
field.

According to these chosen parameters, the dimensionless quantities have the follow-
ing values. The dimensionless strength of the EW is Ṽ0 = 905.7, the dimensionless ki-
netic energy amounts to k̃ = 0.066, the dimensionless s-wave scattering length is given by
ãB = 0.033, the dimensionless radial frequency yields ω̃r = 1.303, and, finally, the resulting
dimensionless two-particle interaction strength is G̃B = 0.086NB. From here on, we will
drop the tildes for simplicity.

5.2 Variational solution

For the number of particles NB < 3000, the effective interaction strength is quite small.
In this limit the BEC has only a reduced extension, so the anharmonic confinement V (z)
approximately corresponds to a harmonic potential well around its minimum zmin

0 ≈ 6.809.
Therefore, it is reasonable to propose a Gaussian-like ansatz for the wave function in the
static case. In order to meet the hard-wall condition, however, we modify the Gaussian
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Figure 5.5: Probability density plots from (a) Gaussian ansatz (5.6) and (b) numerical
calculations for an increasing number of atoms from the top to the bottom.

function such that it has the form of a so-called mirror solution [223, 224],

ψ(z) ∝ exp
[−(z− z0)

2

2A2

]
− exp

[−(z+ z0)
2

2A2

]
, (5.5)

where z0 is the mean position and A represents the width. In this way it is guaranteed that
the wave function meets the hard-wall boundary condition ψ(0) = 0. In order to find the
variational parameters z0 and A, we minimize the energy of this ansatz following the idea of
Perez et al. [178, 225]. In order to get the simple expression for the corresponding energy,
we introduce the parameter γ = z0/A and normalize the wave function (5.5) to obtain

ψ(z) =
exp
(
− z2

2A2

)
Sinh

(
γz
A

)√
A
4
√

π[exp(γ2)−1]
. (5.6)

From this ansatz, we obtain the Gross-Pitaevskii energy

E =
V0{e

1
4 (A−2γ)2 [Erfc(A

2 −γ)+e2Aγ Erfc(A
2 +γ)]−2e

A2
4 Erfc(A

2 )}
2
(

eγ2−1
) + 2Aeγ2

γErf(γ)

2
(

eγ2−1
)

+

(
2γ2+eγ2−1

)
k

4A2
(

eγ2−1
) + GB

2
√

2πA

[
2
(

e
γ2
2 +1

)−2

+1

]
. (5.7)

where Erf(y) = 2√
π

∫ y
0 e−x2

dx = 1−Erfc(y) denotes the error function. Although, this ex-
pression cannot be minimized analytically, we can use numerical techniques to extremize it
with respect to the parameters γ and A based on the values of k, GB, and V0 given in Sec. 5.1.
We can see from Fig. 5.3 that our variational approach turns out to be valid only for quite
small number of atoms. Indeed, the extremization process fails when the condensate has
more than around 3000 atoms, as then the mean position becomes zero as shown in Fig. 5.3.
Note that BEC experiments with such small particle numbers are possible, see for instance
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Refs. [226, 227].

5.3 Thomas-Fermi solution

For a large enough number of atoms, the effective interaction term and the potential term
are much larger than the kinetic term. In such a case, an approximate Thomas-Fermi (TF)
solution is found by neglecting the much smaller kinetic term. Thus, the time-independent
GP reduces to

µ ≈ z+V0e−z +GB|ψ(z)|2. (5.8)

In order to determine the chemical potential, we use the normalization condition, which reads
in the dimensionless scheme as

∫ |ψ|2 dz = 1. Thus, we get

1 =
µ

GB

∫ z2

z1

(
1− z

µ
− V0

µ
e−z
)

dz, (5.9)

where z1 and z2 denote the zeros of the integrand. For larger z the decaying exponential
vanishes, and so we have z2 ≈ µ . Examining the smaller root, we see that for small values
of z and moderate values of µ , z/µ is quite small, thus a reasonable approximation for this
root is z1 ≈ log(V0/µ). This motivates us to divide the TF solution into two parts: first, the
soft-wall TF solution, where V0 > µ , so that z1 is larger than zero. Second, the hard-wall
TF solution in the case V0 < µ , where the lower integration limit z1 would be less than zero,
so the soft-wall TF wave function would fail. The latter case necessitates to use the mirror
principle in order to guarantee the hard-wall boundary condition.

5.3.1 Soft-wall mirror solution

With the integration boundaries z1 ≈ log(V0/µ) and z2 ≈ µ known to be a good approxima-
tion, we carry out the integration in Eq. (5.9), yielding

2GB ≈ µ
2
{

1− 2
µ

[
log
(

V0

µ

)
+1
]}

, (5.10)

where we have neglected the small terms (V0/µ)e−µ and log(V0/µ)2 /(2µ). Thus, to leading
order, we have µ ≈√

2GB with a subsequent logarithmic correction. For small changes
of the chemical potential, the natural log term in Eq. (5.10) does not change significantly.
Therefore in Eq. (5.10) we can substitute

√
2GB for µ in the natural log. Solving the resulting

quadratic equation and neglecting small terms in the square root, we obtain the improved
approximation

µ ≈
√

2GB +1+ log
(

V0/
√

2GB

)
. (5.11)
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Figure 5.6: Comparison of numerical results from GPE (solid lines) with TF approximation
(circles), (a) NB = 103, NB = 104, and NB = 105. (b) NB = 106, NB = 107, and NB = 108

from top to bottom, respectively.

Thus, assuming that V0>
√

2GB, we obtain the following soft-wall TF solution for z1 < z< z2.

ψ(z) =

√
µ

GB

(
1− z

µ
− V0

µ
e−z

)
, (5.12)

where µ is given by Eq. (5.11). The function is set to zero for z< z1 ≈ log(V0/
√

2G) and
z> z2 ≈ µ , because the probability density cannot be less than zero.

5.3.2 Hard-wall mirror solution

For particle numbers NB > 2.35 × 105 the soft-wall TF solution is not valid anymore as
z1 ≈ log(V0/

√
2GB) becomes negative. In order to extend this approximate solution to the

case where V0 < µ , we must work out the corresponding hard-wall TF solution. With the
help of the mirror analogy [223, 224], we obtain the approximate TF wave function

ψ(z)=


√

1
M

[√(
µ

GB

)(
1− z

µ
− V0

µ
e−z
)
−
√(

µ

GB

)(
1+ z

µ
− V0

µ
e+z
) ]

for 0< z< |z1|√
1
M

(
µ

GB

)(
1− z

µ
− V0

µ
e−z
)

for |z1|< z< z2.

(5.13)
Here, M denotes the normalization constant which is determined from

∫ |ψ|2 dz = 1. Note
that an analytical derivation of M is not possible, therefore, we performed the respective
integration numerically.

5.4 Numerical method and results

In order to demonstrate the validity of the proposed analytical results, we numerically find
the ground state of the wave function by propagating the GPE in imaginary time, with the
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Figure 5.7: Mean position of the BEC versus EW strength V0 for decreasing number of
atoms from the top to the bottom.

help of the split operator technique as describe in Appendix A. For the above mentioned
experimental parameters and with the value of NB ranging from 102 to 108 atoms, the ground-
state energy of the BEC in a GOST does, indeed, quickly converge as shown in Fig. 5.4.

With this technique in mind, we compare our analytical results from Sec. 5.2 and 5.3 to
numerical results and show how the BEC wave function in a GOST changes with increas-
ing the number of atoms. For a smaller number of atoms, the variational Gaussian ansatz is
more suitable as shown in Fig. 5.5, whereas for a larger number of atoms the Thomas-Fermi
approximation turns out to be quite accurate as shown in Fig. 5.6. The variational Gaussian
ansatz roughly reproduces the mean, but it is rather symmetrical, unlike the numerical results
as the number of atoms approach 2400, see Fig. 5.5. Qualitatively, the BEC width is pro-
portional to the number of atoms in a GOST. However, due to the EW decaying exponential
potential, the BEC cannot expand in the negative z-direction, so the BEC wave function takes
up a triangular shape for NB larger than 103 as shown in Fig. 5.6. The agreement between
numerical and analytical TF results is much better for larger number of atoms. Note that the
BEC wave function is quite wide for 108 atoms in Fig. 5.6.

The van-der-Waal forces with the surface can demolish the BEC, so it is necessary to
have a larger EW potential. Therefore, keeping in mind recent developments in the laser field
technology, it is possible to increase the EW strength V0 by increasing the laser power [46].
Thus, we explore now the parameter space of our model. Irrespective of the number of atoms,
the mean position of the BEC in GOST increases only moderately with V0. For the soft-wall
case V0 > µ as shown in Fig. 5.7, the maximum of the wave function occurs at log(V0), but for
the hard-wall case V0 < µ the maximum of the BEC wave function exists at

∣∣log(V0/
√

2GB)
∣∣.

Thus, due to the interaction term, for a large number of atoms, the maximum of the wave
function no longer remains within the minimum of the trapping potential zmin

0 ≈ log(V0).

The BEC wave function in a GOST becomes asymmetric for larger interaction strengths.
Therefore we quantify the BEC width based on the standard deviation σ =

√
< z2 >−< z>2,

where < • >= ∫ •|ψ(z)|2 dz denotes the expectation value. As shown in Fig. 5.8, the BEC
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Figure 5.8: Standard deviation σ of BEC wave function increases with inter-particle inter-
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Figure 5.9: Fraction of remaining atoms in time-of-flight during a vertical expansion for
V0 = 453. Initially, total number of atoms is NB = 2400. Here the circles stem from the
Innsbruck experimental [82], whereas the solid line shows our numerical results.

standard deviation grows extremely rapidly with increasing number of atoms NB. However,
on the other hand, changing V0 only slightly affects the standard deviation σ .

5.5 Time-of-flight expansion

The standard observation of a BEC is based on suddenly turning off the trapping potential
and allowing the atoms to expand non-ballistically. The resulting time-of-flight (TOF) mea-
surements are performed either by acquiring the absorption signal of the probe laser beam
through the falling and expanding BEC cloud, or by measuring the fluorescence of the atoms
which are excited by a resonant probe light [85].

In the Innsbruck experiment, the remaining number of atoms is measured after allow-
ing atoms from the GOST to expand vertically by suddenly turning off the EW [82]. Note
that some particles are lost due to thermalization processes which occur when the particles
hit the prism or due to the van-der-Waal forces with the surface. Although this Innsbruck
experiment uses a 2D pancake shaped BEC, when performing this vertical expansion the
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Figure 5.10: (a) Mean position z0 and (b) standard deviation σ of BEC density in the time-
of-flight expansion for decreasing number of atoms from the top to the bottom for V0 = 906.

transversally confining beam is kept constant, so our quasi-1D model for BEC should apply
in this case. Using the experimental parameters in Ref. [82], we numerically reproduce their
vertical expansion curve (their Figure 2), as shown in Fig. 5.9 2. To this end, we use NB =
2400 atoms and V0 = 453, yielding an initial condensate wave function with dimensionless
standard deviation σ = 0.86 and the dimensionless mean position z0 = 6.40. We propa-
gate this wave function without the hard-wall boundary condition. Then we approximate the
fraction of remaining atoms by

∫
∞

0 |ψ(z, t)|2dz, as atoms in the BEC wave function extending
past z = 0 are lost by sticking to the surface. While the interaction term is quite small in the
Innsbruck experiment, the standard deviation of the BEC is small and remains roughly con-
stant during the time-of-flight, so the loss of atoms does not affect time-of-flight expansion
significantly for t < 0.7 ms as shown in Fig. 5.9.

We also simulated the TOF expansion without the prism at z = 0 for different particle
numbers NB. We see that the mean position of the BEC drops due to gravity as shown in
Fig. 5.10 with different rates, which strongly depend upon the number of confined atoms.
At the same time the BEC width, which is proportional to the standard deviation, increases
according to Fig. 5.10.

5.6 Dynamics of BEC on hard-wall mirror

Concerning the dynamics of the BEC in a GOST, we consider two cases. First we describe
the dynamics of the BEC with NB = 2× 104 after switching off the evanescent potential
and letting the BEC atoms fall on a hard-wall mirror. The latter could be experimentally
realized by a blue-detuned far-off-resonant sheet of light, and is modeled theoretically via
the boundary condition V (0) → ∞ at t > 0. Thus, the BEC of NB = 1800 atoms has the

2Here, we used the experimental value of the transversal frequency ωr = 10 Hz from Ref. [82] to get the
two-particle interaction strength and the dimensionless time t̃ = t(mBg)/(h̄κ) .
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Figure 5.11: Dynamics of BEC in presence of gravity with hard wall at z = 0 for NB = 1800
number of atoms. Here the color scale represents the density of the BEC.

dimensionless mean position z0 = 10.7 and the dimensionless standard deviation σ = 4.28
at time t = 0. We observe the matter-wave interference pattern formed upon releasing the
condensate from GOST as shown in Fig. 5.11, as atoms impinging on the ‘hard-wall’ at the
origin ‘bounce’ back. For short times the atoms remain near the hard-wall surface, so the
BEC dynamics is characterized by the reflection of atoms from the hard-wall mirror. But
for larger times those atoms, which are far away from the hard-wall mirror, are reflected
above the hard-wall mirror due to collisions among themselves as depicted in Fig. 5.11. The
number of atoms NB = 1800 is so large that the BEC is staying quite close to the mirror, so
we have not seen any total reflection of the BEC wave packet.

In order to see the latter scenario, we need a small number of NB = 30 particles far away
from the hard-wall mirror. This is realized by the EW potential V0e−(z−20), which could be
implemented by trapping atoms in a MOT above the surface, so that, once the EW trap is
switched off, the atoms have enough momenta when they hit the hard-wall mirror as shown
in Fig. 5.12. Similar to experiments of photonic bouncing balls [228] and plasmonic paddle
balls [229], the BEC shows significant self-interference patterns, for example in the time
intervals t =24-34 and 83-91 as analyzed in Fig. 5.12, which originate from the interference
of incoming and reflecting BEC wave packets. It is worth mentioning that a smaller initial
width of the BEC wave packet would lead to finer revivals and a larger initial width of the
BEC would lead to larger interference regions as depicted in Fig. 5.13. The evolution of
a BEC falling under gravity and bouncing off a hard-wall mirror formed by a far-detuned
sheet of light was already observed experimentally by Bongs et al. in both the soft-wall
and the hard-wall regime [230]. In the soft-wall regime, they have recorded that the BEC
is reflected up to three times off the optical mirror in the lossy environment. Due to a large
two-particle coupling strength, which in turn results in a condensate with a larger width, this
group also observed a splitting of the BEC into two parts close to the upper turning point
of the BEC. This effect is heuristically modeled by a GPE dynamics with assuming that the
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Figure 5.12: Numerical results for the BEC density |ψ(z, t)|2 with initial dimensionless
mean position z0 = 27.2 and dimensionless standard deviation σ = 0.99 for NB = 30 number
of atoms. BEC experiences full periodic revivals, however incoming and reflecting BEC
wave packets lead to larger matter-wave interference regions at time intervals t =24-34 and
83-91. Here the color scale represents the density of the BEC.

two-particle interaction strength decreases exponentially in time in Ref. [230]. In our case
we restricted ourselves to the evolution of the BEC with a constant coupling constant, so we
did not observe any splitting of the BEC in our simulation, but we do observe the BEC for
longer time intervals in Fig. 5.12. In our simulation, we observed more than three reflec-
tions of the atomic cloud in a lossless environment. The center-of-mass of the BEC wave
packet shows periodic revivals at dimensionless time tRT ≈ 58.2 as depicted in Fig. 5.12.
Quantitatively, the classical particle revival time can be measured in dimensionless time as
tRT = 2t = 2

√
2z0/k = 56.9 3.

In Fig. 5.13, we investigate complex dynamic patterns of the BEC after having switched
off the evanescent potential and letting the BEC atoms fall on a hard-wall mirror for different
number of particles. For NB = 500, in Fig. 5.13(a), BEC atoms which are located nearby
to the hard-wall mirror, can collide with the mirror and bounce back for a time lesser than
t < 20. And those atoms which are far away from the mirror, are reflected above the hard-wall
mirror due to collisions among themselves as already predicted in Fig. 5.11. As we explored
in Fig. 5.5 and Fig. 5.6 that the mean position of the BEC decreases with increasing number
of particles, therefore these atoms does not have enough momenta and they cannot reflect
back, thus they collide with other falling of atoms due to the gravity and finally lead a web-
of-interference pattern between the interval 20< t < 60. For larger number of BEC particles
as shown in Fig. 5.13(b-c) this web-of-interference can be seen for smaller time intervals and
for larger heights, for instance as compared to the case discussed in Fig. 5.13(a). And for
very large number of particles like NB = 5000, as displayed in Fig. 5.13(d), the BEC atoms
have less momenta since they are quite close to the hard-wall mirror, therefore we have not

3Here, in dimensional units, we determine the classical particle revival time by using equation of projectile
z(t) = z0 + v0t −gt2/2.
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Figure 5.13: Numerical results for the BEC density |ψ(z, t)|2 after having switched off
the evanescent potential and letting the BEC atoms fall on a hard-wall mirror for different
number of particles (a) NB = 500, (b) NB = 1000 (c) NB = 1500 and (d) NB = 5000. Here
the color scale representing the density of the depleted density of the BEC.

observe clear self-interference patterns.

5.7 Summary and conclusion

In summary, in this chapter we studied the behavior of a Cs BEC in a quasi-1D gravito-optical
surface trap. We have developed approximate solutions to the GP equation for both small
and large numbers of atoms. In the former, we have used the variational ansatz technique,
while in the latter we have used the Thomas-Fermi approximation. Later on, we compared
the analytical approach with numerical results, which agreed quite well for a wide range of
atom numbers NB.

Furthermore, we have numerically reproduced the experimental result of Ref. [82],
where a 2D BEC is confined in the radial direction, but is allowed to expand in the verti-
cal direction freely. This indicates that our analysis could be extended beyond the 1D case.
Our model suggests that for a small particle number NB the BEC retains its Gaussian shape
in the expansion and falls due to gravity. As suggested by Fig. 5.10, for larger number
of atoms, the standard deviation does not expand as fast as compared to small number of
particles, therefore we conclude that the initial number of the particles pays a significant
role in the expansion of the BEC cloud. Afterwards, we investigated the dynamics of the
BEC in the presence of gravity and a hard-wall boundary condition, where we observed self-
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interferences and revivals of the wave packet. The observation of the bouncing of the BEC
can be used to characterize and determine mirror properties such as roughness and steepness.
All our results can be applied to develop atomic interferometers for a BEC.
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Chapter 6

Numerical study of localized impurity in
a Bose-Einstein condensate

Inspired by the recent experiments [147–149, 231], we propose and analyze a quasi one-
dimensional model of a hybrid system which consists of a single 133Cs impurity in a 87Rb
Bose-Einstein condensate. To this end, we start with defining the quasi-1D model in Sec. 6.1
and we derive two coupled quasi one-dimensional differential equations (1DDEs) for the
condensate and the impurity wave function. As a result the effective one-dimensional in-
terspecies coupling strength depends not only on the three-dimensional s-wave scattering
length, but also on the transversal trap frequencies of cesium and rubidium, respectively. In
the same section, we plot the phase diagram, and specify the regions where the impurity is
localized at the trap center or expelled to the condensate boarder. Afterwards in Sec. 6.2,
we show that the impurity imprint upon the condensate wave function strongly depends
upon whether the effective impurity-BEC coupling strength is attractive or repulsive. And
within the mean-field regime, we calculate the effective mass of the impurity, which yields
a quadratic behavior for small attractive/repulsive interspecies coupling strength. Subse-
quently, Sec. 6.3 discusses the dynamics of the impurity imprint upon the condensate wave
function for two quench scenarios. After having released the trap, the resulting time-of-flight
expansion shows that the impurity imprint marginally decreases for an attractive s-wave cou-
pling but considerably decreases for a repulsive s-wave scattering. Furthermore, we investi-
gate the emergence of white shock-waves or gray/dark bi-solitons when the initial negative
or positive interspecies coupling constant is switched off. Finally, Section. 6.4 summarizes
our findings for the proposed quasi 1D model system in view of a possible experimental
realization.
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Figure 6.1: Geometric function f (ωIr/ωr) reaches its maximum value at 1+mB/mI.

6.1 Quasi 1D model

We start with the fact that the underlying equations for describing an impurity immersed in
a BEC can be formulated in terms of the Hamilton principle of least action with the action
functional A3D =

∫
dt
∫

d3rL3D, where the Lagrangian density reads for three-dimensions

L3D = ∑
j=B,I

Nj

{
ih̄
2

(
ψ
⋆
j (r, t)

∂ψj (r, t)
∂ t

−ψj (r, t)
∂ψ⋆

j (r, t)
∂ t

)
+

h̄2

2mj
ψ
⋆
j (r, t) △ ψj (r, t)

−Vj(r)ψ⋆
j (r, t)ψj (r, t)−

Njg3D
j

2
∥ ψj (r, t) ∥4

}
−NBNIg3D

IB ∥ ψI (r, t) ∥2∥ ψB (r, t) ∥2 .

(6.1)

Here ψB (r, t) and ψI (r, t) describe the BEC and the impurity wave function with r=(x, y, z),
VB(r) = mBω2

z z2/2+mBω2
r
(
x2 + y2)/2 and VI (r) = mIω

2
Izz2/2+mIω

2
Ir
(
x2 + y2)/2 denote

the three-dimensional harmonic potential for the bosons and the 133Cs impurity. The three-
dimensional 87Rb coupling constant reads g3D

B = 4π h̄2aB/mB, where the s-wave scattering
length is aB = 94.7 a0 with the Bohr radius a0, while the three-dimensional 133Cs cou-
pling constant reads g3D

I = 0, because there is only one single 133Cs impurity atom present
in the system, i.e. NI = 1. The three-dimensional effective Rb-Cs coupling constant is
g3D

IB = 2π h̄2aIB/mIB, where mIB = mImB/(mI +mB) is the reduced mass of the two species
and aIB = 650 a0 represents the effective Rb-Cs s-wave scattering length [147]. We assume
an effective one-dimensional setting with ωz ≪ωr, so we decompose the BEC wave function
ψB(r, t) = ψB(z, t)φB( r⊥, t) with r⊥ = (x, y) and

φB( r⊥, t) =
1√
πlr

e
− x2+y2

2l2r e−iωrt . (6.2)

Furthermore, we assume that the single impurity in the center of the BEC is trapped by
a harmonic potential with ωIz ≪ ωIr. Thus, we perform a similar decomposition of the
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Figure 6.2: Equilibrium phase diagram spanned by gB and gIB for (a) NB = 20 (b) NB = 200
and (c) NB = 800. Impurity is localized at trap center (blue) or expelled to the condensate
border (red) together with unstable region (black).

impurity wave function ψI(r, t) = ψI(z, t)φI( r⊥, t) with

φI( r⊥, t) =
1√
πlrI

e
− x2+y2

2l2rI e−iωrIt . (6.3)

Here lr =
√

h̄/(mBωr) and lIr =
√

h̄/(mIωIr) denote the oscillator lengths in radial direction
for BEC and impurity. For the experimentally realistic trap frequencies ωr = ωIr = 2π ×
0.179 kHz ≫ ωz = ωIz = 2π ×0.050 kHz [148] these radial oscillator lengths amount to the
values lr = 15190.8a0 and lIr = 12279.0a0 for BEC and impurity, respectively. As they are
much larger than both aIB and aB, we are indeed within the quasi 1D regime. Therefore, we
can follow Sec. 2.5 and integrate out the two transversal dimensions of our three-dimensional
Lagrangian according to L1D =

∫
∞

−∞

∫
∞

−∞
L3D dxdy. After some algebra, the resulting quasi

one-dimensional Lagrangian reads

L1D = ∑
j=B,I

Nj

{
ih̄
2

(
ψ
⋆
j (z, t)

∂ψj (z, t)
∂ t

−ψj (z, t)
∂ψ⋆

j (z, t)

∂ t

)
+

h̄2

2mj
ψ
⋆
j (z, t) △ ψj (z, t)

−Vj(z)ψ⋆
j (z, t)ψj (z, t)−

Njgj

2
∥ ψj (z, t) ∥4

}
−NBNIgIB ∥ ψI (z, t) ∥2∥ ψB (z, t) ∥2 . (6.4)

where VB,I (z) = mB,Iω
2
z,Izz2/2 represents the one-dimensional harmonic potential for the

BEC and for the impurity, the one-dimensional intraspecies coupling strength is

gB = 2aBh̄ωr, (6.5)

whereas for interspecies coupling one obtains

gIB = 2aIBh̄ωr f
(

ωIr

ωr

)
. (6.6)
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Figure 6.3: Numerical density profile of the BEC for the two-particle Rb-Rb coupling
constant value GB = 16000 and for interspecies coupling constants gIB which increases from
top to bottom according to the inlets. For increasing negative values of gIB the impurity-
induced bump (a) in the condensate wave function decreases, whereas for positive values the
corresponding dip (b) increases.

Here the geometric function

f
(

ωIr

ωr

)
=

1+(mB/mI)

1+(mBωr)/(mIωIr)
(6.7)

depends on the ratio of the trap frequencies as depicted in Fig. 6.1. Thus, f (ωIr/ωr) is
monotonously increasing, equals to one for the present case ωIr = ωr, and reaches its max-
imum value at 1+mB/mI for the frequency ratio of about ωIr/ωr ≥ 20. In order to vary
the impurity-BEC coupling strength there are, in principle, two possibilities according to
Eq. (6.7): either the ratio of the radial trap frequencies is tuned as shown in Fig. 6.1, or the
interspecies s-wave scattering length aIB is modified with the use of a Feshbach resonance
[147, 232, 233].

The two coupled time dependent differential equations follow from the action A1D =∫
∞

−∞

∫
∞

−∞
L1Ddzdt and by using the Euler-Lagrangian equation (2.94). Inserting the one-

dimensional Lagrangian density (6.4), after some algebra we can write the two coupled
1DDEs as

ih̄
∂

∂ t
ψB (z, t) =

{
− h̄2

2mB

∂ 2

∂ z2 +
mBω2

z
2

z2 +GIB ∥ ψI(z, t) ∥2 +GB ∥ ψB (z, t) ∥2
}

ψB (z, t) ,

(6.8)

ih̄
∂

∂ t
ψI(z, t) =

{
− h̄2

2mI

∂ 2

∂ z2 +
mIω

2
Iz

2
z2 +GBI ∥ ψB (z, t) ∥2

}
ψI(z, t). (6.9)

On the right-hand side of Eq. (6.8) and Eq. (6.9) the first term represents the kinetic energy
of the BEC(impurity) atoms with mass mB(mI), the second term describes the potential en-
ergy term, the third term stands for the impurity-BEC coupling, and the last term in (6.8)

6.1 Quasi 1D model 90



−2 −1 0 1 2
0

0.5

1

1.5

2

z

n I
(z
)

-10
-8
-6
-2
0

−1.5 −1 −0.5 0 0.5 1 1.5
0

5

10

15

20

z

n I
(z
)

0
20
40
60
80
100
120

(a) (b)

Figure 6.4: Numerical density profile of the impurity for the two-particle Rb-Rb coupling
constant value GB = 16000 and for interspecies coupling constants gIB which increases from
top to bottom according to the inlets. For increasing negative (a) values of gIB the impurity
wave function decreases, whereas for positive (b) values the corresponding impurity wave
function increases.

represents the Rb-Rb two-particle interaction. Here GB = NBgB represents the two-particle
Rb-Rb coupling strength, GIB = gIB and GBI = NBgIB describe the two-particle Rb-Cs cou-
pling strengths for impurity to BEC and for BEC to impurity, respectively. In order to make
Eqs. (6.8) and (6.9) dimensionless we introduce the dimensionless time as t̃ = ωzt, the di-
mensionless coordinate z̃ = z/lz, and the dimensionless wave function ψ̃ = ψ

√
lz with the

oscillator length lz =
√

h̄/(mBωz). With this Eqs. (6.8) and (6.9) can be rewritten in the
form

i
∂

∂ t̃
ψ̃B (z̃, t̃) =

{
−1

2
∂ 2

∂ z̃2 +
z̃2

2
+ G̃IB ∥ ψ̃I(z̃, t̃) ∥2 +G̃B ∥ ψ̃B (z̃, t̃) ∥2

}
ψ̃B (z̃, t̃) , (6.10)

i
∂

∂ t̃
ψ̃I(z̃, t̃) =

{
− k̃2

2
∂ 2

∂ z̃2 +
z̃2

2k̃2
+ G̃BI ∥ ψ̃B(z̃, t̃) ∥2

}
ψ̃I(z̃, t̃), (6.11)

where we have G̃B = NBg̃B, G̃IB = g̃IB and G̃BI = NBg̃IB with g̃B = gB/(h̄ωzlz) and g̃IB =

gIB/(h̄ωzlz). Here k̃ = lIz/lz defines the ratio of the two oscillator lengths. Thus, we can
summarize that Eq. (6.10) is nothing but a standard Gross-Piteavskii equation with an ad-
ditional potential stemming from the impurity, whereas Eq. (6.11) is a typical Schrödinger
wave equation with a potential originating from the BEC. From here on, we will drop the
tildes for simplicity.

Typically, a mixture of two species can occur in two different states, either it is miscible,
i.e. both species overlap, or it is immiscible, i.e. the two species do not overlap [234]. In
our case the equilibrium phase diagram is spanned by the coupling strengths gB and gIB

and contains a region, where the impurity is localized at the center, and another one, where
the impurity is expelled to be localized at the border of the condensate. Note that a similar
equilibrium phase diagram was studied for the homogeneous case with attractive interspecies
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Figure 6.5: (a) Height/depth and (b) width of impurity bump/dip according to Eqs. (6.16)–
(6.18) versus impurity-BEC coupling constant gIB for the BEC coupling constant GB =
16000 calculated numerically by solving 1DDEs (6.10) and (6.11).

s-wave scattering lengths in Ref. [235]. In order to investigate the physical regions of interest
for our proposed model, we solve the two coupled 1DDEs (6.10) and (6.11) in imaginary
time numerically by using the split-operator method [192, 193], which yields the equilibrium
phase diagram Fig. 6.2. The blue region shows where the impurity is localized at the center of
the BEC, the red region depicts that the impurity is displaced from the center to the border of
the condensate, and finally, the black region represents the unstable region where impurity
and condensate do not coexist. The above mentioned experimental parameters yield the
dimensionless intraspecies and interspecies coupling strengths gB = 0.023 and gIB = 0.16,
respectively, which correspond to the red region of Fig. 6.2(c) for NB = 800 87Rb atoms. As
we are interested into the localization of the impurity at the center of the BEC, however, we
use from now on, different dimensionless values of intraspecies and interspecies coupling
strengths, which stem from the blue region in the equilibrium phase diagram of Fig. 6.2. In
particular, we consider that the BEC consists of NB = 800 87Rb atoms, for the dimensionless
intraspecies couplings constant we assume GB = 16000, and the ratio of the two oscillator
lengths k = lIz/lz turns out to have the value

√
87/133 = 0.808.

In order to argue that we are in the regime where the mean-field theory is valid, we
divide our argument into two parts. Firstly, in order to differentiate between the weakly
interacting quasi-1D and the strongly interacting Tonks-Girardeau regime, Petrov et al. [114]
introduced a dimensionless quantity α = (2aBlz)/l2

r = 0.023 as pointed out in Eq. (2.118).
Therefore, we are far in the weakly interacting regime, where the Gross-Pitaevskii mean-
field theory is appropriate as shown in Fig. 2.7. Secondly, it is physically reasonable to
assume that the impurity in our proposed model does not affect the mean-field description
of our system. Therefore, we restrict the following calculation of the validity range of the
mean-field analysis to a BEC without any impurity.

We determine how quantum and thermal fluctuations within the Bogoliubov theory re-
strict the validity range of our mean-field description. The ratio of one-dimensional quantum
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Figure 6.6: Effective mass of 133Cs impurity versus impurity-BEC coupling strength gIB.
Inlet shows that effective mass increases quadratically for small impurity-BEC coupling
strength gIB.

fluctuations depleted atoms with respect to the number of particles NB = 800 can be written
as calculated in Appendix B of Eq. (B.10)

N1D
QF

NB
=

31/3

4
(
a4

BNBΞ
2)1/3

= 0.0038, (6.12)

so that the quantum fluctuations are, indeed, negligible. Here Ξ = lz/lr denotes the ratio
of the axial and the longitudinal harmonic oscillator lengths. Correspondingly, the one-
dimensional thermal depleted number of atoms N1D

TF with respect to the number of particles
follows from Bogoliubov theory (B.16)

N1D
TF

NB
= γ

(
T
Tc

)2

, (6.13)

with the dimensionless prefactor from Eq. (B.17)

γ =
52/5π2

23/2 ×33/5

(
N1/3

B

ξ (3)8/3 a2
BΞ

4/3

)1/5

. (6.14)

For our system parameters we obtain γ = 0.0593 and the critical temperature from Eq. (2.76)
is Tc = h̄

[
ω2

r ωzNB/ξ (3)
]1/3

/kB = 49.0 nK. Thus, choosing a reasonable ratio of the thermal
depleted term N1D

TF /NB = 0.001, we estimate the temperature of the system to be

T = Tc

√
1
η

N1D
TF

NB
= 6.35 nK (6.15)

With this we conclude that, if the temperature of the system is lower than T = 6.35 nK, the
thermal fluctuations are not affecting the Bose-Einstein condensate.
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Figure 6.7: Impurity imprint height/depth after having released the trap versus time for (a)
increasing negative and (b) decreasing positive values of impurity-BEC coupling constant
gIB from top to bottom. Inlet: relaxation time trel decreases with increasing gIB.

6.2 Impurity imprint upon stationary condensate wave func-
tion

In order to determine the impurity imprint on the condensate wave function in equilibrium
we solve the two coupled 1DDEs (6.10), (6.11) numerically in imaginary time. In this way
we find that the impurity leads to a bump/hole in the BEC density at the trap center for
negative/positive values of gIB as shown in Fig. 6.3. For increasing the attractive/repulsive
interspecies coupling strength the bump/dip upon the condensate decreases/increases. For
the repulsive interspecies coupling strength, the impurity drills a dip in the BEC density
which gets deeper and deeper until no more BEC atoms remain in the trap center and, fi-
nally, the BEC fully fragments into two parts as depicted in Fig. 6.3(b) at the characteristic
value gIBc = 110. The width/height of the impurity wave function decreases/increases for
increasing interspecies coupling constant |gIB|, respectively, as demonstrated in Fig. 6.4.

In view of a more detailed comparison, we categorize the impurity imprint upon the
condensate wave function ψB(z) by the following two quantities. The first one is the impurity
height/depth

IHD =


∥ ψB (0) ∥2

gIB
− ∥ ψB (0) ∥2

gIB=0 gIB ≤ 0

Max
(
∥ ψB (z) ∥2

gIB

)
− ∥ ψB (0) ∥2

gIB
gIB ≥ 0

(6.16)

and the second one is the impurity width IW, which we define as follows. For gIB ≤ 0 we
use the full width half maximum

∥ ψ (IW/2) ∥2
gIB

=
∥ ψB (0) ∥2

gIB
+ ∥ ψB (0) ∥2

gIB=0

2
gIB ≤ 0 , (6.17)
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Figure 6.8: Dynamics of impurity density represented in color scale after having switched
off the harmonic trap for initial gIB=-8 for the BEC coupling strength GB = 16000.

whereas for gIB ≥ 0 we define the equivalent width [194]:

IW =
2I0zMax −

∫ zMax
−zMax

∥ ψB (z) ∥2
gIB

dz
I0− ∥ ψB (0) ∥2

gIB

gIB ≥ 0 , (6.18)

where we have I0 = Max
(
∥ ψB (z) ∥2

gIB

)
. In Fig. 6.5(a) we plot the IHD for gIB > −10,

while gIB < −10 is not a valid region for gB = 20 according to Fig. 6.2(c). From Fig-
ure 6.5(a) we read off that for gIB = 0, i.e. when there is no impurity present, the impurity
height/depth vanishes. The IHD quadratically increases for the repulsive interspecies cou-
pling strength 0 < gIB < 60 and partially fragments the BEC until it reaches its marginally
saturated value IHDc≈ 0.025 for the characteristic interspecies coupling strength gIBc = 110.
In the case of gIB > gIBc, the impurity fully fragments the BEC into two parts as depicted
in Fig. 6.3(b). The impurity imprint width increases abruptly just before/after gIB = 0 for
attractive/repulsive interspecies coupling strength, respectively, as shown in Fig. 6.5(b). For
an increasing repulsive impurity-BEC coupling strength the impurity width then decreases
until it reaches the interspecies coupling strength gIB = 30, later on it marginally increases
until the characteristic interspecies coupling strength gIBc = 110, where we have IWc≈ 0.23.

The effective mass of the impurity is defined as meff
I = h̄/

(
l2
Izωz

)
, where the impurity

oscillator length lIz =
√

2σ follows from the standard deviation σ =
√
< z2 >−< z>2,

with < • >= ∫ •|ψI(z)|2 dz denoting the expectation value. Figure 6.6 shows the ratio of
the effective mass of the 133Cs impurity with respect to the bare mass mI, which increases
quadratically for interspecies coupling strength −5< gIB < 5 as shown in the inlet of Fig. 6.6,
and becomes marginally saturated for interspecies coupling strength gIB > gIBc. Note that
our results for the effective mass of the impurity are restricted to the mean-field regime.
In order to go beyond and include the impact of quantum fluctuations, one would need to
investigate polaron physics [150, 151, 236, 237].
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Figure 6.9: Impurity imprint width after having released the trap versus time for increasing
values of impurity-BEC coupling constant gIB from top to bottom.

6.3 Impurity imprint upon condensate dynamics

In an experiment, any imprint of the impurity upon the condensate wave function could only
be detected dynamically. Thus, it is of high interest to study theoretically whether the impu-
rity imprint, which we have found and analyzed for the stationary case in the previous sec-
tion, remains present also during the dynamical evolution of the condensate wave function.
To this end, we explore two quench scenarios numerically in more detail. The first one is
the standard time-of-flight (TOF) expansion after having switched off the external trap when
the interspecies interaction is still present. In the second case we consider the inverted situa-
tion that the impurity-BEC interaction is suddenly switched off within a remaining harmonic
confinement, which turns out to give rise to the emergence of wave packets or bi-solitons
depending on whether the initial interspecies interaction strength is attractive or repulsive.

6.3.1 Time-of-flight expansion

Time-of-flight (TOF) absorption pictures represent an important diagnostic tool to analyze
dilute quantum gases. By suddenly turning off the magnetic trap, the atom cloud expands
non-ballistically with a dynamics which is determined by both the momentum distribution of
the atoms at the instance, when the confining potential is switched off, and by inter-atomic
interactions [197, 198]. We have investigated the time-of-flight expansion dynamics of the
BEC with impurity by solving numerically the two coupled 1DDEs (6.10), (6.11) and an-
alyzing the resulting evolution of both the condensate and the impurity wave function. It
turns out that, despite the continuous broadening of the condensate density, its impurity im-
print remains qualitatively preserved both for attractive and repulsive interspecies interaction
strengths, respectively. Therefore, we focus a more quantitative discussion upon the dynam-
ics of the corresponding impurity height/depth and width. For an attractive Rb-Cs coupling
strength, it turns out that the impurity imprint even remains approximately constant in the
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time-of-flight, as is shown explicitly in Fig. 6.7 (a) for the IHD, which marginally decreases
for t ≫ 0. As shown in Fig. 6.7 (a) for smaller attractive interspecies coupling strength,
we observe the crumbling breathing of the impurity upon IHD as discussed recently for the
Bose-Hubbard model [238]. For the attractive interspecies coupling strength gIB = −8 the
dynamics of the impunity density is displayed in Fig. 6.8, which clearly reflects the crum-
bling breathing of the impurity at the center of the BEC. In case of the IW, we find that the
IW starts increasing marginally for smaller values of attractive interspecies coupling strength
and increases linearly for smaller attractive interspecies coupling strength gIB as shown in
Fig. 6.9.

(a)

(b)

Figure 6.10: Coherent matter-wave TOF evo-
lution of depleted density ∥ ψB (z, t) ∥2

DD=

∥ ψB (z, t) ∥2
gIB

− ∥ ψB (z, t) ∥2
gIB=0 after hav-

ing switched off the trap for the BEC coupling
constant GB = 16000: (a) gIB = 20 and (b)
gIB = 80. Here the color scale represents the
density of the depleted density of the BEC.

In case of a repulsive interspecies in-
teraction, the IHD decays with a character-
istic time scale as depicted in Fig. 6.7(b).
Defining that relaxation time trel according
to IHD(trel) = IHD(0)/2, the inlet reveals
that the impurity imprint depth relaxes with
a shorter time scale for increasing repulsive
impurity-BEC coupling strength as shown
in Fig. 6.7(b). This physical picture is con-
firmed by the dynamics of the time-of-flight
evolution of the depleted density as shown
in Fig. 6.10. At the beginning of TOF the
impurity-imprint remains at first constant,
then the imprint width expands and the im-
print height decays gradually as shown in
Fig. 6.10. In Fig. 6.10 we plotted the time-
of-flight of the depleted density of the BEC
for two cases. For the repulsive interspecies
coupling strength gIB = 20 we observe that
the impurity imprint decays marginally from
its equilibrium value as shown in Fig. 6.7(b)
and the impurity remains localized at the
trap center as shown in Fig. 6.10(a). On the
other hand, for the larger value of the repul-
sive interspecies coupling strength gIB = 80,
the impurity imprint decays from its equilibrium value as shown in Fig. 6.7(b) and at the same
time the impurity is expelled from the center of the BEC as shown in Fig. 6.10(b). With this
we conclude that for a small enough repulsive interspecies coupling strengths the impurity
survives in the center of the BEC for larger times.
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Figure 6.11: Density profile of BEC represented in color scale after having switched off
the impurity-BEC coupling constant for initial gIB=120 and for the BEC coupling constant
GB = 16000.

6.3.2 Wave packets versus solitons

For our proposed quasi 1D model of a BEC with an impurity we investigated the dynamics
of the condensate wave function which emerges after having switched off the interspecies
coupling strength. Both for an initial attractive and repulsive interspecies coupling strength
gIB we observe that two excitations of the condensate are created at the impurity position,
which travel in opposite direction with the same center-of-mass speed, are reflected at the trap
boundaries and then collide at the impurity position as shown exemplarily in Fig. 6.11 for the
initial gIB=120 and GB = 16000. These excitations qualitatively retain their shape despite the
collision at the impurity position. All these findings are not yet conclusive to decide whether
these excitations represent wave packets in the absence of dispersion or solitons. Therefore,
we investigate their dynamics in more detail, by determining their center-of-mass motion via
[152]

z̄L,R (t) =

∫ 0,∞
−∞,0 z

(
∥ ψB (z, t) ∥2

gIB
− ∥ ψB (z, t) ∥2

gIB=0

)
dz∫ 0,∞

−∞,0

(
∥ ψB (z, t) ∥2

gIB
− ∥ ψB (z, t) ∥2

gIB=0

)
dz

, (6.19)

which are plotted in Fig. 6.12. Note that the mean positions z̄L and z̄R of the excitations are
uncertain in the region where they collide. Nevertheless Fig. 6.12 demonstrates that the ex-
citations oscillate with the frequency ω = 2π ×35.7 Hz irrespective of sign and size of gIB.
As we have assumed the trap frequency ωz = 2π ×50 Hz, we obtain the ratio ω/ωz ≈ 0.714,
which is quite close to ω/ωz = 1/

√
2 ≈ 0.707. Despite these similarities of the cases of an

initial attractive and repulsive interspecies coupling constant gIB, we observe one significant
difference. Whereas the oscillation amplitudes of the excitations do not depend on the value
of the initial gIB < 0 according to Fig. 6.12(a), we find decreasing oscillation amplitudes of
the excitations with increasing the initial gIB > 0 in Fig. 6.12(b). Such an amplitude depen-
dence on the initial condition is characteristic for gray/dark solitons according to Ref. [187].
This particle-like interpretation of the excitations agrees with the other theoretical prediction
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Figure 6.12: Center of mass positions of excitations z̄L (filled circles) and z̄R (empty circles)
according to Eq. (6.19) versus time after having switched off (a) negative decreasing and (b)
positive increasing values of gIB from top to bottom. Black filled circles represent the region
of colliding excitations, where mean positions are not perfectly detectable.

of Ref. [187] that gray/dark solitons oscillate in a harmonic confinement with the frequency
ω/ωz = 1/

√
2, which was already confirmed in the Hamburg experiment of Ref. [66] and in

the Heidelberg experiment of Ref. [97] and is also seen in Fig. 6.12. Conversely, for an ini-
tial attractive interspecies coupling constant the excitations can not be identified with bright
solitons as the dynamics is governed by a GPE with a repulsive two-particle interaction. Here
the excitations have to be interpreted as wave packets which move without any dispersion,
thus, for gIB < 0 the excitations propagate like sound waves in the BEC [152, 153, 239].

Thus, we conclude that switching off the interspecies coupling constant leads for gIB < 0
and gIB > 0 to physically different situations. For an initial attractive RbCs coupling constant
we generate wave packets which correspond to white shock-waves [202], whereas for the
corresponding repulsive case bi-solitons emerge [91, 203], which are due to the collision
of the two partially/fully fragmented parts of the condensate. Note that it can be shown
in our proposed system that gray bi-solitons are generated for a partially fragmented BEC,
i.e. the impurity-BEC coupling strength gIB < gIBc. On the other hand the dark bi-solitons
turn out to be only generated for gIB > gIBc, where the BEC is fully fragmented into two
parts at equilibrium. In Section 3.3, we have observed that bi-solitons trains are generated
in the traditional harmonic trap with an additional dimple trap [152]. Similar to the situation
described in sections 3.3 and 4.4, we found out that the oscillation frequencies of both the
white shock-waves and the soliton coincide and attribute it to be an artifact of the harmonic
confinement. We emphasize that beside many practical applications of the impurity-BEC
system, someone can also generate solitons by considering an impurity as a drilling appliance
to fragment the BEC, which allows to study soliton physics in the condensate.

6.3 Impurity imprint upon condensate dynamics 99



6.4 Summary and conclusion

In the present work we studied within a quasi 1D model numerically how a single impurity
in the center of a trapped BEC affects the condensate wave function. At first, we investi-
gated the equilibrium properties of that hybrid system by numerically solving the underlying
two coupled 1DDEs (6.10) and (6.11) with the imaginary-time propagation method. For an
increasing attractive/repulsive Rb-Cs interaction strength it turns out that the impurity im-
print bump/dip decreases/increases quadratically and reaches its marginally saturated value
after gIBc = 110. Later we found that the impurity imprint width increases abruptly for
increasing the attractive/repulsive Rb-Cs interaction strength, but for the repulsive case it
reaches a marginally saturated value for gIB > gIBc. Beyond the characteristic value gIBc,
the BEC fragments into two parts and, if gIB is increased beyond gIBc, the impurity yields
a condensate wave function whose impurity width increases further, although the impurity
height/depth remains constant. Afterwards, we investigated the impurity imprint upon the
condensate dynamics for two quench scenarios.

At first, we considered the release of the harmonic confinement, which leads to a time-
of-flight expansion and found that the impurity imprint upon the condensate decays slowly
for small valves of the attractive/repulsive interspecies coupling strength. This result sug-
gests that it might be experimentally easier to observe the impurity imprint for small attrac-
tive/repulsive coupling constant gIB. We also observed the decaying breathing of the impurity
at the center of the condensate for small attractive Rb-Cs coupling strength. Additionally,
we found for stronger repulsive interspecies coupling strength that the 87Rb atoms repel the
single 133Cs impurity from the center. In an experiment one has to take into account that
inelastic collisions lead to two- and three-body losses of the condensate atoms [220, 240].
As such inelastic collisions are enhanced for a higher BEC density, they play a vital role for
an attractive interspecies coupling, when the condensate density has a bump at the impurity
position, but are negligible in the repulsive case with the dip in the wave function.

In addition, we analyzed the condensate dynamics after having switched off the inter-
species coupling strength. This case turned out to be an interesting laboratory in order
to study the physical similarities and differences of bright shock waves and gray/dark bi-
solitons, which emerge for an initial negative and positive interspecies coupling constant
gIB, respectively. We consider the astonishing observation, that the oscillation frequencies
of both the shock waves and the soliton coincide, to be an artifact of the harmonic confine-
ment. Additionally, we also found that the generation of gray/dark bi-solitons is a generic
phenomenon on collisions of partially/fully fragmented BEC, respectively, which is strongly
depending upon the equilibrium values of the impurity wave function height and width.
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Chapter 7

Summary and conclusion

We fabricated our thesis into four parts which roughly follow on from one to another. Part
I gave fundamental basic calculation of the optical dipole trap (ODT) and an essential sum-
mary of describing a Bose-Einstein condensate (BEC) within the mean-field theory. Part
II covered the physics of the creation of complex coherent matter waves in a harmonically
trapped BEC, which we sculpted by assuming a specific geometrical configuration of the
external ODT and by changing the intensity as well as the detuning of the laser. Part III
presented results for the dynamics of matter waves by shaping a quasi one-dimensional BEC
from Gaussian to triangular shape for an increasing number of atoms in a nonlinear gravito-
optical surface trap including a quantitative comparison with experimental measurements.
And part IV demonstrated the shaping of a BEC cloud with a single impurity atom at the
center of the trap by changing the interspecies coupling strength in order to produce matter
waves.

Part I

Part I of this thesis, which consisted of chapters 1 and 2, presented a necessary basic theo-
retical background on the ODT and a primary description of the BEC within the mean-field
theory. In chapter 1 we discussed in Sec. 1.1 the historical importance and the background
of Bose-Einstein condensation. Later, in Sec. 1.2, we described the physical mechanism be-
hind an ODT, and outlined the advantage of the ODT in contrast to a magneto-optical trap
(MOT), which can only trap atoms with a certain internal state [29, 30]. Furthermore, we
defined the so called dimple trap (dT) or Hermite-Gaussian dimple trap (HGdT), which is
nothing but a small tight optical dipole trap [31–33]. In Sec. 1.3, we outlined the historical
importance of the gravito-optical surface trapping. Subsequently, in Sec. 1.4, we discussed
the possibility to control and manipulate a BEC by changing the respective system parame-
ters. In Sec. 1.5, we briefly reviewed the interaction of the BEC with an impurity, which can
consist of a different atom or alike atom but in a different internal hyperfine state.
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In chapter 2, we outlined the physical background of an ODT in Sec. 2.1 and derived the
relations for both the optical dipole potential and the scattering rate, by using the classical
Abraham–Lorentz model as well as a semiclassical calculation, both yielding surprisingly
the same results. Furthermore, we described how to trap atoms near to dielectric surfaces
with the help of the evanescent wave (EW) potential in Sec. 2.2, and determined its field
strength (2.36). Later, in Sec. 2.3 we derived the semiclassical free energy (2.60) and the
number of particles (2.61) for bosons in D-dimensions, as a special case we calculated the
critical temperature for a three-dimensional and for a one-dimensional system for both ho-
mogeneous and trapped cases. And we studied the Mermin–Wagner theorem, which states
that the BEC transition is not achievable for the 1D homogeneous case, but for the one-
dimensional harmonic trap a finite BEC critical temperature is possible. Further, we derived
the Gross–Pitaevskii equation (GPE) (2.90) for D-dimensions in Sec. 2.4. Afterwards, by
using the Gaussian variational ansatz (2.95), we obtained the equations of motion (2.106) for
the widths of the Bose-Einstein condensate for the D-dimensional harmonic trap, in the same
section we also described the approximative Thomas-Fermi (TF) solution (2.108). At the end
of this chapter in Sec. 2.5, we discussed the quasi one-dimensional Gross–Pitaevskii equa-
tion (1DGPE) (2.119) as a special case, where we compared a Gaussian variational ansatz,
the Thomas-Fermi solution, and the numerical solution by solving the 1DGPE as shown in
Fig. 2.8. We observed that for small inter-particle interaction the BEC has a Gaussian density
profile, whereas for large inter-particle interaction value the BEC reveals a TF density profile
as depicted in Fig. 2.8. And finally, we illustrated the difference of black and gray solitons
in Fig. 2.9.

Part II

Part II consisted of chapters 3 and 4 and covered the physics creating complex coherent
matter waves in a harmonically trapped BEC, which we sculpted by assuming a specific
geometrical configuration of the external ODT [152, 153].

In chapter 3 we started in Sec. 3.1 with a model, which explained the dynamical evolution
of a quasi 1DBEC in a magneto-optical trap with an additional red/blue-detuned dimple
trap in the center. In particular, by using the one-dimensional Lagrangian density (3.9) we
obtained the 1DGPE (3.15). Afterwards in Sec. 3.2, we explained that, for the equilibrium
properties of the system, the Thomas-Fermi approximation (3.17) agrees quantitatively with
the numerical solution of the underlying quasi 1DGPE as shown in Fig. 3.4. With this we
showed that the dT induces a bump or a dip upon the condensate wave function depending on
whether the dT laser beam is red- or blue-detuned. For an increasing red-detuned dT depth, it
turned out for the induced bump that the height decreases linearly, whereas the width remains
approximately constant as depicted in Fig. 3.5. In contrast to that we found for an increasing
blue-detuned dT that both depth and width of the induced dip initially increase, and beyond a
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critical value Uc the BEC even fragments into two parts. If U is increased beyond Uc, the dT
induced imprint yields a condensate wave function whose width increases further, although
the dip depth remains constant as illustrated in Fig. 3.5.

Subsequently, in Sec. 3.3, we discussed the dynamics of the dT induced bump/dip-
imprint upon the condensate wave function for two quench scenarios. In the first one,
where we released the harmonic trap but kept the dT, the resulting time-of-flight expan-
sion showed in Fig. 3.6 that the dT induced imprint remains conserved for a red-detuned dT
but decreases for a blue-detuned dT. In addition, we analyzed the condensate dynamics after
having switched off the red/blue-detuned dT but not the harmonic trap. This case turned
out to be an interesting laboratory in order to study the physical similarities and differences
of white shock-waves and gray/dark bi-soliton trains, which emerge for an initial red- and
blue-detuned dT, respectively. We observed astonishingly that the oscillation frequencies of
both white shock-waves and bi-soliton trains coincide according to Fig. 3.9. Additionally,
we also found that the generation of gray/dark bi-soliton trains is a generic phenomenon
of collisions of partially/fully fragmented BEC and the partially/fully fragmented BEC is
strongly depending upon the equilibrium values of the dimple trap depth.

After having found the intuitive and interesting physics of gray/dark bi-soliton trains, by
sculpting a BEC with an additional red/blue-detuned dimple trap at the center of the BEC,
we asked ourselves, whether we can create different shapes of matter waves by framing a
harmonically trapped BEC with an external Hermite-Gaussian TEM01 laser mode of ODTs.
To investigate this scenario in more detail in chapter 4, we started with deriving the underly-
ing quasi 1DGPE (4.5) in Sec. 4.1, where we also outlined the system geometry and related
our simulation parameters to tunable experimental parameters. Afterwards in Sec. 4.2, for
the equilibrium properties of the system, we compared an approximative TF solution (4.8)
with numerical results and showed in Fig. 4.3 that the HGdT imprint upon the condensate
wave function strongly depends upon whether the HGdT is red or blue-detuned. With this
we found out that the HGdT imprint generates two bumps/dips at the center of the BEC den-
sity, where the imprint height/depth depends on the chosen red/blue-detuned HGdT strength.
Later, the TOF dynamics of the red/blue-detuned HGdT imprint upon the condensate wave
function was discussed in Sec. 4.3, where we switched off the harmonic trap by keeping the
HGdT. Here we obtained for the red-detuning that the HGdT imprint does not decay, but for
the blue-detuning HGdT imprint decreases during TOF as depicted in Fig. 4.4. In Sec. 4.4,
we discussed in Fig. 4.7 the formation of shock-waves/gray(dark) pair-soliton bi-trains in
the harmonic trap after having switched off the red/blue-detuned HGdT potential. There, we
also found that the generation of gray/dark pair-solitons bi-trains represents a generic phe-
nomenon of collisions of moderately/fully fragmented BEC, respectively. Then, we showed
that the number of pair-solitons in the system crucially depends on the initial HGdT potential
depth U as shown in Fig. 4.8.

The Hermite-Gaussian dimple trap geometry is probably more applicable to soliton in-
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terferometry rather than the Gaussian barrier adopted in Refs. [152, 209], because one can
shape solitons. With this we conclude that it may be possible in the future to frame com-
plex shapes of solitons in the harmonically trapped BEC by imposing a unique geometrical
configuration for the external potential.

The ability of sculpting a quasi one-dimensional harmonic trapped Bose-Einstein con-
densate by a HGdT has also other exciting prospects. For instance, it can be used to gen-
erate a truly continuous atom laser, which has many applications in atom interferometry
[210, 211]. To construct such an atom laser one needs a device that continuously converts a
source of condensed atoms into a laser-like beam. In Sec. 4.4, we saw in the time-of-flight
picture for the case U > Uc that a BEC reservoir occurs at the center of the trap. By suit-
ably tuning the HGdT depth a fraction of this fragmented condensate could be coupled out,
serving as a source for an atomic beam.

Part III

Motivated by the crucial relevance of gravito-optical surface traps in atomic waveguides
[212–214] and atomic chips [215–218], part III of this thesis analyzed a quasi-1D BEC in
the vicinity of a surface as shown in Fig. 5.1 [154]. Part III consisted of chapter 5, where we
sculpted the BEC near to the dielectric surface with the nonlinear trap geometry of a gravito-
optical surface trap as depicted in Fig. 5.2. The underlying fundamental model for such a
quasi-1D BEC is reviewed in Sec. 5.1. Further, we provided estimates for the experimentally
realistic parameters of a 133Cs BEC, which we used in our quantitative analysis. Afterwards,
we developed approximate solutions for the 1DGPE wave function in the ground state of the
system by satisfying the hard-wall boundary condition of the dielectric surface with the mir-
ror principle. Traditionally, the mirror analogy is used to solve linear differential equations in
elctromagnetics and quantum mechanics. According to our knowledge, this is the first time
where the mirror analogy is used to solve the nonlinear Gross–Pitaevskii equation in the fol-
lowing two cases. In Sec. 5.2 we used the mirror analogy in order to perform a modified
Gaussian variational ansatz (5.6) for weak interactions, which corresponds to a small num-
ber of 133Cs atoms. For a larger number of 133Cs atoms, the interaction strength becomes
so strong that the Thomas-Fermi solution (5.13) turns out to be valid, whose mirror analogy
leads to a triangular shape of the condensate wave function according to Sec. 5.3. Then, in
Sec. 5.4, we outlined our numerical methods and compared them to the analytical solutions
obtained in the previous section in Fig. 5.5 and Fig. 5.6. We found that the numerical and
analytical solutions agreed quite well with each other.

Additionally, in Sec. 5.5, we described the time-of-flight expansion of the BEC when
the EW is switched off. We numerically calculated the fraction of remaining atoms in the
time-of-flight picture and, surprisingly, reproduced quantitatively the experimental result of
Ref. [82] as demonstrated in Fig. 5.9. Although this Innsbruck experiment uses a quasi
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2D pancake shaped BEC, when performing the time-of-flight expansion vertically, the trans-
versely confining beam is kept constant, so our quasi-1D model for BEC applied also in this
case. In Sec. 5.6, we investigated the dynamics of the BEC in the presence of gravity and a
hard-wall mirror, which is formed by a far-detuned sheet of light, where we observed self-
interferences in Fig. 5.11 and revivals of the wave packet in Fig. 5.12. The evolution of a
BEC falling under gravity and bouncing off a hard-wall mirror was already observed in the
Hanover experiment by Bongs et al. [230], therefore we compared qualitatively their results
with our numerical simulation. Due to a large two-particle coupling strength, which in turn
results in a condensate with a larger width, the Hanover experimental group observed that
the bouncing of the BEC was escorted with an additional splitting of the BEC into two parts
close to the upper turning point of the BEC, which we did not detect. The observation of
the bouncing of the BEC can be used to characterize and determine mirror properties such
as roughness and steepness. All results in this part of the thesis can be applied to develop
atomic interferometers for a BEC in a gravito-optical surface trap or to the formation of a
Bose–Einstein condensate on a microelectronic chip.

Part IV

In the last part IV of this thesis, we sculpted a harmonically trapped quasi one-dimensional
BEC with a single impurity to generate calibrated matter waves [155]. Inspired by the recent
experiments of Refs. [147–149], we proposed and analyzed a quasi one-dimensional model
of a hybrid system, which consisted of a 133Cs impurity in a 87Rb Bose-Einstein conden-
sate in chapter 6. To this end, we started with defining the hybrid species quasi-1D model
in Sec. 6.1 and derived a set of two coupled equations, namely a Gross-Pitaevskii equation
(6.8) for the condensate wave function and a Schrödinger equation (6.9) for the impurity
wave function. Due to integrating out the transversal degrees of freedom the effective one-
dimensional interspecies coupling strength (6.6) depends not only on the three-dimensional
s-wave scattering length, but also on the transversal trap frequencies of cesium and rubid-
ium, respectively. In the same section, we specified within the equilibrium phase diagram,
which is spanned by the intraspecies coupling strength gB and interspecies coupling strength
gIB, the regions where the impurity is localized at the BEC center or expelled to the con-
densate border according to Fig. 6.2. Afterwards in Sec. 6.2, we showed that the impurity
imprint upon the BEC strongly depends upon whether the impurity-BEC coupling strength
is attractive or repulsive as depicted in Fig. 6.3. At first, we demonstrated for the equilib-
rium properties of the hybrid system that the impurity fragmented the BEC at the center of
the trap by using the numerical simulation of the underlying two coupled 1DDEs (6.10) and
(6.11). For an increasing attractive/repulsive Rb-Cs interaction strength it turned out that
the impurity imprint bump/dip increases quadratically for repulsive interspecies interaction
strength and reaches its marginally saturated value beyond a critical value gIBc. Beyond a
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critical value gIBc, the BEC fragmented into two parts and, if gIB is increased beyond gIBc,
the impurity imprint width increases further, although impurity imprint height/depth remain
constant as shown in Fig. 6.5. And within the mean-field regime, we calculated the effective
mass of the impurity in Fig. 6.6, which yielded a quadratic behavior for small attractive and
repulsive interspecies coupling strengths.

Afterwards, in Sec. 6.3, we discussed the dynamics of the impurity imprint upon the
condensate wave function for two quench scenarios. After having released the trap for a
fixed interspecies coupling strength, the resulting TOF expansion showed that the impurity
imprint marginally decreases for an attractive s-wave coupling but considerably decreases for
a repulsive s-wave scattering as depicted in Fig. 6.7. This result suggested that it might be
experimentally easier to observe the impurity imprint for small attractive/repulsive coupling
constant gIB. In Fig. 6.8 we also observed the decaying breathing of the impurity at the center
of the condensate for small attractive Rb-Cs coupling strength. Additionally, we found for
stronger repulsive interspecies coupling strength in Fig. 6.10 that the 87Rb atoms repel the
single 133Cs impurity from the center. In an experiment one has to take into account that
inelastic collisions lead to two- and three-body losses of the condensate atoms [220, 240].
As such inelastic collisions are enhanced for a higher BEC density, they play a vital role for
an attractive interspecies coupling, when the condensate density has a bump at the impurity
position, but are negligible in the repulsive case with the dip in the condensate wave function.
Furthermore, we investigated the emergence of white shock-waves or gray/dark bi-solitons
in Fig. 6.12 when the initial attractive or repulsive interspecies coupling strength is switched
off but the harmonic trap is still kept. Similar to the situation described in chapters 3 and 4,
we found out that the oscillation frequencies of both the white shock-waves and the soliton
coincide and attribute it to be an artifact of the harmonic confinement. Additionally, we
concluded that the generation of gray/dark bi-solitons is a generic phenomenon of collisions
of partially/fully fragmented BEC, respectively, and that the partially/fully fragmented BEC
is strongly depending upon the equilibrium values of the impurity wave function height and
width.

All these results can be used to describe ultra-cold atoms at low dimensions, which have
applications in atomic chips, in nonlinear optics, and in quantum communication. On the
other hand, also some fundamental questions of quantum mechanics can be addressed with
remarkable precision. For instance, by implementing a single impurity atom within a BEC
one can study to which extent a single impurity can act as a local, nondestructive probe for a
strongly correlated quantum many-body state.
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Appendix A

Split-step algorithm
To show the validity of our proposed theoretical models, we numerically solve GPE with
the help of the split operator technique [192, 193, 241]. We first discuss the case of the
dimensionless time-dependent Schrödinger wave equation, for the time being in one spatial
dimension

i
∂

∂ t
ψ(z, t) = Ĥψ(z, t) . (A.1)

Here, the Hamiltonian Ĥ = P̂+V̂ , decomposes into the kinetic energy term P̂ =−1
2

∂ 2

∂ z2 and
the potential energy term V̂ (z). With this the time evolution of the wave function within a
time step from t to t +h can be written as

ψ(z, t +h) = e−ihĤ/h̄
ψ(z, t) . (A.2)

However, the operators P̂ and V̂ do not commute, so we conclude exp
[
−ih

(
P̂+V̂

)]
̸=

exp
[
−ihP̂

]
exp
[
−ihV̂

]
. To avoid this, we use the split-step method which is based on the

idea to approximate the exponential of the sum of noncommuting operators Â and B̂ accord-
ing to

eτ(Â+B̂) ≃ eτβnB̂eταnÂ · · ·eτβ1B̂eτα1Â (A.3)

with the conditions ∑
n
i=1 αi =∑

n
i=1 βi = 1. In above equation, by matching left-hand side with

right-hand side of the equation for a certain order in τ , we obtain multivariate polynomial
equations determining αn and βn. The simplest nontrivial split-operator method found in this
way is the original split operator algorithm, which yields an accuracy of third order [242].
The general operator-algebra argument does not distinguish between the operators Â and B̂,
but the choices for the nonzero coefficients α1 = α2 = 1/2, β1 = 1, β2 = 0 and β1 = β2 =

1/2,α2 = 1,α1 = 0 do both [192]. With this we can write the split-step representation as

exp
{
−ih

[
−1

2
∂ 2

∂ z2 +V̂ (x)
]}

≃ exp
{

ih
(

1
4

∂ 2

∂ z2

)}
exp
{
−ihV̂ (z)

}
×exp

{
ih
(

1
4

∂ 2

∂ z2

)}
+O

(
h3) . (A.4)
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In order to implement the resulting discrete time evolution of the wave function, according to
(A.4) it is useful to implement a fast Fourier transformation with Matlab for the propagation
steps involving T̂ =−1

4
∂ 2

∂ z2 . This algorithm preserves the normalization of the wave function.
By reforming the same steps also for the Gross–Pitaevskii equation (GPE), the split-

operator method yields for the condensate wave function

ψ(z, t +h)≃ exp
{

ih
(

1
4

∂ 2

∂ z2

)}
exp
{
−ih

(
V̂ (z)+G1D

B ∥ ψ(z, t) ∥2
)}

×exp
{

ih
(

1
4

∂ 2

∂ z2

)}
ψ(z, t)+O

(
h3) . (A.5)

Here, G1D
B defines the two-particle interaction strength. This represents an approximated nu-

merical method but it has quite promising results. The middle part of this equation involving
D̂ = V̂ (z)+G1D

B ∥ ψ(z, t) ∥2 can be computed directly using the condensate wave function
at time t, but to compute the exponential involving T̂ = −1

4
∂ 2

∂ z2 , we use again the Fourier
transformation according to

ψ(z, t +h)≃ F−1
[

e−ih k2
4 F
[

e−ihD̂F−1
{

e−ih k2
4 F [ψ(z, t)]

}]]
. (A.6)

Note that the split-operator algorithms for the GPE work the same way in more than one
spatial dimension.
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Appendix B

Quantum and thermal fluctuations

B.1 Quantum fluctuations

In this appendix, we investigate how quantum and thermal fluctuations affect ground-state
occupancy according to the Thomas-Fermi-Bogoliubov theory [171]. These calculations
allow to estimate the validity range of a Gross-Pitaevskii mean-field description for a Bose-
Einstein condensate.

B.1.1 Three dimensions

By using the Thomas-Fermi-Bogoliubov theory, we obtain for the quantum depletion of a
three-dimensional BEC [171]

n3D
0B (r) = n3D

B (r)− 8
3
√

π

[
NBaBn3D

B (r)
]3/2

. (B.1)

Here the density n3D
0B (r) =∥ ψ(r) ∥2 is determined by the three-dimensional Gross-Piteavskii

equation (2.90)

µ
3D

ψ(r, t) =
{
− h̄2

2mB

∂ 2

∂r2 +
mBω2

z
2

z2 +
mBω2

r
2

(
x2 + y2)+G3D

B ∥ ψ(r, t) ∥2
}

ψ(r, t).

(B.2)

By using the Thomas-Fermi approximation, the BEC density profile is given by

n3D (r) =
µ3D

G3D
B

{
1− z2

R2
z
−
(
x2 + y2)

R2
r

}
. (B.3)
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Here, R2
z = 2µ3D/mBω2

z and R2
r = 2µ3D/mBω2

r denote the Thomas-Fermi radius along the
z-axis and along the radial axis, respectively. So the three-dimensional quantum depletion
follows from integrating the three-dimensional quantum fluctuation term n3D

QF (r) = n3D
B (r)−

n3D
0B (r) according to

N3D
QF =

∫
n3D

QF (r)dr =
8

3
√

π
(NBaB)

3/2
∫ {

n3D
B (r)

}3/2
dr (B.4)

=
8

3
√

π

(
µ3D

G3D
B

NBaB

)3/2 ∫ Rz

−Rz

∫ Rr

√
1− z2

R2
z

0

∫ 2π

0
r
{

1− z2

R2
z
− r2

R2
r

}3/2

dφdr

=
8

3
√

π

(
µ3D

G3D
B

NBaB

)3/2

2π

(
1

16
πR2

r Rz

)
=

R2
r Rz

3

(
µ3D

G3D
B

NBπaB

)3/2

.

By using the normalization constant
∫

n3D
B (r)dr = 1, we determine the three-dimensional

chemical potential as

µ
3D =

(
15
π

)2/5 (G3D
B
)2/5

(mB)
3/5

ω
4/5
r ω

2/5
z

29/5 . (B.5)

Defining the oscillator lengths lr =
√

h̄/(mBωr) and lz =
√

h̄/(mBωz) in radial and axial
direction, receptively, we obtain for the relative three-dimensional quantum depletion

N3D
QF

NB
=

56/531/5

29/2

(
a6

BNB

l4
r l2

z

)1/5

. (B.6)

B.1.2 Quasi one dimension

Now we assume an effective one-dimensional setting with ωz ≪ ωr, so we decompose the
BEC wave-function ψB(r, t) = ψB(z, t)φB( r⊥, t), where φB( r⊥, t) is defined in Eq. (2.111).
We integrate out the transversal dimensions of equation (B.1) to get the depleted density in
quasi one-dimension:

n1D
0B (z) = n1D

B (z)− 16
9πlr

[
NBaBn1D

B (z)
]3/2

. (B.7)

We know that n1D
B (z) = µ1D (1− z2/R2

z
)
/G1D

B with R2
z = 2µ1D/mBω2

z represents the one-
dimensional Thomas-Fermi density with the one-dimensional two-particle interaction strength
G1D

B in (2.114). The one-dimensional quantum fluctuations depleted number of atoms can
be calculated as
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N1D
QF =

∫
n1D

QF (z)dz =
16

9πlr
(NBaB)

3/2
∫ [

n1D
B (z)

]3/2
dz, (B.8)

=
16

9πlr

(
µ1D

G1D
B

NBaB

)3/2 3πRz

8
=

2Rz

3lr

(
µ1D

G1D
B

NBaB

)3/2

.

By using the normalization constant
∫

n1D
B (r)dr = 1, we determine the one-dimensional

chemical potential as

µ
1D =

1
2

(
3
2

G1D
B mBωz

)2/3

. (B.9)

With this we obtain for the one-dimensional quantum relative depletion as

N1D
QF

NB
=

31/3

4

(
a4

BNB

l2
r l2

z

)1/3

. (B.10)

B.2 Thermal fluctuations

By using the Thomas-Fermi-Bogoliubov theory, we write the leading three-dimensional ther-
mal depleted density as [171]

n3D
TF (r) =

mB (kBT )2

12h̄3c(r)
(B.11)

with the local sound velocity c(r) =
√

G3D
B n3D (r)/mB. By inserting the three-dimensional

density Eq. (B.3), we get

n3D
TF (r) =

m3/2
B (kBT )2

12h̄3

√
µ3D

{
1− z2

R2
z
− (x2+y2)

R2
r

} . (B.12)

Integrating out the two transversal dimensions, the one-dimensional thermal depletion reads

n1D
TF (z) =

m3/2
B π (kBT )2

6h̄3
√

µ3D
R2

r

√
1− z2

R2
z
. (B.13)

With this we count the number of thermally excited atoms to be
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N1D
TF =

∫
n1D

TF (z)dz =
m3/2

B π (kBT )2

6h̄3
√

µ3D
R2

r

∫ Rz

−Rz

√
1− z2

R2
z

dz, (B.14)

=
m3/2

B π (kBT )2

6h̄3
√

µ3D
R2

r

(
πRz

2

)
=

m3/2
B π2 (kBT )2

12h̄3
√

µ3D
R2

r Rz.

By using the two-body contact interaction strength G3D
B = NB4π h̄2aB/mB and the three-

dimensional chemical potential (B.5), the one-dimensional thermal depletion reads

N1D
TF =

52/5π2

23/2 ×33/5

(kBT )2 m1/5
B (NBaB)

2/5

h̄11/5

(
1

ω2
r ωz

)3/5

. (B.15)

By assuming relation (2.76), we define the three-dimensional critical temperature as Tc =

h̄
[(

ω2
r ωzNB

)
/ξ (3)

]1/3
/kB. Thus, the one-dimensional relative thermal depletion is ac-

cording to Thomas-Fermi-Bogoliubov theory of the form

N1D
TF

NB
= η

(
T
Tc

)2

, (B.16)

with the dimensionless prefactor

γ =
52/5π2

23/2 ×33/5

{
N1/3

B

ξ (3)8/3
a2

B

l4/3
r l2/3

z

}1/5

. (B.17)
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