Ginzburg-Landau Theory for Bosonic Gases in Optical Lattices

F. E. A. dos Santos

Freie Universität Berlin
Fachbereich Physik

PhD Exam - Berlin, November 7, 2011
Outline

1. **Bosons in Optical Lattices**
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. **Ginzburg-Landau Theory**
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. **Results**
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Outline

1. **Bosons in Optical Lattices**
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. **Ginzburg-Landau Theory**
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. **Results**
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Optical Lattices

Counter-propagating laser beams create periodic potential
Optical Lattices

- Counter-propagating laser beams create periodic potential
- Hopping and interactions are highly controllable

\[a = \lambda/2 \]
\[V_0 = \text{Re} [\alpha(\omega)] I/2 \]
- Counter-propagating laser beams create periodic potential
- Hopping and interactions are highly controllable
- Different possible topologies at 1D, 2D, and 3D
Counter-propagating laser beams create periodic potential
Hopping and interactions are highly controllable
Different possible topologies at 1D, 2D, and 3D
Model for condensate matter systems
Outline

1. Bosons in Optical Lattices
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. Ginzburg-Landau Theory
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. Results
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Bose-Hubbard Model

- Bose-Hubbard Hamiltonian

\[\hat{H}_{\text{BH}} = \hat{H}_0 + \hat{H}_J \]

\[\hat{H}_0 = \sum_i \frac{U}{2} (\hat{n}_i^2 - \hat{n}_i) - \mu \hat{n}_i \]

\[\hat{H}_J = - \sum_{ij} J_{ij} \hat{a}_i^\dagger \hat{a}_j \]

\[\hat{n}_i = \hat{a}_i^\dagger \hat{a}_i \]

\[J_{ij} = \begin{cases} J , & \text{if } i, j \text{ nearest neighbors} \\ 0 , & \text{otherwise.} \end{cases} \]
Bose-Hubbard Model

Bose-Hubbard Hamiltonian

\[\hat{H}_{BH} = \hat{H}_0 + \hat{H}_J \]

\[\hat{H}_0 = \sum_i \frac{U}{2}(\hat{n}_i^2 - \hat{n}_i) - \mu \hat{n}_i \]

\[\hat{H}_J = -\sum_{ij} J_{ij} \hat{a}_i^\dagger \hat{a}_j \]

\[\hat{n}_i = \hat{a}_i^\dagger \hat{a}_i \]

\[J_{ij} = \begin{cases} J, & \text{if } i, j \text{ nearest neighbors} \\ 0, & \text{otherwise.} \end{cases} \]

\[\hat{H}_0 \left| n \right\rangle = N_S E_n \left| n \right\rangle \]

\[E_n = \frac{U}{2} n(n-1) - \mu n \]

\[\hat{H}_0 \text{ is diagonal} \]

Expansion in series of \(J \)
Outline

1. Bosons in Optical Lattices
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. Ginzburg-Landau Theory
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. Results
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Superfluid-Mott Insulator Transition

- Increasing the laser intensity localizes atoms
Superfluid-Mott Insulator Transition

- Increasing the laser intensity localizes atoms
- Detectable in time-of-flight pictures
Superfluid-Mott Insulator Transition

- Increasing the laser intensity localizes atoms
- Detectable in time-of-flight pictures
- Inaccurate analytical methods prior to this work
Outline

1. Bosons in Optical Lattices
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. Ginzburg-Landau Theory
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. Results
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Generating Functionals

Symmetry breaking source:

\[\hat{H}_{BH}(\tau) = \hat{H}_{BH} + \sum_i \left[j_i^*(\tau)\hat{a}_i + j_i(\tau)\hat{a}^\dagger_i \right] \]
Generating Functionals

- Symmetry breaking source:
 \[\hat{H}_{BH}(\tau) = \hat{H}_{BH} + \sum_i \left[j_i^*(\tau) \hat{a}_i + j_i(\tau) \hat{a}_i^\dagger \right] \]

- Evolution operator: \[\hat{U}(\tau, \tau_0) = \hat{T} e^{-\int_{\tau_0}^{\tau} d\tau' \hat{H}_{BH}(\tau')} \]
Symmetry breaking source:

\[\hat{H}_{BH}(\tau) = \hat{H}_{BH} + \sum_i \left[j_i^*(\tau) \hat{a}_i + j_i(\tau) \hat{a}_i^\dagger \right] \]

Evolution operator: \(\hat{U}(\tau, \tau_0) = \hat{T} e^{-\int_{\tau_0}^{\tau} d\tau' \hat{H}_{BH}(\tau')} \)

Generalized partition function: \(Z = \text{Tr} \left[\hat{U}(0, \beta) \right] \)
Generating Functionals

- Symmetry breaking source:
 \[\hat{H}_{\text{BH}}(\tau) = \hat{H}_{\text{BH}} + \sum_i [j_i^*(\tau)\hat{a}_i + j_i(\tau)\hat{a}^+_i] \]

- Evolution operator: \[\hat{U}(\tau, \tau_0) = \hat{T} e^{-\int_{\tau_0}^{\tau} d\tau' \hat{H}_{\text{BH}}(\tau')} \]

- Generalized partition function: \[Z = \text{Tr} \left[\hat{U}(0, \beta) \right] \]

- Generator of connected functions:
 \[W [j_i^*(\tau), j_i(\tau)] = \log Z = -\beta F [j_i^*(\tau), j_i(\tau)] \]
Generating Functionals

- Symmetry breaking source:
 \[\hat{H}_{BH}(\tau) = \hat{H}_{BH} + \sum_i \left[j_i^*(\tau)\hat{a}_i + j_i(\tau)\hat{a}_i^\dagger \right] \]

- Evolution operator:
 \[\hat{U}(\tau, \tau_0) = \hat{T} e^{-\int_{\tau_0}^{\tau} d\tau' \hat{H}_{BH}(\tau)} \]

- Generalized partition function:
 \[Z = \text{Tr} \left[\hat{U}(0, \beta) \right] \]

- Generator of connected functions:
 \[\mathcal{W}[j_i^*(\tau), j_i(\tau)] = \log Z = -\beta F[j_i^*(\tau), j_i(\tau)] \]

- Order parameter field:
 \[\psi_i(\tau) = \beta \frac{\delta F}{\delta j_i^*(\tau)} \]
Symmetry breaking source:

\[\hat{H}_{BH}(\tau) = \hat{H}_{BH} + \sum_i \left[j_i^*(\tau) \hat{a}_i + j_i(\tau) \hat{a}_i^\dagger \right] \]

Evolution operator:
\[\hat{U}(\tau, \tau_0) = \hat{T} e^{-\int_{\tau_0}^{\tau} d\tau' \hat{H}_{BH}(\tau')} \]

Generalized partition function:
\[Z = \text{Tr} \left[\hat{U}(0, \beta) \right] \]

Generator of connected functions:
\[W[j_i^*(\tau), j_i(\tau)] = \log Z = -\beta F[j_i^*(\tau), j_i(\tau)] \]

Order parameter field:
\[\psi_i(\tau) = \beta \frac{\delta F}{\delta j_i^*(\tau)} \]

Effective action:
\[\Gamma[\psi_i^*(\tau), \psi_i(\tau)] = F - \frac{1}{\beta} \sum_i \int_0^\infty d\tau [\psi_i^*(\tau) j_i(\tau) + \psi_i(\tau) j_i^*(\tau)] \]
Symmetry breaking source:

\[\hat{H}_{BH}(\tau) = \hat{H}_{BH} + \sum_i \left[j_i^*(\tau) \hat{a}_i + j_i(\tau) \hat{a}_i^\dagger \right] \]

Evolution operator:

\[\hat{U}(\tau, \tau_0) = \hat{T} e^{-\int_{\tau_0}^{\tau} d\tau' \hat{H}_{BH}(\tau')} \]

Generalized partition function:

\[Z = \text{Tr} \left[\hat{U}(0, \beta) \right] \]

Generator of connected functions:

\[W[j_i^*(\tau), j_i(\tau)] = \log Z = -\beta F[j_i^*(\tau), j_i(\tau)] \]

Order parameter field:

\[\psi_i(\tau) = \beta \frac{\delta F}{\delta j_i^*(\tau)} \]

Effective action:

\[\Gamma[\psi_i^*(\tau), \psi_i(\tau)] = F - \frac{1}{\beta} \sum_i \int_0^\infty d\tau [\psi_i^*(\tau) j_i(\tau) + \psi_i(\tau) j_i^*(\tau)] \]

Equation of motion:

\[\frac{\delta \Gamma}{\delta \psi_i(\tau)} = 0 \]
Outline

1. **Bosons in Optical Lattices**
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. **Ginzburg-Landau Theory**
 - Generating Functionals
 - **Diagrammatic Expansion**
 - Diagrammatic Rules

3. **Results**
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Diagrammatic Expansion

- General formula: \[Z \langle j^*, j \rangle = e^{\sum_{ii'} J_{ii'} \int_0^\beta d\tau \frac{\delta}{\delta j_i^*(\tau) \delta j_{ii'}(\tau)} Z_0 \langle j^*, j \rangle} \]
Diagmmatic Expansion

- General formula: \(Z[j^*, j] = e^{\sum_{ii'} J_{ii'} \int_0^\beta d\tau \frac{\delta}{\delta j_i^*(\tau) \delta j_{i'}^{\prime}(\tau)} Z_0[j^*, j]} \)

- Diagrammatic representation:

\[W_0[j^*, j] = \bullet + \quad + \quad + \quad + \cdots \]
Diagrammatic Expansion

- General formula: \(Z [j^*, j] = e^{\sum_{ii'} J_{ii'} \int_0^\beta d\tau \frac{\delta}{\delta j^*_i(\tau)} \frac{\delta}{\delta j_{i'}(\tau)} Z_0 [j^*, j]} \)

- Diagrammatic representation:

\[
W_0 [j^*, j] = \mathcal{O} + \frac{1}{2!^2} \times \times + \frac{1}{3!^2} \times \times + \cdots
\]

- Perturbative expansion:

\[
W [j^*, j] = \mathcal{O} + \frac{1}{2!^2} \times \times + \frac{1}{3!^2} \times \times + \cdots
\]
Diagrammatic Expansion

- General formula: \(Z [j^*, j] = e^{\sum_{ii'} J_{ii'} \int_0^\beta d\tau \frac{\delta}{\delta j_{ii'}^{*}(\tau)} \frac{\delta}{\delta f_{ii'}^{*}(\tau)} Z_0 [j^*, j]} \)
- Diagrammatic representation:

\[
W_0 [j^*, j] = \bullet + \frac{1}{2!} + \frac{1}{3!} + \cdots
\]

- Perturbative expansion:

\[
W [j^*, j] = \bullet + \frac{1}{2!} + \frac{1}{2!} + \cdots
\]

- Effective action has only 1PI diagrams

\[
- \beta \Gamma [\psi^*, \psi] = \Gamma^{(0)} + \frac{1}{2!} + \cdots
\]
Outline

1. Bosons in Optical Lattices
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. Ginzburg-Landau Theory
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. Results
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves

F. E. A. dos Santos

GL Theory for Bosonic Gases in Optical Lattices
Diagrammatic Rules

- Vertices represent connected functions $W^{(n)}(\tau', \tau)$
Diagrammatic Rules

- Vertices represent connected functions $W^{(n)}(\tau', \tau)$
- Each vertex means a sum over all lattice sites
Diagrammatic Rules

- Vertices represent connected functions $W^{(n)}(\tau', \tau)$
- Each vertex means a sum over all lattice sites
- Internal lines multiply by the hopping matrix

$V_n(\tau')$ multiplies by the hopping matrix

Each line means an integral from 0 to β

Symmetry factor is number of ways of joining vertices and lines
Diagrammatic Rules

- Vertices represent connected functions $W^{(n)}(\tau', \tau)$
- Each vertex means a sum over all lattice sites
- Internal lines multiply by the hopping matrix
- External lines inward (outward) lines multiply $j^*(j)$
Diagrammatic Rules

- Vertices represent connected functions $W^{(n)}(\tau', \tau)$
- Each vertex means a sum over all lattice sites
- Internal lines multiply by the hopping matrix
- External lines inward (outward) lines multiply $j^*(j)$
- Each line means an integral from 0 to β
Diagrammatic Rules

- Vertices represent connected functions $W^{(n)}(\tau', \tau)$
- Each vertex means a sum over all lattice sites
- Internal lines multiplies by the hopping matrix
- External lines inward(outward) lines multiplies $j^*(j)$
- Each line means an integral from 0 to β
- Symmetry factor is number of ways of joining vertices and lines
Outline

1. Bosons in Optical Lattices
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. Ginzburg-Landau Theory
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. Results
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Quantum Phase Diagram

- System enters the MI phase when ψ_{eq} vanishes
System enters the MI phase when ψ_{eq} vanishes
Phase diagram at second hopping order

F.E.A. Santos, and A. Pelster PRA 79:013614, 2009
Quantum Phase Diagram

- System enters the MI phase when ψ_{eq} vanishes
- Phase diagram at second hopping order
- Error smaller than 3% in 3D

F.E.A. Santos, and A. Pelster PRA 79:013614, 2009
Quantum Phase Diagram

- System enters the MI phase when ψ_{eq} vanishes
- Phase diagram at second hopping order
- Error smaller than 3% in 3D
- Fast convergence: N. Teichmann et. al. PRB 79: 195131

![Graphs showing Quantum Phase Diagram for d=2 and d=3](image)

F.E.A. Santos, and A. Pelster PRA 79:013614, 2009
Outline

1. Bosons in Optical Lattices
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. Ginzburg-Landau Theory
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. Results
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Excitation Spectra

- MI phase:
 Particle and hole excitations
Excitation Spectra

- **MI phase:**
 Particle and hole excitations

- **SF phase:**
 Density and phase excitations

Bosons in Optical Lattices

Ginzburg-Landau Theory

Results

Summary and Outlook

Quantum phase diagram

Excitation spectra

Collapse and revival of matter waves
Excitation Spectra

- MI phase: Particle and hole excitations
- SF phase: Density and phase excitations
- Different universality class at the tip
Excitation Spectra

- MI phase: Particle and hole excitations
- SF phase: Density and phase excitations
- Different universality class at the tip

B. Bradlyn, F.E.A. Santos, and A. Pelster PRA 79:013615, 2009
T.D. Grass, F.E.A. Santos, and A. Pelster PRA 84:013613, 2011
Outline

1. Bosons in Optical Lattices
 - Optical Lattices
 - Bose-Hubbard Model
 - Superfluid-Mott Insulator Transition

2. Ginzburg-Landau Theory
 - Generating Functionals
 - Diagrammatic Expansion
 - Diagrammatic Rules

3. Results
 - Quantum Phase Diagram
 - Excitation Spectra
 - Collapse and Revival of Matter Waves
Sample of $2 \times 10^5 \ ^{87}$Rb atoms:

Periodic potential depth suddenly changed from $8E_R$ to $22E_R$
Collapse and Revival of Matter Waves

- Sample of $2 \times 10^5 \ ^{87}\text{Rb}$ atoms:
- Periodic potential depth suddenly changed from $8 E_R$ to $22 E_R$
- Inhomogeneous chemical potential: $\mu \rightarrow \mu - \frac{m}{2} \omega^2 r_i$
- Wick rotation $\tau \rightarrow it$

F.E.A. dos Santos, and A. Pelster in preparation 84:013613, 2011
A Ginzburg-Landau theory was developed for bosons in optical lattices.

Analytical calculations are performed using diagrammatic methods.

High accuracy to equilibrium and out-of-equilibrium systems.

Outlook:
- Different geometries
- Bose-Fermi mixtures
- Optical QED lattices