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Introduction

A fundamental very difficult problem, which the renormalization group al-

lowed solving at the beginning of the 1970th, was the determination of

the long distance behaviour and the singularities of correlation functions in

systems with short range interactions, at a continuous phase transition.

The early standard approach was based on mean field theory (MFT).

MFT predicts that the large distance physics has some very universal prop-

erties, that is, properties independent of the specific form of the microscopic

interactions, symmetries and dimension of space. However, MFT, while it

gives a qualitative description of phase transitions, is inaccurate because it

relies on the wrong assumption of scale decoupling.

In the first part, we consider phase transitions corresponds to a breaking

of a Z2 reflection symmetry (the Ising model universality class).

Moreover, we consider only models invariant under space translations and

with rotation or hypercubic symmetry.



Fig. 1 Decimation: initial (blue) lattice with lattice size a and (red) lattice with

size 2a.

Decimation and Landau–Ginzburg–Wilson Hamiltonian

To understand why MFT is incorrect and to investigate whether some uni-

versality nevertheless survives, Kadanoff has proposed a form of renormal-

ization group (RG) based on a decimation idea, which consists in integrating

step by step the shortest distance degrees of freedom.



Wilson realized that, even if the initial model is defined in terms of a

space lattice and the order parameter takes discrete values (like in the Ising

model), after many iterations one can replace the initial model by an effec-

tive model in continuum space with, as order parameter, a field φ(x) that

takes continuous values. The partition function is then given by the field

integral

Z =

∫

[dφ(x)] exp [−H(φ)] , (1)

where the Landau–Ginzburg–Wilson (LGW) Hamiltonian is a linear com-

bination of an infinite number of local monomials in φ (as a consequence of

short range interactions), that is, products of powers of the field φ(x) and

its derivatives at the same point x, for example,

φ2(x), φ(x) (∇x)
2n

φ(x), φ4(x), . . . .



We write the sum symbolically as

H(φ) =

∫

ddx
∑

α

Hα(φ, x),

where Hα(φ, x) is a local monomial. The coefficients multiplying the mono-

mials are regular functions of the thermodynamic parameters like the tem-

perature because only non-critical modes have been eliminated, and are

assumed to be generically of order 1.

One coefficient has to be adjusted for the model to be critical, that is,

for the correlation length to diverge. For reasons that will become clearer

later, one chooses in general the coefficient of φ2(x), which thus plays the

role of the temperature near Tc.

Finally, and this is a consequence of non-decoupling of scales, a momen-

tum cut-off, providing an artificial short distance structure, is required to

ensure that all local monomials have a finite expectation value.



From the viewpoint of the field integral (1) such a cut-off has the effect that

only smooth (infinitely differentiable) fields contribute.

Renormalization group arguments are then needed to prove that replacing

the initial short distance structure by a simpler artificial structure does not

affect the large scale universal properties.



Space rescaling and renormalization group

The next step is to rescale distances, taking the large physical scale as

a reference rather than the microscopic scale. Thus we introduce a large

momentum Λ or a microscopic length 1/Λ scale and set

x = Λx′.

In the Hamiltonian, the contribution of a monomial
∫

ddxHα(φ, x) with 2k

derivatives is then multiplied by Λd−2k.

Kadanoff’s decimation idea then suggests integrating, in Fourier space,

over field Fourier modes corresponding approximately to a shell [Λ,Λ+dΛ].

The partial integration over high momentum modes yields Wegner–Wilson’s

type Renormalization Group (RG) equations, functional flow equations for

the effective Hamiltonian.



They have the general form

Λ
d

dΛ
H(φ,Λ) = 1

2

∫

ddk

(2π)d
D̃Λ(k)

[

δ2H
δφ̃(k)δφ̃(−k)

− δH
δφ̃(k)

δH
δφ̃(−k)

]

+

∫

ddk

(2π)d

(

D̃Λ(k)/∆̃Λ(k)
) δH
δφ̃(k)

φ̃(k). (2)

The function D̃Λ(k) has a support concentrated around |k| = Λ, implement-

ing the notion of momentum shell integration.

Together, with this partial integration it is necessary to renormalize the

field (cf., the factor
√
n in the central limit theorem of probabilities) to

ensure that correlation functions remain finite. One thus sets

φ(x) =
√

Z(Λ)φ′(x).

Thus, a monomial with 2n fields and 2k derivatives is multiplied by
∫

ddxHα(φ, x) 7→ Zn(Λ)Λd−2k

∫

ddxHα(φ, x). (3)



Gaussian fixed point and perturbation theory

We consider the quadratic Hamiltonian (for d > 2)

H(φ) = 1
2

∫

ddx (∇xφ(x))
2
.

It is critical, because the two-point correlation function decreases alge-

braically like 〈φ(x)φ(y)〉 ∝ |x − y|2−d, and reproduces the result of mean

field theory (MFT) at criticality.

It corresponds to an RG fixed point, the Gaussian fixed point, because a

partial integration in a Gaussian integral reproduces a Gaussian integral.

The correlation function 〈φ(x)φ(y)〉 ∝ |x− y|2−d is finite after the renor-

malization (3) if

Z(Λ)Λd−2 = 1 ⇒ Z(Λ) = Λ2−d.

The field renormalization amounts to give to the field, which initially was

dimensionless, a momentum dimension 1
2 (d− 2).



With this choice, adapted to discuss perturbations of the Gaussian fixed

point, a monomial with 2n fields and 2k derivatives is multiplied by

∫

ddxHα(φ, x) 7→ Λδn,k

∫

ddxHα(φ, x) with δn,k = d− 2k−n(d− 2). (4)

Critical domain and mean field theory

To be able to describe physics in the critical domain, in the neighbourhood

of the critical temperature Tc, above Tc when the correlation is large but

not infinite or below Tc in the several phase region, it is necessary to perturb

the quadratic critical Hamiltonian adding local terms like
∫

ddxφ2(x) and
∫

ddxφ4(x).

The fundamental assumption justifying MFT is that these unavoidable

perturbations can indeed be considered as small perturbations.



Stability of the Gaussian fixed point

The stability of the Gaussian fixed point with respect to local perturbations

reduces to the study of the behaviour of the renormalized monomials as

given by equation (4) when Λ → ∞.

The largest values of

δn,k = d− 2k − n(d− 2), (5)

correspond to the largest perturbations.

For d > 2 (otherwise the Gaussian fixed point does not exist), the largest

values of the dimension of δn,k correspond to the smallest values of n and

k. We now classify local monomials ordering them according the values of

δn,k.



Quadratic perturbations. In d dimensions, the coefficient of the monomial

1
2

∫

ddxφ(x)(∇x)
2kφ(x)

is Λd−(d−2)−2k = Λ2−2k. The term φ2(x) (k = 0) corresponds to a direc-

tion of instability. It is called a relevant operator. When it is the only

perturbation, its coefficient, which we denote here by r, has to be positive

and it induces a finite correlation length ξ proportional to 1/Λ
√
r. The

condition ξ ≫ 1/Λ then implies a fine-tuning r ≪ 1, that is, in the initial

parametrization the temperature has to be sufficiently close to Tc.

The term with k = 1 generates a small renormalization of the field and

has no physical effect. It is called redundant.

All terms with k > 1 correspond to directions of stability and are called

irrelevant.



The φ4 operator and the role of dimension four. The next most important

monomial is ∫

ddxφ4(x).

It is multiplied by Λ4−d and the stability depends on the dimension of space.

For d > 4, the monomial is irrelevant and since increasing the power of

the field or the number of derivatives makes the power δn,k (equation(5))

even more negative, no other monomial can be relevant. Therefore, on the

critical surface (T = Tc) the Gaussian fixed point is stable. At leading order

in the large distance limit, MFT is correct.

For d = 4, the coefficient is Λ-independent and the operator is called

marginal. The stability of the Gaussian fixed point cannot be determined

by this leading order analysis. Higher order perturbative calculations are

required to determine whether φ4 is marginally stable or unstable.

All other operators are irrelevant.



For d < 4, the φ4 perturbation is relevant and the Gaussian fixed point is

unstable. This is reflected by the property that a perturbative expansion in

the coefficient of φ4 at criticality does not exist. Universality then depends

on the possible existence of another fixed point.

The φ6 operator. The φ6 is multiplied by Λ6−3d. If the contribution of φ4

is tuned to zero (this corresponds to a multicritical point), then the operator

is irrelevant for d > 3 and marginal to d = 3. However, note that if the

contribution of φ4 is generic the question of the dimension of the operator

φ6 becomes non-perturbative.

The dimension d = 2 is special and requires a specific analysis. The

Gaussian fixed point does not exist and its stability is no longer an issue.

An infinite number of other multicritical fixed points are found for models

with an Ising-like Z2 symmetry.

Moreover, Mermin–Wagner–Coleman’s theorem forbids spontaneous sym-

metry breaking of continuous symmetries in two dimensions.



Dimensional continuation and φ4 field theory

There exists methods to define Feynman diagrams (and thus a field theory

but only in a perturbative sense) for generic real or complex values of the

dimension d. Integrals for generic d can be manipulated to a large extent

like integrals in integer dimensions. One method to define dimensional

continuation is to express the propagator (the Gaussian two-point function),

in the Fourier representation, as a Laplace transform. An example is

∆̃(p) =

∫

∞

1/Λ2

dt e−t(p2+m2) =
e−(p2+m2)/Λ2

p2 +m2
, (6)

where Λ is the cut-off.

The introduction of this representation in Feynman diagrams reduces

all momentum integrations to Gaussian integrations that can be explicitly

performed. The dependence in the dimension d is then explicit and can be

continued to generic real or complex values.



Fig. 2 One-loop contribution to the four-point function.

For example, the Feynman diagram of Fig. 2 in dimension d < 4 is given by

Bd(p) =
1

(2π)d

∫

ddq ∆̃(q)∆̃(p−q) ∼
m=0,

Λ→∞

− 23−2dπ(3−d)/2

sin( 12πd)Γ
(

1
2 (d− 1)

) |p|d−4. (7)

Dimensional regularization. For d small enough (possibly negative), all

integrals have a finite Λ → ∞ limit. The outcome is called dimensional

regularization.

Dimensional regularization provides a very effective framework for lead-

ing order calculation of universal quantities, based on the introduction of

renormalized correlation functions.



The φ4 effective field theory

After dimensional continuation, one can explore the neighbourhood of the

Gaussian fixed point for dimensions d = 4 − ε with ε > 0 small. It is then

expected that, on the critical surface, φ4 is still the only relevant perturba-

tion. Therefore, one expects to be able to determine critical properties near

d = 4, at leading order, from the study of the simple effective Hamiltonian

H(φ) =

∫

ddx

{

1
2 [∇xφ(x)]

2
+ 1

2Λ
2rc(g)φ

2(x) +
gΛ4−d

4!

[

φ2(x)
]2
}

, (8)

where the coefficient rc(g) is determined by the criticality condition, for

example, the divergence of the correlation length.

Due to scale non-decoupling, it is necessary to introduce an explicit large-

momentum cut-off (a procedure called regularization). Here, to define per-

turbation theory we need only to restrict the field integration to continuous

fields. This can be achieved by adding quadratic irrelevant terms,

[∇xφ(x)]
2 7→ ∇xφ(x)

(

1− α1∇2
x/Λ

2 + α2(∇2
x)

2/Λ4
)

∇xφ(x), α1, α2 > 0 .



However, for d < 4 fixed, the perturbative expansion of the critical theory

is still not defined as the factor Λ4−d already suggests, but due to zero

momentum divergences, another indication that the Gaussian fixed point is

unstable.

For example, the contributions to the two-point function proportional to
∫

ddq

(p− q)2
Bn

d (q) ∝
∫

ddq

(p− q)2qn(4−d)
∀n ,

where Bd is the diagram (7), diverge at q = 0 for n > d/(4− d).

The ε-expansion. Apart from its applications in quantum field theory

as relevant to particle physics, dimensional continuation is at the basis of

Wilson–Fisher’s ε-expansion.

While the critical perturbation theory does not exist for d < 4 fixed, it

can be defined as a double series expansion in powers of the interaction

strength g and ε = 4 − d. The ε-expansion has allowed discovering a new

fixed point relevant for the large distance behaviour of correlation functions.



The N-vector model

A number of interesting phase transitions are described by the N -vector

model, an O(N) symmetric model with an N -component field φ(x). The

partition function reads

Z =

∫

[dφ(x)] exp [−H(φ)] ,

where the Hamiltonian at criticality generalizes expression (8),

H(φ) =

∫

ddx

{

1
2 [∇xφ(x)]

2 + 1
2Λ

2rc(g)φ
2(x) +

gΛ4−d

4!

[

φ2(x)
]2
}

.

The first values of N correspond to the transitions:

N = 1: liquid–vapour, binary mixtures, Ising-like magnetic systems

N = 2: Helium superfluidity

N = 3: isotropic ferromagnetic systems

and the limit N = 0 to statistical properties of long polymers.



Perturbative renormalization group

Once the effective Hamiltonian is reduced to the simple form (8), the func-

tional RG equations can be reduced, for Λ large, to partial differential

equations. Applied to critical connected correlation functions in Fourier

representation, they take the form (Zinn-Justin 1973)
(

Λ
∂

∂Λ
+ β(g)

∂

∂g
+

n

2
η(g)

)

W̃ (n)(pi; g,Λ) = 0 , (9)

where contributions that are related to other irrelevant operators (from

the viewpoint of the Gaussian fixed point) and are subleading by factors

(lnΛ)ℓ/Λ2, ℓ increasing with the order, have been neglected.

These equations can be proved using the results of renormalization theory

in quantum field theory. They are formally similar to the more standard

RG equations satisfied by renormalized correlation functions.

Fixed points correspond to zeros of the β-function. Zeros with a positive

slope are attractive while zeros with a negative slope are repulsive.



β(g)

g∗ g

Fig. 3 The RG β-function for d = 4− ε.

The RG functions β(g) and η(g) can be calculated in a double series ex-

pansion in g and ε = 4 − d. At leading non-trivial order, for the O(N)

symmetric model, one finds

β(g) = −εg +
(N + 8)g2

48π2
+O(g3, g2ε), η(g) =

N + 2

18(4π)4
g2 +O(g3, g2ε).

At order ε, β(g) has two zeros g = 0 and g = g∗ = 48π2ε/(N + 8).



The first corresponds to the Gaussian fixed point, has a slope −ε and thus

is repulsive while the second one g∗ has a positive slope +ε and thus governs

the large distance behaviour.

At the fixed point, the RG equations reduce to

(

Λ
∂

∂Λ
+

n

2
η

)

W̃ (n)(pi; g
∗,Λ) = 0 with η ≡ η(g∗) .

Combining the solution with the dimensional relation

W̃ (n)(λpi, g, λΛ) = λd−n(d+2)/2W̃ (n)(pi, g,Λ),

one obtains the scaling form

W̃ (n)(λpi, g,Λ) ∝
λ→0

λd−n(d+2−η)/2 ⇒ W̃ (2)(p,Λ) ∝
p→0

Λ−η

p2−η
.



The critical domain

The critical domain is defined by the property that the correlation length is

large but not infinite. This situation is realized by modifying the coefficient

of φ2 term in the critical Hamiltonian (8),

H(φ) =

∫

ddx

{

1
2 [∇xφ(x)]

2 + 1
2

(

Λ2rc(g) + t
)

φ2(x) +
gΛ4−d

4!

[

φ2(x)
]2
}

,

where the constant t ∝ T − Tc characterizes the deviation from the critical

temperature.

Correlation functions satisfy RG equations of the form
(

Λ
∂

∂Λ
+ β(g)

∂

∂g
+ 1

2nη(g)− η2(g)t
∂

∂t

)

W̃ (n) = 0 ,

where the new RG function η2(g) appears.

At the fixed point g = g∗, the equation reduces to (η2 ≡ η2(g
∗))

(

Λ
∂

∂Λ
+ 1

2nη − η2t
∂

∂t

)

W̃ (n) = 0 .



Using the dimensional relation

W̃ (2))(p, t,Λ) = Λ2W̃ (2)(p/Λ, t/Λ2, 1)

and applying the corresponding RG equation, one finds the scaling relations

W̃ (2))(p, t,Λ) ∝ |t|−γF (p/|t|ν)

with

ν = 1/(2 + η2), γ = ν(2− η).

Thus, the exponent ν characterizes the divergence of the correlation length

at Tc.

Conclusion. Within the framework of the ε-expansion and using the

perturbative renormalization group, one can prove scaling properties to all

orders in ε and calculate universal quantities in the form of ε-expansions.



Callan–Symanzik (CS) equations

Another scheme involves working directly in the massive field theory (the

critical domain) where the mass m = 1/ξ. Within this massive scheme,

the perturbative expansion exists in any dimension. However, at fixed di-

mension d < 4, one faces the problem that the coupling constant gΛ4−d

diverges with the cut-off. One proceeds then in two steps. First, one fixes

g0 = gΛ4−d and introduces renormalized correlation functions defined by

W (n)
r (pi,m, gr) = lim

Λ→∞

m,gr fixed

Z−n/2W (n)(pi, t,Λ, g0),

where the parameters m, gr and the field renormalization Z are determined

by the renormalization conditions

[

W̃ (2)
r (p;m, gr)

]

−1

= m2 + p2 +O(p4)

W̃ (4)
r (0, 0, 0, 0) = 1/grm

4+d .



Connected correlations functions then satisfy the CS equations

[

m
∂

∂m
+ βr(gr)

∂

∂gr
+

n

2
ηr(gr)

]

W̃ (n)
r (pi;m, gr) = m2(2−η)W̃

(n)
r,φ2(pi;m, gr),

(10)

where W
(n)
r,φ2 correspond to correlation functions with one insertion of the

operator 1
2

∫

ddxφ2(x).

In a second step, one takes the infinite g0 = gΛ4−d limit since g is fixed

and Λ → ∞. One then verifies that when g0 → ∞, gr converges toward a

zero of βr(gr) with a positive slope.

Within the ε-expansion, such a zero g∗ = O(ε) of the β-function is found

and one is back to the scenario of Fig. 3. A universal scaling behaviour is

recovered since correlation functions, up to the renormalization constant,

depend only on pi/m.

In the same way, the right hand side of equation (10) is negligible for

|pi| ≫ m (but still |pi| ≪ Λ) and the critical scaling can be proved.



However, for d < 4 fixed, there is no small parameter and the zeros of

the β-function have to be determined numerically. Moreover, within the

perturbative expansion, the right hand side is no longer negligible and the

property becomes non-perturbative.

Finally, the validity of the scheme relies on a property that is not rigor-

ously established: that it is possible to take the large Λ limit in two steps.

However, Nickel managed to generate longer series (6 and partially 7

loops) in three dimensions because he noticed that it is easier to calculate

Feynman diagrams in three dimensions than in generic dimension d. The

results, obtained in this way after summation, are more precise than those

coming from the summed ε-expansion.



Table 1

Sum of the successive terms of the ε-expansion of γ and η for ε = 1 and N = 1.

k 0 1 2 3 4 5

γ 1.000 1.1667 1.2438 1.1948 1.3384 0.8918

η 0.0 . . . 0.0 . . . 0.0185 0.0372 0.0289 0.0545

Practical calculations: summation of divergent series

The ε-expansion

After a calculation of physical quantities as a double series expansion in

powers of g and ε, one first solves the equation β(g) = 0 in the form of a

ε-expansion. One then inserts the fixed point value of g in other physical

quantities. Table 1 shows immediately that for ε = 1, the successive partial

sums for two exponents up to the available order ε5 do not converge.



The fixed dimension scheme

Following Parisi’s suggestion, one can also evaluate the β-function directly

in dimension 3 but, since there is no longer a ‘small’ expansion parameter, a

summation method is required. Nickel managed to calculate, in dimension

3, all diagrams contributing to η, η2 up to seven loops (in the terminology

of Feynman diagrams), and the diagrams contributing to the β-function,

which are more difficult, only up to six loops.

For example, to six loop order, for N = 1, Nickel has obtained

β(g̃) = −g̃ + g̃2 − 308
729 g̃

3 + 0.3510695978g̃4

− 0.3765268283g̃5 + 0.49554751g̃6 − 0.749689g̃7 +O
(

g̃8
)

,

where g̃ = 3g/(16π)).

Like for the ε-expansion, the series are also divergent. The difference is

that one must then first determine numerically the zero of the β-function,

which is a number of order 1.

But in both cases a summation of the series is required.



Large order behaviour and instanton calculus

The apparent divergence of the perturbative expansion has a simple expla-

nation: for any g < 0 the Hamiltonian is not bounded from below, thus

g = 0 corresponds to a singularity. It is expected that physical observables

are functions analytic in a cut-plane with a cut on the whole negative axis.

The φ4 Hamiltonian (8) has also the interpretation of the action of a

quantum field theory in imaginary time. The imaginary part of observables

on the cut when g < 0 is then related to quantum barrier penetration.

In the semi-classical limit (here g plays the formal role of ~), quantum

barrier penetration is associated with propagation in imaginary time. The

imaginary part is related the solutions of classical field equations in imagi-

nary time with finite action, called instantons.

The instanton solution with the smallest action gives the leading contri-

bution.



If A is the smallest instanton action, for any observable F (g) in the φ4 field

theory, one finds

ImF (g) ∝
g→0−

eA/g .

The function F (g) is a real function, analytic in a cut-plane. It has the

Cauchy representation

F (g) =
1

π

∫ 0

−∞

ImF (g′)

g′ − g
dg′.

The function F (g) can be expanded in a power series for g → 0+. Then,

F (g) =
∑

k

Fkg
k , Fk =

1

π

∫ 0

−∞

dgg−k−1 ImF (g).

The behaviour of the integral for k → ∞, is governed by the behaviour of

ImF (g) for g → 0−. Thus,

Fk ∝
k→∞

∫ 0− eA/g

gk
dg ∝ (−1)kA−kk! .



Instanton solutions

In the tree approximation, in the CS framework, for N = 1, the Hamiltonian

reduces to (here gr is denoted g)

H(φ) =

∫

ddx
[

1
2

(

∇xφ(x)
)2

+ 1
2m

2φ2(x) + 1
4!gm

4−dφ4(x)
]

.

The field equation is

δH
δφ(x)

= (−∇2
x +m2)φ(x) + gm4−dφ3(x)/6 = 0 .

The smallest action comes from solutions of the form

φ(x) =
1√−g

m(d−2)/2f(mr), r = |x|.

The function f for d < 4 satisfies the non-linear differential equation

−f̈ + (d− 1)ḟ/r + f − f3/6 = 0 .



The equation can be solved numerically for d = 3 and d = 2. A more

precise calculation of the instanton contributions leads to, for example, for

the β-function in three dimensions:

βk ∝
k→∞

(−a)kkbk!

with a = 0.147774232 . . ..



Borel summation

To deal with the divergence problem, when the coupling constant g is not

small, it is necessary to introduce summation techniques. In three dimen-

sions, the perturbative expansion is proved to be Borel summable. It is thus

natural to introduce the Borel–Laplace transformation (here, Borel–Leroy):

Bσ(g) =
∑

k

βk

Γ(k + σ + 1)
gk.

Then, formally in the sense of power series

β(g) =

∫ +∞

0

tσ e−t Bσ(gt)dt .

From the large order behaviour, we infer that the function Bσ(g) is analytic

in a circle of radius 1/a with a singularity at −1/a. The series is said Borel

summable if, in addition, Bσ(g) is analytic in a neighbourhood of the real

positive semi-axis and the integral converges.



Table 2

Series summed by a method based on Borel transformation and mapping for the
zero g̃∗ of the β(g) function and the exponents γ and ν in the φ4

3 field theory.

k 2 3 4 5 6 7

g̃∗ 1.8774 1.5135 1.4149 1.4107 1.4103 1.4105

ν 0.6338 0.6328 0.62966 0.6302 0.6302 0.6302

γ 1.2257 1.2370 1.2386 1.2398 1.2398 1.2398

Since the series defines Bσ(g) only in a circle, an analytic continuation

is required. In practice, with a small number of terms, the continuation

requires a large domain of analyticity. Le Guillou and Zinn-Justin (1977–

1980) have assumed maximal analyticity, that is, analyticity in a cut-plane.



The continuation has then be obtained by a conformal mapping of the

cut-plane onto a circle.

Slight modification of summation techniques and the additional seven-

loop contributions have lead later to improved estimates of critical expo-

nents (Guida, Zinn-Justin 1998).

A systematic comparison between these field theory and renormalization

group based calculations and available experimental results, as well as lat-

tice calculations, shows excellent agreement. Nevertheless, in the case of

superfluid Helium transition, low gravity experiments have given

ν = 0.6705± 0.0006 , ν = 0.6708± 0.0004

α = −0.01285± 0.00038 ,

a precision that is now a challenge to field theory, which yields

ν = 0.6703± 0.0015 , α = −0.011± 0.004 .



A noticeable improvement could be expected from a seven-loop calculation

of the β-function, since the value of g∗ enters in the calculation of all other

universal quantities.

However, to give an idea of the problem one faces, at seven-loop about

3500 diagrams have to be evaluated, which are integrals of rather singular

functions over 21 variables.

A set of technical tricks, some already used Nickel, and a complete au-

tomatisation of the calculation (Guida–Ribeca), which, in particular, allows

finding many sub-integrations that can be performed analytically, reduces

somewhat the difficulty. However, the problem of automatic numerical in-

tegration of the irreducible diagrams remains unsolved.

Reference: R. Guida and J. Zinn-Justin, J. Phys. A 31 (1998) 8103,

cond-mat/9803240, an improvement over the results published in

J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39 (1977) 95; Phys.

Rev. B21 (1980) 3976.



Critical exponents from the O(N) symmetric (φ2)23 field theory

N 0 1 2 3

g̃∗ 1.413± 0.006 1.411± 0.004 1.403± 0.003 1.390± 0.004

g∗ 26.63± 0.11 23.64± 0.07 21.16± 0.05 19.06± 0.05

γ 1.1596± 0.0020 1.2396± 0.0013 1.3169± 0.0020 1.3895± 0.0050

ν 0.5882± 0.0011 0.6304± 0.0013 0.6703± 0.0015 0.7073± 0.0035

η 0.0284± 0.0025 0.0335± 0.0025 0.0354± 0.0025 0.0355± 0.0025

β 0.3024± 0.0008 0.3258± 0.0014 0.3470± 0.0016 0.3662± 0.0025

α 0.235± 0.003 0.109± 0.004 −0.011± 0.004 −0.122± 0.010

ω 0.812± 0.016 0.799± 0.011 0.789± 0.011 0.782± 0.0013

ων 0.478± 0.010 0.504± 0.008 0.529± 0.009 0.553± 0.012



Critical exponents from the O(N) symmetric (φ2)23 field theory

N 0 1 2 3

γ 1.1596± 0.0020 1.2396± 0.0013 1.3169± 0.0020 1.3895± 0.0050

ν 0.5882± 0.0011 0.6304± 0.0013 0.6703± 0.0015 0.7073± 0.0035

α 0.235± 0.003 0.109± 0.004 −0.011± 0.004 −0.122± 0.010

β 0.3024± 0.0008 0.3258± 0.0014 0.3470± 0.0016 0.3662± 0.0025

ων 0.478± 0.010 0.504± 0.008 0.529± 0.009 0.553± 0.012

Critical exponents from O(N) symmetric lattice models

N 0 1 2 3

γ 1.1575± 0.0006 1.2385± 0.0025 1.322± 0.005 1.400± 0.006

ν 0.5877± 0.0006 0.631± 0.002 0.674± 0.003 0.710± 0.006

α 0.237± 0.002 0.103± 0.005 −0.022± 0.009 −0.133± 0.018

β 0.3028± 0.0012 0.329± 0.009 0.350± 0.007 0.365± 0.012

ων 0.56± 0.03 0.53± 0.04 0.60± 0.08 0.54± 0.10



Table 6
Critical exponents in the (φ2)23 field theory from the ε-expansion.

N 0 1 2 3

γ (free)
γ (bc)

1.1575± 0.0060
1.1571± 0.0030

1.2355± 0.0050
1.2380± 0.0050

1.3110± 0.0070
1.317

1.3820± 0.0090
1.392

ν (free)
ν (bc)

0.5875± 0.0025
0.5878± 0.0011

0.6290± 0.0025
0.6305± 0.0025

0.6680± 0.0035
0.671

0.7045± 0.0055
0.708

η (free)
η (bc)

0.0300± 0.0050
0.0315± 0.0035

0.0360± 0.0050
0.0365± 0.0050

0.0380± 0.0050
0.0370

0.0375± 0.0045
0.0355

β (free)
β (bc)

0.3025± 0.0025
0.3032± 0.0014

0.3257± 0.0025
0.3265± 0.0015 0.3465± 0.0035 0.3655± 0.0035

ω 0.828± 0.023 0.814± 0.018 0.802± 0.018 0.794± 0.018

θ 0.486± 0.016 0.512± 0.013 0.536± 0.015 0.559± 0.017



Equation of state

Using the series provided by Nickel, combined with a few new technical

tricks, it has been possible to obtain a precise representation of the equa-

tion of state for models in the N = 1 Ising class. In particular, from the

equation of state, a number of universal combinations of amplitudes of the

singularities at Tc can be derived (see table 10). For example, the magnetic

susceptibility, diverges at Tc with a susceptibility exponent γ and

χ+ ∼ C+(T − Tc)
−γ , χ− ∼ C−(Tc − T )−γ .

The ratio C+/C− is universal.

The singular part of the specific heat behaves like

C+ ∼ A+(T − Tc)
−α, C− ∼ A−(Tc − T )−α,

and the ratio A+/A− is also universal.

Reference: R. Guida and J. Zinn-Justin, Nucl. Phys. B489 [FS] (1997)

626.



Table 10

Amplitude ratios: models and binary critical fluids.

ε-expansion Fixed dim. d = 3 Lattice models Experiment

A+/A− 0.527± 0.037 0.537± 0.019
{

0.523± 0.009
0.560± 0.010 0.56± 0.02

C+/C− 4.73± 0.16 4.79± 0.10
{

4.75± 0.03
4.95± 0.15 4.3± 0.3

f+

1 /f−

1 1.91 2.04± 0.04 1.96± 0.01 1.9± 0.2

R+

ξ 0.28 0.270± 0.001 0.266± 0.001 0.25– 0.32

Rc 0.0569± 0.0035 0.0574± 0.0020 0.0581± 0.0010 0.050± 0.015

R+

ξ R
−1/3
c 0.73 0.700± 0.014 0.650 0.60– 0.80

Rχ 1.648± 0.036 1.669± 0.018 1.75 1.75± 0.30

Q2 1.13 1.21± 0.04 1.1± 0.3
Q3 0.96 0.896± 0.005


