Introduction to Quantum Phase Transitions

Part II

Outline:

• Introduction:

definition, scaling exponents, scaling hypothesis, phase diagram, thermodynamics

- Dilute weakly interacting Bose gas
- Insulating spin-dimer antiferromagnets
- 1d Heisenberg vs 1d Ising model in a transverse field
- Quantum critical paraelectrics
- Quantum critical metals

Outline:

• Introduction:

definition, scaling exponents, scaling hypothesis, phase diagram, thermodynamics

- Dilute weakly interacting Bose gas
- Insulating spin-dimer antiferromagnets
- 1d Heisenberg vs 1d Ising model in a transverse field
- Quantum critical paraelectrics
- Quantum critical metals

Dilute weakly-interacting Bose gas

Reminder: dilute weakly-interacting Bose gas

$$\mathcal{L} = \phi^* (i\hbar\partial_t + \frac{\hbar^2 \nabla^2}{2m} + \mu)\phi - \frac{u}{2}|\phi|^4$$

Lagrangian

mean-field exponents for d>2:

$$\begin{array}{ll} \text{correlation length} & \nu = \frac{1}{2} \end{array}$$

dynamical exponent z=2

upper critical dimension d+z = 4, i.e., d=2

renormalization of the tuning parameter in the quantum critical regime (Hartree-Fock approximation)

$$-\mu^{R} = -\mu + 2u\langle |\phi|^{2} \rangle = -\mu + c \, u T^{\frac{d+z-2}{z}} = \mu + c \, u T^{3/2}$$

Reminder: Phase diagram

phase diagram of the dilute Bose gas in spatial dimension d=3

bosons in one spatial dimension at T=0:

$$\mathcal{L} = \phi^* \left(i\hbar\partial_t + \frac{\hbar^2 \partial_x^2}{2m} + \mu \right) \phi - \frac{u}{2} |\phi|^4$$

consider dilute limit $\mu < 0$ with empty ground state.

First excited state contains single free boson Next excited state contains two interacting bosons:

Two-particle wavefunction with zero total momentum only dependent on the relative coordinate

$$\Phi(x_1, x_2) = \Phi(x_1 - x_2)$$

effective Schrödinger equation for relative coordinate $x = x_1 - x_2$

$$i\hbar\partial_t \Phi(x) = \left(-\frac{\hbar^2 \partial_x^2}{2\mu_{\rm red}} - \mu + u\delta(x)\right) \Phi(x)$$

$$\uparrow \\ reduced mass \quad \frac{1}{\mu_{\rm red}} = \frac{1}{m} + \frac{1}{m}$$
Quantum mechanics:
$$T = \frac{(ka)^2}{1 + (ka)^2} \text{ with scattering length } a = \frac{\mu_{\rm red}\hbar^2}{u}$$

Markus Garst

At low energies/momenta:

$$= \frac{(ka)^2}{1+(ka)^2} \to \mathbf{0}$$

bosons perfectly reflect from each other! Node develops in the two-particle wave function!

 $\varepsilon_{\blacktriangle}$

0

μ

Interacting bosons in 1d behave like spinless fermions at low energies! Emergent Pauli principle! Example of statistical transmutation

 $F = \frac{k_B T}{\xi_T} \Psi\left(\frac{\mu}{T}\right) \sim T^{3/2} \Psi\left(\frac{\mu}{T}\right)$

Effective theory for the quantum phase transition at μ =0:

T

$$H = \sum_{k} \left(\frac{\hbar^2 k^2}{2m} - \mu \right) c_k^{\dagger} c_k \, \checkmark$$

Fermionic operators

Independent of the interaction amplitude u! Emergent universality! Scaling hypothesis applies!

explicit calculation:

$$F = -k_B T \int_{-\infty}^{\infty} \frac{dk}{2\pi} \log(1 + \exp(-\frac{\hbar^2 k^2 / (2m) - \mu}{k_B T}))$$

Free energy density

$$\begin{array}{ll} \mbox{correlation length} \\ \mbox{exponent} \end{array} & \nu = \frac{1}{2} \\ \mbox{dynamical exponent} & z = 2 \end{array}$$

Lifshitz transition:

fermions at the bottom

of a parabolic band

 \mathbf{O}

Change of the ground state at μ =0 Development of two Fermi points!

Scaling form of the free energy:

$$F \sim T^{3/2} \Psi\left(\frac{\mu}{T}\right)$$

Change of the ground state at μ =0 Development of two Fermi points!

Fermions still interact
$$H_{\rm int} = \frac{1}{4} \sum_{k,k',p,p'} \Gamma_{kk';pp'} c_k^{\dagger} c_{k'}^{\dagger} c_p c_{p'}$$

interaction amplitude at low energies has the form

$$\Gamma_{kk';pp'} = \gamma \, \delta_{k+k',p+p'}(k-k')(p-p')$$

amplitude dependent momentum conservation on the boson interaction u factors of momentum required by Pauli principle, not possible to create/annihilate two fermions with the same momentum

Interaction irrelevant at the QCP! Does not modify the asymptotic critical behaviour!

Spin-dimer antiferromagnets

consider spins 1/2 on a lattice

Examples:

dimer →

TlCuCl₃

spin-ladder compound (C5H12N)2CuBr4

A single dimer in a magnetic field

neglect the inter-dimer interaction:

consider a single dimer in a magnetic field

A single dimer in a magnetic field

neglect the inter-dimer interaction:

consider a single dimer in a magnetic field

dimers are weakly coupled by J' \Rightarrow triplet excitation can hop from dimer to dimer and acquire kinetic energy

dimers are weakly coupled by J' \Rightarrow triplet excitation can hop from dimer to dimer and acquire kinetic energy

groundstate for H < H_{c1}

single triplet excitation

single triplet excitation

single triplet excitation

boson with kinetic energy $\frac{p^2}{2m}$ and chemical potential $\mu \propto H - H_{c1}$ Bose-Einstein condensation of triplons groundstate for $H > H_{c2}$

magnon = spin-flip excitation forming a dimer

magnon = spin-flip excitation forming a dimer

magnon = spin-flip excitation forming a dimer

Markus Garst

Bose–Einstein condensation of the triplet states in the magnetic insulator TICuCl₃

Ch. Rüegg*, N. Cavadini*, A. Furrer*, H.-U. Güdel†, K. Krämer†, H. Mutka‡, A. Wildes‡, K. Habicht§ & P. Vorderwisch§

Nature 2003

triplet spectrum obtained by neutron scattering

Temperature (K)

Johannsen et al. PRL (2005)

Temperature (K)

Field-induced Bose-Einstein Condensation of triplons up to 8 K in Sr₃Cr₂O₈

A. A. Aczel,¹ Y. Kohama,² C. Marcenat,³ F. Weickert,⁴ M. Jaime,² O. E. Ayala-Valenzuela,²
 R. D. McDonald,² S. D. Selesnic,¹ H. A. Dabkowska,⁵ and G. M. Luke^{1, 5, 6}

¹Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada, L8S 4M1

²National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

³CEA-Grenoble, Institut Nanosciences et Cryogénie, SPSMS-LATEQS,

17 rue des Martyrs, 38054 Grenoble Cedex 9, France

⁴Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

⁵Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada, L8S 4M1 ⁶Canadian Institute of Advanced Research, Toronto, Ontario, Canada, M5G 1Z8

(Dated: October 26, 2009)

Single crystals of the spin dimer system $Sr_3Cr_2O_8$ have been grown for the first time. Magnetization, heat capacity, and magnetocaloric effect data up to 65 T reveal magnetic order between applied fields of $H_{c1} \sim 30.4$ T and $H_{c2} \sim 62$ T. This field-induced order persists up to $T_c^{max} \sim 8$ K at $H \sim 44$ T, the highest observed in any quantum magnet where H_{c2} is experimentally-accessible. We fit the temperature field phase diagram boundary close to H_{c1} using the expression $T_{c} = \Lambda(H_{c2})^{\mu}$. The exponent $\nu = 0.65(2)$, obtained at temperatures much smaller than T_c^{max} , is that of the 3D Bose-Einstein condensate (BEC) universality class. This finding strongly suggests that $Sr_3Cr_2O_8$ is a new realization of a triplen BEC where the universal regimes corresponding to both H_{c1} and H_{c2} are accessible at ⁴He temperatures.

PACS numbers: 73.43.Nq, 75.30.Kz, 75.30.Sg, 75.40.Cx

PRL 2009

magnetic long-range order (XY-AFM)

two quantum critical points

Experiments: spin-ladder compound (C5H12N)2CuBr4

Weak coupling between the spin ladders becomes important at lowest energies

Bose-Einstein condensation of magnons and development of long-range magnetic order at finite T_c ~ 100 mK

General theme common in physics:

Hierarchy of energy scales and corresponding effective theoretical description

1d Heisenberg model in a field

1d Heisenberg model in a magnetic field

Heisenberg Hamiltonian

$$H = J \sum_{i} \vec{S}_{i} \vec{S}_{i+1} + h \sum_{i} S_{i}^{z}$$

Jordan-Wigner transformation

 $\square \qquad H = \sum_{i} \left(J(c_i^{\dagger}c_{i+1} + (c_i^{\dagger}c_i - \frac{1}{2})(c_{i+1}^{\dagger}c_{i+1} - \frac{1}{2})) + h(c_i^{\dagger}c_i - \frac{1}{2}) \right)$ string cancels out in the Hamiltonian

Conserves fermionic particle number

spin-rotation symmetry around the magnetic field z-axis

1

$$H = \sum_{i} \left(J(c_{i}^{\dagger}c_{i+1} + (c_{i}^{\dagger}c_{i} - \frac{1}{2})(c_{i+1}^{\dagger}c_{i+1} - \frac{1}{2})) + h(c_{i}^{\dagger}c_{i} - \frac{1}{2}) \right)$$

ground state for large fields h >> J:

penalizes the presence of particles

vacuum |0
angle with no particles = fully polarised spin chain

effective Hamiltonian in the dilute limit

-J

μ

Experiments

Wolf et al, PNAS (2011)

1d Ising model in a transverse field

1d Ising model in a transverse field

Heisenberg Hamiltonian

$$H = J \sum_{i} S_i^x S_{i+1}^x - h \sum_{i} S_i^z$$

Jordan-Wigner transformation emperature $S_{i}^{+} = S_{i}^{x} + iS_{i}^{y} = c_{i}^{\dagger}e^{i\pi\sum_{j < i} c_{j}^{\dagger}c_{j}} \qquad S_{i}^{z} = c_{i}^{\dagger}c_{i} - \frac{1}{2}$ domain-wal spin-flip quasiparticles uasinarticles $S_{i}^{-} = S_{i}^{x} - iS_{i}^{y} = c_{i}e^{-i\pi\sum_{j < i} c_{j}^{\dagger}c_{j}}$ critical Ordered Paramagnet $\implies H = \frac{J}{4} \sum_{i} (c_i^{\dagger} - c_i) (c_{i+1}^{\dagger} + c_{i+1}) - h \sum_{i} (c_i^{\dagger} c_i - \frac{1}{2})$ $= \frac{J}{4} \sum_{i} (c_{i}^{\dagger} c_{i+1}^{\dagger} - c_{i} c_{i+1} + c_{i}^{\dagger} c_{i+1} - c_{i} c_{i+1}^{\dagger}) - h \sum_{i} (c_{i}^{\dagger} c_{i} - \frac{1}{2})$ anomalous terms fermionic particle number not conserved spin-rotation symmetry broken

Cobalt niobate approximately realizes the Ising chain in a transverse field

BUT: in addition small longitudinal field h_x probably due to interchange coupling

Quantum critical ferroelectrics

Change of the crystal structure by rearrangement, i.e. displacement of atoms

At a 2nd order displace transition at T=0: optical phonon become soft

if accompanied by emergence of a finite electric polarisation

quantum critical ferroelectrics

effective theory for electric polarisation P:

couples linearly to electric field

$$\mathcal{L} = \frac{1}{2} P(\partial_t^2 - \nabla^2 - r)P - \frac{u}{4!}P^4 - PE$$
spectrum: $\omega^2 = r + k^2$ optical phonon becomes soft at r-> 0

$$u=rac{1}{2} \quad ext{and} \quad z=1$$

d=3 is at the upper critical dimension as d+z = 4 for d=3

SFB/TR 49 International School, March 2016

Rowley et al. Nature Physics (2014)

SrTiO₃ practically quantum critical:

anomalous T dependence of the dielectric constant $1/\varepsilon \sim T^2$

Hartree-Fock renormalization of the tuning parameter:

$$1/\varepsilon = r + c \, u T^{\frac{d+z-2}{z}} = r + c \, u T^2$$

Quantum critical metals

Quantum critical metals

Metals are characterised by a Fermi surface Fermi surface can change at a quantum phase transition

> in general difficult problem and only partly understood (especially in low spatial dimension d=2)

Model:

$$\mathcal{L} = \Psi_{\sigma}^{\dagger} (i\partial_t - \varepsilon(-i\nabla))\Psi_{\sigma} - U\Psi_{\uparrow}^{\dagger}\Psi_{\downarrow}^{\dagger}\Psi_{\downarrow}\Psi_{\uparrow}$$

fermionic operators

interaction that drives some instability like ferromagnetism, antiferromagnetism, nematicity, etc.

Standard procedure:

- ocedure: 1. introduce local order parameter Φ by Hubbard-Stratonovich transformation
 - 2. integrate out fermionic degree of freedom
 - 3. expand the action in the order parameter Φ and perform gradient expansion

step 3 dangerous and in certain cases not controlled!

Ginzburg-Landau theory for the order parameter field Φ = incommensurate AFM

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \Phi^* \Big(-\gamma \partial_t + \nabla^2 - r \Big) \Phi - \frac{u}{2} |\Phi|^4$$

similar to BEC but with dissipative dynamics

Landau damping of the order parameter due to the excitation of particle-hole pairs in the metal

Ginzburg-Landau theory for the order parameter field Φ = incommensurate AFM

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \Phi^* \Big(-\gamma \partial_t + \nabla^2 - r \Big) \Phi - \frac{u}{2} |\Phi|^4$$

similar to BEC but with dissipative dynamics

Landau damping of the order parameter due to the excitation of particle-hole pairs in the metal

critical exponents

correlation length
$$u = \frac{1}{2}$$
dynamical exponent $z = 2$

renormalization of the tuning parameter: (Hartree-Fock calculation similar to BEC)

$$R = r + c \, u T^{\frac{d+z-2}{z}} = r + c \, u T^{\frac{3}{2}}$$

for z=2 and d=3

Sometimes it works...

heavy-fermion compound CeNi₂Ge₂

is close to a AFM QCP

expected power-law for the Grüneisen parameter experimentally observed

Quantum Critical Point of an Itinerant Antiferromagnet in a Heavy Fermion

Hiroaki Kadowaki,¹ Yoshikazu Tabata,² Masugu Sato,³ Naofumi Aso,⁴ Stephane Raymond,⁵ and Shuzo Kawarazaki²

 ¹Department of Physics, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
 ²Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
 ³MSD, JASRI, 1-1-1 Kouto Mikazuki-cho Sayo-gun, Hyogo 679-5198, Japan
 ⁴NSL, Institute for Solid State Physics, University of Tokyo, Tokai, Ibaraki 319-1106, Japan
 ⁵CEA-Grenoble, DSM/DRFMC/SPSMS, 38054 Grenoble, France (Received 23 April 2005; published 3 January 2006)

A quantum critical point of the heavy fermion $Ce(Ru_{1-x}Rh_x)_2Si_2$, (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the anti-ferromagnetic wave vector $k_3 = 0.35c^*$, we have shown that the inverse energy width $\Gamma(k_3)$, i.e., the inverse correlation time, depends on temperature as $\Gamma(k_3) = c_1 + c_2T^{3/2\pm0.1}$, where c_1 and c_2 are r dependent constants, in a low temperature range. This critical exponent $3/2 \pm 0.1$ proves that the quantum critical point is controlled by that of the itinerant antiferromagnet.

$$R = r + c \, u T^{\frac{d+z-2}{z}} = r + c \, u T^{\frac{3}{2}}$$

 \checkmark

Sometimes it doesn't

Most famous heavy-fermion compounds where Hertz-Millis theory fails

for a review see H. V. Löhneysen, et al. Rev. Mod. Phys. 79, 1015 (2007).

triggered development of alternative theories:

Kondo-breakdown, fractionalized Fermi liquids, AdS/CFT,...

Literature:

- S. Sachdev and B. Keimer, Phys. Today 64, 29 (2011).
- Quantum phase transitions, S. Sachdev (Cambridge University Press)
- Thermal and Quantum Phase transitions, M. Vojta, Les Houches Lecture Notes, <u>http://statphys15.inln.cnrs.fr</u>
- Fermi-liquid instabilities at magnetic quantum phase transitions
 H. V. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).
- Focus Issue on Quantum Phase Transitions, Nat Phys, 4, 167-204 (2008)