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Outline:
• Introduction:  

definition, scaling exponents, scaling hypothesis,  
phase diagram, thermodynamics 

• Dilute weakly interacting Bose gas 

• Insulating spin-dimer antiferromagnets 

• 1d Heisenberg vs 1d Ising model in a transverse field 

• Quantum critical paraelectrics 

• Quantum critical metals
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Dilute weakly-interacting Bose gas



Markus Garst SFB/TR 49 International School, March 2016

L = �⇤(i~@t +
~2r2

2m
+ µ)�� u
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Reminder: dilute weakly-interacting Bose gas

correlation length  
exponent ⌫ =

1

2

dynamical exponent z = 2

Lagrangian

renormalization of the tuning parameter in the quantum critical regime  
(Hartree-Fock approximation)

mean-field exponents 
for d>2:

�µR = �µ+ 2uh|�|2i = �µ+ c uT
d+z�2

z = µ+ c uT 3/2

for d=3, z=2

upper critical dimension 
d+z = 4, i.e., d=2
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Reminder: Phase diagram

phase diagram of the dilute Bose gas in spatial dimension d=3

T ⇠ (�µ)⌫z = �µ

crossover

dilute Bose gas

quantum critical  
regime

Bose-Einstein condensate

line of classical  
phase transitions

Tc ⇠
⇣µ
u

⌘2/3
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Bosons in one spatial dimension

L = �⇤
⇣
i~@
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+
~2@2

x

2m
+ µ

⌘
�� u

2
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bosons in one spatial dimension at T=0:

consider dilute limit µ < 0 with empty ground state. 

First excited state contains single free boson 
Next excited state contains two interacting bosons:

�(x1, x2) = �(x1 � x2)Two-particle wavefunction with zero total momentum
only dependent on the relative coordinate

effective Schrödinger equation for relative coordinate  x = x1 - x2

i~@
t

�(x) =
⇣
� ~2@2

x

2µred
� µ+ u�(x)

⌘
�(x)

Quantum mechanics:
reduced mass

1

µred
=

1

m
+

1

m

transmission coefficient T =
(ka)2

1 + (ka)2
with scattering length a =

µred~2
u
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Lifshitz transition

At low energies/momenta: T =
(ka)2

1 + (ka)2
-> 0 bosons perfectly reflect from each other!  

Node develops in the two-particle wave function!

Interacting bosons in 1d behave like spinless fermions at low energies! 
Emergent Pauli principle! 

Effective theory for the quantum phase transition at µ=0:

H =
X

k

⇣~2k2
2m

� µ
⌘
c†kck

Example of statistical transmutation

k0

"

µ
0

correlation length  
exponent ⌫ =

1

2

dynamical exponent z = 2

Independent of the interaction amplitude u!  
Emergent universality! Scaling hypothesis applies!

Free energy density F =
kBT

⇠T
 
⇣ µ

T

⌘
⇠ T 3/2 

⇣ µ

T

⌘

Fermionic  
operators

fermions at the bottom  
of a parabolic band

explicit calculation:

F = �kBT

Z 1

�1

dk

2⇡
log(1 + exp(�~2k2/(2m)� µ

kBT
))

Lifshitz transition:
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Phase diagram for d=1

T

µ0
0

QCP

Change of the ground state at µ=0 
Development of two Fermi points!
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Phase diagram for d=1

T

µ0
0

QCP

Change of the ground state at µ=0 
Development of two Fermi points!

F ⇠ T 3/2 
⇣ µ

T

⌘
↵ ⇠ @2F

@µ@T
⇠  0(0)p

T

C ⇠  (0)
p
T

Scaling form of the free energy:

specific heat

thermal expansion for pressure tuning
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Residual interaction

Fermions still interact Hint =
1

4

X

k,k0,p,p0

�kk0;pp0c†kc
†
k0cpcp0

interaction amplitude at low energies has the form

�kk0;pp0 = � �k+k0,p+p0(k � k0)(p� p0)

momentum conservation factors of momentum required by Pauli principle, 
not possible to create/annihilate two fermions  
with the same momentum

amplitude dependent  
on the boson interaction u

Interaction irrelevant at the QCP! Does not modify the asymptotic critical behaviour!

However:
it induces Luttinger liquid correlations for µ > 0 
at lowest temperatures

QCP

T

TLL log(TLL/µ) ⇠ 1/µwith crossover temperature 

µ
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Spin-dimer antiferromagnets
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Weakly-coupled dimers

consider spins 1/2 on a lattice

strong antiferromagnet coupling J

formation of a  
singlet state = dimer

weak coupling J’ between the dimers

Examples:

spin-ladder compound  
(C5H12N)2CuBr4TlCuCl3

dimer dimer
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consider a single dimer in a magnetic field

degenerate triplet

singlet

energy

magnetic fieldH ∼ JH=0

| ��⇥

| ��⇥

| �⇥⇤ + | ⇥�⇤

| ⇥⇤⌅ � | ⇤⇥⌅

A single dimer in a magnetic field

neglect the inter-dimer interaction:
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singlet-triplet 
level crossing

consider a single dimer in a magnetic field

singlet

energy

magnetic fieldH ∼ JH=0

| ��⇥

| ��⇥

| �⇥⇤ + | ⇥�⇤

| ⇥⇤⌅ � | ⇤⇥⌅

A single dimer in a magnetic field

neglect the inter-dimer interaction:

degenerate triplet
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triplet excitation can hop from dimer to dimer 
and acquire kinetic energy

Beyond the single dimer approximation

dimers are weakly coupled by J’

energy

magnetic fieldH ∼ J�

| ��⇥

| ⇥⇤⌅ � | ⇤⇥⌅
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energy

magnetic field

triplet excitation can hop from dimer to dimer 
and acquire kinetic energy

Beyond the single dimer approximation

dimers are weakly coupled by J’

Hc1 Hc2

kinetic energy of triplets
band of excitations  
with bandwidth J’ 

two quantum critical points
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Effective theory for the quantum phase transitions

groundstate for H < Hc1
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Effective theory for the quantum phase transitions

single triplet excitation
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Effective theory for the quantum phase transitions

single triplet excitation
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Effective theory for the quantum phase transitions

single triplet excitation

 boson with kinetic energy         and chemical potentialp2

2m
µ / H �Hc1

Bose-Einstein condensation of triplons
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Effective theory for the quantum phase transitions

groundstate for H > Hc2
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Effective theory for the quantum phase transitions

magnon = spin-flip excitation forming a dimer
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Effective theory for the quantum phase transitions

magnon = spin-flip excitation forming a dimer

 boson with kinetic energy         and chemical potentialp2

2m
Bose-Einstein condensation of magnons

µ / Hc2 �H
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Nature 2003

Experiments: TlCuCl3

triplet spectrum obtained  
by neutron scattering

Lorenz et al. JMMM (2007)

phase diagram

QPT at ~5 Tesla

BEC of  
triplons

Johannsen et al. PRL (2005)

thermal expansion with 
characteristic sign changes 
at the classical transition 
= entropy accumulation

� = 1.8

� = 3/2

fit to the  
phase boundary  
yields 

expected for BEC  
at lowest T:

Tc ⇠
⇣µ
u

⌘2/3
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Tc ⇠
⇣µ
u

⌘2/3

Experiments: Sr3Cr2O8

PRL 2009

two quantum critical points

magnetic long-range order 
(XY-AFM)
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J�/kB = 3.6

J�/kB = 12.9strong rung coupling Kelvin

Kelvinleg coupling

Patyal et al. (1990) 
Watson et al. (2001) 
Lorenz et al (2008) 
Anfuso et al (2008) 
Klanjsek et al. (2008) 
Thielemann et al. (2008) 
Rüegg et al. (2008) 
Bouillot et al (2011)

J�

J�

CuBr4 cluster 

spin-1/2 ladder

Experiments: spin-ladder compound (C5H12N)2CuBr4

Rüegg et al. (2008)

Phase diagram:

two quantum critical points
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0 2 4 6 8 10 12 14
-10

-5

0

5

10

T=3K

magnetic field (Tesla)

α 
(1

0-6
/K

)

entropy

Hc

high temperatures

triplet bandwidth  
not resolved 
-> single entropy peak

0 2 4 6 8 10 12 14
-10

-5

0

5

10

magnetic field (Tesla)

α 
(1

0-6
/K

)

T=0.5K

Hc1 Hc2

entropylow temperatures

splitting of  
entropy peak

three sign  
changes

Dimensional crossover from 0d to 1d:

energy

magnetic field

thermal expansion

magnetic field

energy
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� � 1⇥
T

divergent thermal expansion 
at the quantum critical points

k0

"

µ
0

fermions at the bottom  
of a parabolic band

Lifshitz transition:

Lifshitz transition and singular thermal expansion

Luttinger liquid

Anfuso et al. PRB (2008)
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Dimensional crossover from 1d to 3d

Bouillot et al. PRB (2011)

Weak coupling between the spin ladders becomes important at lowest energies 

Bose-Einstein condensation of magnons and  
development of long-range magnetic order at finite Tc ~ 100 mK

General theme common in physics: 
Hierarchy of energy scales and corresponding effective theoretical description

Hc1 Hc2

two quantum critical points
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1d Heisenberg model in a field
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1d Heisenberg model in a magnetic field

Heisenberg Hamiltonian

Jordan-Wigner transformation

S+
i

= Sx

i

+ iSy

i

= c†
i

ei⇡
P

j<i c
†
jcj

S�
i

= Sx

i

� iSy

i

= c
i

e�i⇡

P
j<i c

†
jcj

Jordan-Wigner string

Sz
i = c†i ci �

1

2

H = J
X

i

~Si
~Si+1 + h

X

i

Sz
i

string cancels out  
in the HamiltonianH =

X

i

⇣
J(c†i ci+1 + (c†i ci �

1

2
)(c†i+1ci+1 �

1

2
)) + h(c†i ci �

1

2
)

fermionic operators

Conserves fermionic particle number spin-rotation symmetry around the  
magnetic field z-axis
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1d Heisenberg model in a magnetic field

ground state for large fields h >> J:

H =
X

i

⇣
J(c†i ci+1 + (c†i ci �

1

2
)(c†i+1ci+1 �

1

2
)) + h(c†i ci �

1

2
)

|0i

effective Hamiltonian in the dilute limit

vacuum       with no particles

penalizes the presence of particles

= fully polarised spin chain 

He↵ =
X

i

⇣
Jc†i ci+1 + (h� J)c†i ci

⌘
+Hint

residual interaction can be  
neglected in the dilute,  
low-energy limit, Pauli principle!

k0

"

µ
-J

cosine band

J

chemical potential µ = J-h

Lifshitz transition at hc = 2J

“condensation” of spin-flips
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Copper pyrazine dinitrate CuPzN

Experiments
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fully polarised, perfect vacuum 
magnetization plateau!

               divergence of the  
!
susceptibility reflecting 1d DOS

p
H �Hc

develops a sharp  
kink ~

1p
H �Hc

copper-containing coordination polymer  
[Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n

Wolf et al, PNAS (2011)Breunig et al. (unpublished)

F ⇠ T 3/2 
⇣ µ

T

⌘
remember:
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1d Ising model in a transverse field
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Heisenberg Hamiltonian

1d Ising model in a transverse field

Jordan-Wigner transformation

S+
i

= Sx

i

+ iSy

i

= c†
i

ei⇡
P

j<i c
†
jcj

S�
i

= Sx

i

� iSy

i

= c
i

e�i⇡

P
j<i c

†
jcj

Sz
i = c†i ci �

1

2

H = J
X

i

Sx

i

Sx

i+1 � h
X

i

Sz

i

H =
J

4

X

i

(c†i � ci)(c
†
i+1 + ci+1)� h

X

i

(c†i ci �
1

2
)

=
J

4

X

i

(c†i c
†
i+1 � cici+1 + c†i ci+1 � cic

†
i+1)� h

X

i

(c†i ci �
1

2
)

anomalous terms

fermionic particle number not conserved spin-rotation symmetry broken



Markus Garst SFB/TR 49 International School, March 2016

no plateau

Comparison: magnetization curves

H H

M M plateausharp square  
root kink

only weak  
logarithmic singularity

Hc Hc

Ising quantum phase transition Lifshitz quantum phase transition

1d Ising model in a  
transverse field

1d Heisenberg model in a  
magnetic field
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Experiments: CoNb2O6

H = J
X

i

Sx

i

Sx

i+1 � h
z

X

i

Sz

i

� h
x

X

i

Sz

i

Cobalt niobate approximately realizes the Ising chain in a transverse field

BUT: in addition small longitudinal field hx probably due to interchange coupling

Science (2010)
critical spectrum 

for hx=0

in the presence of a small longitudinal field 
emergence of 8 levels 

mathematically described by the E8 Lie group

mass of the first and second particle obey Golden ratio
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Quantum critical ferroelectrics
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Displacive ferroelectrics

Change of the crystal structure by rearrangement, i.e. 
displacement of atoms

if accompanied by emergence of a finite electric polarisation

effective theory for electric polarisation P:

At a 2nd order displace transition at T=0: 
optical phonon become soft

quantum critical ferroelectrics

!2 = r + k2

L =
1

2
P (@2

t �r2 � r)P � u

4!
P 4 � PE

couples linearly to electric field

spectrum: optical phonon becomes soft at r-> 0

⌫ =
1

2
mean-field exponents: z = 1and

as d+z = 4 for d=3

d=3 is at the upper critical dimension
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Quantum critical paraelectrics

Rowley et al. Nature Physics (2014)

tuning parameter r

SrTiO3 practically quantum critical:

anomalous T dependence of the  
dielectric constant 1/" ⇠ T 2

Hartree-Fock renormalization of the  
tuning parameter:

1/" = r + c uT
d+z�2

z = r + c uT 2
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Quantum critical metals
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Quantum critical metals

Metals are characterised by a Fermi surface

Fermi surface can change at a quantum phase transition

in general difficult problem and only partly understood (especially in low spatial dimension d=2)

Model: L =  †
�(i@t � "(�ir)) � � U †

" 
†
# # "

interaction that drives some instability 
like ferromagnetism, antiferromagnetism,  
nematicity, etc.

fermionic operators

Standard procedure: 1. introduce local order parameter Φ by Hubbard-Stratonovich transformation 
2. integrate out fermionic degree of freedom 
3. expand the action in the order parameter Φ and perform gradient expansion

step 3 dangerous and in certain cases not controlled!
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Hertz-Millis theory (e.g. for incommensurate antiferromagnetism)

Ginzburg-Landau theory for the order parameter field Φ = incommensurate AFM 

Le↵ =
1

2
�⇤

⇣
� �@t +r2 � r

⌘
�� u

2
|�|4

similar to BEC but with dissipative dynamics

Landau damping of the order parameter due to the excitation of particle-hole pairs in the metal
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Hertz-Millis theory (e.g. for incommensurate antiferromagnetism)

Ginzburg-Landau theory for the order parameter field Φ = incommensurate AFM 

Le↵ =
1

2
�⇤

⇣
� �@t +r2 � r

⌘
�� u

2
|�|4

similar to BEC but with dissipative dynamics

Landau damping of the order parameter due to the excitation of particle-hole pairs in the metal

correlation length  
exponent ⌫ =

1

2

dynamical exponent z = 2

critical exponents

renormalization of the tuning parameter: (Hartree-Fock calculation similar to BEC) 

R = r + c uT
d+z�2

z = r + c uT
3
2 for z=2 and d=3
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Sometimes it works…

heavy-fermion compound CeNi2Ge2

Küchler et al. PRL (2003)

is close to a AFM QCP

� ⇠ 1

T
1
⌫z

⇠ 1

T

expected power-law for the 
Grüneisen parameter experimentally 
observed 
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R = r + c uT
d+z�2

z = r + c uT
3
2

Sometimes it works…
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Sometimes it doesn’t….

Most famous heavy-fermion compounds where Hertz-Millis theory fails

triggered development of alternative theories: 
 Kondo-breakdown, fractionalized Fermi liquids, AdS/CFT,…

for a review see H. V. Löhneysen, et al.  Rev. Mod. Phys. 79, 1015 (2007).
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