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Introduction to  
Quantum Phase Transitions 
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Why are quantum phase transitions interesting?

Y. Tokiwa, et al. Nat Mater (2014). Custers, J. et al. Nature (2003). 

Mathur, et al. Nature (1998)

Pr2Ir2

Quantum phase transition  
only at strictly  

zero temperature T=0

Pr2Ir2O7 

Anomalous, exotic  
behaviour at finite T

at odds with  
conventional properties  

of materials

S. Kasahara et al., Phys. Rev. B (2010).

even emergent phases  
like superconductivity
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Outline:

• Introduction:  
definition, scaling exponents, scaling hypothesis,  
phase diagram, thermodynamics 

• Dilute weakly interacting Bose gas 

• Insulating spin-dimer antiferromagnets 

• ….
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Introduction
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Definition of a quantum phase transition (QPT): 

At a QPT the ground state energy exhibits a non-
analyticity as a function of an external control 
parameter. 
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First-order QPT: level crossing

simple example: free spin 1/2 in a magnetic field Hamiltonian

energy spectrum
level crossing  

at zero field B=0

free energy

with scaling function

F = �kBT log(egµBB/(2kBT )
+ e�gµBB/(2kBT )

)

= kBT  
⇣gµBB

2kBT

⌘

 (x) = � log(e

x

+ e

�x

)

H = �gµB
~S ~B
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First-order QPT: level crossing

simple example: free spin 1/2 in a magnetic field Hamiltonian

energy spectrum
level crossing  

at zero field B=0

free energy

with scaling function

phase diagram

both states are  
thermally occupied

groundstate groundstate

at B=0:   
residual entropy at T=0 S = kB log 2

spin expectation value

sharp jump at T=0

F = �kBT log(egµBB/(2kBT )
+ e�gµBB/(2kBT )

)

= kBT  
⇣gµBB

2kBT

⌘

 (x) = � log(e

x

+ e

�x

)

hSzi

H = �gµB
~S ~B
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Continuous QPT

transition point at T=0, i.e., the quantum critical point (QCP) is characterised by  
critical continuum of excitations

Example: (with energy gap away from the QCP)

spectrum for a finite size system

avoided  
level crossing

groundstate

excited states

tuning parameter r vanishes at the QCP: r=0

continuum of  
excitations

           energy gap  
vanishes as       |r| ! 0

spectrum for a infinite system

thermodynamic  
limit

quantum critical  
point (QCP)

e.g. for tuning by pressure                , for tuning by magnetic field                     ,  etc.r / p� pc r / H �Hc
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Continuous QPT: diverging length and time scales

critical continuum of excitation characterised by scales that diverge at the QCP

at T=0 diverging length scale

correlation length exponent ⌫

at T=0 diverging time scale

dynamical exponent z⌧ / ⇠zr / |r|�⌫z

⇠r / |r|�⌫

Heisenberg uncertainty principle:  vanishing energy scale 

e.g. excitation gap in the above example

"r / ⇠�z
r / |r|⌫z
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phase diagram:

T ⇠ |r|⌫z
temperature 

tuning parameter
QCP

crossover
quantum critical  

regime

Consequences at finite T: phase diagram

comparing vanishing energy scale with temperature T:

equivalent to comparing length scales:
T ⇠ "r / |r|⌫z

⇠T ⇠ ⇠r

with thermal length
⇠T / T� 1

z

low-T 
regime

low-T 
regime
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Although quantum phase transition only occurs at T=0 
thermal excitation of the critical continuum determine the finite T properties!

Thermodynamics  
controlled by the QCP

QCP

Consequences at finite T: phase diagram

anomalous behaviour of observable quantities at finite T!
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Phase diagram: type I

often the quantum phase transition is accompanied with the development of long-range order like 
ferromagnetism, antiferromagnetism, superconductivity etc.  (exceptions: topological transitions!)

expectation value of a local order parameter is finite h�i 6= 0

h�i 6= 0
only at T=0

singular thermodynamics only  
at the QCP: T=r=0

type I
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Phase diagram: type II

often the quantum phase transition is accompanied with the development of long-range order like 
ferromagnetism, antiferromagnetism, superconductivity etc.  (exceptions: topological transitions!)

expectation value of a local order parameter is finite h�i 6= 0

finite                   also at finite T

classical phase  
transition Tc(r)

QCP is the endpoint of a line of classical 
phase transitions Tc(r) ! 0 r ! 0�for

singular thermodynamics also at finite Tc!

h�i 6= 0

type II
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Phase diagram: type II

often the quantum phase transition is accompanied with the development of long-range order like 
ferromagnetism, antiferromagnetism, superconductivity etc.  (exceptions: topological transitions!)

expectation value of a local order parameter is finite h�i 6= 0

finite                   also at finite Th�i 6= 0

classical criticality develops on top of a 
quantum critical background

thermal critical fluctuations dominate only 
within a tiny Ginzburg regime 

type II

The remainder is  
controlled by the QCP!
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T

r
0

Scaling hypothesis for quantum critical thermodynamics

from dimensional analysis follows for the critical free energy density

energy scale

volume

d: spatial dimension

dimensionless ratios

for an arbitrary length    ⇠

scaling function 

effective dimensionality d+z

fcr =
⇠�z

⇠d
 ̃
⇣
⇠r/⇠, ⇠T /⇠

⌘
= ⇠�(d+z) 

⇣
r⇠1/⌫ , T ⇠z

⌘

phase diagram is two-dimensional:

critical free energy is a function of control parameter r and temperature T

depending on relative size of r and T choose length  ⇠

⇠T / T� 1
z

⇠r / |r|�⌫
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function 

low-T regime: choose ⇠ = ⇠r = |r|�⌫

fcr = |r|⌫(d+z) 
⇣
sgn(r), T |r|�⌫z

⌘

ground states on either side of the QCP  
might have different properties

 (±1, x) for small x constrained by the third law of thermodynamics,

 (±1, x) ⇠ x

z0
e

�1/x

 (±1, x) ⇠ x

y0+1• for a gapless ground state away from the QCP (e.g. a Fermi liquid): y0 > 0with

• for a gapped ground state (e.g. a Bose gas with chemical potential µ<0):

i.e., vanishing entropy at T=0: S(T = 0) = 0

T ⇠ |r|⌫z

Scaling hypothesis for quantum critical thermodynamics
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quantum critical regime: choose ⇠ = ⇠T = T�1/z

fcr = T
d+z
z  

⇣
rT�1/(⌫z), 1

⌘

function  (x, 1) analytic for small x:  (x, 1) =  (0, 1) + 0(0, 1)x+ ...

T ⇠ |r|⌫z

However, for a phase diagram with a finite Tc(r):

    :  specific heat exponent of the  
classical transition

scaling function develops a singularity at Tc > 0 

 (x, 1) ⇠ |x� 1|2�↵

↵

Scaling hypothesis for quantum critical thermodynamics
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low-T regime: choose ⇠ = ⇠r = |r|�⌫

fcr = |r|⌫(d+z) 
⇣
sgn(r), T |r|�⌫z

⌘

T ⇠ |r|⌫z

quantum critical regime: choose ⇠ = ⇠T = T�1/z

fcr = T
d+z
z  

⇣
rT�1/(⌫z), 1

⌘

T ⇠ |r|⌫z

Summary:
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quantum critical thermodynamics

two independent first order derivatives of the free energy

T

r
0

S = � @f

@T

variation of the free energy along the T-axis:

T

r
0

variation of the free energy along the tuning parameter r-axis:

e.g. for pressure tuning: r / p� pc

@f

@r
/ @f

@p
=

�V

V
volume change

e.g. for tuning by magnetic field: r / H �Hc

magnetization

entropy

@f

@r
/ @f

@H
= �µ0M
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quantum critical thermodynamics

three independent second order derivatives of the free energy

transition driven by e.g. pressure
r ⇥ p� pc

specific heat coefficient

thermal expansion

compressibility

magnetic field
r ⇥ H �Hc

specific heat coefficient

differential susceptibility

T derivative of magnetization

@2fcr
@T 2

@2fcr
@r2

@2fcr
@r@T

C/T = � @2f

@T 2
C/T = � @2f

@T 2

↵ =
1

V

@V

@T

���
p
=

@2f

@p@T
@M

@T
= � 1

µ0

@2f

@H@T

� =
@M

@H
= � 1

µ0

@2f

@H2 = � 1

V

@V

@p

���
T
= �@2f

@p2
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close to classical transition
single distinguished direction

divergence with the same exponent

Ccr ⇥ �cr ⇥ ⇥cr ⇥ |T � Tc|��

close to the quantum critical point

two independent directions: r = pressure and T

C, α and κ yield complementary information

specific heat, thermal expansion, compressibility
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enhancement of entropy close to quantum critical point

� � ⇥S

⇥r

thermal expansion measures slope

thermal expansion α  
changes sign

vanishing thermal expansion              positions of accumulated entropy

entropy distribution in the phase diagram

QCP
r ~ p-pc

entropy S(r)

for pressure tuning

accumulation of entropy along the phase boundary

sign change close to Tc

in the presence of a finite Tc
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entropy distribution in the phase diagram

consider: change of entropy S

�S

�T

�S

�r



Markus Garst SFB/TR 49 International School, March 2016

entropy distribution in the phase diagram

consider: change of entropy S

specific heat 
coefficient

thermal expansion

� =
1
V

⇥V

⇥T
= � 1

V

⇥S

⇥p

Maxwell relation

C/T =
@S

@T
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Grüneisen parameter & magnetocaloric effect

Grüneisen parameter � =
�

C
ratio of thermal expansion & specific heat

away from any quantum phase transition: Γ is constant and is a measure for the pressure 
dependence of the characteristic energy scale (Debye energy, Fermi energy etc.)

at a QCP  
tuned by pressure: Γ changes sign and necessarily diverges with characteristic exponents

for a QCP tuned e.g. by magnetic field:

�H = �@M/@T

C
=

1

T

dT

dH

���
S

magnetic analogue:
magnetocaloric effect

adiabatic change of temperature  
upon changing H

dS =
@S

@H

���
H
dH +

@S

@T

���
T
dT = 0

obtained using
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Grüneisen parameter & magnetocaloric effect

quantum critical regime: T ⇠ |r|⌫z

 (x, 1) =  (0, 1) + 0(0, 1)x+ ...

fcr = T
d+z
z  

⇣
rT�1/(⌫z), 1

⌘

with for small x

specific heat:

thermal expansion or dM/dT:
@2fcr
@T@r

⇠ T
d
z�

1
⌫z

Ccr = �T
@2fcr
@T 2

⇠ T
d
z

at the QCP (r=0):

Grüneisen parameter or  
magnetocaloric effect at r=0:

� ⇠ 1

T
1
⌫z

diverges with exponent 1/(νz)
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T ⇠ |r|⌫z

Grüneisen parameter & magnetocaloric effect

specific heat:

thermal expansion:

e.g. for a system with a gapless ground state for T->0:

Grüneisen parameter for T->0:

low-T regime:
fcr = |r|⌫(d+z) 

⇣
sgn(r), T |r|�⌫z

⌘

with constant A and y0>0.

fcr = �A|r|⌫(d+z)(T |r|�⌫z)y0+1

Ccr = �T
@2fcr
@T 2

= A(y0 + 1)y0|r|⌫(d+z)�⌫z(y0+1)T y0

r = (p� pc)/p0with

diverges with 1/(p-pc)  
with universal prefactor  
that is given by exponents

↵cr =
@2fcr
@p@T

= A(y0 + 1)T y0(⌫d� ⌫zy0)|r|⌫(d+z)�⌫z(y0+1)�1 @|r|
@p

� =
↵cr

Ccr
=

⌫d� ⌫zy0
y0

1

|r|
@|r|
@p

=
⌫d� ⌫zy0

y0

1

p� pc
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Examples: Sign change and divergence of the Grüneisen parameter

heavy-fermion compound CeNi2Ge2

Küchler et al. PRL (2003)

spin dimer system TlCuCl3

heavy-fermion YbRh2(Si1-xGex)2

Küchler, Gegenwart Tokiwa et al. PRL 2009

Grüneisen parameter magnetocaloric effect

Johannsen et al. PRL (2005) Lorenz et al. JMMM (2007)

helimagnetic metal MnSi

Science (2007)

absence of sign change in  
thermal expansion -> NO QCP
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Dilute weakly-interacting Bose gas



Markus Garst SFB/TR 49 International School, March 2016

Dilute weakly interacting Bose gas

complex bosonic field       governed by the Lagrangian

L = �⇤(i~@t +
~2r2

2m
+ µ)�� u

2
|�|4

�

bosons with mass m and chemical potential µ that interact with amplitude u > 0

Mean-field theory

consider constant field configuration �(~r, t) ⌘ �

effective potential

V = �µ|�|2 + u

2
|�|4

V

quantum phase transition at µ = 0

Bose-Einstein condensation of bosons  
tuned by the chemical potential

recovers free Schrödinger equation

non-linearity, 
interaction of bosons

0



Markus Garst SFB/TR 49 International School, March 2016

Mean-field theory

for negative chemical potential µ < 0:

potential minimised for � = �⇤ = 0 uncondensed phase

for positive chemical potential µ > 0:

mean-field attains finite value |�|2 =
µ

u Bose condensed phase

solutions are degenerate: � =

r
µ

u
ei' defined up to a phase factor

mean-field ground-state energy: "0 = V
���
min

=

⇢
0 if µ < 0

�µ2

2u if µ > 0

V

at the QCP: 
non-analyticity of the ground-state energy  
as a function of µ = tuning parameter
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Scaling exponents

comparing chemical potential with kinetic energy with momentum p ⇠ ~/⇠µ

~2
2m⇠2µ

⇠ µ ⇠µ ⇠ ~p
2m|µ|

⇠ |µ|�⌫ correlation length  
exponent ⌫ =

1

2

comparing temperature with kinetic energy with momentum p ⇠ ~/⇠T

~2
2m⇠2T

⇠ kBT ⇠T ⇠ ~p
2mkBT

⇠ T�1/z

thermal length

dynamical exponent z = 2

Attention:
For the BEC quantum phase transition in spatial dimension            the knowledge of the exponents  
ν and z is not sufficient to determine the phase diagram! 

The scaling hypothesis does not apply due to the presence of  
the “dangerously irrelevant interaction  u”.

d > 2
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Self-consistent Hartree-Fock approximation

explicit calculation: renormalization of the chemical potential at finite T>0

mean-field decoupling of the interaction:

renormalization of µ

evaluation of the expectation value at finite T>0:

self-consistency

Bose function

phase transition occurs for µR=0 critical temperature Tc(µ)

Tc ⇠
⇣µ
u

⌘2/3 explicitly dependent on the  
interaction u!

h|�|2i = n / ⇠�3
T ⇠ T 3/2

density of bosons = inverse thermal volume 
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Phase diagram

phase diagram of the dilute Bose gas in spatial dimension d=3

T ⇠ (�µ)⌫z = �µ

crossover

dilute Bose gas

quantum critical  
regime

Bose-Einstein condensate

line of classical  
phase transitions

Tc ⇠
⇣µ
u

⌘2/3
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Generalized scaling & upper critical dimension

the presence of the scaling                     can also be rationalised in terms of a  
generalised scaling Ansatz 

Tc ⇠
⇣µ
u

⌘2/3

with 4 - (d+z) being the scaling dimension of the interaction u

It is irrelevant, i.e., it can be treated quasi-perturbatively as long as the effective dimension d+z 
exceeds the upper critical dimension 4:

d+ z > 4

With the choice of the thermal wavelength: ⇠ = T�1/z and z=2 and ν=1/2

fcr = T
d+2
2  (

µ

T
, 1, u T (d�2)/2)

Close to the classical transition  
the scaling function possesses the singularity  (x, 1, z) ⇠ |x+ z|2�↵

Tc ⇠
⇣µ
u

⌘2/d

d > 2
z=2

for d=2 logarithmic corrections 
(BKT transition)

fcr = ⇠�(d+z) (µ ⇠1/⌫ , T ⇠z, u ⇠4�(d+z))
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critical free energy (in d=3)

The asymptotic T dependence of the critical free energy is mostly not affected by the interaction u:

dilute Boltzmann gas

fcr ⇠
kBT

⇠3T
e

µ
kBT ⇠ T 5/2e

µ
kBT

quantum critical

fcr ⇠
kBT

⇠3T
⇠ T 5/2

Bogoliubov gas (not covered here) 

fcr ⇠
kBT

⇠3T

⇣T
µ

⌘3/2
⇠ T 4

µ3/2

classical criticality with O(2) universality

fcr ⇠ |T � Tc(µ)|2�↵
specific heat exponent α

in addition to T-independent  

ground state energy �µ2

2u

perturbative correction due  

to interaction un2 ⇠ uT 3


