Introduction to Quantum Phase Transitions

Part I

Literature:

- S. Sachdev and B. Keimer, Phys. Today 64, 29 (2011).
- Quantum phase transitions, S. Sachdev (Cambridge University Press)
- Thermal and Quantum Phase transitions, M. Vojta, Les Houches Lecture Notes, <u>http://statphys15.inln.cnrs.fr</u>
- Fermi-liquid instabilities at magnetic quantum phase transitions
 H. V. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).
- Focus Issue on Quantum Phase Transitions, Nat Phys, 4, 167-204 (2008)

Outline:

• Introduction:

definition, scaling exponents, scaling hypothesis, phase diagram, thermodynamics

- Dilute weakly interacting Bose gas
- Insulating spin-dimer antiferromagnets

•

Introduction

Definition of a quantum phase transition (QPT):

At a QPT the ground state energy exhibits a nonanalyticity as a function of an external control parameter.

First-order QPT: level crossing

simple example: free spin 1/2 in a magnetic field \square Hamiltonian $H=-g\mu_B \vec{S} \vec{B}$

energy spectrum

$$F = -k_B T \log(e^{g\mu_B B/(2k_B T)} + e^{-g\mu_B B/(2k_B T)})$$
$$= k_B T \Psi\left(\frac{g\mu_B B}{2k_B T}\right)$$

with scaling function $\Psi(x) = -\log(e^x + e^{-x})$

First-order QPT: level crossing

simple example: free spin 1/2 in a magnetic field \square Hamiltonian $H=-g\mu_B \dot{SB}$

energy spectrum

 $F = -k_B T \log(e^{g\mu_B B/(2k_B T)} + e^{-g\mu_B B/(2k_B T)})$ $= k_B T \Psi\left(\frac{g\mu_B B}{2k_B T}\right)$

with scaling function $\Psi(x) = -\log(e^x + e^{-x})$

First-order QPT: level crossing

simple example: free spin 1/2 in a magnetic field \longrightarrow Hamiltonian $H=-g\mu_BSB$

free energy

$$F = -k_B T \log(e^{g\mu_B B/(2k_B T)} + e^{-g\mu_B B/(2k_B T)})$$
$$= k_B T \Psi\left(\frac{g\mu_B B}{2k_B T}\right)$$

with scaling function $\Psi(x) = -\log(e^x + e^{-x})$

spin expectation value

transition point at T=O, i.e., the quantum critical point (QCP) is characterised by critical continuum of excitations

Example: (with energy gap away from the QCP)

tuning parameter r vanishes at the QCP: r=0

e.g. for tuning by pressure $r \propto p - p_c$, for tuning by magnetic field $r \propto H - H_c$, etc.

transition point at T=O, i.e., the quantum critical point (QCP) is characterised by critical continuum of excitations

Example: (with energy gap away from the QCP)

tuning parameter r vanishes at the QCP: r=0

e.g. for tuning by pressure $r \propto p - p_c$, for tuning by magnetic field $r \propto H - H_c$, etc.

critical continuum of excitation characterised by scales that diverge at the QCP

at T=0 diverging length scale

$$\xi_r \propto |r|^{-
u}$$
 correlation length exponent u

at T=0 diverging time scale

$$au \propto \xi_r^z \propto |r|^{-
u z}$$
 dynamical exponent z

Heisenberg uncertainty principle: vanishing energy scale $\varepsilon_r \propto \xi_r^{-z} \propto |r|^{\nu z}$ e.g. excitation gap in the above example comparing vanishing energy scale with temperature T: equivalent to comparing length scales:

 $T \sim \varepsilon_r \propto |r|^{\nu z}$ $\xi_T \sim \xi_r$

with thermal length

Although quantum phase transition only occurs at T=0 thermal excitation of the critical continuum determine the finite T properties!

ightarrow anomalous behaviour of observable quantities at finite T!

often the quantum phase transition is accompanied with the development of long-range order like ferromagnetism, antiferromagnetism, superconductivity etc. (exceptions: topological transitions!)

 \Rightarrow expectation value of a local order parameter is finite $\langle\Phi
angle
eq 0$

type I

singular thermodynamics only at the QCP: T=r=0 often the quantum phase transition is accompanied with the development of long-range order like ferromagnetism, antiferromagnetism, superconductivity etc. (exceptions: topological transitions!)

 \Longrightarrow expectation value of a local order parameter is finite $\langle\Phi
angle
eq 0$

type II

finite $\left< \Phi \right>
eq 0$ also at finite T

QCP is the endpoint of a line of classical phase transitions $T_c(r) \rightarrow 0$ for $r \rightarrow 0^-$

 \Rightarrow singular thermodynamics also at finite T_c!

often the quantum phase transition is accompanied with the development of long-range order like ferromagnetism, antiferromagnetism, superconductivity etc. (exceptions: topological transitions!)

 \Longrightarrow expectation value of a local order parameter is finite $\langle\Phi
angle
eq 0$

type II

finite $\left< \Phi \right>
eq 0$ also at finite T

classical criticality develops on top of a quantum critical background

thermal critical fluctuations dominate only within a tiny Ginzburg regime

The remainder is controlled by the QCP!

Scaling hypothesis for quantum critical thermodynamics

phase diagram is two-dimensional:

critical free energy is a function of control parameter r and temperature T

from dimensional analysis follows for the critical free energy density d: spatial dimension for an arbitrary length $\,\xi\,$

depending on relative size of r and T choose length ξ

Scaling hypothesis for quantum critical thermodynamics

function $\Psi(\pm 1, x)$ for small x constrained by the third law of thermodynamics, i.e., vanishing entropy at T=0: S(T = 0) = 0

ullet for a gapless ground state away from the QCP (e.g. a Fermi liquid): $\Psi(\pm 1,x)\sim x^{y_0+1}$ with $y_0>0$

• for a gapped ground state (e.g. a Bose gas with chemical potential µ<0): $\Psi(\pm 1,x) \sim x^{z_0} e^{-1/x}$

Scaling hypothesis for quantum critical thermodynamics

quantum critical regime: choose $\xi = \xi_T = T^{-1/z}$ $f_{cr} = T^{\frac{d+z}{z}} \Psi\left(rT^{-1/(\nu z)}, 1\right)$

function $\Psi(x,1)$ analytic for small x: $\Psi(x,1) = \Psi(0,1) + \Psi'(0,1)x + \dots$

However, for a phase diagram with a finite $T_c(r)$:

scaling function develops a singularity at $T_c > 0$

$$\Psi(x,1) \sim |x-1|^{2-\alpha}$$

 $\alpha\colon$ specific heat exponent of the classical transition

Summary:

low-T regime:

choose
$$\xi=\xi_r=|r|^{-
u}$$

$$f_{\rm cr} = |r|^{\nu(d+z)} \Psi\left(\operatorname{sgn}(r), T|r|^{-\nu z}\right)$$

quantum critical regime: choose $\xi = \xi_T = T^{-1/z}$ $f_{cr} = T^{\frac{d+z}{z}} \Psi\left(rT^{-1/(\nu z)}, 1\right)$

Markus Garst

two independent first order derivatives of the free energy

variation of the free energy along the T-axis:

$$S = -\frac{\partial f}{\partial T} \qquad \qquad \text{entropy}$$

variation of the free energy along the tuning parameter r-axis: e.g. for pressure tuning: $r \propto p - p_c$ $\frac{\partial f}{\partial r} \propto \frac{\partial f}{\partial p} = \frac{\Delta V}{V}$ volume change

e.g. for tuning by magnetic field: $\,r \propto H - H_c\,$

$$\frac{\partial f}{\partial r} \propto \frac{\partial f}{\partial H} = -\mu_0 M$$
 magnetization

three independent second order derivatives of the free energy

transition driven by e.g.	pressure $r \sim p - p_c$	magnetic field $r \sim H - H_c$
$\frac{\partial^2 f_{\rm cr}}{\partial T^2}$	specific heat coefficient $C/T = -\frac{\partial^2 f}{\partial T^2}$	specific heat coefficient $C/T = -\frac{\partial^2 f}{\partial T^2}$
$\frac{\partial^2 f_{\rm cr}}{\partial r \partial T}$	thermal expansion $\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \Big _p = \frac{\partial^2 f}{\partial p \partial T}$	T derivative of magnetization $\frac{\partial M}{\partial T} = -\frac{1}{\mu_0} \frac{\partial^2 f}{\partial H \partial T}$
$\frac{\partial^2 f_{\rm cr}}{\partial r^2}$	$\begin{aligned} & compressibility \\ & \kappa = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _T = -\frac{\partial^2 f}{\partial p^2} \end{aligned}$	differential susceptibility $\chi = \frac{\partial M}{\partial H} = -\frac{1}{\mu_0} \frac{\partial^2 f}{\partial H^2}$

close to classical transition

single distinguished direction

 $C_{\rm cr} \sim \alpha_{\rm cr} \sim \kappa_{\rm cr} \sim |T - T_c|^{-\alpha}$

divergence with the same exponent

close to the quantum critical point

consider: change of entropy S

consider: change of entropy S

Grüneisen parameter $\Gamma = \frac{\alpha}{C}$ ratio of thermal expansion & specific heat

away from any quantum phase transition: Γ is constant and is a measure for the pressure dependence of the characteristic energy scale (Debye energy, Fermi energy etc.)

at a QCP tuned by pressure:

Γ changes sign and necessarily diverges with characteristic exponents

for a QCP tuned e.g. by magnetic field:

$$\text{magnetic analogue:} \quad \Gamma_H = -\frac{\partial M/\partial T}{C} = \frac{1}{T} \frac{dT}{dH} \Big|_S$$

magnetocaloric effect

adiabatic change of temperature upon changing H

obtained using

$$dS = \frac{\partial S}{\partial H} \Big|_{H} dH + \frac{\partial S}{\partial T} \Big|_{T} dT = 0$$

quantum critical regime:

$$f_{\rm cr} = T^{\frac{d+z}{z}} \Psi\left(rT^{-1/(\nu z)}, 1\right)$$

with
$$\Psi(x,1) = \Psi(0,1) + \Psi'(0,1)x + \dots$$
 for small x

at the QCP (r=0):

specific heat:

$$C_{\rm cr} = -T \frac{\partial^2 f_{\rm cr}}{\partial T^2} \sim T^{\frac{d}{z}}$$

thermal expansion or dM/dT:

$$\frac{\partial^2 f_{\rm cr}}{\partial T \partial r} \sim T^{\frac{d}{z} - \frac{1}{\nu z}}$$

Grüneisen parameter or magnetocaloric effect at r=0:

$$\Gamma \sim \frac{1}{T^{\frac{1}{\nu z}}}$$

diverges with exponent 1/(vz)

low-T regime:

$$f_{\rm cr} = |r|^{\nu(d+z)} \Psi\left(\operatorname{sgn}(r), T|r|^{-\nu z}\right)$$

e.g. for a system with a gapless ground state for T->0:

$$f_{\rm cr} = -\mathcal{A}|r|^{\nu(d+z)} (T|r|^{-\nu z})^{y_0+1}$$

with constant A and $y_0>0$.

specific heat:

$$C_{cr} = -T \frac{\partial^2 f_{cr}}{\partial T^2} = \mathcal{A}(y_0 + 1) y_0 |r|^{\nu(d+z) - \nu z(y_0+1)} T^{y_0}$$
thermal expansion:

$$\alpha_{cr} = \frac{\partial^2 f_{cr}}{\partial p \partial T} = \mathcal{A}(y_0 + 1) T^{y_0} (\nu d - \nu z y_0) |r|^{\nu(d+z) - \nu z(y_0+1) - 1} \frac{\partial |r|}{\partial p}$$

Grüneisen parameter for T->0:

diverges with 1/(p-p_c) with universal prefactor that is given by exponents

Examples: Sign change and divergence of the Grüneisen parameter

Markus Garst

SFB/TR 49 International School, March 2016

Dilute weakly-interacting Bose gas

Dilute weakly interacting Bose gas

bosons with mass m and chemical potential μ that interact with amplitude u > 0

Mean-field theory

consider constant field configuration $~\phi(\vec{r},t)\equiv\phi$

effective potential

$$\mathcal{V} = -\mu |\phi|^2 + \frac{u}{2} |\phi|^4$$

Bose-Einstein condensation of bosons tuned by the chemical potential

for negative chemical potential $\mu < 0$: potential minimised for $\phi = \phi^* = 0$ \square uncondensed phase for positive chemical potential $\mu > 0$: mean-field attains finite value $|\phi|^2 = \frac{\mu}{u}$ \square Bose condensed phase solutions are degenerate: $\phi = \sqrt{\frac{\mu}{u}}e^{i\varphi}$ defined up to a phase factor

mean-field ground-state energy:
$$\varepsilon_0 = \mathcal{V}\Big|_{\min} = \begin{cases} 0 & \text{if } \mu < 0 \\ -\frac{\mu^2}{2u} & \text{if } \mu > 0 \end{cases}$$

at the QCP: non-analyticity of the ground-state energy as a function of μ = tuning parameter

comparing chemical potential with kinetic energy with momentum $\ p \sim \hbar/\xi_{\mu}$

$$\frac{\hbar^2}{2m\xi_{\mu}^2} \sim \mu \quad \Longrightarrow \quad \xi_{\mu} \sim \frac{\hbar}{\sqrt{2m|\mu|}} \sim |\mu|^{-\nu} \qquad \begin{array}{c} \text{correlation length} \\ \text{exponent} \end{array} \quad \nu = \frac{1}{2} \end{array}$$

comparing temperature with kinetic energy with momentum $p \sim \hbar/\xi_T$

$$\frac{\hbar^2}{2m\xi_T^2} \sim k_B T \quad \Longrightarrow \quad \xi_T \sim \frac{\hbar}{\sqrt{2mk_BT}} \sim T^{-1/z}$$
 dynamical exponent $z = 2$ thermal length

Attention:

For the BEC quantum phase transition in spatial dimension d > 2 the knowledge of the exponents v and z is not sufficient to determine the phase diagram!

The scaling hypothesis does not apply due to the presence of the "dangerously irrelevant interaction u".

explicit calculation: renormalization of the chemical potential at finite T>O mean-field decoupling of the interaction:

explicitly dependent on the interaction u!

phase diagram of the dilute Bose gas in spatial dimension d=3

Generalized scaling & upper critical dimension

the presence of the scaling $T_c \sim \left(\frac{\mu}{u}\right)^{2/3}$ can also be rationalised in terms of a generalised scaling Ansatz

$$f_{\rm cr} = \xi^{-(d+z)} \Psi(\mu \, \xi^{1/\nu}, T \, \xi^z, u \, \xi^{4-(d+z)})$$

with 4 - (d+z) being the scaling dimension of the interaction u

It is irrelevant, i.e., it can be treated quasi-perturbatively as long as the effective dimension d+z exceeds the upper critical dimension 4:

$$d+z>4 \qquad \qquad z=2 \\ \Rightarrow \qquad d>2$$

With the choice of the thermal wavelength: $\xi = T^{-1/z}$ and z=2 and v=1/2

$$rightarrow f_{\rm cr} = T^{\frac{d+2}{2}} \Psi(\frac{\mu}{T}, 1, u \, T^{(d-2)/2})$$

Close to the classical transition the scaling function possesses the singularity $\Psi(x,1,z)\sim |x+z|^{2-\alpha}$

$$T_c \sim \left(rac{\mu}{u}
ight)^{2/d}$$
 for d=2 logarithmic corrections (BKT transition)

The asymptotic T dependence of the critical free energy is mostly not affected by the interaction u:

dilute Boltzmann gas

$$f_{\rm cr} \sim \frac{k_B T}{\xi_T^3} e^{\frac{\mu}{k_B T}} \sim T^{5/2} e^{\frac{\mu}{k_B T}}$$

 $f_{\rm cr} \sim \frac{k_B T}{\xi_T^3} \sim T^{5/2}$

perturbative correction due to interaction $un^2 \sim uT^3$

Bogoliubov gas (not covered here) $f_{
m cr} \sim rac{k_B T}{\xi_T^3} \Big(rac{T}{\mu}\Big)^{3/2} \sim rac{T^4}{\mu^{3/2}}$ in addition to T-independent ground state energy $-rac{\mu^2}{2\mu}$

classical criticality with O(2) universality

 $f_{
m cr} \sim |T-T_c(\mu)|^{2-lpha}$ specific heat exponent a

Markus Garst