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Why are quantum phase transitions interesting?
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Outline:

e Tntroduction:
definition, scaling exponents, scaling hypothesis,
phase diagram, thermodynamics

® Dilute weakly interacting Bose gas

* Insulating spin-dimer antiferromagnets
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Introduction

SO

Markus Garst SFB/TR 49 International School, March 2016



Definition of a quantum phase transition (QPT):

At a QPT the ground state energy exhibits a non-
analyticity as a function of an external control
parameter.
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First-order QPT: level crossing

simple example: free spin 1/2 in a magnetic field [— > Hamiltonian H = —gupSB

energy spectrum free energy
level crossing
€ ) “ at zero field B=0 " F— —kBTlOg(eg'uBB/(QkBT) 4 e—g,uBB/(QkBT))
& 7 — kT w (28D
\ G \ — B 2kgT
| // iH
> : ° & with scaling function ¥(x) = —log(e” + e~ %)
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First-order QPT: level crossing

simple example: free spin 1/2 in a magnetic field [— > Hamiltonian H = —gupSB

energy spectrum free energy
level crossing
€ ) .‘ at zero field B=0 e F— _kBTlog(eguBB/(QkBT) + e—g,uBB/(QkBT))
| LS é/ B
O * g/’LB
= kgT'V
2kgT
| 1
= % < & with scaling function ¥ (x) = —log(e” + e~ ")
phase diagram spin expectation value
- both states are
It thermally occupied <Sz>4 sharp jump at T=0
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Continuous QPT

oo

transition point at T=0, i.e., the quantum critical point (QCP) is characterised by
critical continuum of excitations

Example: (with energy gap away from the QCP)

spectrum for a finite size system spectrum for a infinite system
) |
|

b
¢ excited states #’

. energy gap
: : avoided ‘rher'modynamlc i
L , vanishes as || — 0

<= |evel crossing limi con‘r!nuu.m of

/_\ imit excitations
\ groundstate

e ) -
x E——— —) o) o =
o ¥
quantum critical

point (QCP)

tuning parameter r vanishes at the QCP: r=0
e.g. for tuning by pressure r o< p — p., for tuning by magnetic field » <« H — H., eftc.
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Continuous QPT
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Continuous QPT: diverging length and time scales

critical continuum of excitation characterised by scales that diverge at the QCP

at T=0 diverging length scale

—v
S?" X ‘7“| correlation length exponent L/

at T=0 diverging time scale

T X & o |r| 7Y dynamical exponent 2

Heisenberg uncertainty principle: vanishing energy scale &£, X fr_z X "I“|VZ

e.g. excitation gap in the above example
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Consequences at finite T: phase diagram

comparing vanishing energy scale with temperature T: T ~ e, |fr“l/z
equivalent to comparing length scales: Er ~ &,
1
: Er T =
with thermal length
phase diagram:
temperature T A}
| R » T~ r|7F
quantum critical
regime crossover
low-T B low-T
regime < regime
v/
' - ) r
© tuning parameter
QCP
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Consequences at finite T: phase diagram

Although quantum phase transition only occurs at T=0
thermal excitation of the critical continuum determine the finite T properties!

[— > anomalous behaviour of observable quantities at finite T!

")

| |
Thermodynamics

controlled by the QCP

\ '
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Phase diagram: type I

often the quantum phase transition is accompanied with the development of long-range order like
ferromagnetism, antiferromagnetism, superconductivity etc. (exceptions: topological transitions!)

[ > expectation value of a local order parameter is finite (®) # 0

type I

singular thermodynamics only
at the QCP: T=r=0

1%&&)%
7 e
(®) # 0

only at T=0
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Phase diagram: type II

often the quantum phase transition is accompanied with the development of long-range order like
ferromagnetism, antiferromagnetism, superconductivity etc. (exceptions: topological transitions!)

[ > expectation value of a local order parameter is finite (®) # 0

type I1

classical phase
transition T¢(r)

A

QCP is the endpoint of a line of classical
phase transitions T.(r) — 0 forr — 0"

[ > singular thermodynamics also at finite Tl

-5 |

finite (®) # 0 also at finite T
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Phase diagram: type II

often the quantum phase transition is accompanied with the development of long-range order like
ferromagnetism, antiferromagnetism, superconductivity etc. (exceptions: topological transitions!)

[ > expectation value of a local order parameter is finite (®) # 0

type I1

A

classical criticality develops on top of a
quantum critical background

thermal critical fluctuations dominate only
within a tiny Ginzburg regime

The remainder is

controlled by the QCP!

- T

finite (®) # 0 also at finite T
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Scaling hypothesis for quantum critical thermodynamics

T 1
bl ép T
phase diagram is two-dimensional: . ,
Er o< ||

- ol &
0]

critical free energy is a function of control parameter r and temperature T

from dimensional analysis follows for the critical free energy density d: spatial dimension

for an arbitrary length &

/ scaling function \

energy scale \

=S (6 /sr/6) = (ret 1)

volume \ / \

dimensionless ratios effective dimensionality d+z

o /

depending on relative size of r and T choose length &

fer

Markus Garst SFB/TR 49 International School, March 2016



Scaling hypothesis for quantum critical thermodynamics

. —v T T~ r|”
low-T regime:  choose & = &, = |r| 3
\

> ( = [+ w (san(r), Tlr| ™) _
A
\

ground states on either side of the QCP
might have different properties

function W(41,x) for small x constrained by the third law of thermodynamics,

i.e., vanishing entropy at T=0: S(1T'=10) =0

e for a gapless ground state away from the QCP (e.g. a Fermi liquid): \If(jtl, :13) ~ % ith Yo > 0

e for a gapped ground state (e.g. a Bose gas with chemical potential p<0): W (+1,z) ~ 70 e~ /@
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Scaling hypothesis for quantum critical thermodynamics

quantum critical regime:  choose & = &7 = T-1/7 )

= ( fo =T (rTH00)

function W(x,1) analytic for small x: U(z,1)=(0,1)+9'(0,1)x + ...

However, for a phase diagram with a finite T¢(r):

4

scaling function develops a singularity at Tc> 0

U(z,1) ~ |z -1

«: specific heat exponent of the
classical transition
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Summary:

T 1} T~ |r["*

low-T regime:  choose & = &,. = |r|™"
| fer = W (sgn(r), T | ) |
quantum critical regime:  choose & = &p = T 1/7 g T ~ [r[”

> foo = T w (17109 1)
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quantum critical thermodynamics

two independent first order derivatives of the free energy

T

4{

variation of the free energy along the T-axis:

of

5= o

entropy

variation of the free energy along the tuning parameter r-axis:

eg. for pressure tuning: 7" X P — D¢

of _of _AV

or  Oop V

volume change

e.g. for tuning by magnetic field: 7" X H—-H,

of 0Of

—— X —— = —uoM magnetization

or OH
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quantum critical thermodynamics

three independent second order derivatives of the free energy

transition driven by e.qg. pressure magnetic field
"~ P —De r~H — H,
azf specific heat coefficient specific heat coefficient
@T;r C/T:_ﬁ C/T:_ﬁ
017 017
5 thermal expansion T derivative of magnetization
8fcr a:ia_v :82f 8_M__1 (92][
OrdT VoTlp OpdT oT g OHOT
0° f compressibility differential susceptibility
> oo LoV _ 0 _ oM _ 10
Or - Voplr  0Op? X_E?H_ Lo OH?
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specific heat, thermal expansion, compressibility

close to classical transition

oo

single distinguished direction

Ccr ~ Qcr ™~ Rer ©Y ’T — Tc‘_a

divergence with the same exponent

two independent directions: r = pressure and T

|

C, a and k yield complementary information
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entropy distribution in the phase diagram

enhancement of entropy close to quantum critical point

o \
entropy S(r) thermal expansion measures slope

0S

o~

or

—>» thermal expansion a
* ™ r~p-pc changes sign
QCP

for pressure tuning

vanishing thermal expansion <«—» positions of accumulated entropy

in th sen inite T '
! e presence of a finite Te accumulation of entropy along the phase boundary

E> sign change close to T
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entropy distribution in the phase diagram

consider: change of entropy S

0S5
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entropy distribution in the phase diagram

consider: change of entropy S

- specific heat T — 5’_3
\ 4\ coefficient C/ oT
thermal expansion
T _lov_ 19S
- vor _\ V Op
Maxwell relation
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Grineisen parameter & magnetocaloric effect

@84
Griineisen parameter | =— —  ratio of thermal expansion & specific heat

away from any quantum phase transition: I' is constant and is a measure for the pressure
dependence of the characteristic energy scale (Debye energy, Fermi energy etc.)

at a QCP

tuned by pressure: I" changes sign and necessarily diverges with characteristic exponents

for a QCP tuned e.g. by magneftic field:

(9M/(9T 1 dT magnetocaloric effect
C = T d—H o adiabatic change of temperature

upon changing H

magnetic analogue: ['py = —

obtained using

0S 0S
ds_ﬁ_HHdH+6_TTdT_O

Markus Garst SFB/TR 49 International School, March 2016



Grineisen parameter & magnetocaloric effect

quantum critical regime: T T~ |r|”

fcr — TCHZ_Z \P(TT_l/(Vz)y 1)

with ¥(z,1) =¥(0,1) + ¥'(0,1)z + ... for small x

at the QCP (r=0):

O for
specific heat: Cop =T 81{2 ~ T%
thermal expansion or dM/dT O for ss
ermal expansion or . ~J z vz
P OT Or

Griineisen parameter or ' ~ : :
: diverges with exponent 1/(vz
magnetocaloric effect at r=0: . verges wi Po (vz)
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Grineisen parameter & magnetocaloric effect

low-T regime: T~ |r|™

-
\
e

fer = r[*@+2) (sgn(r), TIr|~)

e.g. for a system with a gapless ground state for T->0:

for = = Al (T 5o

with constant A and yo>0.

0? for
specific heat: Ccr = T 01{; — A(yO 4+ 1)y0‘T‘I/(d—i-Z)—I/Z(yO—Fl)TyO
82fcr 1% zZ)—vz — 8|T|

thermal expansion: Qer = dpdT = A(yo + 1)TY° (vd — vzyo)|r| (d+z)—vlyo+]) 13—p

Grineisen parameter for T->0:
diverges with 1/(p-pc)

T = Ger _ vd —vzyo 1 8‘7“‘ _ vd —vzyo 1 with universal prefactor
Ccr Yo ’7“’ ap T Yo D — De that is given by exponents
|

with 7= (P —pc)/po
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Examples: Sign change and divergence of the Griineisen parameter

oo

heavy-fermion compound CeNizGe: heavy-fermion YbRhz(Si1-xGex)2
s Griineisen parameter maghetocaloric effect
b ;3 R T D00 s igmissimpaapiie e
m | .
J o 0 1000 . x=1 .- } f 4 8""'{ r 1 Ty
1.6 i of TN i 750 I YbRh,(Si_Ge), | . ~ Y
oy - Y 6 1 \ | C ‘ p ‘ ‘t_ 2l il
o . 100 ¥ { ~
v 14F % o 8 . i o X=0 )
‘?9 - , L, 500} @ s x=005 4
: 2 = '
3 T 250 | A =
1016 b | 'rjﬂl
0} > ) ]
0.8 i 4"‘-.-M
o J ‘01 T (K) 1 -
T (K) E4)
Kiichler et al. PRL (2003) Kichler, Gegenwart Tokiwa et al. PRL 2009
spin dimer system TICuCl3 helimagnetic metal MnSi
o * O PR [ N et ] absence of sign change in
o~ 010 St B . 45T .
S - . 45T | HFan R thermal expansion -> NO QCP
) S 25 . =
s 6 é ‘\‘ %
g S Ul < Non-Fermi Liquid Metal Without
3 g of " < Quantum Criticality
E "Wy J 410 451'_." % € Mciderer, ™ P. Bni," T. Keller,™* WL K. Risller, A Resch’
e 8,10, 12,14, 16T] s v 43T ° Science (2007)
0 5 10 0 5 10 0 1

Temperature (K) Temperature (K)

Johannsen et al. PRL (2005) Lorenz et al. TMMM (2007)
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Dilute weakly-interacting Bose gas

SO

Markus Garst SFB/TR 49 International School, March 2016



Dilute weakly interacting Bose gas

complex bosonic field ¢ governed by the Lagrangian

recovers free Schrodinger equation

-

\_

h V2

e
P

2m

) . .
non-linearity,

| ,u)gb _ g‘¢‘4 —1 interaction of bosons

J

bosons with mass m and chemical potential py that interact with amplitude u> 0

Mean-field theory

consider constant field configuration ¢(7,t) = ¢

effective potential

(

V= —ulo)?

U, 4
19

Vi

.
: J\/”
T

| 9 | -\

0|
quantum phase transition at p= 0

Bose-Einstein condensation of bosons
tuned by the chemical potential
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Mean-field theory

for negative chemical potential p < O:

y
b /v potential minimised for ¢ = ¢* =0 [ > uncondensed phase
"{ \/\/ for positive chemical potential p> O:
| . L 2 M
¢! mean-field attains finite value |¢|° = . :> Bose condensed phase
solutions are degenerate: ¢ = Feiv defined up to a phase factor
u

{O if u<O

mean-field ground-state energy: €0 = V‘ ) e if >0

min

at the QCP:
non-analyticity of the ground-state energy

as a function of p = tuning parameter

QLY
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Scaling exponents

comparing chemical potential with kinetic energy with momentum p ~ ﬁ/flu

h? h
2m§ﬁNM =

~ ],u| Y correlation length 1

\/Qm],u| exponent V=5

comparing temperature with kinetic energy with momentum p ~ h / fT

h2 h .
~ ] > ~ ~ [ /
2m§% ol fT \/2kaT I dynamical exponent 2z — 2

thermal length

Attention:

For the BEC quantum phase transition in spatial dimension d > 2 the knowledge of the exponents
v and z is not sufficient to determine the phase diagram!

The scaling hypothesis does not apply due to the presence of
the “"dangerously irrelevant interaction u”.
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Self-consistent Hartree-Fock approximation

oo

explicit calculation: renormalization of the chemical potential at finite T>0

mean-field decoupling of the interaction:

T - \ 2 ‘+ ¢ \ ey \%
SN I B L AL RN Aty
—

—) PP W i@
) ) \ =g &cvl' ‘,h eI ANy,
E> renormalization of p e deeng S0 woadim
< .
2 AR I TR T Y Bose function
: : .. R A s A
evaluation of the expectation value at finite T>0: - = e 2w \EE
\‘:\.Z'T:'d Qj’\"z.k. 'YW‘ - A

L self-consistency

N t
e ., T
O = =%+ WM |2 ——es Sulc itdion et = X

(191) = n o &® ~ T2
density of bosons = inverse thermal volume

Cedy \,t._

explicitly dependent on the
interaction ul
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Phase diagram

oo

phase diagram of the dilute Bose gas in spatial dimension d=3

crossover

T~ (=) =—p

dilute Bose gas

quantum critical
regime

line of classical
phase transitions

< - - -

Bose-Einstein condensate

(P> =0 ok To

acp
e

>y

<Q>= ‘/u. ak T=0
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Generalized scaling & upper critical dimension

. 2/3 T
the presence of the scaling T. ~ (%) can also be rationalised in ferms of a
generalised scaling Ansatz

for = X FU(n Y, T u g~ 1F)

with 4 - (d+z) being the scaling dimension of the interaction u

It is irrelevant, i.e., it can be treated quasi-perturbatively as long as the effective dimension d+z
exceeds the upper critical dimension 4:

z=2
( d+z >4 =  d > 2

With the choice of the thermal wavelength: & = T and z=2 and v=1/2
at2 o H d—2)/2
I:> fcr:T 2 \Ij(falauT( )/ )

Close to the classical transition 2—«
the scaling function possesses the singularity \IJ(CE, L, Z) |$ T Z|
E> T ~ (H) 2/d " for d=2 logarithmic corrections
© U (BKT transition)
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critical free energy (in d=3)

The asymptotic T dependence of the critical free energy is mostly not affected by the interaction u:

\

> =0

> =0

> =0

> =0

-

&Y= VY, & T-o0

o

*o

—

&= Vi ok Teo

oy

*o

—

&y = Vi ok T-0

>t

s

>t

dilute Boltzmann gas

kgl & o
Jer ~ BS eFBT ~ TP/ 2e%pT
T

quantum critical

kBT perturbative corre;‘rlon due ;
to interaction UL v ul’

Bogoliubov gas (not covered here)

]CBT T 3/2 T4 in addition to T-independent
~ S B — 2
fcr S% ( L ) Iu3/2 ground state energy —’;L—u

classical criticality with O(2) universality

Jor ~ [T — Tc(ﬂ)|2_a specific heat exponent a

Markus Garst

SO

SFB/TR 49 International School, March 2016



