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Outline:

Mott insulators and the Hubbard model
spin liquids and U(1) gauge theories
Chiral spin liquids
Quantum dimer model

Lecture notes with full details of the derivations will be provided.
Some additional material not included here will be also
discussed there. First (incomplete) version will become
available at the homepage of the student seminar next week
(possibly on Monday).



Band theory of solids

Gap

= Fermi energy

Metal Insulator

= wavevector

Response to small external perturbation



Landau Fermi liquid theory
Effective quantum field theory of interacting Fermi systems

Quasi-particle concept: one-to-one correspondence between particles
in a free electron gas and elementary excitations in the interacting
Fermi systems

}

Non-interacting Fermi system at T=0

Interacting Fermi system at T=0

Lev Landau
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Mott insulators

Band structure calculations predict metallic behavior in
some materials, which is contradicted by experiments
Failure of one-particle theory =⇒ Many-body theory of
interacting systems is necessary
Landau Fermi liquid theory describes well the metallic
behavior of interacting systems, but is insufficient to deal
with Mott insulators
Paradigmatic model for Mott insulators: Hubbard model

H = −t
∑
〈i,j〉

∑
σ

f †iσfjσ − µ
∑
i,σ

niσ + U
∑
i

ni↑ni↓

niσ ≡ f †iσfiσ U > 0



Mott insulators

Schematic picture of half-filled band (or, more generally,
one electron per unit cell):

Band theory does not forbid double occupancy, provided
electrons have opposite spin:

=⇒ predicts metallic behavior
Double occupancy is actually forbidden for U � t



Mott-Hubbard metal-insulator transition

Typically a Mott insulator is magnetically ordered

U> 0Uc

n(  )ε

εF

kF
Z

ε

1

}

AFMetal

Uc ∼ t



Mott insulators

Fermionic Hubbard model at half-filling =⇒ Metal-Mott
insulator transition
Bosonic Hubbard model at integer filling =⇒
Superfluid-Mott insulator transition
Insulating phase: Interaction driven gapped excitations,
unbroken U(1) symmetry
Superfluid phase: Interaction driven gapless excitations,
broken U(1) symmetry
Metallic phase: Fermi surface, unbroken U(1) symmetry
Spin liquid: Mott insulator without broken symmetries and
with fractionalized excitations



Symmetries of the Hubbard model

Particle-hole symmetry at half-filling, i.e., 1
L

∑
j,σ〈njσ〉 = 1, and

bipartite lattices:

U(1) symmetry: fjσ → eiθfjσ, f†jσ → eiθf†jσ



Symmetries of the Hubbard model

SU(2) spin symmetry: S =
∑

j Sj , where Sj = 1
2ψ
†
j~σψj ,

with ψj = [fj↑ fj↓]
T and ~σ = (σx, σy, σz) =⇒ [S, H] = 0

SU(2) pseudo-spin symmetry (valid for bipartite lattices):
J =

∑
j e

Q·RjJj , where Jj = 1
2η
†
j~σηj , with ηj = [fj↑ f

†
j↓]

T

=⇒ [J, H] = 0

Full symmetry of the Hubbard model is
SO(4) = SU(2)× SU(2)

The SO(4) symmetry allowed to complete the exact
solution for the one-dimensional Hubbard model by
obtaining the full excitation spectrum; see book by Essler,
Frahm, Göhmann, Klümper, and Korepin, The
one-dimensional Hubbard model (Cambridge University
Press, 2005)
Strong-coupling (U � t) limit of the Hubbard model:
Heisenberg antiferromagnet⇒ H = 2t2

U

∑
〈i,j〉 Si · Sj



Symmetries of the Hubbard model

Hubbard model in bipartite lattices at half-filling: µ = U/2
(exact)
Proof: particle-hole transformation fiσ → eiQ·Rif †iσ,
f †iσ → eiQ·Rifiσ,

H ′ = U − 2µ− t
∑
〈i,j〉

∑
σ

f †iσfjσ + (µ− U)
∑
σ

niσ + U
∑
i

ni↑ni↓

µ = U/2 =⇒ H ′ = H. If F and F ′ are the free energy
densities associated to Hamiltomians H and H ′,

n = −∂F
∂µ

, 2− n = −∂F
′

∂µ

µ = U/2 =⇒ n = 2− n =⇒ n = 1



Mean-field theory for the Hubbard model

At half-filling the Hubbard Hamiltonian can be rewritten as

H = −t
∑
〈i,j〉

∑
σ

f †iσfjσ −
2U

3

∑
i

S2
i

Magnetic (mean-field) ground states: 〈Sj〉 = m (FM) or
〈Sj〉 = eiQ·Rjm (AF)
Due to nesting, AF instabilities arise at half-filling, so an AF
ordered ground state is favored (lower energy) over a FM
ground state. Away from half-filling a FM ground state is
favored
Spin liquid mean-field ground states (more later) arise in a
square lattice with nearest neighbor hopping and half-filling
only when generalizing SU(2)→ SU(N), with N
sufficiently large.



Hubbard-Stratonovich transformation:

H = −t
∑
〈i,j〉

∑
σ

f†iσfjσ − U
∑
i

mi · Si +
3U

8

∑
i

m2
i

Staggered magnetization: mi = eiQ·Rim. The SU(2) symmetry allows
us to choose m = mẑ without loss of generality.

A B A

A

A A

BB

B

Mean-field Hamiltonian: HMF =
∑

k,σ ψ
†
kσMkσψkσ + 3UL

8
m2

ψkσ =

[
ckσ

c̄kσ

]
, ψ†kσ =

[
c†kσ c̄†kσ

]
, Mkσ =

[
−σUm

2
εk

εk
σUm

2

]



Energy spectrum: E±k = ±
√
ε2
k + ∆2, where ∆2 ≡ U2m2/4

Ground state energy density: E0 = − 2
L

∑′
kE

+
k + 3

2U∆2

∂E0
∂m = 0 =⇒ 3

2U =
∫

d2k
(2π)2

1√
ε2k+∆2

=
∫ 0
−4t dε

1√
ε2+∆2

Approximate form of the density of states in two
dimensions: ρ(ε) ≈ ln(t/ε)

4π2t
(see lecture notes)

Solution of gap equation:

∆ = 2π2t exp

(
−
√

12t

U

)

At half-filling mean-field theory yields an AF ground state
for all U > 0 =⇒ no metal-insulator transition at finite U ,
i.e., Uc = 0



Disordering Mott insulators
Our mean-field theory fails to describe a metal-insulator
transition with Uc 6= 0. Quantum fluctuations around the
mean-field solution are expected to destroy the AF order at
weak-coupling. We will give an example with long-range
Coulomb interaction in a honeycomb lattice (i.e.,
interacting graphene), where the gap has the form
∆ ∼ exp

(
−const

√
t

U−Uc

)
, such that the system becomes

metallic for U < Uc, when the gap vanishes. However, such
a system features an excitonic condensate for U > Uc
rather than an AF phase (this is a consequence of the
long-range Coulomb interaction). In this case it is not the
SU(2) symmetry that is being spontaneously broken, but
the so-called chiral symmetry. The chiral symmetry will
also be important in our study of U(1) spin liquids.
Important question: can a Mott insulator also be disordered
in the strong-coupling regime?



Disordering Mott insulators

Tight-binding in a honeycomb lattice:
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Disordering Mott insulators
Tight-binding in a honeycomb lattice:

fiσ =

{
ciσ, i ∈ A

c̄iσ, i ∈ B

H0 =
∑

k,σ ψ
†
kσMkψkσ

a1 = ŷ, a2 =

√
3

2
x̂− 1

2
ŷ

a3 = −
√

3

2
x̂− 1

2
ŷ

ψkσ =

[
ckσ

c̄kσ

]
, ψ†kσ =

[
c†kσ c̄†kσ

]
, Mk =

[
0 −tϕk

−tϕ∗k 0

]

ϕk =
∑3

i=1 e
ik·ai = eiky + 2 cos

(√
3

2 kx

)
e−iky/2

Energy eigenvalues:

Ek = ±t

√√√√1 + 4 cos2

(√
3

2
kx

)
+ 4 cos

(√
3

2
kx

)
cos

(
3

2
ky

)



The spectrum Ek has (independent) nodes at k1 = 4π

3
√

3
x̂ and

k2 = 2π

3
√

3
x̂− 2π

3
ŷ

Expanding the tight-binding Hamiltonian around the nodes:

H0 ≈ −t
∑
k,σ

∑
i=1,2

ψ†k+ki,σ
Mk+kiψk+ki , σ

ϕk+k1 ≈
3

2
(−kx + iky), ϕ∗k+k1

≈ 3

2
(−kx − iky),

ϕk+k2 ≈
3eiπ/3

2
(−kx − iky), ϕ∗k+k2

≈ 3e−iπ/3

2
(−kx + iky)

Define ψ1σ(k) = [ck+k1,σ c̄k+k1,σ]T and
ψ2σ(k) = [eiπ/3c̄k+k2,σ ck+k2,σ]T

=⇒ H0 ≈ 3t

2

∑
k,σ

∑
i=1,2

ψ†iσ(k)

[
0 kx − iky

kx + iky 0

]
ψiσ(k)

= vF
∑
k,σ

∑
i=1,2

ψ†iσ(k)k · ~σψiσ(k)

Here vF ≡ 3t/2 and ~σ = σxx̂ + σyŷ



Four-component Dirac fermion representation: Ψσ = [ψ1σ ψ2σ]T ,
Ψ̄σ = Ψ†γ0

Dirac γ matrices:

γ0 =

(
σz 0

0 −σz

)
, γ1 =

(
iσy 0

0 −iσy

)
, γ2 =

(
−iσx 0

0 iσx

)

Dirac Lagrangian: L0 = Ψ̄i /∂Ψ (Dirac “slash” notation: /Q = γµQµ);
∂µ = (∂t, vF∇) and /∂ = γ0∂t − vf~γ · ∇
=⇒ massless Dirac fermions

Action including Coulomb interaction:

HCoulomb =
U

2

∑
α,β

∫
d2r

∫
d2r′Ψ̄α(r)γ0Ψα(r)

1

|r− r′| Ψ̄β(r′)γ0Ψβ(r′)

U ≡ e2/ε



=⇒ 1/r interaction (like in 3D) in 2D, instead of ln r. We
are assuming that the 2D system is embedded in a 3D
world and feels electromagnetic forces of it (e.g.,
interacting graphene). Later we will show (in the context of
spin liquids) that even if a ln r is used, screening effects
caused by quantum fluctuations ultimately make it 1/r

Fourier transform of 1/r in 2D: F(1/r) = 2π/|k|
Lagrangian after a Hubbard-Stratonovich transformation:

L = Ψ̄(i /∂ − Uγ0A0)Ψ +
1

2
A0
√
−∇2A0

=⇒ Fermionic sector like in QED2+1 with vanishing spatial
components of gauge field: Aµ = (A0, 0, 0).
Electromagnetic energy is nonlocal: ∝ E · 1√

−∇2
E instead

of ∝ E2

We will see later that a U(1) spin liquid features a QED2+1

having all components of the (emergent) gauge field
nonzero.



The Lagrangian density has a chiral symmetry

ψ → eiγ3,5θψ

γ3 =

(
0 I

I 0

)
, γ5 =

(
0 I

−I 0

)
I is a 2× 2 identity matrix.
=⇒ Metal-insulator transition induced by spontaneous
chiral symmetry breaking
In the insulator phase there is an excitonic condensate,
〈Ψ̄σΨσ〉 =

∑
i=1,2〈(c

†
k+ki,σ

ck+ki,σ − c̄
†
k+ki,σ

c̄k+ki,σ)〉
This can be viewed as a pseudo-spin condensate for each
actual spin σ: aiσ,↑ = ck+ki,σ aiσ,↓ = c̄k+ki,σ



Schwinger-Dyson equation: G−1 = G−1
0 + Σ

Σ =

Analytical form in imaginary time:

iγ0p0Z0(p) + vF i~γ · pZ1(p) + Σ(p)

= i /p+ g2

∫
d3k

(2π)3
|k|γ0[Σ(k − p) + iγ0(k0 − p0)Z0(k − p) + vF i~γ · (k− p)Z1(k − p)]γ0

[Z2
0 (k − p)(k0 − p0)2 + Z2

1 (k − p)v2
F (k− p)2 + Σ2(k − p)]|k| .

g2 = 2πU

self-consistent equations:

Σ(p) = g2

∫
d3k

(2π)3

|k + p|Σ(k)

[Z2
0 (k)k2

0 + Z2
1 (k)v2k2 + Σ2(k)]|k + p| ,

Z0(p) = 1 +
g2

p0

∫
d3k

(2π)3

|k + p|k0

[Z2
0 (k)k2

0 + Z2
1 (k)v2k2 + Σ2(k)]|k + p| ,

Z1(p) = 1− g2

p2

∫
d3k

(2π)3

|k + p|p · k
[Z2

0 (k)k2
0 + Z2

1 (k)v2k2 + Σ2(k)]|k + p| .



Approximation: Z0(k) ≈ 1 and Z1(k) ≈ 1 inside the
integrals =⇒ self-consistency only for Σ(k)

Approximation to solve the gap equation: Σ(k) ≈ Σ(0)

Σ(0) = g2Σ(0)

∫
d3k

(2π)3

1

[k2
0 + v2

Fk
2 + Σ2(0)]|k|

Solution: Σ(0) = Λe−2πvF /U = Λe−3πt/U =⇒ non-analytic in
U ; once more, Uc = 0

Too naive! =⇒ This would mean that any interaction, no
matter how small, would make graphene an insulator...
Better approximation: Σ(p) ≈ Σ(0,p), i.e., we ignore the
frequency dependence of the selfenergy.



After integrating over the frequency, the gap equation
becomes

Σ(0,p) =
g2

8π2

∫
d2k

Σ(0,k)√
k2 + Σ2(0,k)|k + p|

Notation: σ(k) ≡ Σ(0,k), where should be understood as

|p| and not as |p| =
√
p2

0 + v2
Fp

2 as before

Thus, after performing the angular integrations,

σ(p) =
g2

4πp

∫ p

0
dk

kσ(k)√
k2 + σ2(k)

+
g2

4π

∫ Λ

p
dk

σ(k)√
k2 + σ2(k)

Converting in a differential equation:

d

dp

[
p2dσ(p)

dp

]
= − 2λpσ(p)√

p2 + σ2(p)
, λ ≡ g2/(8πvF )



Linearized regime:

d

dp

[
p2dσ(p)

dp

]
= −2λσ(p)

Ansatz: σ(p) = Apα

Boundary condition: pdσdp
∣∣∣
p=Λ

= −σ(Λ)

Solution:

σ(p) =
A
√
p

sin

{√
8λ− 1

2
ln

[
p

σ(0)

]}
λ ≡ g2/(8π)

σ(0) = Λ exp
(
− 2π√

8λ−1

)
= Λ exp

(
−π
√

3t
U−3t/4

)
=⇒ Uc = 3t/4



Remarks:

U ≤ Uc =⇒ semi-metal phase (Dirac cones)
U > Uc =⇒ excitonic insulator phase
Similar to the inverse correlation length (gap) in the
Berezhinsky-Kosterlitz-Thouless transition:
ξ−1 ∼ exp

(
− const√

T−Tc

)
σ(0) ∼ 〈Ψ̄αΨα〉
By computing fluctuation corrections to the Coulomb
interaction, the value of Uc gets modified to (see lecture
notes)

Uc =
6t

8− πN
Here N comes from generalizing the number of spin
degrees of freedom from 2 to N . The above result implies
that a gap can only be generated
if N < Nc = 8/π ≈ 2.55



Disordering Mott insulators
Spin liquid: a Mott insulator with no broken symmetries that has
fractionalized excitations

Theoretically subtle: Mott insulators tend to order at low temperatures.
Sometimes Mott insulators can be tuned to a paramagnetic state by
competing interactions, but break the symmetries of the lattice. Ex: a
valence-bond solid (Read and Sachdev, 1989)

p
c

p

Experimentally elusive, despite some promising recent
experiments



Disordering Mott insulators

Conflicting numerical (Monte Carlo) results for the
(short-range interacting) Hubbard model on a honeycomb
lattice:
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Disordering Mott insulators

Types of frustration in a Heisengerg AF:

?
  or

Geometric frustration

J

K

Competing exchange interactions

Group theoretic frustration: SU(2) −→ SU(N), with N
large enough to stabilize the spin liquid



U(1) spin liquid

Heisenberg AF on a square lattice:

H = J
∑
〈i,j〉

Si · Sj

Si = 1
2
f†iα~σαβfiβ Local constraint: f†iαfiα = 1

σaαβσ
a
γδ = 2δαδδβγ − δαβδγδ

H = −J
2

∑
〈i,j〉 f

†
iαfjαf

†
jβfiβ + const

SU(N) generalization: rescaling J → J/N , constraint f†iαfiα = N/2

Hubbard-Stratonovich transformation:

H =
∑
〈i,j〉

(
N

J
|χij |2 − χijf†iαfjα + h.c.

)
Lagrangian in imaginary time:
L =

∑
j [fjσ(∂τ + iλj)fjσ − (N/2)iλj ] +H

Local gauge invariance: fjσ → eiθjfjσ, χij → ei(θi−θj)χij ,
λj → λj − ∂τθj



U(1) spin liquid
Saddle-point solution at large N (π-flux phase):

χij = χ0e
iθij

∑
P={ijkl}

θP = π

π

π

−π

−π



U(1) spin liquid

For any plaquette:

χ1 = χj,j+êx , χ2 = χj+êx,j+êy ,

χ3 = χj+êx+êy ,j+êy , χ4 = χj+êy ,j

Rewriting the MF Hamiltonian:

H = −
∑
j∈A

∑
σ

(
χ1c̄
†
j+êx,σ

cjσ + χ∗4c̄
†
j+êy ,σ

cjσ + h.c.
)

−
∑
j∈B

(
χ∗3c
†
j+êx,σ

c̄jσ + χ2c
†
j+êy ,σ

c̄jσ + h.c.
)

+
NL

J

(
|χ1|2 + |χ2|2 + |χ3|2 + |χ4|2

)
.



U(1) spin liquid
In momentum space:

H =
∑
k

′ [
c†kσ c̄†kσ

] [ 0 |χ| (cos k1 + i cos k2)
|χ| (cos k1 − i cos k2) 0

] [
ckσ
c̄kσ

]
Spectrum: E±(k) = ±|χ|

√
cos2 kx + cos2 ky



U(1) spin liquid

Linearizing near the nodes (π/2, π/2) (1) and (−π/2, π/2)
(2):

H '
∑
k

′ [
c†1kσ c̄†1kσ c†2kσ c̄†2kσ

]{
−|χ|k1

[
τ1 0
0 −τ1

]

+|χ|k2

[
τ2 0
0 τ2

]}
c1kσ

c̄1kσ

c2kσ

c̄2kσ


=⇒ Dirac fermions once more!
Phase fluctuations: χlm = χeiAlm

Effective quantum field theory: L =
∑N

α=1 ψ̄α( /∂ + i /A)ψα
=⇒ QED in 2+1 spacetime dimensions



U(1) spin liquid

The mean-field theory yields a Mott insulator without broken
symmetries (no local order parameter) and fractionalized excitations
represented by the Dirac fermions (spinons)

It is fractionalized in the sense that, differently from an AF-ordered Mott
insulator, the (spinon) excitations have spin 1/2. In contrast, magnons in
an antiferromagnet are spin 1 excitations =⇒ AF magnons fractionalize
into spinon excitations. The spin falls apart.

If true, the magnetization is composed by more fundamental building
blocks (like quarks in QCD), the spinons, which deconfine in the large
N limit

Confinement/deconfinement physics arises because the U(1) group is
compact (Polyakov, 1977), since the gauge field is a phase, and
therefore must be periodic.

Question: can spinons still be deconfined at lower values of N? This is
the problem of the stability of U(1) spin liquids [Hermele et al., PRB 70,
214437 (2004); Nogueira and Kleinert, PRL 95, 176406 (2005); PRB
77, 045107 (2008)]



U(1) spin liquid

Note that the gauge field in spin liquid QED (or better,
“quantum spinodynamics”) is emergent
Just like in our discussion of interacting graphene, the field
theory of U(1) spin liquid has also a chiral symmetry
The key to the stability of the U(1) spin liquid relies on two
important aspects:

1 Chiral symmetry breaking: if there is a regime where the
chiral condensate, 〈ψ̄αψα〉 is nonzero, then the staggered
magnetization 〈ψ̄α~σαβψβ〉 is also nonzero.

2 Compactness of the gauge field and the nature of spinon
confinement



U(1) spin liquid

Integrating out the fermions: Seff = −NTr ln( /∂ + i /A)

Aµ-propagator is obtained by expanding the effective
action up to quadratic order in Aµ (assuming d spacetime
dimensions):

Seff ≈
1

2

∫
ddp

(2π)d
Σµν(p)Aµ(p)Aν(−p),

where

Σµν(p) = −N
∫

ddk

(2π)d
tr[γµG0(k)γνG0(p− k)]

Fermionic propagator: G0(p) = − i /p
p2



U(1) spin liquid

Current conservation implies pµΣµν(p) = 0. Thus,

Σµν(p) = p2Π(p)

(
δµν −

pµpν
p2

)
After some calculation detailed in the lecture notes, we obtain

Π(p) = Nc(d)|p|d−4, c(d) =
8Γ(2− d/2)Γ2(d/2)

(4π)d/2Γ(d)

For d = 2 + 1,

Π(p) =
N

8|p|

Gauge field propagator in the Landau gauge:

Dµν(p) =
1

Nc(d)|p|d−2

(
δµν −

pµpν
p2

)



U(1) spin liquid

Wilson loop:

WC =

〈
exp

(
−ie0

∮
C

dxµAµ(x)

)〉
In the lattice this corresponds to ∼ 〈χijχjkχklχli〉 around a closed loop

Asymptotic behavior for a large time span T :W ∼ e−TV (R)

Integrating out Aµ yields

lnW(C) = − (d− 2)Γ(d)

4Γ3(d/2)Γ(2− d/2)N

∮
C×C

dxµdyµ
|x− y|2

For large T the main contribution comes from the integral,∫ T

0

dt

∫ T

0

du
1

(t− u)2 +R2
= 2T

[
arctan(T/R)

R
+
R

T
ln

(
R√

R2 + T 2

)]
≈

T�R

πT

R
+ 2 ln

(
R

T

)
.



=⇒ NV (R) ≈ −π(d− 2)a(d)

24R

[
1 +

2R

T
ln

(
R

T

)]
,

a(d) = 6Γ(d)

Γ3(d/2)Γ(2−d/2)

For d = 2 + 1 we have a(3) = 96/π2 ≈ 9.73

Comparison with Lüscher’s string model [M. Lüscher, Nucl. Phys. B
180, 317 (1981)]:

V (R) ≈ τsR−
(d− 2)π

24R

τs = string tension

x
1

x
2

x
d

ss

Only the coefficient of 1/R is universal: just make a scale
transformation for T and R to see this



Spontaneous chiral symmetry breaking

Schwinger-Dyson equation:

G−1(p) = G−1
0 (p) +

∫
d3k

(2π)3
γµG(p− k)γνDµν(k),

where

G(p) =
1

i /pZ(p) + Σ(p)
=

Σ(p)− i /pZ(p)

Z2(p)p2 + Σ2(p)

Self-consistent equations:

Σ(p) =
16

N

∫
d3k

(2π)3

Σ(k)

[Z2(k)k2 + Σ2(k)]|k + p|

Z(p) = 1− 8

Np2

∫
d3k

(2π)3

[k2 − p2 + (k + p)2](k + p) · pZ(k)

[Z2(k)k2 + Σ2(k)]|k + p|3



Differential equations:

d

dp

[
p2dΣ(p)

dp

]
= − 8

π2N

p2Σ(p)

Z2(p)p2 + Σ2(p)

d

dp

[
p4dZ(p)

dp

]
=

8

π2N

p4Z(p)

Z2(p)p2 + Σ2(p)

Boundary conditions:

lim
p→0

pΣ(p) = 0, p
dΣ(p)

dp

∣∣∣∣
p=Λ

= −Σ(Λ)

p
dZ(p)

dp

∣∣∣∣
p=Λ

= 3[1− Z(Λ)]

Positivity of the spectral representation implies
0 < Z(0) ≤ 1



Approximate DE for the self-energy:

d

dp

[
p2dΣ(p)

dp

]
= − 8

π2N

p2Σ(p)

p2 + Σ2(0)

Approximate solution:

Σ(p) = Σ(0)2F1

[
1

4
− i

4
γ,

1

4
+

i

4
γ;

3

2
;− p2

Σ2(0)

]

γ =

√
32

π2N
− 1

Solution in the regime p2 � Σ2(0):

Σ(p) ≈ |C|
4

√
πΣ3(0)

p
cos

{
γ

2
ln

[
p

Σ(0)

]
+ θ

}

θ = arccos

(
C + C∗

2|C|

)
, C =

Γ(iγ/2)(1 + iγ)

Γ2
(

5
4 + iγ4

)



The boundary conditions imply

Σ(0) = Λ exp

(
−2π

γ

)
=⇒ vanishes for N ≥ Nc = 32/π2 ≈ 3.24

chiral symmetry is broken for N = 2 =⇒ no stable spin liquid in the
SU(2) case =⇒ AF state

Approximate solution for Z(p) is more easily obtained from its integral
equation, which is equivalent to the DE

Approximate form of the integral equation:

Z(p) ≈ 1− 8

3π2N

[∫ Λ

p

dkk

k2 + Σ2(0)
+

1

p3

∫ p

0

dkk4

k2 + Σ2(0)

]
Solution:

Z(p) = 1 +
8

3π2N

{
ln

[√
p2 + Σ2(0)

Λ

]
− 1

3

+
Σ2(0)

p2
− Σ3(0)

p3
arctan

[
p

Σ(0)

]}



U(1) spin liquid and Compact QED

Chiral symmetry breaking gives a mass to the spinons.
This change the dynamics of the emergent gauge field.
Vacuum polarization for massive Dirac fermions:

Π(p) =
N

4πp2

[
m+

(p2 − 4m2)

2|p|
arctan

(
|p|
2m

)]
m ≡ Σ(0)

Low-energy Maxwell theory:

LM =
1

4g2
F 2
µν

Fµν = ∂µAν − ∂νAµ
g2 ≡ 12πm/N

Recall that the gauge field is supposed to be compact
=⇒ Compact QED2+1



U(1) spin liquid and Compact QED

What does compact U(1) in continuum limit means?

Flux quantization (open surface) Flux quantization (closed surface)∫
S d

~S · (∇× ~A) = 2πn/e
∮
S d

~S · (∇× ~A) = 2πn/e
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Monopole

Example: Superconductor, Abrikosov vortices Example: Magnetic monopoles



U(1) spin liquid and Compact QED

Action of compact QED2+1 in the lattice (Polyakov,1977):

S = − 1

2g2

∑
i,µ,ν

cos(Fiµν)

For a lattice superfluid with lattice action
SSF =

∑
τ

[
1
2

∑
i(∆τθi(τ))2 − ρs

∑
i,j cos(θi(τ)− θj(τ))

]
the

topological defects are vortices, which at zero temperature are point
defects in (1 + 1)D and line loops in (2 + 1)D. For compact QED2+1 the
topological defects in are points called instantons (= magnetic
monopoles in spacetime)

In contrast to Polyakov’s case, in our case only the spatial components
of the gauge field are periodic, since the A0 (time) component
corresponds to the Lagrange multiplier enforcing the single occupancy
constraint. Thus, −∞ < Ai0 <∞, 0 ≤ Aij ≤ 2π. However, we will show
that both theories lead to the same dual theory describing a field theory
of instantons. This will allow us to make A0 also periodic.



U(1) spin liquid and Compact QED
Villain form of the action =⇒ write the Fourier representation:

ec cos x =

∞∑
n=−∞

In(c)einx

and use In(c) ∼ e−n
2/(2c) for c→∞

=⇒ ec cos x ∼
∑∞
n=−∞ e

−n2/(2c)+inx ∼
∑∞
m=−∞ e

− c
2

(x−2πm)2 with help
of the Poisson formula

∞∑
n=−∞

f(n) =

∞∑
m=−∞

∫ ∞
−∞

dyf(y)ei2πmy

Rewriting the action:

S =
1

2g2

∑
i,l

[
(∆0Ail −∆lAi0 − 2πNil)

2 +

(∑
i,j

εij∆iAlj − 2πMl

)2]

where Nil and Ml are integer lattice fields

The Villain form is relatively easy to dualize



U(1) spin liquid and Compact QED

First step to the dual transformation:

S =
∑
l

[
g2

2
h2
lj − ihlj(∆0Alj −∆jAl0 − 2πNlj) +

g2

2
n2
l − inl

∑
i,j

εij∆iAlj

]

Integrating Al0 out yields the constraint
∑
j ∆jhij = 0

Solving the constraint: hij =
∑
l εjl∆lbi. We obtain,

S =
∑
i

g2

2

∑
j

(∑
l

εjl∆lbi

)2

+
g2

2
n2
i − i

∑
j,l

εjl∆lbi(∆0Aij − 2πNij)

− ini
∑
l,j

εlj∆lAij


Scalar field bi can be promoted to an integer field Li by means of the
Poisson formula, making Nij disappear



U(1) spin liquid and Compact QED

S =
∑
i

g2

2

∑
j

(∑
l

εjl∆lLi

)2

+
g2

2
n2
i − i

∑
j,l

εjl∆lLi∆0Aij

− ini
∑
l,j

εlj∆lAij


Integrating out Aij yields constraint:

∑
l εjl∆0∆lLi =

∑
l εjl∆lni, which

solves to ∆0Li = ni.

S =
∑
i

[
g2

2

∑
j

(∑
l

εjl∆lLi

)2

+
g2

2
(∆0Li)

2

]
Poissonizing once more converts Li to a scalar field ϕ:

S =
∑
i

g2

2

∑
j,l

(∆lϕi)
2 +

g2

2
(∆0ϕi)

2 − 2πiNiϕi





U(1) spin liquid and Compact QED
Dual theory is given by a sine-Gordon lattice action describing the
quantum dynamics of instantons:

SSG =
∑
i

[
g2

8π2
(∆µϕi)

2 − 2z cosϕi

]
−∞ < ϕi <∞ (ϕi is non-compact)

z = e−2π2c0/g
2

with c0 = 0.2527 is the fugacity of the instanton gas.

In the continuum limit we have

SSG =
( g

2π

)2
∫
d3x

[
1

2
(∂µϕ)2 −M2 cosϕ

]
M2 = (8π2/g2)z

The excitations of the sine-Gordon theory in (2+1)D are always gapped
=⇒ no phase transition!

Instantons are condensed⇐⇒ spinons are permanently confined

String tension =⇒ τs = 2g2M/π2



U(1) spin liquid and Compact QED

The dual theory is equivalent to a London model that
features instantons, rather than vortices.
London model with instantons is a Mott insulator, while the
London model of vortices is a superconductor

LLondon =
1

2
(∇× h)2 +

m2
h

2
h2

satisfying the constraint ∇ · h = 2π
mhg

ρI(x)

Instanton density: ρI(x) =
∑

i qiδ
3(x− xi) qi = ±q ∈ Z

In contrast to the London model of superconductors, mh

here is an arbitrary mass scale, which reflects the
topological nature of the problem
=⇒ Dual Meissner effect independent of (penetration)
length scale. We have here an example of topological dual
Meissner effect



U(1) spin liquid and Compact QED

Proof of equivalence to the sine-Gordon theory:
Partition function for a given monopole density,

Z(ρI) =

∫
DhDσ exp

(
−
∫
d3xL

)
,

where

L =
1

2
(∇× h)2 +

m2
h

2
h2 + iσ(∇ · h− 2πρI/mhg),

Integrating out h yields

S =
1

m2
h

∫
d3x

[
1

2
(∇σ)2 − i2πmh

g
σρI

]
Defining σ = gmhϕ/2π and summing over all instanton configurations
yields the sine-Gordon theory once more



U(1) spin liquid and Compact QED

Partition function:

Z =

∫
Dϕ exp

[
−1

2

( g

2π

)2
∫
d3r(∇ϕ)2

]∑
N

∑
{qj}

zN

2NN !

∫ ( N∏
j=1

d3rj

)
exp{i

∑
l

qlϕ(rl)}

Keeping only ±1 instantons:

Z =

∫
Dχ exp

[
−1

2

( g

2π

)2
∫
d3r(∇ϕ)2

]∑
N

(z)N

N !

[∫
d3r cosϕ

]N
=

∫
Dϕ exp

{
−
∫
d3r

[
1

2

( g

2π

)2

(∇ϕ)2 − z cosϕ

]}
. (1)



U(1) spin liquid and Compact QED

Debye-Hückel approximation:

LSG ≈
1

2

( g

2π

)2

(∇ϕ)2 + zϕ2

Correlation functions:

〈ϕ(p)ϕ(−p)〉 =
(2π/g)2

p2 +M2

〈ρI(p)ρI(−p)〉 =
( g

2π

)2 M2p2

p2 +M2

〈hµ(p)hν(−p)〉 =
1

p2 +m2
h

[
δµν −

(
1− M2

m2
h

)
pµpν

p2 +M2

]
Physical magnetic correlation function (Polyakov, 1977):

〈Hµ(p)Hν(−p)〉 = lim
mh→∞

g2m2
h〈hµ(p)hν(−p)〉 = g2

(
δµν −

pµpν
p2 +M2

)



U(1) spin liquid and Compact QED
Ways to stabilize the spin liquid:
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U(1) spin liquid and Compact QED
Bednorz und Müller (1986) S.-H. Lee et al., Nature Materials (August 2007)
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U(1) spin liquid and Compact QED

Compact Abelian Higgs model in (2+1)D:

S = −β
∑
i,µ

cos(∆µθi − qAiµ)− κ
∑
i,µ,ν

cos(Fiµν)

q ∈ N, κ ≡ 1/g2

q = 1 =⇒ no phase transition
q = 2 =⇒ spinon pairing, Ising universality class
Z2 spin liquid
κ→∞ =⇒ XY model
β →∞ =⇒ Zq gauge theory (q > 1)



U(1) spin liquid and Compact QED

Duality in 2+1 dimensions:

θi periodic =⇒ vortex loops
Aiµ periodic =⇒ instantons
Dual theory =⇒ field theory for a gas of vortex loops and
vortex lines with instantons attached at the ends
θi periodic, Aiµ non-periodic =⇒ vortex loops,
no instantons =⇒ superconductor universality class, no
matter the value of q



U(1) spin liquid and Compact QED
Phase diagram: [Smiseth,Smørgrav,Nogueira,Hove,Sudbø, PRL 89, 226403
(2002); PRB 67, 205104 (2003)]

1

10

1 10

β

κ

q=2 q=3 q=4 q=5

Confined

Deconfined

Confined phase: ordinary Mott insulator
Deconfined (Higgs) phase: fractionalized insulator
q = 3 =⇒ tricritical point



Chiral spin liquid

Hamiltonian: H = J1

∑
〈i,j〉 Si · Sj + J2

∑
〈〈i,j〉〉 Si · Sj

Hubbard-Stratonovich transformation:

H =
∑
〈i,j〉

(
N

J1
|χij |2 − χijf†iαfjα + h.c.

)
+
∑
〈〈i,j〉〉

(
N

J2
|χij |2 − χijf†iαfjα + h.c.

)

Mean-field Ansatz: π flux in plaquettes, π/2 flux in triangles

E±(k) = ±
√

4χ2
1(sin2 kx + sin2 ky) + 16χ2

2 cos2 kx cos2 ky



Chiral spin liquid

MF solution yields χ1 6= 0 and χ2 = 0 if J2/J1 < 1/2. Both χ1 and χ2

are nonzero when J2/J1 > 1/2

Chiral spin liquid (χ2 6= 0) breaks time-reversal symmetry =⇒ orbital
ferromagnetism

Gapped Dirac spectrum

The two-component Dirac spinors ψ1 and ψ2 have the same mass
m = 4χ2

Dirac γ matrices: γ0 = σz, γ1 = −iσx, and γ2 = iσy

Effective Dirac Lagrangian:

L =
∑
i=1,2

∑
α

ψ̄iα(i /∂ − J /a−m)ψiα

mass term breaks both parity and TR.
Parity transf.: ψ → γ1ψ, ψ̄ → −ψ̄γ1 =⇒ ψ̄ψ → −ψ̄ψ.
TR transf.: ψ → γ2ψ, ψ̄ → −ψ̄γ2 =⇒ ψ̄ψ → −ψ̄ψ



Chiral spin liquid

Integrating out the fermions generate a Chern-Simons term =⇒
topological field theory. Low-energy form of the CS term:

LCS =
N

4π

m

|m| εµνλa
µ∂νaλ

Vacuum polarization:

Σµν(p) = −2NJ2

∫
d3k

(2π)3
tr[γµG(k)γνG(p+ k)]

G(k) =
1

i /k +m
=

m− i /k
k2 +m2

CS term arises due to tr(γµγνγλ) = 2iεµνλ

The CS term is a topological term, since it is independent of the metric



Quantum dimer model

Hamiltonian (Kivelson, Rokhsar, and Sethna, 1987):

H =
∑
�

[
−t
(∣∣ rr rr〉 〈 rr rr∣∣+

∣∣ rr rr〉 〈 rr rr∣∣)
+ v

(∣∣ rr rr〉 〈 rr rr∣∣+
∣∣ rr rr〉 〈 rr rr∣∣)]

Useful property (not valid for actual spin singlet states):

(∣∣ rr rr〉 〈 rr rr∣∣+
∣∣ rr rr〉 〈 rr rr∣∣)2

=
∣∣ rr rr〉 〈 rr rr∣∣+

∣∣ rr rr〉 〈 rr rr∣∣
Set B� =

∣∣ rr rr〉 〈 rr rr∣∣+
∣∣ rr rr〉 〈 rr rr∣∣

=⇒ H =
∑
�

(−tB� + vB2
�)



Quantum dimer model

Introduce σzij such that σzij = +1 when a dimer is present in the bond
(i, j), and σzij = −1 when it is absent. Raising/lowering operators:
σ±ij = 1

2
(σxij ± iσyij)

Rewriting Hamiltonian:

H = −t
∑
�

(W� +W †�) + v
∑
�

(W�W
†
� +W †�W�)

W� = σ+
ijσ
−
jkσ

+
klσ
−
li

Gauge field: σ±ij = e
±iAij
√

2

=⇒ H =
∑
i,m,n

[
− t

2
cos(Fimn) +

v

8
cos(2Fimn)

]
[σzij , σ

±
ij ] = ±2σ±ijLongrightarrow σzij conjugate to Aij

S = is
∑
τ,j,n

σzjn∇τAjn +H.



Quantum dimer model

Lattice gauge theory action (valid both in d = 2 + 1 and
d = 3 + 1):

S = −
∑
i,τ,n

ln [cos(s∇τAin)]

+
∑
i,τ,m,n

[
− t

2
cos(Fimn) +

v

8
cos(2Fimn)

]
.

(Fimn = ∇mAin −∇nAim)
[F. S. Nogueira and Z. Nussinov, PRB 80, 104413 (2009)]



Quantum dimer model

Phase diagram for d = 2 + 1 (ρ = t− v):

M
i
x
e
d

T

ρ

VB liquid

KT transition line

Staggered

RK point

Plaquette VBS



Quantum dimer model

Dual model (d = 2 + 1, ρ = t− v):

L =
c

2
(∂τh)2 +

ρ

2
(∇h)2 +

1

2K
(∇2h)2 − z cos(2πh).

Kosterlitz-Thouless-like phase transition at T = 0 and for ρ = 0 (t = v);
no transition for T > 0 and ρ = 0. VBS state for ρ > 0 and staggered
VBS for ρ < 0; KT transition for T > 0 and ρ > 0

Dual model (d = 3 + 1) at the Rokhsar-Kivelson (t = v) point:

L̃ =
K

2
(∂τa)2 +

1

2c
(∇×∇× a)2 + |(∇− 2πia)ψ|2 + r|ψ|2 +

u

2
|ψ|4

First-order phase transition at T = 0; Second-order transition for T > 0

Dual model (d = 3 + 1) above the RK point (t > v):

L̃ρ>0 =
1

2
(∂τa)2 +

ρ

2c
(∇× a)2 + |(∇− 2πi

√
ρ a)ψ|2 + r|ψ|2 +

u

2
|ψ|4

T = 0: First-order transition; T > 0: Second-order transition



Conclusion

Is there a spin liquid?
In theory, yes, at least in some special models on
frustrated lattices, or regimes (large N , strong interactions)
in well-known models (Hubbard)
Experiments: promising
High-Tc superconductors? After more than 20 years, the
spin liquid lost some influence here...
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