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Abstract. Using a field-theoretic approach, we systematically generalize the usual semiclassical
approximation for a harmonically trapped ideal Bose gas in such a way that its range of applicability
is essentially extended. With this we can analytically calculate thermodynamic properties even for small
particle numbers. In particular, it now becomes possible to determine the critical temperature as well as
the temperature dependence of both heat capacity and condensate fraction in low-dimensional traps, where
the standard semiclassical approximation is not even applicable.

PACS. 03.65.Sq Semiclassical theories and applications — 03.75.Hh Static properties of condensates;
thermodynamical, statistical, and structural properties — 05.70.Ce Thermodynamic functions and equations

of state

1 Introduction

The field of ultracold Bose gases attains at present a lot
of attention due to an improved experimental accessibil-
ity within the last decade. Many different theoretical ap-
proaches are used to treat these trapped dilute quantum
gases. Although isolated Bose gases should, in principle, be
described within the micro-canonical ensemble, one com-
monly applies the technically more efficient canonical or
grand-canonical descriptions [1-20]. This is justified as ex-
periments often use a large number of bosons. It is a com-
mon belief in quantum statistics that, at least in the ther-
modynamic limit N—oo, all ensembles should converge to
one and the same result. However, we note that some pecu-
liar exceptions are known for particle counting statistics as
discussed, for instance, in references [20-22]. From a the-
oretical point of view, the grand-canonical ensemble has
the advantage that it provides an analytical description,
whereas the canonical approach is limited to numerical re-
sults for moderate particle numbers. As experiments with
ultracold Bose gases are always realised with a finite num-
ber of particles, the fundamental question arises how to
study finite-size effects for the thermodynamic properties
of trapped Bose gases most efficiently.

To analyse this problem systematically, we intro-
duce and compare two different approaches. In Sec-
tion 2 we briefly rederive the well-known grand-canonical

# e-mail: axel.pelster@uni-due.de

description without using the order parameter concept for
a harmonically confined ideal Bose gas. The thermody-
namic properties can only be calculated numerically in
this theory. In Section 3 we introduce another grand-
canonical description of the trapped Bose gas which is
analytical as it relies on the order parameter concept.
Introducing an order parameter is an essential approx-
imation for finite systems and leads to different results
for the respective thermodynamic quantities compared to
the theory without order parameter. However these dif-
ferences vanish in the thermodynamic limit and turn out
to be negligibly small for experimentally realistic system
sizes. Moreover, generalizing a formalism developed in
reference [23], Appendix 7A, this approach extends the
usual semiclassical approximation [1,2,13,16] to a system-
atic semiclassical expansion which yields yet unknown an-
alytical results for the thermodynamic quantities in the
superfluid phase. In particular, we will calculate the criti-
cal temperature T, as well as the temperature dependence
of the condensate fraction Ny/N and the heat capacity Cy
for D = 1,2, 3 dimensions up to the order of the semiclas-
sical expansion which was not accessible before.

2 Approach without order parameter

We start with briefly rederiving the well-known grand-
canonical description of an ideal Bose gas. The general
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expression for the grand-canonical potential of an ideal
Bose gas is given by [24]

ngOg[ —BE

where n describes the one-particle quantum numbers.
Here Ey,, 8 = 1/kgT, and u denote the energy levels of the
system, the inverse temperature, and the chemical poten-
tial, respectively. We specify equation (1) for the case of an
ideal Bose gas which is trapped in an isotropic harmonic
potential of the form V(x) = Mw?x?/2, where M and w
denote the mass of a bosonic particle and the trap fre-
quency, respectively. The one-particle energy eigenvalues
of a harmonic oscillator are By, = hw(ni+...+np+D/2)
in D dimensions, so the grand-canonical potential (1)
specifies to

n—11) (1)

For numerical calculations it turns out to be useful to
follow reference [25] and reexpress (2) by using the poly-

logarithms

R
—
&

and the identity

(e

m=0

(m+D 1) m (1)

so we obtain

_ _%; <m+D 1> o (65(#_E0—mhw)) G

With N = —042/9p one gets for the particle number equa-
tion

N — io (m—l—TS—l) G (eﬁ(M—Eo—mhw)) : (6)

which can be solved numerically for the chemical poten-
tial pu once the particle number N is given. In this ap-
proach we consider the resulting condensate fraction

Ny 1
N N[eﬁ(Eo—M)—l] (7)

as a function of the temperature and define the point
where the curvature is maximal as the critical tempera-
ture T,. Figure 1 shows the chemical potential pin D = 3
dimensions determined from (6) as a function of tempera-
ture T for a given particle number N. One observes that p
remains smaller than the ground-state energy FEy for all
temperatures and approaches Fj in the limit 7" | 0. More-
over, one can see that (u— Ey)/hw gets smaller for T < T,
if the particle number N is increased.
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Fig. 1. Dimensionless chemical potential (u—Fo)/hw versus
T/T. in D = 3 dimensions determined from (6) for N = 10%
particles (dashed line) and N = 10* (solid line) for w =
27 - 40 Hz. The critical temperatures are 7. = 16.75 nK for
N =10% and T. = 37.56 nK for N = 10, respectively.
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Fig. 2. Heat capacity (8) versus T/T. in D = 3 dimensions
for N = 10* (dashed line) and N = 10° (solid line) for w =
27 - 40 Hz. The critical temperatures are T. = 37.56 nK for
N =10* and T, = 82.46 nK for N = 10°, respectively.

The heat capacity Cy = 0U/IT |y, is derived from
the internal energy U = 24+TS+uN and yields

Cy = kB(hwﬁ)2

" Z (m+D )C—l (eB(N—EO—mhw))

ioj m/(m'-{-?—l) C—l (eﬁ(p—Eo—m’hw))
m’=0
> (M) G

m'’'=0

X |m —
(e8(n—Bo=mhe))

(8)

One can see in Figure 2 that Cy in D = 3 dimensions
has its maximum at 7' ~ 7T, and vanishes exponentially
fast in the limit 7" | 0. The heat capacity Cy gets larger
for T < T, and smaller for T' > T, if the particle number
N is increased. Moreover, one obtains that the slope at
T = T, increases as well for larger N, but does not di-
verge. With this we have shown exemplarily that phase
transitions do not occur in finite systems. However, p and
Cy for fixed T'/T, seem to tend towards a limit for large
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particle numbers N and thus, we expect the emergence
of a sharp phase transition in the thermodynamic limit
N — oo. In the next section we use this observation as
a motivation to introduce an analytical approach for de-
scribing a trapped Bose gas with the help of an order
parameter.

3 Approach with order parameter

We start with the functional integral approach to the
grand-canonical partition function of a harmonically
trapped ideal Bose gas [26]

7{ DY Dyp e AW/ (9)

where one integrates over all possible bosonic Schrédinger
fields ¥*(x,7),9(x,7) which are periodic in imaginary
time 7 with period hS. The Euclidean action A[y*, ]
reads

Al 4] = /0 Y ar [ P

o KA M, ,

{ha - — + —w'x® — pu|Y(x,7). (10)

2M 2

We evaluate the functional integral by using the back-
ground method [27,28]. To this end we divide the fields
P*(x,7), ¥(x,7) into field expectation values ¥*(x,7),
W (x, 1), which we identify later on with the macroscopic
occupation of the ground state, and fluctuations §1*(x, 7),

o(x,7):

=V (x, 1) + 0y (%, 7),

=U(x,7)+ d(x, 7). (11)

Note that field expectation values and fluctuations have
to satisfy the condition [29]

/de U*(x, 7)o (x,7) = 0. (12)
Using (11) together with (9) we arrive at
7 = e A2/ f{ DEY* Dap e~ ALY 01/, (13)

Now we decompose the fluctuations di(x, 7) into the one-
particle eigenstates ¥y, (x) of the system and apply an ad-
ditional Matsubara decomposition:

=3 S il

n#0 m=—00

—u;.)m‘r

(14)
VAB
with the Matsubara frequencies w,, = 2mm/h3. Note that
we explicitly do not sum over the ground state of the sys-
tem in (14), as we have to satisfy condition (12). With
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this, the measure of the functional integration (13) turns
into

mdCn,m

27Thﬁ (15)

j{D&/;D&/; 11 H/

n#0 m=—oo

The integration over the expansion coefficients cj, ,,,, ¢nm
in (15) is now Gaussian and can be performed. The effec-
tive action is then found by applying the logarithm to the
partition function: I'[#*,¥] = —(log Z)//3. With this one
gets

1
hB

65(# Eo)k 1
gz {1 e—hwﬁk)D_l

This effective action yields the grand-canonical potential
(2 if it is evaluated for extremised field expectation values:
2 = I'[¥r ¥,]. An extremization of (16) with respect to
U*(x, 1) leads to

o WA M
— — —— 2 2
{ or o 2V

W™, 0] = — Alw*, v

. (16)

,u} U (x,7) = 0. (17)

This equation has the eigenstates on(x) with p =
FE,, as non-trivial solutions which are periodic in imag-
inary time. We choose the ground state wp(x) =
(Mw/ﬂ'h)D/4 exp (—Mwx?/2h) to be the physically mean-
ingful solution and normalise ¥ (x,7) to the number of
atoms in the ground state Ny:

T) =/ No’lbo(x) (18)
As (17) and (18) lead to the algebraic equation
(Bo—1)\/No = 0, (19)

we obtain two different phases. In the gas phase we have
Ny = 0, whereas in the superfluid phase with Ny # 0
the chemical potential p must be equal to the ground-
state energy Ey. The critical temperature T, occurs at
the borderline between both phases, so it follows from the
particle number equation by setting both Ny = 0 and
i = Ey. To this end we combine (16) and (18) and get for
the grand-canonical potential

2 = (Eo — pn)No

1 eBlu—Eo)k 1
B BZ A [(1_e—hw[3k)D_1

k=1

(20)

The first term represents the contribution of the macro-
scopically occupied ground state of the system, whereas
the second term describes the thermal contributions of all
excited states. This should be compared with (2) where
the ground state is treated like all other states.
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4 Thermodynamics

It is now possible to derive all thermodynamic quanti-
ties from (20) within this framework. The particle number
equation N = —9£2/0p reads

> 1
_ B(p—Eo)k
N = Ny + Z B (r=Eo) |:(1 - e—hwﬁk)D
k=1

- 1} . (21)

The internal energy follows from the Legendre transfor-
mation U = 2+ TS5 + uN:

_ B(u—Eo)k
U = EgNo+Dhw E P n=Eo) {5 {W — 1}
k=1

—hwpk
T (1 — e hwBF)D+I } (22)

Both the particle number N and the internal energy U
can be expressed by the auxiliary functions

o -bAk
I(A,b, D) Z (T (23)
=
The particle number (21) turns into
N=— No+z l+1< ) (-u\b,D),  (21)

where we have used the abbreviations b = hwf and
w' = (u—FEp)/hw. For the internal energy (22) we get cor-
respondingly

D
_ 1 l+1 /
U_E0N0+th[§; ( ) (I—p/, b, D)

+ 11—/, bD—i—l} (25)
With this it is possible to calculate useful analytic ap-
proximations for the critical temperature 7., as well as
the temperature dependence of both the condensate frac-
tion No/N and the heat capacity Cy for different numbers
of spatial dimensions D. To this end we assume that the
difference hw between different energy levels of the har-
monic oscillator is small compared to the average ther-
mal energy kpT. This yields the semiclassical condition
0 < b= hwp < 1, which is well fulfilled for present-day
experiments.

In order to describe the superfluid phase we apply
the limit p7FEy to the particle number equation (24) for
D =1,2,3 and use the formulas (A.13)—(A.15) which are
derived in the Appendix within the semiclassical approx-
imation. Furthermore, we expand the polylogarithms for
small b = hw by using the Robinson formula [30]

() [
(-1 {Z_:E ln“}

Ge™) =

—k).

k;&l %
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Thus, we get for T' < T,

N|D_1=No+%(gwﬂ)+..., (27)
N|p_,=No+ (;:25))2+—1n(hw$3;7—1/2+ . (28)
~ 1n(hwﬁh):ﬂ7—19/24 )

Here ((z) denotes the Riemann zeta function and v =
0.5772... is Euler’s constant. Surprisingly, our results
(27)-(29) coincide with the findings of two different ap-
proaches which are reviewed and compared in refer-
ence [12]. The first one is a master equation approach to
canonical condensate statistics which is based on an anal-
ogy to the laser phase transition [10,19]. It yields accurate
results even for small systems, is valid for all tempera-
ture, but is partly numerical. The second one, which is
entirely based on considering the particle-number distri-
bution, is fully analytical, but is limited to temperatures
below T, [11,15].

4.1 Critical temperature

Setting Ng = 0 in (27)—(29), one obtains for the critical
temperature

hw N

Telpy = Ty Tl i (30)

B ) 1 () 2
[dm(82) ot
(4) s [ (5)
SR e

In D = 1 dimension the critical temperature T, fol-
lows from numerically solving the implicit equation (30).
Higher corrections to (30) are of the order O(N~1), so
they are small and can be neglected. Note that our re-
sult (30) differs slightly from the corresponding finding
of references [2,18]. For D = 2,3 one defines the thermo-
dynamic limit N — oo in such a way that the leading
order of (31) and (32), i.e. T\” = hwNYP /kp((3)/P,
remains constant. Thus, when the particle number N is
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Fig. 3. Finite-size corrections (7. — TL(O))/TL(O) taken from
equation (32) versus N~'/? for D = 3 dimensions. The dotted
(dashed) line includes the first (the first two) finite-size cor-
rection(s). The bullets correspond to the critical temperature
which is numerically determined from (6) and (7) of the theory
without order parameter.

sent to infinity the trap frequency w has to approach zero
in such a way that the product Nw? is kept fixed. In this
case the quantity bgo) = hwﬂgo) is, indeed, small as has
been assumed above. Higher orders of (31) and (32) are
called finite-size corrections. We note that additional non-
trivial logarithmic dependences on the particle number N
occur which do not follow from the standard semiclas-
sical approximation [1,2,13,16]. In Figure 3 the critical
temperature in D = 3 dimensions is plotted up to the
first and the second order for different particle numbers
N and compared with the corresponding finite-size cor-
rections which are obtained numerically from the theory
without order parameter from (6) and (7). Combining the
first and second finite-size corrections from (32) yields a
better agreement with the theory without order parame-
ter than the first finite-size correction alone. Furthermore,
we read off from Figure 3 that, for particle numbers larger
than about N = 103, the analytic formula (32) yields val-
ues for the critical temperature which coincide with the
corresponding results of the theory without order param-
eter for all practical purposes. Thus, although introducing
an order parameter for studying finite-size effects repre-
sents an essential approximation, its findings do not differ
from the results of the theory without an order param-
eter for experimentally realistic system sizes. Note that
the first correction of (32) was already found some time
ago [1,2], whereas the second correction has only recently
been found ([23], Appendix TA).

4.2 Condensate fraction

The new feature of our approach is that it is applicable in
the whole temperature regime. For instance, one gets for
the condensate fraction No/N from (27)—(32)

T In(T,/T)

No -1 1 +
y=In(hwfe)|

lo=1- 7 (33)
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Fig. 4. Condensate fraction No/N versus temperature T for
(a) D = 1 dimension and N = 10* and for (b) D = 2 di-
mensions and N = 10° for w = 27 - 40 Hz. The solid lines
describe equation (7) from the theory without order parame-
ter, the dashed lines correspond to the leading orders of (33),
(34) and the dotted line also includes the first finite-size cor-
rection.
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-

+ b —l—zln T +
T T M\ T

Figure 4 shows how the approximation to describe a finite
system with an order parameter deviates from the origi-
nal grand-canonical approach without order parameter. In
Figure 4a one observes in D = 1 dimension that the ap-
proximation introduced by the decomposition (11) is still
noticeable at T ~ T, for N = 10* particles. For D = 2
dimensions, however, this effect becomes much smaller al-
ready for N = 10° particles as shown in Figure 4b. Note
that equation (34) including the first finite-size correction
yields a better agreement with the theory without order
parameter than the already known leading order of (34).

4.3 Heat capacity

The heat capacity Cy can be found from (25) by using the
relation Cy = 90U/ 8T|V - One has to take into account
two different regimes. For T < T, the chemical potential
u is fixed and the number of atoms in the ground state
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Ny depends on temperature. With this we get

Cvrer|,_, = ng%%—h.., (36)
<Sar [ () -4 }+'('3'7’)
Cv.rer|p_y = 3Nkp (%)3 {45(—(;‘))
() B
(38)

For T > T,, on the other hand, Ny vanishes and p depends
on temperature. Thus, the heat capacity for T' > T, still
depends explicitly on T" and p. However, we can analyti-
cally work out the limit T'|7T. and obtain

) B 2¢(2)
%ﬂr%lc CV,T>TC D=1 NkBm"F, (39)
ThlnTl Cv,r>1.|p_y = 2Nkp
) <3@ . 2(2)
¢(2)  1+y+¢(2)—1In(¢(2)/N)/2
CONI BB [ 1 (@), 1
() e L (W) -4
—1n(C(2)/N)/2+5/2 + 37 — In2+2((2)
L +7+¢(2) —In(¢(2)/N)/2
—In(¢(2)/N)/2 +v—1/2+((2)
T @) - ()N /2 D* (40)

g = 3Nkp <4@_3@+<@>%

lim Cv, 1>,
T|Te. )

- ® @\
3@ 3@ [ 1 ()Y 5
. {2 MNE)E <<2>2[ h < N )+4+<(2)

(41)
Thus, the heat capacity has a discontinuity at 7' = T, in
D = 2,3 which follows from (37), (38), (40), and (41):
2¢(2)
14+9+¢(2)—In(¢(2)/N) /2
. (@ )5 {_ ~In(G(2)/N)/2 +y=1/2+((2)
N [1-+7+¢(2)—In(¢(2)/N)/2]?

—In(¢(2)/N)/2+45/2+37—1In 2+2g(2)] }
1+7+¢(2)—In(¢(2)/N)/2

ACy|,_, = 2NkB{

(42)
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Fig. 5. Heat capacity Cv/Nkp versus Temperature T in D =
3 dimensions for w = 27 - 40 Hz and N = 10*. The dotted
(dashed) line is taken from equations (38), (41) and includes
the leading order (the first two leading orders). The solid line
corresponds to (8) from the theory without order parameter.

3C(3)  (¢(3)\7 3¢(3)

acvl oy =it Tt~ () S
1. (¢B)) .5 3 ¢(2)?

X [ 2111( N >+4+C(2)+2”y 2<(3)]}+...
In D = 3 dimensions the discontinuity ACy remains fi-
nite in the thermodynamic limit N — oo and gets smaller
for finite systems. This can be seen in Figure 5, where
the heat capacity taken from (38) and (41) including the
first finite-size correction are compared with the thermo-
dynamic limit. In D = 2 dimensions one has a discontinu-
ity for finite systems which vanishes in the thermodynamic
limit N — oo. Finally, in D = 1 dimension there is no dis-
continuity ACy at T'= T, at all in leading order in agree-
ment with the findings of reference [18]. Note that the
leading contribution in the heat capacity discontinuities
ACy differs slightly from the findings in reference [18].

Note that equations (36)—(38) also provide systematic
semiclassical expansions for both the internal energy U
and the entropy S by using the thermodynamic relations
Cy =0U/0T|v.n = TOS/OT|v,n [24]. However, one does
not need to work out the limit T—T, separately above
and below the critical point as both the internal energy U
and the entropy S are continuous at T' = T.

(43)

5 Conclusions

In this paper we have extended the usual semiclassical ex-
pansion [1,2,13,16] for harmonically confined ideal Bose
gases. With this we have derived orders of the semiclas-
sical expansion which have not yet been accessible using
standard semiclassical approaches. This has been shown
exemplarily for the critical temperature T, as well as the
temperature dependence of the condensate fraction No/N
and the heat capacity Cy in D = 1,2,3 dimensions. It
would be straight-forward to generalize our findings to
anisotropic harmonic trapping potentials, which are used
in many experiments to study Bose-Einstein condensation
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in D = 2, 3. Finally, we note that it would be quite instruc-
tive to clarify the connection between our field-theoretic
approach towards a systematic semiclassical expansion
and the statistical approach of references [9,11,12,14,15] as
both seem to be related (see the remark below Eq. (29)).
However, this relation is by no means obvious as both the
grand-canonical and the canonical approach rely on cer-
tain approximations.

We thank Barry Bradlyn, Konstantin Glaum, Robert Graham,
Hagen Kleinert, Walja Korolevski, and Aristeu Lima for useful
discussions. This work has been supported by the German Re-
search Foundation (DFG) within the Collaborative Research
Center SFB/TR 12 Symmetries and Universality in Meso-
scopic Systems.

Appendix A: Semiclassical approximation

Some thermodynamic properties of the ideal Bose gas
in a harmonic trap are expressable in terms of the se-
ries (23). Generalizing an approach of reference [23], Ap-
pendix 7A, we work out a systematic semiclassical approx-
imation of (23) which is valid for 0 < b < 1.

A.1 Euler-MacLaurin formula

In the limit of small b it is suggestive to approximate (23)
by the Euler-MacLaurin formula

f /dkf f(0) + f(g)+m

However, this is not directly possible, as the integral would
diverge if the series starts at £ = 0. One way to avoid this
divergency is to subtract all divergent terms in (23) before
replacing the series by an integral. To this end we expand
the denominator of (23) for small b

(A1)

k=0

D—

,_.

Cl

-+ 01, (A.2)

(1-— e_b’C prd
where Co(D) = 1, C1(D) = D/2, Co(D) = D(3D—1)/24,
C3(D) = D*(D-1)/48, are the respective expan-
sion coefficients. Afterwards we subtract this expansion
from (23) and add it again:

0 Cl e—bAk 0
+y 7l +OM).  (A3)

As we have extended the summation in the first line from
k =1 to k = 0, we have obtained an error of the order
O(b°). Finally, we apply (A.1) to the first line in (A.3),
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where higher corrections can be neglected as they are as
well of the order O(b"). With this we arrive at

D—-1
I AT N S Ci(D)
I(A,b,D)—/O dk e [(1_6_%)1) ; P
oo D—1 Cl —bAk
+) + 0. (A.4)
k=1 =0

Both terms in (A.4) are treated as follows:

— We substitute x = e~ in the first integral of (A.4).
One immediately observes that the contribution of this
integral is of the order O(b~!). Moreover one can re-
express the first integral in terms of Gamma functions
by using the Beta function ([31], Eq. (8.380))

I'(z)I'(y)

Tty A9

1
B(z,y) = / dtt* 11—ty =

0
The remaining integrals in (A.4) can directly be eval-

uated using the integral representation of the Gamma
function ([31], Eq. (8.310)):

/OOO dik—1e—ka = T@) (A.6)

am

— The series in the second line of (A.4) can be expressed
in terms of the polylogarithms (3).

With this we obtain eventually

D—1
I(Av bv D) = % {%_ CI(D) F(l—H—D)
=0
D—-1
X AD_Z_l] +Z ilDDl (p_i (e‘Ab) +0O(b%)
=0

A.2 Dimensional regularisation

As the Gamma functions in (A.7) are divergent for integer
dimension D, we apply dimensional regularization [32,33].
To this end we set D = d — ¢ with d = 1,2,3,4... and
consider the limit e — 0. This leads to

L 1[D(1—d+e)I(A)
I(A;5,d) = limy b[ T(1+A—d + )

L1+l —d4e)AdmI71=e

_ch
+Z

In order to evaluate the limit ¢ — 0 we use the following
expansion for the Gamma function

% {%4—1110(71 +1) + (’)(el)} (A.9)

<_ (e=4) +O(°).  (A.8)

bdl

I'(-n+e¢) =
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with n = 1,2,3,... and € > 0 ([3
digamma function v (z) is defined as 1y (2)

1/(z=1) + tho(z — 1), where v = —1po(1)

imation ¢ = 1 + elnx + ...
cients Cj(d—e) =
where Cl(o) (d)
CiV(d) = (6d

1)/24, ¢V (d) = d(3d — 2)/48, ...

duces to

_q1yd—1 d—1
16a.0.0) = iy S —{ gy | L4 -0
" Lli=1
-1 o
x[i o1+ A—d) + o (d ]Z T 1(d)
=

1
X [?Lwo(d -1) - )
d—1 O(o) (d)

+ pd—l1

=0

C _ ( —Ab) —|—(’)(b0).

Equation (A.10) can be further simplified if one uses the

identity
= d— 1 0) (d)
d—1-1
—-1)! H(A d l 1! a1~ ’
=1 =0

which can be proven by complete induction. Thus, the
terms in (A.10), which are proportional to 1/¢, cancel and
we obtain a finite result in the limit e — 0. Using the
recursion formula of the digamma function one arrives at

d— 1 yd—t-1 ©) g
1 C(d) ya—ioa
I(Ab,d) = -

blZ (d—1-1)!
cVd) & 1

X | —o(1+A—d)+In A+ )( ) —
) S m

¢ —Ab 0
+Z = C- ) +O(°). (A.12)

Assuming 0 < b < 1 we read off that equation (A.12) is,
indeed, a good approximation for (23) as the error is of
the order O(b°). For different dimensions d = 1,2, 3,4 one

2], Eq. (8D.24)). The

=1"(z)/I'(2).
It satisfies the recursion formula ([32], Eq. (8D.6)) ¢ (2

are
the respective expansion coefficients. With this (A.8) re-

Cl(l)(d) _ ln(A)] Ad—l—l}

(A.10)

(A.11)

) =
= 0.5772...
denotes Euler’s constant. Moreover, we use the approx-
and expand the coeffi-

CO(d)—C ) (d)e+O(e2) for small e,
= Oy(d), cP@) = 0, cV@) = 1/2,
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gets explicitly

I(A,b,1) = % [ln A= (A) ¢ (=40 +O°),  (A.13)
140:2) = g5l { (A=) A= (a-1)

+g+41(e“4b)}+(9(b0), (A.14)

I(A,b.3) = G )4 5o (e—Ab>+%{3<A—1>

x (A=2) [In A=ty (A—2)] ——A + %

+G (e—Ab)}+0(b0), (A.15)
I(A,b,4) = bl4§4(e_Ab)+b33C3(e_Ab)—F%Cg(e_Ab)

Note that the

_A2_@A+ (e )

1
12 E(A_l)

L1
b

x (A—2)(A—=3) [In A—1po(A—3)] }+O(b0).
(A.16)

respective polylogarithmic functions

in (A.13)—(A.16) have to be evaluated for small b by using
the Robinson formula (26).
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