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Tunable anisotropic superfluidity in an optical kagome superlattice
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We study the phase diagram of the Bose-Hubbard model on the kagome lattice with a broken sublattice
symmetry. Such a superlattice structure can naturally be created and tuned by changing the potential offset of
one sublattice in the optical generation of the frustrated lattice. The superstructure gives rise to a rich quantum
phase diagram, which is analyzed by combining quantum Monte Carlo simulations with the generalized effective
potential Landau theory. Mott phases with noninteger filling and a characteristic order along stripes are found,
which show a transition to a superfluid phase with an anisotropic superfluid density. Surprisingly, the direction of
the superfluid anisotropy can be tuned by changing the particle number, the hopping strength, or the interaction.
Finally, we discuss characteristic signatures of anisotropic phases in time-of-flight absorption measurements.
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I. INTRODUCTION

Ultracold atoms in optical lattices are prominently used
to simulate many-body systems in condensed-matter physics
[1–5]. One of the most striking experiments is the Mott
insulator–superfluid quantum phase transition of ultracold
bosons in an optical lattice built with counterpropagating
lasers [6]. It can be described by the seminal Bose-Hubbard
model [7,8], where each parameter is precisely adjustable
in the experiment. With the rapid advances in experimental
techniques, many-body physics can now be analyzed on
more complex lattice geometries [9]. On the one hand, the
lattice symmetry can be reduced by adding additional lasers
or tuning their relative strength, leading to a superlattice
structure [10–13], which can give rise to insulator phases with
fractional fillings [14–19]. On the other hand, it is also possible
to enhance the residual entropy of the many-body system by
using frustrated lattices, which have recently been realized
using sophisticated optical techniques [20–22].

Theoretically, many interesting phases have been predicted
in frustrated lattices such as spin liquids [23–29], valence
bond solids [30], string excitations [31], ordered metals [32],
chiral fractional edge states [33], and supersolids [34–37].
Unfortunately, in all these scenarios, longer range interactions
beyond the on-site Bose-Hubbard model are assumed, which
require dipolar interactions and are experimentally much
harder to handle. However, the intriguing interplay between a
superlattice and the kagome lattice can lead to fractional-filled
Mott phases with a highly nontrivial phase diagram [15]
without the need for longer range interactions. In this paper
we now theoretically and numerically analyze a tunable
kagome superlattice, which corresponds to a straightforward
extension of a recently realized experimental setup [22]. As
expected, we find fractionally filled ordered phases, which are
surprisingly large and stable in the quantum phase diagram.
The most interesting behavior occurs in the superfluid phase,
which is characterized by an anisotropic superfluid density.
Remarkably, the dominant superfluid direction is not fixed
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by the superlattice, but instead becomes tunable as a func-
tion of filling, hopping, and interaction. The corresponding
characteristic signatures in time-of-flight absorption pictures
are discussed below. The behavior of the tunable anisotropy
can be explained only by a certain amount of density-wave
order, which is still present in regions of the superfluid phase.
Even though the translation invariance is not spontaneously
broken in this case, we will call these regions “supersolid-like,”
since they enable the study of the interplay between density-
wave order and superfluidity without the need for long-range
interactions.

II. THE OPTICAL LATTICE

Let us first consider the optical generation of a kagome
lattice, which recently has been achieved experimentally by
using standing waves from a long-wavelength 1064-nm (LW)
laser and from a short-wavelength 532-nm (SW) laser, which
are counterpropagating from three 120◦ directions [22]. The
superposition of the corresponding two triangular lattices
results in a kagome lattice if the laser strengths are exactly
equal from all directions. Any slight variation of this setup
results in a superlattice structure, which of course can be used
as an additional tunable parameter. For example, enhancing
the potential from the LW laser in the x direction by the factor
γ = VE/V0 > 1 results in the combined optical potential

Vc/V0 = γ 2 − 1 + 4γ cos(
√

3kx) cos(ky) + 2 cos(2ky)

− 2 cos(4ky) − 4 cos(2
√

3kx) cos(2ky) , (1)

where k = √
3π/2λLW in units of the longer wavelength

λLW = 1064 nm. As depicted in Fig. 1 this potential leads to
an offset of �μ = 4(γ − 1)V0 > 0 on one of the sublattices A.
Note, however, that this offset preserves the parity symmetry
along the x and y directions and does not increase the unit cell
of the kagome lattice, which contains three sites.

Interacting bosons on this lattice can be represented by
Wannier states, which leads to the well-known Bose-Hubbard
model for the description of the lowest band in second
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FIG. 1. (Color online) (a) Potential from Eq. (1) of the optical
kagome superlattice using an enhanced LW laser in the x direction
with γ = 1.5. Potential along cuts (dashed lines) in the (b) a2 direction
and (c) a1 direction, respectively, showing the resulting potential
offset �μ for sublattice A.

quantized language

H =−t
∑

〈i,j〉
(â†

i âj + âi â
†
j ) + U

2

∑

i

n̂i(n̂i − 1)

−μ
∑

i

n̂i − �μ
∑

i∈A

n̂i , (2)

where the nearest-neighbor hopping amplitude t and the
on-site interaction U are tunable parameters, which depend
on the scattering cross section and the potential depth V0 [4].
In principle, the potential shift �μ also affects the Wannier
states and hence other parameters in Eq. (2), but for reasonably
small values of �μ these higher order corrections can be
neglected since they preserve the symmetry of the problem.
The chemical potential μ is used to tune the particle number in
the grand-canonical ensemble. In the following we will use the
stochastic cluster series expansion algorithm [38–40] for unbi-
ased quantum Monte Carlo (QMC) simulations of this model.
In addition the generalized effective potential Landau theory
(GEPLT) provides an analytic method to estimate the phase
boundaries in an expansion of the hopping parameter t/U

[19,41]. The method relies on systematically including quan-
tum fluctuations in an effective potential for the Landau theory.

III. PHASE DIAGRAM

For vanishing hopping amplitude t in the atomic limit,
the competition between U and �μ can induce several
incompressible insulating phases. When μ is less than −�μ,
no site is occupied, and the Mott-0 phase is the energetically
favored state. For a larger chemical potential −�μ < μ < 0,
only sublattice A will be occupied with one boson per site while
the other sites remain empty. This phase is therefore 1/3 filled
with an order in the form of occupied horizontal stripes. Such
a 1/3 striped density phase (SD) can also occur spontaneously
in the extended Hubbard model when nearest and next-nearest
interactions are included [33]. However, longer range inter-
actions are notoriously difficult in optical lattices, so that the
proposed superlattice is a convenient tool to study this phase.
For positive values of μ > 0, the system enters the familiar
uniform Mott-1 insulator with filling factor one. Continuing
this analysis for larger μ, we deduce that SD-n phases with
fractional filling factor n − 2/3 occur for U (n − 1) − �μ <
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FIG. 2. (Color online) Average density n = (nA + nB + nC)/3
and density difference �n = nA − (nB + nC)/2 vs μ from QMC with
T = U/300 and N = 243 sites at t/U = 0.025 for different offsets
�μ/U .

μ < U (n − 1), which are separated by Mott-n insulators with
integer filling n for U (n − 1) < μ < Un − �μ.

Both the integer filled Mott-n phases and the fractional
SD-n phases remain stable for small finite hopping t . As shown
in Fig. 2 for t = 0.025U there are plateaus of the average
density n = (nA + nB + nC)/3 as a function of chemical
potential, which are characteristic of those incompressible
phases. In the fractionally filled SD-n phases the density
difference �n = nA − (nB + nC)/2 between the sublattices
shows plateaus with values that are slightly reduced from
unity due to virtual quantum excitations. The plateau states
are separated by compressible phases, which are characterized
by a finite superfluid density, i.e., an off-diagonal order with
a spontaneously broken U(1) gauge symmetry, which will be
analyzed in more detail below.

The corresponding phase diagram is mapped out in Fig. 3
using large-scale QMC simulations. The second-order GEPLT
approximation is much less demanding and agrees quite well
with the QMC data, except near the tips of the Mott lobes. With
increasing offset �μ the fractionally filled SD phases extend
over a larger range not only in the chemical potential μ but
also in the hopping t . In fact, the SD-1 phase for �μ = 0.5U

is remarkably stable up to larger values of hopping t than the
uniform Mott-1 phase. The transitions to the superfluid phase
are always of second order and can be understood in terms of
additional condensed particles (holes) on top of the Mott states
as the chemical potential is increased (decreased).

One interesting detail in the phase diagram in Fig. 3 is the
drastic dependence on �μ of the shape of the Mott-0 phase
transition line in the limit of small hopping, which changes
from linear behavior μ(t) = −4t for �μ = 0 to quadratic
behavior μ(t) = −�μ − 8t2/�μ for large �μ. The linear
dependence for �μ = 0 can be understood from a competition
of chemical potential with the kinetic energy, analogously
to the quantum melting on the triangular lattice [34]. For
finite �μ, on the other hand, the melting of the Mott-0
phase takes place by additional particles on the sublattice
A only, which is not connected by any first-order hopping
processes. In the limit of small t , the kinetic energy of those
particles is therefore determined by the second-order hopping
coefficient t̃ = t2/�μ, which explains the quadratic behavior
of the phase boundary. The exact shape of the Mott-0 transition
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FIG. 3. (Color online) Quantum phase diagram extrapolated to the thermodynamic limit obtained from QMC (blue) and multicomponent
GEPLT in second order in t/U (red) at (a) �μ/U = 0, (b) �μ/U = 0.25, and (c) �μ/U = 0.5. The vertical lines indicate the parameter
ranges in Figs. 2 and 4 while the horizontal lines are used in Fig. 5.

μ = −�μ/2 − t −
√

�μ2 − 4t�μ + 36t2/2 can be deter-
mined from the single-particle energy on the superlattice.

IV. ANISOTROPIC SUPERFLUID DENSITY

We now turn to the analysis of the order parameter in the
superfluid phase. In the QMC simulations we determine the
superfluid density along the lattice vector direction �a1 = (1,0)
using the winding number ρs

1 = 〈W 2
1 〉/4βt and analogously for

ρs
2 along the lattice direction �a2 = (1,

√
3)/2 [42–44]. We use a

system with N = 243 sites and periodic boundary conditions
with L = 9 unit cells in both the �a1 and �a2 directions, which
ensures that ρs

1 = ρs
2 for the perfect kagome lattice. Note that

in general the superfluid density is a response tensor with four
elements ρs

xx, ρ
s
xy, ρ

s
yx, ρ

s
yy in the x-y-coordinate system [45].

Due to reflection symmetry the off-diagonal elements ρs
xy =

ρs
yx = 0 must vanish. The relation to the superfluid densities

along the lattice vectors is given by ρs
1 = ρs

xx and ρs
2 = (ρs

xx +
3ρs

yy)/4.
In order to analyze a possible anisotropy we consider the

average superfluid density ρs
+ = (ρs

1 + ρs
2)/2 and the differ-

ence ρs
− = ρs

1 − ρs
2 between the two lattice vector directions in

Fig. 4 as a function of filling n̄. For finite offsets �μ = 0.25U

and �μ = 0.5U the superfluid density is indeed anisotropic,
but surprisingly also changes the preferred direction with
increasing filling n̄. For low densities just above the Mott-0
phase the superfluid density is dominated by virtual hopping
processes between the A sublattice. As illustrated in the left
inset of Fig. 4 this virtual hopping process is not possible along
the lattice vector �a1, which leads to an anisotropic superfluid
density with ρs

1 < ρs
2.

When the filling reaches n̄ = 1/3 the superfluid density
drops to zero in the SD-1 phase as expected, but then
shows the opposite anisotropy ρs

1 > ρs
2 for n̄ > 1/3, which

signals a different mechanism: At n̄ = 1/3 the A sublattice is
completely filled, so that for slightly larger densities n̄ > 1/3
excess particles on the B and C sublattices are now responsible

for the superfluid density. As shown in the right inset of Fig. 4,
the B and C sublattices correspond to connected chains along
the �a1 direction, which are disconnected by occupied A sites.
This immediately explains why ρs

1 > ρs
2 in this case.

According to this analysis, positive anisotropies ρs
− > 0 are

therefore a hallmark of an off-diagonal U(1) order parameter
coexisting with a striped density order of a filled sublattice
A. This situation is reminiscent of a supersolid where a stable
density order exists on one filled sublattice and excess particles
contribute to the superfluidity [34], with the main difference
being that in supersolids both the U(1) symmetry and the
translational symmetry are spontaneously broken. Normally
supersolid phases require longer range interactions beyond
on site, which are experimentally difficult to achieve. The
creation of supersolid-like regions by introducing a super-
lattice is experimentally straightforward, however. Similar to
a supersolid, the supersolid-like regions considered here are
also only stable for relatively small hopping, while for larger
hopping the ordinary superfluid behavior dominates, as we
will see below.
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FIG. 4. (Color online) Total superfluid density ρs
+ = (ρs

1 + ρs
2)/2

and superfluid density difference ρs
− = ρs

1 − ρs
2 vs filling n̄ from

QMC for βU = 1200 and N = 243 at t/U = 0.025. Inset: schematic
illustration of the different mechanisms for positive and negative
anisotropy parameters.
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FIG. 5. (Color online) Superfluid anisotropy parameter I± =
(ρs

1 − ρs
2)/(ρs

1 + ρs
2) as a function of t/U from QMC for βU = 2000

and N = 432 in the parameter range indicated by the horizontal lines
in Fig. 3. Insets: QMC simulations of the TOF image for t/U =
0.0375, βU = 800, N = 243, �μ/U = 0.5, and μ/U = −0.175
(top) and μ/U = 0.425 (bottom).

As long as the hopping t/U is sufficiently small, the
alternation of anisotropies between Mott and SD phases
continues as the density is increased due to the same reasoning
as above. However, this is not the full story, since for larger
hopping t/U or larger filling n̄ the Mott and SD phases are
not stable, so it is not clear where the different regions of
positive and negative ρs

− are separated. Indeed, as shown
in Fig. 4, the superfluid density does not drop to zero for
n̄ = 4/3 and �μ/U = 0.25, since the corresponding line is
just outside the lobe of the SD-2 phase as shown in Fig. 3(b).
Also the anisotropy no longer changes sign. We find that in
the limit of large hopping t/U the overall density becomes
irrelevant. The sublattice A remains slightly more occupied
for all values of n̄ and t . Since particles on the A sublattice
hardly hop in the �a1 direction, this leads to ρs

1 < ρs
2 in the

weak coupling limit t > U . We call this behavior the ordinary
superfluid, in contrast to the supersolid-like regions of the
positive anisotropy ρs

− > 0, which are basically confined
between the lobes of the SD-n and Mott-n phases.

To analyze the crossover between different anisotropy
regions, we show the normalized anisotropy parameter I± =
(ρs

1 − ρs
2)/(ρs

1 + ρ2)s as a function of t/U for different values
μ and �μ in Fig. 5. For small hopping, the anisotropy
parameter I± is positive in supersolid-like regions (μ = 0) and
negative between the Mott-1 and SD-2 phase (μ = U − �μ)
as discussed above. For larger t/U the anisotropy parameters
approach small negative values in all cases, corresponding
to the ordinary superfluid. According to the analysis above,
the sign change of I± as a function of t coincides with the
delocalization of the particles on the A sublattice, which starts
to contribute to the superfluid density in the �a2 direction. This
behavior can be interpreted as a continuous melting of the
supersolid-like phase to the ordinary superfluid, reminiscent
of the melting of the sublattice order in an interaction-driven
supersolid [34].

Anisotropic superfluid densities appear in a variety of
different systems such as dipolar Bose-Einstein condensates

with disorder [46–49], spin-orbit coupled Fermi gases [50],
coupled spin dimer systems [44], and systems with rectangular
shape [51]. However, an anisotropic superfluidity which is
tunable by the isotropic hopping t/U and changes sign when
the order on one sublattice melts has not been discussed before,
to our knowledge.

The observation of the superfluid-Mott transition by
time-of-flight (TOF) experiments was pioneered many years
ago [6]. The TOF absorption picture measures the momentum
distribution S(Q)/N = 〈|∑N

k=1 a+
k eiQ·rk |2〉/N2 and shows a

clear signature of the anisotropy parameter. To demonstrate
this effect, we used a QMC technique for calculating the
off-diagonal long-range correlation function during the loop
update [52], which allows a direct simulation of the TOF
absorption signal. As shown in Fig. 5 for ρs

− > 0 (upper
inset) and for ρs

− < 0 (lower inset) the TOF images display
a clear signature of the anisotropy, which can be used for
straightforward measurements of the melting from supersolid-
like to ordinary superfluid states.

Finally, we have examined the thermal stability of the
observed effects. The fractionally ordered phases are stable
up to the characteristic energy scale �μ, but the shapes of
the phase boundaries are more sensitive. In particular, to
observe the parabolic shape with t near μ = 0 much lower
temperatures of the order T � t2/�μ are necessary. In the
superfluid regions the transition temperature is approximately
given by the hopping and the superfluid anisotropy turns out
to be largely independent of temperature for T � t .

V. CONCLUSIONS

In conclusion, we analyzed ultracold bosons in a kagome
superlattice, which can be created and tuned by enhancing
the long wavelength laser in one direction based on recent
progress for creating highly frustrated lattices [22]. By using
numerical QMC simulations and the generalized effective
potential Landau theory, we obtained the entire quantum
phase diagram including Mott phases and fractionally filled
charge density phases. In the superfluid phase an anisotropic
superfluid density is found, which changes direction as the
overall density, the hopping, or the interaction is varied. By
tuning the hopping t/U it is possible to induce a continuous
melting from a supersolid-like state with a filled sublattice
A and positive anisotropy parameter ρs

− > 0 to an ordinary
superfluid phase, which generically is characterized by a
negative anisotropy parameter ρs

− < 0. Both the fractionally
filled insulating phases and supersolid phases have received
much attention by using models with longer range interac-
tions [30–36]. Using the superlattice structure proposed in this
work these phases become experimentally much more acces-
sible by a simple laser setup instead of dipolar interactions.
Moreover, the characteristic signature of those effects can
be measured in straightforward TOF absorption experiments,
without the need for single-site resolution. In particular,
by implementing off-diagonal measurements in QMC loop
updates, it was possible to simulate TOF flight images which
show a clear signature of the anisotropic superfluid density
and the change of its direction, when the melting takes
place.
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Cardoner, S. Fölling, and I. Bloch, Phys. Rev. Lett. 101, 090404
(2008).

[14] P. Buonsante and A. Vezzani, Phys. Rev. A 70, 033608 (2004).
[15] P. Buonsante, V. Penna, and A. Vezzani, Phys. Rev. A 72,

031602(R) (2005).
[16] B.-L. Chen, S.-P. Kou, Y. Zhang, and S. Chen, Phys. Rev. A 81,

053608 (2010).
[17] A. Dhar, T. Mishra, R. V. Pai, and B. P. Das, Phys. Rev. A 83,

053621 (2011).
[18] A. Dhar, M. Singh, R. V. Pai, and B. P. Das, Phys. Rev. A 84,

033631 (2011).
[19] T. Wang, X.-F. Zhang, S. Eggert, and A. Pelster, Phys. Rev. A

87, 063615 (2013).
[20] P. Windpassinger and K. Sengstock, Rep. Prog. Phys. 76, 086401

(2013).
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