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We consider interacting bosons in a two-dimensional square and a three-dimensional cubic optical lattice
with a periodic modulation of the s-wave scattering length. At first we map the underlying periodically driven
Bose-Hubbard model for large enough driving frequencies approximately to an effective time-independent
Hamiltonian with a conditional hopping. Combining different analytical approaches with quantum Monte Carlo
simulations then reveals that the superfluid—Mott-insulator quantum phase transition still exists despite the
periodic driving and that the location of the quantum phase boundary turns out to depend quite sensitively
on the driving amplitude. A more detailed quantitative analysis shows that the effect of driving can even be
described within the usual Bose-Hubbard model provided that the hopping is rescaled appropriately with the

driving amplitude.
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I. INTRODUCTION

Systems of ultracold bosonic gases in optical lattices
represent nowadays a popular research topic [1-7], because
they establish a versatile bridge between the field of ultracold
quantum matter and solid-state systems [8]. In particular, they
can be experimentally controlled with a yet unprecedented
level of precision [9]. With this it is now possible to achieve
strong correlations and, due to the absence of impurities, they
are viewed as idealized condensed matter systems, which
allow for a clear theoretical analysis [10] and which are even
predestined as universal quantum simulators [11].

Recently a new degree of freedom to tune the properties
of quantum matter has emerged which is based on a real-
time modulation of some lattice parameter. One way to
bring a lattice system far out of equilibrium is to perform
an instantaneous shift in the confining harmonic trapping
potential [12], whereas another one relies on a periodic driving
contained in the hopping term [13]. Furthermore, it was
predicted in Ref. [14] and later on confirmed experimentally
in Refs. [15,16] that the Bose-Hubbard model for an optical
lattice, which is periodically shaken with a sufficiently large
frequency, can be approximately reduced to an effective
time-independent Bose-Hubbard model with a renormalized
hopping parameter. This technique was applied to induce
dynamically the Mott-insulator (MI) to superfluid (SF) tran-
sition [17]. An extension of this scheme was considered
in Ref. [18], where the effect of a slowly varying driving
amplitude of a shaken one-dimensional (1D) lattice was
studied numerically with the time-dependent Density Matrix
Renormalization Group (t-DMRG) method. Other proposed
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applications concern the quantum simulation of frustrated
classical magnetism as well as the generation of Abelian
and non-Abelian gauge fields [19-22]. Recently, this line of
research culminated in the experimental realization of the
Hofstadter or Harper Hamiltonian with ultracold atoms in
optical lattices [23,24].

Another method to periodically drive an ultracold quantum
gas system relies on a periodic modulation of the s-wave scat-
tering length [25,26], which can be experimentally achieved,
for instance, in the vicinity of a broad Feshbach resonance [27].
For a harmonically trapped Bose-Einstein condensate this
induces various phenomena of nonlinear dynamics such as,
for instance, mode coupling, higher harmonics generation, and
significant shifts in the frequencies of collective modes (see,
for instance, Ref. [28] and the references therein). Therefore, a
periodic modulation of the interaction represents an important
new tool for building more versatile quantum simulators.

In this work we investigate the effect of a periodic
modulation of the s-wave scattering length for bosons in an
optical lattice [29]. Using the Floquet formalism we show that
the underlying driven Bose-Hubbard model can be understood
for large enough driving frequencies in terms of an effective
conditional hopping in the sense that its value depends on
the respective particle numbers of the involved neighboring
sites [30]. Such conditional hopping amplitudes represent
an interesting class of models, which have an intricate
history in condensed matter physics. Correlated or conditional
hopping already appeared, for instance, in the very first
paper, where the Hubbard model was proposed, due to matrix
elements of the Coulomb interaction between nearest-neighbor
Wannier wave functions [31]. It also occurs as a result of
interaction-induced orbital effects, which is known as Wannier
broadening [32-34]. However, such occupation-dependent
hopping terms are usually smaller than the typical hopping
and on-site interaction, so they can be neglected. Later on, such
terms were reconsidered as an alternative scheme for high-T7,
superconductivity [35,36]. For particular parameter values the
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Hamiltonian for a Hubbard chain turns out to be integrable [37]
and displays fractional statistics [38]. The occupation-number
sensitivity of tunneling was even implemented experimentally
by employing the high-resolution quantum gas microscope
technique [39]. It also yields the emergence of a phase
with coexisting incommensurate spin and charge order [40].
Whereas all these works deal with real-valued conditional
hopping terms, a density-dependent Peirls phase was recently
proposed in Refs. [41,42] in the context of realizing anyons in
one-dimensional lattices. One goal of this work is to develop
analytical tools in order to study the the quantum phase
diagram of conditional hopping models in quantitative detail.

In the following we focus on the case of a two-dimensional
(2D) square and a three-dimensional (3D) cubic lattice, where
the conditional hopping allows to tune the superfluid-Mott
insulator quantum phase transition. Consequences for the
1D lattice problem have already been discussed in detail in
Ref. [30]. There it was shown by complementing a Gutzwiller
mean-field theory approach by density-matrix renormalization
group calculations that a large enough driving induces pair
superfluidity. In Sec. Il we review in detail how the periodically
driven Bose-Hubbard model reduces approximately to an
effective time-independent model with conditional hopping.
Afterwards, we combine in Sec. III different analytical
approaches with quantum Monte-Carlo (QMC) simulations in
order to determine how the MI-SF quantum phase boundary
depends on the driving amplitude. A more quantitative analysis
in Sec. IV shows that the effect of driving can even be
described within the usual Bose-Hubbard model provided
that the hopping is rescaled appropriately with the driving
amplitude. This finding indicates that the Bose-Hubbard model
with a periodically driven s-wave scattering length and the
usual Bose-Hubbard model belong to the same universality
class from the point of view of critical phenomena.

II. MODEL

We start with the derivation that a Bose-Hubbard Hamil-
tonian with a periodic modulation of the s-wave scattering
length can approximately be mapped for large driving fre-
quencies with the help of Floquet theory to an effective
time-independent Hamiltonian with a conditional hopping.

A. Time-dependent Hamiltonian

In the following we study a system of spinless bosons
in a homogeneous lattice of arbitrary dimension D with
a periodically modulated s-wave scattering length [25,26],
which can be experimentally achieved, for instance, in the
vicinity of a broad Feshbach resonance [27]. This periodically
driven quantum many-body system is described by the time-
dependent Hamiltonian

A=) {%[U + Acos(o)](A? — A;) — ,m,»}

i
_Ztij&jaj' (D
ij

Here &;( and a; denote the annihilation and creation operators
fulfilling the standard bosonic commutator relations and 7; =
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Ezj a; represents the particle number operator. Furthermore, #;;

stands for the respective hopping matrix elements between
the sites i and j, which are usually nonzero only for
nearest-neighboring sites 7 and j with ;; =t. The local
time-independent part depends on the repulsive on-site energy
U as well as on the chemical potential © due to the grand-
canonical description. Furthermore, the periodic modulation
of the s-wave scattering length is described by the amplitude
A and the frequency w. Thus, the external driving leads to a
quadratic dependence on the particle number operator, whereas
a shaken optical lattice only involves a corresponding linear
dependence [43].

B. Floquet basis

For the sake of generality we observe that the Hamilto-
nian (1) is of the form

A() =Y [f(i) + Agli) cos(wn)] — Y tala;,  (2)

i ij

where the local time-independent part reads

- U,» -
fr) = = (A7 — ir) — i 3)
and the local time-dependent part is described by the operator
gi(Ay) = 5 (A7 — ). “)

In the following we perform a detailed analysis of the general
Hamiltonian (2) with arbitrary operators f(7i;) and g(#;). In
view of choosing a suitable basis, we start with collecting all
local terms in the unperturbed Hamiltonian

Aoty = Y Lf (i) + Agi(y) cos(n)], 5)

1

which fulfills the periodicity condition
Ho(1) = Ho(t +T), ©)

with period T = 27 /w. Therefore, we can use the Floquet
theory [43,44] which states that the Schrodinger equation

a R
ihalw(t» = Hy®)|y (1)) )
has the Floquet solutions

[Ya (1)) = la(t))e <@"/n (8)

with some quantum number «, where the Floquet functions
|oe(2)) have ttle same periodicity (6) as the unperturbed
Hamiltonian Hy(?), i.e.,

la(2)) = la(t + T)). (€))

These Floquet functions |«(#)) and the corresponding
quasienergies (o) thus fulfill the eigenvalue problem

Fo)la() = s(@) la()), (10)

with the corresponding Floquet Hamiltonian
- N 0

In order to solve the eigenvalue problem (10) of the unper-
turbed Hamiltonian (5), one introduces an extended Hilbert
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space [43], in which the time ¢ is explicitly considered as
a separate coordinate. Two T -periodic functions |u;(¢)) and
|uy(t)), which have the scalar product (u;(#)|ux(¢)) in the
usual Hilbert space, then have a modified scalar product in
the extended space which reads

1 T
(u1()|ua(1))) = ?/0 dt (uy(t)|us(1)). (12)

Now in the extended Hilbert space, the eigenvalue prob-
lem (10) can be solved exactly within the occupation number
representation. This yields the Floquet functions

[}, m(0))) = & [ le

i

SR sin@n .,

13)

where |n;); represents the occupation number basis at site 7,
and the Floquet eigenvalues read

e(nitm) =" f(n) +mho. (14)

Furthermore, demanding the periodicity condition (9) for the
Floquet functions (13) requires that the quantum number m
must be an integer. Thus, the quasienergy spectrum (14) repeats
itself periodically on the energy axis.

C. Time-independent Hamiltonian

Now we further investigate the full Floquet Hamiltonian

N . 0
H(t)=H@) — ih& (15)
within the extended Hilbert space by determining its cor-
responding matrix elements with respect to the Floquet
functions:

Hinywstmym = (({n}om' [HI{n; }m)). (16)

Using Egs. (2) and (12)—(14) these matrix elements turn out
to be

Hgyminitom = S [Z fni)+ mﬁw} Stnl ) fni)
= wnNa) 4, (G )ag in ),
ij

a7

where J,,_,- represents a Bessel function of first kind with the
argument

gnj)— gy —1)+g;) — g + 1)

hw ’
Now it is in order to take into account the physical constraints
upon the driving frequency w. On the one hand the excitation
energy hw must be much smaller than the gap between
the lowest and the first excited energy band, otherwise a
single-band Bose-Hubbard model would no longer be a valid
description. On the other hand the excitation energy hw
must also be much larger than the system parameters ¢;
and U, so that transitions between states with m % m’ are
highly suppressed [45]. Thus, in the latter case only terms
with m = m’ have to be taken into account, so the original

G;.nj) =

(18)
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time-dependent Hamiltonian (2) is mapped approximately to
the effective time-independent Hamiltonian

Aor =Y f() = Y i) Jo[G(hs i )la;.

i

19)

Specializing Egs. (18) and (19) for the case of a periodic
modulation of the s-wave scattering length (3) and (4) then
finally yields [30]

W U, . .
Herr = Z [Eni(ni -D- ,Lmi:|

—Zt'ﬁTJo i(ﬁ—ﬁ) a; (20)
7 ™ hu) J i J*

For typical experimental parameters this means that the driving
frequency w must be of the order of kHz [43]. According to
Eq. (20) we can then conclude that the effect of the time-
periodic modulation of the s-wave scattering length essentially
leads to a renormalization of the hopping matrix elements. But
in contrast to the shaken optical lattice treated in Ref. [43],
this renormalization yields an effective conditional hopping
in the sense that it depends via the Bessel function Jy on the
respective particle numbers n; and n; at the involved sites i
and j.

III. QUANTUM PHASE DIAGRAM

Now we determine the quantum phase diagram for the
effective time-independent Hamiltonian (20) with conditional
nearest-neighbor hopping at zero temperature. As the cor-
responding 1D lattice problem has already been discussed
in detail in Ref. [30] by combining a Gutzwiller mean-field
theory approach with density-matrix renormalization group
calculations, we restrict us here to the higher-dimensional
cases of a 2D square and a 3D cubic lattice. In order to obtain
reliable results we combine different analytical approaches
with quantum Monte Carlo (QMC) simulations.

A. Effective potential Landau theory

In order to deal analytically with the spontaneous symmetry
breaking of the inherent U(1) symmetry of bosons in an optical
lattice the effective potential Landau theory (EPLT) has turned
out to be quite successful [46—-52]. Whereas the lowest order of
EPLT leads to results similar to those of mean-field theory [1],
higher hopping orders have recently been evaluated via the
process-chain approach [53], which determines the location
of the quantum phase transition to a precision similar to that
of demanding quantum Monte Carlo simulations [54]. Here
we follow Refs. [46,49] and couple at first the annihilation
and creation operators to external source fields with uniform
strength j* and j:

Aer(j*.J) = B + Y_ (i + ja).

l

2L

Then we calculate the ground-state energy, which coincides
with the grand-canonical free energy at zero temperature.
For vanishing source fields and hopping the unperturbed
ground-state energy reads Fy = N; f (n) with the total number
of sites Ny and the abbreviation f(n) = Un(n — 1)/2 — un.
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In order to have n particles per site, the chemical potential
has to fulfill the condition (n — 1) < u/U < n. By applying
Rayleigh-Schrodinger theory, we can then determine the
grand-canonical free energy perturbatively. An expansion with
respect to the source fields yields

o0
F(j.js0=F+N D e@li” |, @2
p=1

where the coefficients ¢,,(f) can be written in a power series
of the hopping matrix element ¢:

cop(t) = (—1)'es)). (23)
n=0

Performing a truncation at first hopping order, we get the
following for p = 1:

K f(n)—f(n+1)+f(n)—f(n—l) @)
and
a(l)—z|: n+] + n i|2
2T~ f+ D) f)— fn—1)
AN
N 2(n+ Dn[Jo(+) — 1] 25)

‘T = o+ DIfm) — fa— DI’

where z = 2D denotes the coordination number, i.e., the
number of nearest-neighbor sites. Note that the first line
on the right-hand side of Eq. (25) is equal z[a\’]* due
to a factorization rule for the corresponding diagrammatic
representation (see Appendix A). In contrast to this, the second
line in Eq. (25) reveals the breakdown of this factorization rule
for nonvanishing driving.

Because the grand-canonical free energy allows one to
calculate the order parameter via

1 oF

= 1//*_13F
TN, 9%’ TN, 9]

(26)

it supports the idea that it is possible to formally perform a
Legendre transformation from the grand-canonical free energy
F(j,j*) to an effective potential I'(y,*) that is useful in a
quantitative Landau theory:

['=F/Ns— jy* — j*y. 27

Inserting Eq. (22) the effective potential can be written in a
power series of the order parameter:

1 c4(1) 4
['=Fo/Ns— —=yP+ —[y[*+--- . (28)
o= o G
From Eq. (23) we get the first-order result
1 1 )
— =1+ 21). 29
o) o ( " o ) @

According to the Landau theory, the location of a second-order
phase transition is exclusively determined by the vanishing of
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Eq. (29), which yields with Egs. (24) and (25)

l+zt|: " + ntl }
f)y—fn—-1)  f)— fn+1)

nn + 1)2zt[J0(%) — 1]
[f(n)— fn—DIf(m) — f(n+ 1]

Note that, in the special case of a vanishing driving, i.e., A = 0,
the quantum phase boundary (30) reduces to the undriven
mean-field result from Ref. [1] due to Jy(0) = 1. In order
to estimate the validity of the first-order EPLT result (30),
we compare it in the next section with the result from the
Gutzwiller mean-field theory.

=0. (30)

B. Gutzwiller mean-field theory

In this subsection we apply the standard Gutzwiller mean-
field theory (GMFT) from Refs. [30,55-60] and assume that
the ground state of the system is written as a product of identi-
cal single-site wave functions in the basis of local Fock states

) =[] enlni)i- (31)

i )’l,‘=0

By restricting each sum to the three states |n; — 1);, |n;);, and
|n; 4+ 1); the ground-state energy per site results in

A
E/Ng = —zt |:(n + l)grzngZH_I + 2]0(%>\/n(n + 1)

ngzlg11+lgn+l + ngﬁ—lgﬁ] + f(n— 1)8,2,_1

+f)gs + f(n+ Dgpyy. (32)

The yet unknown parameters g,_i, g, and g,4+; are then
determined from minimizing the ground-state energy (32) by
taking into account the normalization condition

g +gi +gr21+l =1 (33)

Thus, the quantum phase boundary follows from the
ansatzes g,_1 = 08gn—1, &, = 1 + 68y, and g,,11 = 82,41 With
infinitesimal but nonvanishing deviations d8g,_1, 6g,, and
88n+1, yielding the condition

1+zt|: " b ntl }

Sy —fn—-1  f)— frn+1
nn + 1)zzt2[l — Joz(%)]

[fm)— f(n—DIf(n) — f(n+ 1]

Similar to Eq. (30) also here the quantum phase boundary (34)
yields in the limit A — O the undriven mean-field result from
Ref. [1]. For a nonvanishing driving, however, we observe
that the quantum phase boundary following from first-order
EPLT in Eq. (30) and GMLT in Eq. (34) differ. In Fig. 1
we compare them for different driving amplitudes A. We
assume that the driving amplitude A is restricted according
to 0 < A/(hw) < x;, where x| & 2.4 denotes the first zero of
the Bessel function Jy(x), so that pair superfluidity does not
occur [30]. From the comparison in Fig. 1 we read off that both
results (30) and (34) are almost identical provided that the
driving parameter A /(hw) is small enough. In fact, their phase

=0. (34)
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FIG. 1. (Color online) First-order EPLT results (30) (solid) com-
pared with GMFT results (34) (dots) for a 3D cubic lattice when
the driving parameter A/(hw) is equal to 1 (red) and 2.2 (blue),
respectively.

0.2

boundaries reveal only small discrepancies for A/(hw) < 1.5,
whereas qualitative different results occur for A/(hw) > 1.5.
In the latter case GMFT yields a triangular lobe, while
first-order EPLT predicts that the lobe shape remains round.
In comparison with GMFT and the more accurate results from
the next subsection we conclude that first-order EPLT reveals
for larger driving an unphysical result insofar as the quantum
phase boundary turns out to be convex instead of concave for
small hopping ¢. Thus, the validity range of first-order EPLT
is restricted up to the turning point when the convexity starts
to appear. With this we obtain from Eq. (30) irrespective of
the lobe number n the condition that the driving amplitude A
is restricted according to 0 < A/(hw) < x,, where x, ~ 1.52
represents the smallest solution of 2Jy(x) = 1. In the next
subsection we show that this restriction for the validity
range of first-order EPLT is lifted once the hopping order is
increased.

C. Higher-order and numerical results

Now we strive to obtain more accurate results for the
quantum phase boundary. At first, we consider EPLT in second
hopping order, where the condition for the MI-SF phase
transition reads

a 1
= L+ @

2@ —aj) 2@ —a7)

—4(a, —a7). (35

Here the abbreviations &; = agl) /aéo) and &, = ozg) /oeéo) fol-
low from Eqgs. (24) and (25) as well as from Egs. (B1)-(B3) in
Appendix B. In order to check how accurate the second-order
EPLT result is, we compare it quantitatively with two other
approaches.

On the one hand we have applied the strong-coupling
method of Ref. [61] up to third order, yielding for n =1 a
quantum phase boundary with the upper part

wy = 1—2zt — 2{222J3(x) + z[3 I3 (2x) — 6J3(x)]}
—12{62°J3 (x) + 22[6J0(2x) J§ (x) — 245 (x)

—3J52x)] + 2[18 — 6J(2x)1} (36)
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and the lower part

py = 1z + 2 J5(x)(22° — 62)

+12J5(x)(62° — 182% + 122), 37)

where we have introduced for brevity the dimensionless driv-
ing parameter x = A/(hw) and the coordination number z =
2D. Note that the second-order strong-coupling results (36)
and (37) can also be recovered from second-order EPLT by
solving the quantum phase boundary ¢t = #(i) in Eq. (35)
for w = wu(r) up to second hopping order. This intriguing
connection between the strong-coupling and the EPLT method,
which has been established here in second hopping order,
could be tested for higher hopping orders by invoking the
process-chain approach [53].

In addition we have obtained high-precision QMC results
for a 2D square lattice from developing an algorithm on
the basis of a stochastic series expansion [62—-66]. In order
to get the high-accuracy quantum phase diagram in the
thermodynamic limit from QMC, we performed a finite-
size scaling with the lattice sizes N =8 x 8, 10 x 10, and
12 x 12 at the temperature T = U/(20N). From Fig. 2(a),
we observe that the second-order EPLT result deviates not
more than 6% error from the QMC result in the considered

0.07
0.06
0.05
0.04}
0.03 }
0.02}
0.01F
0.00¢

t/U

0.05F
0.04F

0.03

t/U

FIG. 2. (Color online) Phase boundary of (a) a 2D square lattice
and (b) a 3D cubic lattice for Jy[A/(hw)] = 0.4: third-order strong-
coupling expansion result according to Egs. (36) and (37) (red solid
line), the QMC result in the thermodynamic limit (blue dots), and the
second-order EPLT result (35) (green dashed line).
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range 0 < A/(hw) < x; = 2.4 of driving amplitudes. Thus,
our second-order EPLT result is sufficiently accurate for
studying quantitatively the effect of the periodic driving upon
the quantum phase transition. Furthermore, we also read off
from Fig. 2(a) that the QMC result lies between the third-order
strong-coupling result and the second-order EPLT result. This
suggests to evaluate both analytical methods to even higher
hopping orders, for instance, by applying the process-chain
approach [53]. The true quantum phase boundary should
then lie between the upper boundary provided by the strong-
coupling method and the lower boundary from the EPLT
method. This hypothesis cannot directly be tested for a 3D
lattice system as it is quite hard to get a satisfying quantum
phase diagram from QMC. However, as EPLT is believed
to be more accurate for higher-dimensional systems [46], it
is suggestive that the error will even be smaller for a 3D
cubic lattice than for a 2D square lattice. This expectation is
partially confirmed by Fig. 2(b), where the deviation between
the third-order strong-coupling and the second-order EPLT
result turns out to slightly smaller in 3D than in 2D.

Now we use our second-order EPLT result in order to ana-
lyze the critical points of the Mott lobes in more detail. Figure 3

F T T T T T T T T A ]
1.25¢ o
L (2) ]
1.20 f i//&
o 1151 :
= [
<
1.10
1.05
1 OO :ﬂﬂ S S S RSN S S R TR
00 02 04 06 08 10 12 14
A/hw
1.01 ¢}
1.00 |
S) [
3. 099 ¢
< [ o " ]
0.98 | "
i L
097 1
:\ n n n 1 n n n 1 n n n 1 n n n 1 n n n 1 n n n 1 n n 1 \.7
00 02 04 06 08 10 12 14

A/hw

FIG. 3. (Color online) Relative critical (a) hopping At
t.(A)/t.(A =0) and (b) chemical potential Ap, = [ (A) — (n —
HU]/ [u.(A =0) — (n — 1)U] from second-order EPLT as a func-
tion of driving parameter A/(hw) for a 3D cubic lattice at the tip
of Mott lobes with n = 1 (blue dots), n = 2 (brown squares), n = 3
(green diamonds), and n = 100 (red triangles) as well as for a 2D
square lattice (symbols with lines).
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shows the EPLT predictions for the relative critical hopping
At. = t.(A)/t.(A = 0) and the relative critical chemical po-
tential Ape = [1e(A) — (n = DU/ [ne(A = 0) — (n — DU]
at the tip of different Mott lobes as a function of the driving
amplitude A. From Fig. 3(a) we read off at first that a larger
driving leads to an increase of the Mott lobe. Thus, similar to
the shaken optical lattice [43], the periodic modulation of the
s-wave scattering length provides a control knob to tune the
quantum phase transition from Mott insulator to superfluid.
Furthermore, it turns out that the effect of periodic driving
upon the critical hopping at the lobe tip is slightly larger in
3D than in 2D systems; i.e., the driving effect is sensitive to
the coordination number z. This can be intuitively understood
from the hopping term in the effective Hamiltonian (20), which
contains the Bessel function J, with the nearest-neighbor
particle difference as its argument. Generally speaking, higher-
order hopping processes have a larger driving effect as they
have a larger probability to involve a larger nearest-neighbor
particle difference, and there are more possible higher-order
hopping processes in higher-dimensional systems. In addition,
we find from Fig. 3(a) that the driving effect is quite small
with respect to the filling number n as all Mott lobes in both
2D and 3D lattices increase almost in the same way for a
fixed driving amplitude. Also this observation is explained by
the fact that the effective Hamiltonian (20) depends on the
nearest-neighbor particle number difference rather than on the
respective particle number on each site.

We can also analyze the driving effect upon the critical
chemical potential, which is depicted in Fig. 3(b). At first
glance we observe that the critical chemical potential behaves
differently in a 2D square lattice and a 3D cubic lattice.
It decreases monotonously in 3D with increasing driving
amplitude, but in 2D it reveals a nonmonotonous behavior and
increases initially before it also finally decreases. Furthermore,
we read off that the critical chemical potential changes only
slightly with the driving amplitude A and the filling number
n. Up to the driving A/(hw) = 1 the critical potential changes
less than 1%, whereas for a huge filling number n = 100 it
almost does not change at all.

IV. EFFECTIVE BOSE-HUBBARD MODEL

In the previous section we have found that the critical
hopping is uniformly renormalized according to Fig. 3(a)
irrespective of the Mott lobe number n, whereas the critical
chemical potential nearly does not change according to
Fig. 3(b). This motivates us to investigate in this section
whether the whole quantum phase boundary for the effective
Hamiltonian (20) stems approximately from the usual Bose-
Hubbard Hamiltonian

. U
H=—1h() ) ala;+ ) S hilhi =)= ) iy (38)
(ij) i i

Here A(x) denotes a suitable rescaling of the hopping with
the dimensionless driving parameter x = A/(fiw) such that
all Mott lobes coincide approximately. From Fig. 3(a), we
determine via a Taylor expansion for n = 1 the fit function

k(x)z1+ax+bx2+cx3+dx4+"', (39)
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FIG. 4. (Color online) Quantum phase diagram of the effective
model (20) (red solid line) and the new effective model (38) (dashed
blue line) with the driving parameter A/(hw) = 1 for a 3D cubic
lattice.

t/U

2.5

with a = —0.0045, b = 0.1356, ¢ = 0.0366, and d = 0.0129
for a 3D cubic lattice, while we have a = —0.0018, b =
0.1212, ¢ = 0.0561, and d = 0.0178 for a 2D square lattice.
Figure 4 compares the resulting quantum phase diagram for the
new effective model (38) with the original effective model (20).
We read off that not only the critical point but also the
complete quantum phase diagram is perfectly reproduced by
the Bose-Hubbard model (38) with the fit function (39) in a
3D cubic lattice. The same can also be observed in a 2D square
lattice provided the driving amplitude is not too large.

Furthermore, we have also used QMC simulations in order
to investigate whether both models (20) and (38) also have
the same properties in the superfluid phase. To this end we
have calculated both the superfluid density p, = (W?/28t)
in terms of the winding number W following Ref. [67]
and the difference between the total density and the density
in Mott-1, i.e., Ap =) ;{(n;)/N — 1, as a function of the
chemical potential. Figure 5 compares both quantities for the
models (20) and (38). We read off that they perfectly agree near
the quantum phase boundary, but farther away they slightly
differ due to larger density fluctuations.

0.7
0.67 |7 Ap
0.5 | =P
0.4 |~ Ap eff 1
0.3 — P, eff \
021
0.1
0.5 0.55 0.6 0.65 0.7 0.75
wu

FIG. 5. (Color online) Total density difference and superfluid
density of the original model (20) and the effective model (38) for
t/U =0.05, A/(hw) =04, N =8 x8,and T = U/(20N) in a 2D
square lattice.
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V. CONCLUSION

Following Ref. [30] we have applied the Floquet theory
in order to analyze the effect of a periodic modulation of the
s-wave scattering length upon the quantum phase diagram
of bosons in a 2D and a 3D optical lattice. At first we
obtained a time-independent effective Hamiltonian for large
enough driving frequencies. Then we used GMFT, EPLT, the
strong-coupling method, and QMC simulations in order to
determine quantitatively how the different Mott lobes change
with the driving amplitude. In particular, we have found that
the time-independent effective model can be well described
even by the usual Bose-Hubbard model provided that the
hopping is rescaled appropriately with the driving amplitude.
Thus, a periodic driving of the inferaction allows one to tune
dynamically the hopping within an optical lattice. In the future
it might be of interest in this context to study the impact of
higher bands which might be populated due to the periodic
modulation of the s-wave scattering length [68].
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APPENDIX A: BREAKDOWN OF FACTORIZATION RULE

The perturbative coefficients ag;) in Eq. (23) follow from
applying Rayleigh-Schrodinger perturbation theory by using a
suitable diagrammatic representation [46,49]. By denoting the
creation (annihilation) operator with an arrow line pointing
into (out of) the site, each perturbative contribution of (xg;,)
can be sketched as an arrow-line diagram, which is composed
of n oriented internal lines connecting the vertices and two
external arrow lines. The vertices in the diagram correspond to
the respective lattice sites, oriented internal lines stand for the
hopping process between sites, and the two external arrow lines
represent creation and annihilation operators, respectively. To
make this clearer, let us consider the simplest example of
the coefficient ag), which has the following diagrammatic
representation:

o) = —p—a—t—o——. (A1)
In the usual Bose-Hubbard model, which we recover from
the Hamiltonian (20) for vanishing driving, ie., A =0,
such a one-particle reducible diagram reduces into its one-
particle irreducible contributions in formal analogy to the
Feynman diagrams of quantum field theory [69,70]. Thus, the
diagrammatic representation (A1) factorizes as follows:

o)) = o) fijrem. (A2)
(i.J)
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In the latter equation “——e-"and “}, ; #;” turn out to
be independent, so it can be rewritten for nearest-neighbor
hopping according to

o = 2t (—e)?. (A3)
For our effective Hamiltonian (20), however, the coefficient
aél) results in

O[;l) = —>—0—>—Ztij.]0 (% (fli - ﬁj)> — O, (A4)
(i.J)

PHYSICAL REVIEW A 90, 013633 (2014)

where the conditional hopping Zﬁ’j) tij Jo(%(ﬁi — 1)) de-
pends on the occupation numbers of the neighboring sites, thus
it is related to the diagrams ——e—— which appear in front and
thereafter. As a result, all three diagrammatic parts in Eq. (A4)
represent together one entity rather than three independent
ones, thus yielding a breakdown of the factorization rule. This
has the immediate consequence that one-particle reducible
diagrams for nonvanishing driving will not vanish in the
effective potential in any hopping order.

APPENDIX B: SECOND HOPPING ORDER

Due to the breakdown of the factorization rule the calculation of coefficients in Eq. (23) in higher hopping orders turns out

to be much more elaborate. For instance, the dependence of the second-order coefficient o

decomposes according to

) on the coordination number z

o = 2z — D + 20 (B1)

The first contribution reads

2 n n+1 3 A A
' = [f(n) “Fa-D " To—fa+ 1)] " [J"(%> +3} [J(’(%) - 1]
x{ n(n+ D? + nin + 1) } (B2)
[f(n) = fn = DILf() = f(n+ D> [f(n) = f(n — DP[f(n) — f(n + 1)]
whereas the second term turns out to be
o n3 (n+ 1) ~ (n — Dn(n + 1J3 (%)
2T - fa—DP  [f)— f+DP [f) = fr— DPIf(+ D)+ f(n —2) —2f(n)]

N (n— Dn(n + DG (£) ~ n(n + D(n +2)J5 ()

[fr—=1) = fMIfn =D+ fe+ 1D =2fm)? [f(n)— fr+DIf(n — D+ f(n+1)=2f(n)]?

(n — Dn(n + 1)J¢ (=)

D+ f—2) = 2fIf(n— D+ fn+1) = 2f ()]
) 20+ D3 (1) = ()]

[f(n—=1) = fMPLf(r =D+ f(n+1) =2 f(n)]
N 2n(n + D[J3 () — Jo(2)] B n(n+ D(n+2)J3(3)

[f()— fa+ DP[f(n =D+ f(a+ 1) =2f(m)] [fn)— fa+ DP[f(n — D+ f(n+2) —2f(n)]

2(n — Dn(n + Ddo(12) Jo(22)
L f=1) = fFMWIf(n=2)+ fn+ 1) =2fWILf(n — 1)+ f(n+ 1) = 2f(n)]
n(n+ D+ 2)J5 (&)
D+ f— )= 2f@Pf(n— D+ fn+2) = 2f ()]
2n(n + 1)(n + 2Jo(7;) Jo(75) B3)

" [f() = fn+DIf(n+2)+ f(r = D) =2fMI[f(n — D+ f(n+ 1) —=2fm)]
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