Koenigstein School April 2014

Fe-based SC

- review of normal state
- review of sc state
- standard model
- new materials & directions

Reviews: P.J. Hirschfeld et al, Rep. Prog. Phys. 74, 124508 (2011); G.R. Stewart RMP 2012; Dagotto and Dai, Nat. Phys. 2012; A. Chubukov, Ann. Rev. 2012

Discovery of LaO_{1-x}F_xFeAs Kamihara et al JACS 2008

Iron-based superconductors

Recent reviews: G.R. Stewart RMP 2012, Paglione & Greene Nat Phys 2010; Johnston Adv. Phys. 2010

LaFeAsO LiFeAs FeSe BaFe₂As₂ $T_c = 38K$ $T_c = 28K$ $T_{c} = 18K$ $T_c = 8K$ (55K for Sm) Wang et al Hsu et al Rotter et al. Sol. St. Comm. 2008 **PNAS 2008**

arXiv: PRL (2008)

(single xtals)

• Ni et al Phys. Rev. B 2008

Kamihara et al JACS (2008)
Ren et al Chin. Phys. Lett. (2008)

Comparison with cuprates

Strong vs. weak coupling?

Single vs. multibands?

2D vs. 3D?

Table 1 Properties of different classes of superconductor						
Property	Conventional superconductors	Copper oxides MgB ₂		Iron-based superconductors		
T _c (maximum)	<30 K	134 K	39 K	56 K		
Correlation effects	None (nearly-free electrons)	Strong local electronic interaction	None (nearly-free electrons)	Long-range (non-local) magnetic correlations		
Relationship to magnetism	No magnetism	Parent compounds are magnetic insulators	No magnetism	Parent compounds are magnetic metals		
Order parameter	One band, same-sign s wave	One band, sign-changing <i>d</i> wave	Two band, same-sign s wave	Two band, presumably sign- changing s wave		
Pairing interaction	Electron-phonon	Probably magnetic (no consensus)	Electron-phonon	Presumably magnetic		
Dimensionality	Three dimensional	Two dimensional	Three dimensional	Variable		

Mazin, Nature 2010

Can we learn what the essential ingredients for high-T_c are from the comparison?

Phase diagrams of Cu-based and Fe-based superconductors are similar

Parent compounds are insulators

Parent compounds are metals

Insulating behavior of parent compounds of the cuprates

Metallic behavior of parent compounds of Fe pnictides

Fang et al 2009

Electronic structure calculations

LOFP Lebegue 2007 ($T_c = 6K$)

Band structures for 2 materials nearly identical! Hole pocket near Γ , electron pocket near M

Kotliar et al, Cao et al: correlations can be significant

Multiorbital physics

DOS near Fermi due almost entirely to 5 Fe d-states

Complications: calculations will be harder

Novelty: surprising new aspects of multiorbital/ multiband physics

Fermi surface

Band structure

(Some) theorists find folded BZ already too complex

Unfolded BZ Folded BZ

2D cross-sections

Magnetic order in most (not all) parent compounds

de la Cruz et al Nature 453, 899 (2008)

Stripe like order w $q=(\pi,0)$

Ordered magnetism in FeSC

Material	Ts (K)	T _N (Fe) (K)	μ _{Fe} (μ _B)	q _{Fe}	Spin direction	$\begin{array}{c} \mathrm{T}_{\mathrm{N}}(R) \\ \mathrm{(K)} \end{array}$	μ _R (μ _B)	q _R	Spin direction
LaOFeAs	155	137	0.36	101	likely a	-			
CeOFeAs	158	140	0.8	100	а	4.0	0.94	101	a,b,c
PrOFeAs	153	127	0.48	100	а	14	0.84	100	с
NdOFeAs	150	141	0.25	101	likely a	1.96	1.55	100	a,c
CaFe ₂ As ₂	173	173	0.80	101	а	-			
SrFe ₂ As ₂	220	220	0.94	101	а	-			
BaFe ₂ As ₂	142	143	0.87	101	a	-			
Fe _{1.068} Te	67	67	2.25	100	b	-			

"double stripe" $q = (\pi/2, \pi/2)$

Lynn, Dai 2009

Weak coupling/strong coupling picture of magnetism?

Early theories proposing strong coupling: Yildrim 08; Fang et al 08, Cvectovic & Tesanovic 08, Abrahams & Si 08, Manousakis et al 08

Stripe order stabilized for large J₂

Zhao et al. Natphys 09 spin excitations fit Heisenberg without need for Stoner continuum, but a-b anisotropy hard to understand. Diallo et al PRL 09: poor fit at higher E, spin waves are damped by p-h excitations; good fit from 1st principles susceptibility

Also: "doping" with pressure

Magnetic order tied to structural phase transition
 possible coexistence with superconductivity?

Zhao et al 2008

D.K. Pratt et al 09

Best guess at present: 1111—NO; 122--YES

DFT correctly reproduces (or even predicts) correct magnetic and structural ground states, <u>but</u> requires magnetism as a prior condition for distortion

Courtesy of M. Johannes & I. Mazin

Transition driven by orbital ordering?

heory: Xu et al, Kruger et al, Fang et al 08

Experiments on untwinned samples: "nematic" susceptibility above T_s?

Implications for superconductivity?

ARPES: orbital ordering

Yi et al PNAS 2011

Nematic behavior also in superconducting state!

STM on FeSe, Song et al., Science 2011

Vortex

Impurity states

Strongly 1D defect structures in (barely orthorhombic system)!

Three different types of order which break x/y symmetry

- stripe spin order (neutrons)
- structural order $a_x \neq a_y$ (X-ray diffraction)
- orbital order dxz and dyz orbitals occupied differently (ARPES)

which one is the driving force?

Courtesy of A. Chubukov

Magnetic origin for nematicity?

- Nematic order is a natural consequence of the magnetism of the pnictides (no need to introduce extra degrees of freedom)
- Nematic degrees of freedom affect the macroscopic properties across much of the phase diagram

Magnetic origin for nematicity?

Symmetry breaking in the striped magnetic state of the iron pnictides:

O(3) x Z₂ symmetry breaking

 $(0,\pi)$

Magnetic origin for nematicity?

• A state that breaks Z₂ symmetry but remains paramagnetic

spontaneous tetragonal symmetry breaking

Correlation strengths across materials

Qazilbash et al. NatPhys2009

Specific heat (m	J/ mol K ²)
LaFePO	7
Ba(Co _x Fe _{1-x}) ₂ As ₂	15-20
Ba _{1-x} K _x Fe ₂ As ₂	50
FeSe _{0.88}	9.2
KFe ₂ As ₂	69-102
K _{0.8} Fe _{1.6} Se ₂	6

Review: Stewart, RMP (2011)

Results from LDA+DMFT

Z. P. Yin, K. Haule, & G. Kotliar, Nat. Mat. 10, 932–935 (2011)

2.5 SDW DMFT Magnetic moment ($\mu_{\rm B}$) 2.0 DSDW DMFT SDW EXP DSDW EXP 1.5 EXP PM fluctuating moment 1.0 0.5 0 xy xy/yz **EXP** optics EXP (AR)PES 5 z² m^*/m_{band} $-x^2 - y^2$ 4 2 FeP Te/Se 111 122 122 1111 Batersz r ster sr 4000 the set the the set

Fix interactions U,J, vary material

Not all orbitals are equally correlated!

Can we understand evolution of correlations across 122 phase diagram?

Some empirical measures of correlations

Sommerfeld coefficient

Optics: Drude contribution

$$\gamma \sim N^*(E_F) = \sum_{\alpha} (m^*/m_b)_{\alpha} N_b^{\alpha}(E_F)$$
$$D^* = \sum (m_b/m^*)_{\alpha} D_b^{\alpha}$$

⇒ selective orbital mass enhancement

Multiorbital Mott physics: J acts as orbital decoupler:

- suppresses inter-orbital correlations
- differentiate orbitals with respect to distance from Mott transition

de Medici et al, ArXiv:1212.3966

Correlations have strong effect on LDA+DMFT Fermi surface of KFe2As2 (unlike BaFe2As2)

Backes et al (Frankfurt group)

SC state: gap symmetry vs. structure

SC state: experimental "lack of universality" e.g., penetration depth experiments

Hicks et al 2008 LaFePO $T_c = 6K$

Prozorov, 2011 Co-doped Ba122 T_c=25K

Hashimoto et al 2009 K-doped Ba122 $T_c = 40K$

gapped SC

Thermal conductivity (H=0)

(bulk probe, lowest temperatures thus far)

LaFePO: Yamashita et al aXv:0906.0622

K-doped Ba-122: Luo et al aXv:0904.4049

Big linear T term

Tiny or zero linear T term

Recall in theory of nodal SC linear T term \Rightarrow residual qp excitations (metallic-like) for d-wave superconductor this term is "universal" $\kappa/T \sim N_0 v_F^2/\Delta_0$

NMR spin-lattice relaxation

Yashima et al arXiv:0905.1896

$$\frac{T_1^{-1}}{(T_1^{-1})_N} = 2\frac{T}{T_c} \int_0^\infty d\omega \left(\frac{-\partial f}{\partial \omega}\right) \left(\frac{N(\omega)}{N_0}\right)^2$$

Nakai et al. JPSJ (2008)

line nodes $\Rightarrow N(\omega) \sim \omega \Rightarrow T^3$!

Resonant mode in inelastic neutron scattering

Ba_{0.6}K_{0.4}Fe₂As₂: Christianson et al Nature 2008

Reminder: cuprates: Fong et al PRB 2000

In Ba-122 resonance observed near $Q=\pi$,0 (1-Fe BZ) Appears only in SC state (like opt. doped cuprates)

$$\operatorname{Im} \chi \sim \sum_{k} \left[1 - \frac{\Delta_k \Delta_{k+q}}{E_k E_{k+q}} \right] ..$$

 $\Delta_{k+Q} = -\Delta_k \Longrightarrow$ sign change of order parameter

Multiband theory: Maier & Scalapino 2008, Korshunov & Eremin 2008, Maier et al 2009

- What is the symmetry of SC order parameter?
- What controls whether Fe-based material is nodal or gapped superconductor?
- Why are these systems' superconducting states nonuniversal?

Pairing by spin fluctuations?

1) Electron-phonon interaction is weak:

We have calculated *ab initio* the electron-phonon spectral function, $\alpha^2 F(\omega)$, and coupling, λ , for the stoichiometric compound [9]. Some moderate coupling exists, mostly to As modes, but the total λ appears to be ~ 0.2, with $\omega_{log} \sim 250$ K, which can in no way explain $T_c \gtrsim 26$ K.

Mazin et al, PRL 2008, see also Mu et al CPL (2008), Boeri et al. PRL 2008

Singh & Du PRL 200

2) Magnetism is usually nearby:

Spin fluctuation theories of pairing

Effective interaction from spin fluctuations (Berk-Schrieffer 1966)

$$V_s(q,\omega) \cong \frac{3}{2} \frac{\overline{U}(\chi_0(q,\omega))}{1 - U\chi_0(q,\omega)}$$
$$\chi_0(q,\omega) = \int \frac{d^3p}{(2\pi)^3} \frac{f(\varepsilon_{p+q}) - f(\varepsilon_p)}{\omega - (\varepsilon_{p+q} - \varepsilon_p) + i\delta}$$

Equations may have solutions even when all elements of the interaction matrices are repulsive (>0).

The simplest example is an off-diagonal repulsion: $V_{11} = V_{12} = 0$, $V_{12} = V_{21} = -V < 0$. In this case the solution reads: $\lambda_{eff} = \sqrt{\Lambda_{12}\Lambda_{21}} = |V_{12}|\sqrt{N_1N_2}$, $\Delta_1(T_c)/\Delta_2(T_c) = -\sqrt{N_2/N_1}$.

Similar argument from Mazin et al PRL 2008 for pnictides: consider only α - β pair scattering

- nesting peaks interaction V_s at π ,0 in 1-Fe zone.
- interaction is constant over sheet since they are small.
- therefore *isotropic* sign-changing s_{+/-} state solves gap eqn

Spin fluctutation pairing theories in Fe-pnictides

Realistic theories: gaps display strong anisotropy/ nodes

Two pairing channels nearly degenerate:

a) Can different FeAs materials have different symmetries?

b) Or, do all have s-wave symmetry, differing gap structures for different materials

What is the origin of the gap anisotropy [Maier et al PRB 09]?

1. importance of orbital character on Fermi sheets

- 2. scattering between β_1 and β_2 sheets
- 3. intraband Coulomb repulsion

See also: Chubukov et al 2009, Thomale et al 2009 (band picture), Thomale et al 2010, Kemper et al 2010

Nonuniversality in experiments: sensitivity to small changes in electronic structure, disorder

any nodes are *accidental* rather than symmetry-enforced in ext.-s states

Big picture: evolution of gap with doping

PH, Korshunov and Mazin Rep. Prog. Phys. 2011

s₊₊ or s₊₋? Few phase-sensitive expts.

Chen et al, Nature 2010

Christianson et al Nature 2008

Hanaguri et al Science 2010

NdFeAsO_{0.88}F_{0.12}

Half-integer fluxes detected (in a small fraction of loops)

Ba_{0.6}K_{0.4}Fe₂As₂

Enhanced susceptibility at Q below Tc \Rightarrow sign change of order parameter

Fe(Se,Te)

Field dependence of quasiparticle interference peaks depends on order parameter sign

Various critiques of all experiments, alternate scenarios: where is the

Hiroshi Kontani, M2S 2012

impurity effect in single crystal (Ba,K)Fe₂As₂

J.Li et al. PRB 85, 214509 (2012).

✓ Vegard's law: good crystal

other experiments:

1111 systems: Sato et al, JPSJ('08) Ba122: Paglione et al, arXiv('12) irradiation: Nakajima et al, PRB ('10)

Theory: $S \pm wave state$ disappears when $\rho_{imp} = 20 \sim 40 \mu \Omega cm$

local impurity on Fe-sites Inter- and intraband impurity scattering in 2-band s_{+/-} system

e- irradiation experiments (Prozorov, Shibauchi)

New directions in FeSC

Three materials which don't quite fit the "standard" paradigm

LiFeAs: stoichiometric 18K superconductor with

clean, nonpolar surfaces nonmagnetic, no FS nesting

KFe_{2-x}Se₂: 31K superconductor with

3µ_B ordered magnetic moment, ordered Fe vacancies, parent compound may be *insulating*

FeSe under stress: 43K SC intercalated with Li amide, ammonia 40K SC under 10 GPa pressure ?? 65K SC single layer on STO

Borisenko et al PRL 2010

Importance of correlations?

 $k_7 = 0$

Yin et al 2011 Nat Mat, Ferber et al PRB 2012

LDA+DMFT: hole pockets shrink, electron pockets unaffected

see also Lee et al, PRL 2012

ARPES results for SC gap function (Dresden group)

β electron pocket

γ hole pocket

Borisenko et al Symmetry 2012

Experimental data (Disney version)

Borisenko et al 2012

Umezawa et al 2012

Results of 3D spin fluctuation calculations I Leading pairing eigenstate 10-orbital DFT-based or ARPES-fit bands

Wang et al PRB 2013

Conclusion: s+/- pairing from spin fluctuations despite lack of Fermi surface nesting

LiFeAs ``ab initio" pairing theory: success or failure? Comparison with experiment

IV. Ahn et al aXv: '14 I. Wang et al. PRB '13

/				
	1	П	Ш	IV
Bands	ARPES*	LDA+DMF T	ARPES*	ARPES*
Full gap	yes	no	yes	yes
Ratios of gaps on large pockets	yes	?	yes	possible
Gap size on α pockets	"no"	?	yes	possible
Phase of gap on β pockets	yes	yes	yes	possible

 III. Saito et al. IV. Yin et al. aXv '13
 aXv: '14 •Some disagreement re ARPES Fermi surface: cf. Chi et al 1308.4413 surfaces, samples?

FeSe: 8K superconductor, but:

Medvedev et al 2010 Tc \rightarrow 37K under pressure

Wang et al. Chin. Phys. Lett. 2012 1 layer Tc \rightarrow 35K under tensile strain

Tc \rightarrow 43K molecular intercalation

Conclusions

- Magnetic and orbital correlations at high T both lead to stripe magnetic order and superconductivity: which are more important?
- repulsive interactions probably lead to s+/- state for "generic" Fe-based SC with hole and electron pockets
- orbital character, intraband Coulomb enhance gap anisotropy. anisotropic s_{+/-} nodal structures show strong sensitivity to small changes in electronic structure (pnictogen height, surfaces, strain, defects)
- spin fluctuation theory explains gap anisotropy of 122's across phase diagram, gets details correct in "generic" FeSC

"end point compounds" show tendency to d-wave order