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“Correlations”?

What’s that ?
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“Correlations”?
Ashcroft-Mermin, “Solid state physics” gives ...

... the “beyond Hartree-Fock” definition”:

Thecorrelation energyof an electronic system is the
difference between the exact energy and its
Hartree-Fock energy.
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“Correlations”?
• “Correlatio” (lat.): mutual relationship

→ The behavior of a given electron is not
independent of the behavior of the others!
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The “standard model” of solids:
Cu atom  1d   size 0.30
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F. Bloch

Electrons in a periodic potential

• occupyone-particle(Bloch) states, delocalised over the solid.

• feel each other only through an effective mean potential

(and the Pauli principle).

→ independent particle picture – p. 5



“Correlations”?
• “Correlatio” (lat.): mutual relationship

→ The behavior of a given electron is not
independent of the behavior of the others!

• Mathematically:

〈AB〉 6= 〈A〉〈B〉 (1)
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“Correlations”?

50% have blue eyes
50% have yellow eyes
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“Correlations”?

50% are left-handed
50% are right-handed
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“Correlations”?

What’s the probability for a left-handed yellow-eyed
kangaroo ???
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“Correlations”?

probability for a left-handed yellow-eyed kangaroo
= 1/2 · 1/2 = 1/4 only if the two properties are
uncorrelated
Otherwise: anything can happen ....
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“Correlations”?
• “Correlatio” (lat.): mutual relationship

→ The behavior of a given electron is not
independent of the behavior of the others!

• Mathematically:

〈AB〉 6= 〈A〉〈B〉 (2)

For electrons (in a given atomic orbital):

〈n↑n↓〉 6= 〈n↑〉〈n↓〉

nσ = number operator for electrons with spinσ.
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“Correlations”?
Count electrons on a given atom in a given orbital:

nσ = counts electrons with spinσ

n↑n↓ counts “double-occupations”

〈n↑n↓〉 = 〈n↑〉〈n↓〉 only if the “second” electron
does not care about the orbital being already
occupied or not

– p. 12



Exercise (!):
Does

〈n↑n↓〉 = 〈n↑〉〈n↓〉hold?

1. Hamiltonian:H0 = ǫ(n↑ + n↓)

2. Hamiltonian:H = ǫ(n↑ + n↓) + Un↑n↓
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Correlations 〈n↑n↓〉 = 〈n↑〉〈n↓〉?

(1) Hamiltonian:H0 = ǫ(n↑ + n↓)
Operatorsn↑ andn↓ have eigenvalues0 and1.
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Correlations 〈n↑n↓〉 = 〈n↑〉〈n↓〉?

(1) Hamiltonian:H0 = ǫ(n↑ + n↓)
Operatorsn↑ andn↓ have eigenvalues0 and1.

〈n↑n↓〉 =
1

Z

∑

n↑=0,1, n↓=0,1

n↑n↓e
−βǫ(n↑+n↓)

=
1

Z

∑

n↑=0,1

n↑e
−βǫn↑

∑

n↓=0,1

n↓e
−βǫn↓

= 〈n↑〉〈n↓〉
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Correlations 〈n↑n↓〉 = 〈n↑〉〈n↓〉?

(1) Hamiltonian:H0 = ǫ(n↑ + n↓)
Operatorsn↑ andn↓ have eigenvalues0 and1.

〈n↑n↓〉 =
1

Z

∑

n↑=0,1, n↓=0,1

n↑n↓e
−βǫ(n↑+n↓)

=
1

Z

∑

n↑=0,1

n↑e
−βǫn↑

∑

n↓=0,1

n↓e
−βǫn↓

= 〈n↑〉〈n↓〉

No correlations! (Hamiltonian separable)
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Correlations 〈n↑n↓〉 = 〈n↑〉〈n↓〉?

(2) Hamiltonian:H = ǫ(n↑ + n↓) + Un↑n↓

Operatorsn↑ andn↓ have eigenvalues0 and1.
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Correlations 〈n↑n↓〉 = 〈n↑〉〈n↓〉?

(2) Hamiltonian:H = ǫ(n↑ + n↓) + Un↑n↓

Operatorsn↑ andn↓ have eigenvalues0 and1.

〈n↑n↓〉 =
1

Z

∑

n↑=0,1, n↓=0,1

n↑n↓e
−βǫ(n↑+n↓)−βUn↑n↓

6= 〈n↑〉〈n↓〉
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Correlations 〈n↑n↓〉 = 〈n↑〉〈n↓〉?

(2) Hamiltonian:H = ǫ(n↑ + n↓) + Un↑n↓

Operatorsn↑ andn↓ have eigenvalues0 and1.

〈n↑n↓〉 =
1

Z

∑

n↑=0,1, n↓=0,1

n↑n↓e
−βǫ(n↑+n↓)−βUn↑n↓

6= 〈n↑〉〈n↓〉

Correlations! (Hamiltonian not separable)
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Periodic array of sites with one
orbital

We can have〈n↑ + n↓〉 = 1 for each site, but yet
〈n↑n↓〉 = 0 (insulator!)
Is this possible within a one-particle picture?
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Periodic array of sites with one
orbital

〈n↑ + n↓〉 = 1 for each site, and〈n↑n↓〉 = 0
→ only possible in a one-particle picture if we allow
for symmetry breaking (e.g. magnetic), such that
〈n↑〉〈n↓〉 = 0
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Mott’s ficticious H-solid:
Hydrogen atoms with lattice spacing 1 m

H H H H H H H H
H H H H H H H H
H H H H H H H H (not to scale ...)
H H H H H H H H
H H H H H H H H

Metal or insulator?
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Mott’s ficticious H-solid:
Hydrogen atoms with lattice spacing 1 m

H H H H H H H H
H H H H H H H H
H H H H H H H H (not to scale ...)
H H H H H H H H
H H H H H H H H

Metal or insulator?

Band structure:→ metal
Reality: → “Mott insulator”!
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Mott’s ficticious H-solid:
Hydrogen atoms with lattice spacing 1 m

H H H H H H H H
H H H H H H H H
H H H H H H H H (not to scale ...)
H H H H H H H H
H H H H H H H H

Metal or insulator?

Band structure:→ metal
Reality: → “Mott insulator”!

Coulomb repulsion dominates over kinetic energy!
– p. 18



What are the energy scales?
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What are the energy scales?
Compare

Vm1m2m3m4
≡ 〈φm1

φm2
|

1

|r − r′|
|φm3

φm4
〉

=

∫∫

drdr′φ∗
m1
(r)φm3

(r)
1

|r − r′|
φ∗
m2
(r′)φm4

(r′).

and kinetic energy
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What are the energy scales?
Compare

Vm1m2m3m4
≡ 〈φm1

φm2
|

1

|r − r′|
|φm3

φm4
〉

=

∫∫

drdr′φ∗
m1
(r)φm3

(r)
1

|r − r′|
φ∗
m2
(r′)φm4

(r′).

and kinetic energy

For 3d Wannier function of typical transition metals:
30 eV versus 3 eV !!
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Why does band theory work at
all?
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Band structure ...
... from photoemission – Example: Copper
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Why does band theory work at
all?
Band structure relies onone-electronpicture
But: electrons interact !

Several answers ...:

•
Pauli principle
Screening } reduce effects of interactions

Landau’s Fermi liquid theory: quasi-particles

– p. 24



Structure of SrVO33.1 Introduction 69

CaVO3 SrVO3

(a) (b)
V

O

Sr

V

O

Ca

Figure 3.1: The crystal structure of (a) CaVO3 and (b) SrVO3 exhibiting various V-O-Vbond angles in the system.(= 180o) (see Fig. 3.1(b)) with cubic perovskite structure in SrVO3. Stoichiometric CaVO3and SrVO3 are both Pauli-paramagnetic metals [12-14]. Oxygen non-stoichiometry inCaVO3 leads to antiferromagnetic [15] or Curie-Weiss paramagnetic [16] behavior withno long range magnetic order down to 4 K. A solid solution of CaVO3 and SrVO3 can beformed over the entire composition range (0 � x � 1) with the formula Ca1�xSrxVO3.Ca and Sr being homovalent (2+) in the solid solution, there is no change in the chargecarrier concentration with composition (x) and it is always one electron per V-ion acrossthe series. On the other hand, the di�erent V-O-V bond angle results in di�erent V-O-V hopping interaction strength, t. Thus, the e�ective correlation strength as measuredby U=W where W (/ t) denotes the bare bandwidth of the system, can be continuouslytuned by changing x, with CaVO3 being a more correlated metal with a larger U=W valuethan SrVO3 [11]. Thus, these compounds represent a well-suited experimental realizationof a continuous tuning of U=W and consequently, provide a good testing ground for thepredictions of the Hubbard model.With this in view, the electronic structure of Ca1�xSrxVO3 was probed for severalvalues of x using photoelectron spectroscopy [11]. The experimental results are shown tobe incompatible with the existing theoretical results described in terms of the Hubbard

SrVO3: a cubic perovskite
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The “standard model” (contd.)
Landau theory of quasiparticles:
→ one-particle picture as a low-energy theory
with renormalized parameters
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Why does band theory work at
all?
Band structure relies onone-electronpicture
But: electrons interact !

Several answers ...:

•
Pauli principle
Screening } reduce effects of interactions

Landau’s Fermi liquid theory: quasi-particles

– p. 27



Why does band theory work at
all?
Band structure relies onone-electronpicture
But: electrons interact !

Several answers ...:

•
Pauli principle
Screening } reduce effects of interactions

Landau’s Fermi liquid theory: quasi-particles

• It does not always work ....
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YTiO 3 in band theory
YTiO3: a distorted perovskite compound with d1

configuration (i.e. 1 electron int2g orbitals),
paramagnetic above 30 K.

Density Functional Theory calculations:

0

0.5

1.0

−1 0 1 2
E−E

Fermi
[eV]

DOS

YTiO
3

(∗) DFT-LDA = Density Functional Theory within the local density approximation
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YTiO 3: in reality ...
Photoemission reveals a (Mott) insulator:

(Fujimori et al.)
LDA
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YTiO
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YTiO 3: in reality ...
Photoemission reveals a (Mott) insulator:

(Fujimori et al.)
LDA

0
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E−E

Fermi
[eV]

DOS

YTiO
3

How to produce a paramagnetic insulating state with 1
electron in 3 bands?
→ not possible in band theory
→ breakdown of independent particle picture
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Can we understand correlated electronic behavior?

How to (quantitatively?) describe correlated
materials?
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Further outline
• Correlated Materials – some (more) examples
• Modelling correlated electron: Hubbard model
• The Mott metal-insulator transition
• Dynamical mean field theory (DMFT)
• Density Functional Theory (DFT) within the

Local Density Approximation (LDA)
• Dynamical mean field theory within electronic

structure calculations (“LDA+DMFT”)
• Current questions in the field: what about U? ...
• Beyond LDA+DMFT? – Functional approaches
• Conclusions

– p. 32



Correlated Materials ...
... typically contain partially filled d- or f-shells

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
hydrogen helium

1 2

H He
1.00794(7) Key: 4.002602(2)

lithium beryllium element name boron carbon nitrogen oxygen fluorine neon

3 4 atomic number 5 6 7 8 9 10

Li Be element symbol B C N O F Ne
6.941(2) 9.012182(3) 1995 atomic weight (mean relative mass) 10.811(7) 12.0107(8) 14.00674(7) 15.9994(3) 18.9984032(5) 20.1797(6)

sodium magnesium aluminium silicon phosphorus sulfur chlorine argon

11 12 13 14 15 16 17 18

Na Mg Al Si P S Cl Ar
22.989770(2) 24.3050(6) 26.981538(2) 28.0855(3) 30.973761(2) 32.066(6) 35.4527(9) 39.948(1)

potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
39.0983(1) 40.078(4) 44.955910(8) 47.867(1) 50.9415(1) 51.9961(6) 54.938049(9) 55.845(2) 58.933200(9) 58.6934(2) 63.546(3) 65.39(2) 69.723(1) 72.61(2) 74.92160(2) 78.96(3) 79.904(1) 83.80(1)

rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
85.4678(3) 87.62(1) 88.90585(2) 91.224(2) 92.90638(2) 95.94(1) [98.9063] 101.07(2) 102.90550(2) 106.42(1) 107.8682(2) 112.411(8) 114.818(3) 118.710(7) 121.760(1) 127.60(3) 126.90447(3) 131.29(2)

caesium barium lutetium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon

55 56 57-70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Cs Ba * Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
132.90545(2) 137.327(7) 174.967(1) 178.49(2) 180.9479(1) 183.84(1) 186.207(1) 190.23(3) 192.217(3) 195.078(2) 196.96655(2) 200.59(2) 204.3833(2) 207.2(1) 208.98038(2) [208.9824] [209.9871] [222.0176]

francium radium lawrencium rutherfordium dubnium seaborgium bohrium hassium meitnerium ununnilium unununium ununbium

87 88 89-102 103 104 105 106 107 108 109 110 111 112

Fr Ra ** Lr Rf Db Sg Bh Hs Mt Uun Uuu Uub
[223.0197] [226.0254] [262.110] [261.1089] [262.1144] [263.1186] [264.12] [265.1306] [268] [269] [272] [277]

lanthanum cerium praseodymium neodymium promethium samarium europium gadolinium terbium dysprosium holmium erbium thulium ytterbium

57 58 59 60 61 62 63 64 65 66 67 68 69 70

*lanthanides La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb
138.9055(2) 140.116(1) 140.90765(2) 144.24(3) [144.9127] 150.36(3) 151.964(1) 157.25(3) 158.92534(2) 162.50(3) 164.93032(2) 167.26(3) 168.93421(2) 173.04(3)

actinium thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium mendelevium nobelium

89 90 91 92 93 94 95 96 97 98 99 100 101 102

**actinides Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No
[227.0277] 232.0381(1) 231.03588(2) 238.0289(1) [237.0482] [244.0642] [243.0614] [247.0703] [247.0703] [251.0796] [252.0830] [257.0951] [258.0984] [259.1011]

WebElements: the periodic table on the world-wide web
http://www.shef.ac.uk/chemistry/web-elements/

Symbols and names: the symbols of the elements, their names, and their spellings are those recommended by IUPAC. After some controversy, the names of elements 101-109 are now confirmed: see Pure & Appl. Chem., 1997, 69, 2471Ð2473. Names have not been proposed as yet for the most recently discovered 
elements 110Ð112 so those used here are IUPACÕs temporary systematic names: see Pure & Appl. Chem., 1979, 51, 381Ð384. In the USA and some other countries, the spellings aluminum and cesium are normal while in the UK and elsewhere the usual spelling is sulphur. 
Periodic table organisation: for a justification of the positions of the elements La, Ac, Lu, and Lr in the WebElements periodic table see W.B. Jensen, ÒThe positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic tableÓ, J. Chem. Ed., 1982, 59, 634Ð636. 
Group labels: the numeric system (1Ð18) used here is the current IUPAC convention. For a discussion of this and other common systems see: W.C. Fernelius and W.H. Powell, ÒConfusion in the periodic table of the elementsÓ, J. Chem. Ed., 1982, 59, 504Ð508.
Atomic weights (mean relative masses): see Pure & Appl. Chem., 1996, 68, 2339Ð2359. These are the IUPAC 1995 values. Elements for which the atomic weight is contained within square brackets have no stable nuclides and are represented by one of the elementÕs more important isotopes. However, the three 
elements thorium, protactinium, and uranium do have characteristic terrestrial abundances and these are the values quoted. The last significant figure of each value is considered reliable to ±1 except where a larger uncertainty is given in parentheses.
©1998 Dr Mark J Winter [University of Sheffield, webelements@sheffield.ac.uk]. For updates to this table see http://www.shef.ac.uk/chemistry/web-elements/pdf/periodic-table.html. Version date: 1 March 1998. 
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Correlated Materials ...
... typically contain partially filled d- or f-shells

→ transition metal oxides/sulfides, rare earth or
actinide compounds
(but also: low-dimensional systems, organics ...)

– p. 34



Metal-Insulator Transitions

Metal-insulator transition:
drop of conductivity by
several orders of magni-
tude

Morin et al., 1959
!

– p. 35



SrVO3 : a correlated metal
SrVO3 within DFT-LDA
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(Sekiyama et al. 2003)
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Iron pnictides

LaFePO: photoemission versus band structure
(Lu et al., 2008)
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Iron pnictides

LaFePO: photoemission versus band structure
“after shifting the calculated bands up by 0.11 eV and
then renormalizing by a factor 2.2” ...
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The Hubbard model

H = −
D

2

∑

<ij>σ

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓

(Hubbard, 1963)

Ground state at half-filling and finite U: antiferromagnetic
Frustrated model→ paramagnetic solution ?
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Spectra for one atom
Electron removal and addition spectra
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E = ǫ E = ǫ+ U

U=Coulomb interaction between two 1s electrons
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Atomic limit: D=0

H = U
∑

i

ni↑ni↓

→ atomic eigenstates, localized inreal space

Spectral function = discrete peaks separated by U
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Non-interacting limit: U=0

H = −
D

2

∑

<ij>σ

(

c†iσcjσ + c†jσciσ

)

=
∑

kσ

ǫkc
†
kσckσ

with e.g.ǫk = −D[cos(kx) + cos(ky) + cos(kz)) on a 3D square
lattice (lattice constant 1) with nearest neighbor hopping.

Spectral function = non-interacting DOS

0

0.2

0.4

0.6

−2 −1 0 1 2
E−E

Fermi

DOS
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“Atomic” and “band-like” spectra
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“Spectral function” ρ(ω) probes possibility of
adding/removing an electron at energyω.

In non-interacting case:ρ(ω)= DOS.
In general case: relaxation effects!
In “atomic limit”: probe local Coulomb interaction
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Hubbard model within DMFT (∗)

H = −
D

2

∑

<ij>σ

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓

(Hubbard, 1963)
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(∗) DMFT = Dynamical Mean Field Theory, paramagnetic solution – p. 44



Once more: SrVO33.1 Introduction 69

CaVO3 SrVO3

(a) (b)
V

O

Sr

V

O

Ca

Figure 3.1: The crystal structure of (a) CaVO3 and (b) SrVO3 exhibiting various V-O-Vbond angles in the system.(= 180o) (see Fig. 3.1(b)) with cubic perovskite structure in SrVO3. Stoichiometric CaVO3and SrVO3 are both Pauli-paramagnetic metals [12-14]. Oxygen non-stoichiometry inCaVO3 leads to antiferromagnetic [15] or Curie-Weiss paramagnetic [16] behavior withno long range magnetic order down to 4 K. A solid solution of CaVO3 and SrVO3 can beformed over the entire composition range (0 � x � 1) with the formula Ca1�xSrxVO3.Ca and Sr being homovalent (2+) in the solid solution, there is no change in the chargecarrier concentration with composition (x) and it is always one electron per V-ion acrossthe series. On the other hand, the di�erent V-O-V bond angle results in di�erent V-O-V hopping interaction strength, t. Thus, the e�ective correlation strength as measuredby U=W where W (/ t) denotes the bare bandwidth of the system, can be continuouslytuned by changing x, with CaVO3 being a more correlated metal with a larger U=W valuethan SrVO3 [11]. Thus, these compounds represent a well-suited experimental realizationof a continuous tuning of U=W and consequently, provide a good testing ground for thepredictions of the Hubbard model.With this in view, the electronic structure of Ca1�xSrxVO3 was probed for severalvalues of x using photoelectron spectroscopy [11]. The experimental results are shown tobe incompatible with the existing theoretical results described in terms of the Hubbard

SrVO3: cubic perovskite
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Spectra of perovskites
Photoemission
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Spectra of perovskites
Photoemission
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Green’s function – survival kit

ρ(ω) = −
1

π
ℑGii(ω)

Definition of Green’s function:

Gij(t) = −〈T̂ ci(t)c
†
j(0)〉

Quasi-particles are poles of

G(k, ω) =
1

ω + µ− ǫo(k)− Σ(k, ω)

All correlations are hidden in theself-energy:

Σ(k, ω) = G−1
0 (k, ω)−G−1(k, ω)

– p. 48



Hubbard model within DMFT (∗)

H = −
D

2

∑

<ij>σ

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓

(Hubbard, 1963)
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(∗) DMFT = Dynamical Mean Field Theory, paramagnetic solution – p. 49



Spectral function
Quasi-particle lifetime (∼ 1/Σ′′(ω = 0)) vanishes!
→ Opening of a gap at the Fermi levelω = 0

A(k, ω) = ImG(k, ω)

= Im
1

ω + µ− ǫo(k)− Σ(k, ω)

= −
1

π

Σ′′(k, ω)

(ω + µ− ǫo(k)− Σ′(k, ω))2 + Σ′′(k, ω)2

Here: self-energy purely local. Then:

A(k, ω) = −
1

π

Σ′′(ω)

(ω + µ− ǫo(k)Σ′(ω))2 + Σ′′(ω)2

→ Σ′′(ω) = inverse lifetime of excitation
– p. 50



In a Fermi liquid:
(local self-energy, for simplicity ...):

ImΣ(ω) = −Γω2 +O(ω3)

ReΣ(ω) = ReΣ(0) + (1− Z−1)ω +O(ω2)

A(k, ω) =
Z2

π

−ℑΣ(ω)

(ω − Zǫ0(k))
2 + (−ZℑΣ(ω))2

+Ainkoh

For small ImΣ (i.e. well-defined quasi-particles):
Lorentzian of width ZImΣ,
poles at renormalized quasi-particle bands Zǫ0(k),
weight Z (instead of 1 in non-interacting case)

– p. 51



Hubbard model within DMFT (∗)

H = −
D

2

∑

<ij>σ

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓

(Hubbard, 1963)
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(∗) DMFT = Dynamical Mean Field Theory, paramagnetic solution
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What’s ...
... Dynamical Mean Field Theory (DMFT)?

– p. 53



What’s a mean field theory?

– p. 54



What’s a mean field theory?
Example of the Ising Model:

H = −J
∑

ij

Sz
i S

z
j (3)

Mean field theory: map onto single-spin problem in
an effective field

H = −µBBeffS
z
o (4)

with a self-consistency condition restoring
translational invariance

– p. 55



What’s a mean field theory?
Two ingredients:
1. Reference system: single site (or cluster of sites) in
an effective mean field

2. Self-consistency condition relating the effective
problem to the original one

– p. 56



... adynamicalmean field theory?
Two ingredients:
1. Reference system: single site (or cluster of sites) in
an effective mean field

• Mean field can beenergy-dependent
(→ dynamical)

• Reference system can beinteracting
2. Self-consistency condition relating the effective
problem to the original one

– p. 57



Dynamical mean field theory ...
... maps a lattice problem

onto a single-site (Anderson impurity) problem

with a self-consistency condition
(for a review see Georges et al., Rev. Mod. Phys. 1996)

– p. 58



Remarks
• Exact in the limit of infinite lattice coordination

Metzner and Vollhardt, 1989

• In this limit, self-energy purely local
Müller-Hartmann, 1989

• Local self-energy can be calculated from
effective impurity model
Georges, Kotliar, 1992

• Early work on lattice models (Andersen,
Falicov-Kimbal)
Brandt, Mielsch, Grewe, Keiter ...

• Non-local extensions (“cluster impurity models”)
Lichtenstein, Jarrell, Kotliar ...

– p. 59



Dynamical mean field theory ...
... maps a lattice problem

onto a single-site (Anderson impurity) problem

with a self-consistency condition
(see e.g. Georges et al., Rev. Mod. Phys. 1996)

– p. 60



Effective dynamics ...
... for single-siteproblem

Seff = −

∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†σ(τ)G
−1
0 (τ − τ ′)cσ(τ

′)

+ U

∫ β

0

dτn↑n↓

with the dynamical mean fieldG−1
0 (τ − τ ′)

G0(τ − τ ′)

– p. 61



Déjà vu !

– p. 62



DMFT (contd.)
Green’s function:

Gimp(τ) = −〈T̂ c(τ)c†(0)〉

Self-energy (k-independent):

Σimp(ω) = G−1
0 (ω)−G−1

imp(ω)

DMFT assumption :

Σimp = Σlattice

Gimp = Glattice
local

→ Self-consistency condition forG−1
0

– p. 63



The DMFT self-consistency cycle
Anderson impurity model solver

G−1
0 G(τ) = −〈T̂ c(τ)c†(0)〉

G0 =
(

Σ +G−1
)−1

Σ = G−1
0 −G−1

Self-consistency condition:

G(ω) =
∑

k

1

ω + µ− ǫk − Σ(ω)
– p. 64



Hubbard model – again
Phase diagram of half-filled model within DMFT:

First order metal-insulator transition (ending in 2nd
order critical points)

– p. 65



Real materials ... : V2O3

– p. 66



Wanted: ...
... materials-specific calculations

– p. 67
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The density
as a basic variable:
Given a many-body wave function

Ψ(r1, r2, ..., rN ) (5)

the electronic density is given by

n(r) = N

∫

|Ψ(r, r2, ..., rN )|
2dr2...drN (6)

– p. 69



The Hohenberg-Kohn Theorem
The ground state density n(r) of a bound system of
interacting electrons in some external potential v(r)

determines this potential uniquely (up to a constant).

Remarks:
• In the case of a degenerate ground state:any

ground state density
• Proof uses Rayleigh-Ritz variational principle:

see Noble lecture in Rev. Mod. Phys. by W.
Kohn or do it as an exercise!

– p. 70



Interpretation
Two different external potentials, sayvCu(r) and
vNi(r), cannot have the same ground state density.
→ One-to-one-correspondance between the external
potential and the ground state density:

v(r) ↔ n(r)

Since v(r) determines the Hamiltonian:
Ground state properties of an interacting
many-electron system arefunctionals of the density
only.

– p. 71



Density functional theory
Variational principle:
Define the universal functional

F [n] = minΨ→n〈Ψ|T + Vee|Ψ〉 (7)

Hohenberg-Kohn variational principle:

E[n] = F [n] +

∫

drVext(r)n(r) ≥ E0 (8)

F [n0] +

∫

drVext(r)n0(r) = E0 (9)

wheren0 is the exact ground state density.

– p. 72



Why is this useful?
Energy = functional of the densityn(r):

E[n(r)] = T0[n(r)]+Eexternal[n(r)]+EHartree[n(r)]+Exc[n(r)]

T0[n(r)] = kinetic energy of anon-interacting referencesystem

(“Kohn-Sham system”) of densityn(r)

Schrödinger equation for the reference system (“Kohn-Sham

equation”):
(

−1
2
∆+ veff

)

φl(r) = ǫlφl(r)

“Kohn-Sham orbitals”φl parametrize the density:
∑

occ |φl(r)|
2 = n(r)

(Hohenberg& Kohn (1964), Kohn& Sham (1965))

– p. 73



Approximations forExc required, e.g. the “local density

approximation” (LDA):

ELDA
xc [n(r)] =

∫

drn(r)ǫHEG
xc (n(r))

(Hohenberg& Kohn (1964), Kohn& Sham (1965))

– p. 74



Density Functional Theory ...
... within the local density approximation (LDA)

→ most commonly used method in modern electronic structure
calculations

• Band structures, densities of states, spectral properties

• Total energy calculations

• Phonons

• Magnetic exchange constants

• used within Molecular Dynamics

• ...

– p. 75



Density functional theory ...
... achieves a mapping onto a separable system
(mapping of interacting system onto non-interacting
system of the same densityin an effective potential)
for the ground state.

• effective potential unknown => local density
approximation

• strictly speaking: not for excited states

In practice (and with the above caveats):
DFT-LDA can be viewed as a specific choice for
one-particle (band) theory

– p. 76



The N particle problem ...
and its mean-field solution:
N-electron Schrödinger equation

HNΨ(r1, r2, ..., rN ) = ENΨ(r1, r2, ..., rN )

with

HN = Hkinetic
N +Hexternal

N +
1

2

∑

i6=j

e2

|ri − rj|

becomes separable in mean-field theory:

HN =
∑

i

hi

– p. 77



For example, using the Hartree(-Fock) mean field:

hi = hkinetic
i + hexternal

i + e2
∫

dr
n(r)

|ri − r|

Solutions are Slater determinants ofone-particle
states, fulfilling

hiφ(ri) = ǫφ(ri)

Bloch’s theorem => use quantum numbers k, n for
1-particle states
1-particle energiesǫkn => band structure of the solid

– p. 78



Density functional theory ...
... achieves a mapping onto a separable system
(mapping of interacting system onto non-interacting
system of the same densityin an effective potential)
for the ground state.
However:

• effective potential unknown => local density
approximation

• strictly speaking: not for excited states

In practice (and with the above caveats):
DFT-LDA can be viewed as a specific choice for a
mean field

– p. 79



Electronic Correlations

General definition:
Electronic correlations are
those effects of the inter-
actions between electrons
that cannot be described by
a mean field.
More specific definitions:
Electronic correlations are
effects beyond

• ... Hartree(-Fock)

• ... DFT-LDA(∗)

• ... the “best possible”
one-particle picture (from Fujimori et al., 1992)– p. 80



Two regimes of failures of LDA
1. “weak coupling”: moderate correlations,
perturbative approaches work (e.g. “GW
approximation”)

2. “strong coupling”: strong correlations,
non-perturbative approaches needed (e.g dynamical
mean field theory)

NB. Traditionally two communities, different techniques,but
which in recent years have started to merge ...

NB. Correlation effects can show up in some
quantities more than in others!

– p. 81



Problems of DFT-LDA...
• 30% error in volume ofδ-Pu by DFT-LDA(∗)

• α-γ transition in Ce not described by LDA
• correlation effects in Ni, Fe, Mn ...
• LDA misses insulating phases of certain oxides

(VO2, V2O3, LaTiO3, YTiO3, Ti2O3 ...)
• bad description of spectra of some metallic

compounds (SrVO3, CaVO3 ...)

E.g. photoemission of YTiO3 :

(Fujimori et al.)

– p. 82



Realistic Approach to Correlations
Combine DMFT with band structure calculations

(Anisimov et al. 1997, Lichtenstein et al. 1998)

→ effective one-particle Hamiltonian within LDA
→ represent in localized basis
→ add Hubbard interaction term for correlated
orbitals
→ solve within Dynamical Mean Field Theory

– p. 83



LDA+DMFT

H =
∑

{imσ}

(HLDA
im,i′m′ −Hdouble counting

im,i′m′ )a+imσai′m′σ

+
1

2

∑

imm′σ (correl. orb.)

U i
mm′nimσnim′−σ

+
1

2

∑

im6=m′σ (correl. orb.)

(U i
mm′ − J i

mm′)nimσnim′σ

→ solve withing DMFT

– p. 84



LDA+DMFT – the full scheme

DMFT loop

DMFT preludeDFT part

update

V̂KS = V̂ext + V̂H + V̂xc

[

−∇2

2 + V̂KS

]

|ψkν〉 = εkν |ψkν〉

from charge density ρ(r) construct
update

{|χ
Rm

〉} build ĜKS =
[

iωn + µ+ ∇2

2 − V̂KS

]−1

construct initial Ĝ0

impurity solver

G
imp
mm′(τ − τ ′) = −〈T̂ d̂mσ(τ)d̂†

m′σ′(τ ′)〉Simp

self-consistency condition: construct Ĝloc

Ĝ−1
0 = Ĝ−1

loc + Σ̂imp

Ĝloc = P̂
(C)
R

[

Ĝ−1
KS −

(

Σ̂imp − Σ̂dc

)]−1

P̂
(C)
R

Σ̂imp = Ĝ−1
0 − Ĝ−1

imp

ρ

compute new chemical potential µ

ρ(r) = ρKS(r) + ∆ρ(r)

(Appendix A)

F. Lechermann, A. Georges, A. Poteryaev, S. B., M. Posternak, A. Yamasaki, O. K. Andersen,

Phys. Rev. B74125120 (2006)

– p. 85



Some examples

SrVO3: (correlated) metal
CaVO3: (correlated) metal
LaTiO3: at Mott transition
YTiO3: insulator

3.1 Introduction 69

SrVO3

b)
V

O

Sr

Figure 3.1: The crystal structure of (a) CaVO3 and (b) SrVO3 exhibiting various V-O-Vbond angles in the system.(= 180o) (see Fig. 3.1(b)) with cubic perovskite structure in SrVO3. Stoichiometric CaVO3and SrVO3 are both Pauli-paramagnetic metals [12-14]. Oxygen non-stoichiometry inCaVO3 leads to antiferromagnetic [15] or Curie-Weiss paramagnetic [16] behavior withno long range magnetic order down to 4 K. A solid solution of CaVO3 and SrVO3 can beformed over the entire composition range (0 � x � 1) with the formula Ca1�xSrxVO3.Ca and Sr being homovalent (2+) in the solid solution, there is no change in the chargecarrier concentration with composition (x) and it is always one electron per V-ion acrossthe series. On the other hand, the di�erent V-O-V bond angle results in di�erent V-O-V hopping interaction strength, t. Thus, the e�ective correlation strength as measuredby U=W where W (/ t) denotes the bare bandwidth of the system, can be continuouslytuned by changing x, with CaVO3 being a more correlated metal with a larger U=W valuethan SrVO3 [11]. Thus, these compounds represent a well-suited experimental realizationof a continuous tuning of U=W and consequently, provide a good testing ground for thepredictions of the Hubbard model.With this in view, the electronic structure of Ca1�xSrxVO3 was probed for severalvalues of x using photoelectron spectroscopy [11]. The experimental results are shown tobe incompatible with the existing theoretical results described in terms of the Hubbard

Photoemission spectra:

In
te

ns
ity

 (a
rb

. u
ni

ts
)

2.0 1.0 0.0
Binding Energy (eV)

Sr0.5Ca0.5VO3

SrVO3 (x = 0)

CaVO3 (x = 1)

 hν = 900 eV
 hν = 275 eV
 hν = 40.8 eV
 hν = 21.2 eV

Fujimori et al. 1992 Sekiyama et al., 2002 – p. 86



LDA+DMFT: spectra of perovskites
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Spectra of perovskites

SrVO3 LDA+DMFT
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Vanadium dioxide: VO2

Metal-insulator transition accompanied by
dimerization of V atoms:

– p. 89



VO2: Peierls or Mott ?

– p. 90



How far do we get ...
... using Density Functional Theory for VO2 ?

metallic phase
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DFT-LDA : no incoherent weight not insulating

(from V. Eyert)
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VO2 : the physical picture
Charge transfereπg → a1g and bonding-antibonding splitting

metallic phase:

 0.1

 1

ω
 [e

V
]

ΓZCYΓ
-2

-1

 0

 1

 2

 3

insulating phase:

 0.1

 1

ω
 [e

V
]

Γ Y C Z Γ
-2

-1

 0

 1
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 3

Spectral functions and “band structure”

det
(

ωk + µ−HLDA (k)−ℜΣ(ωk)
)

= 0

J.M. Tomczak, S.B., J.Phys.:Cond.Mat. 2007; J.M. Tomczak,F. Aryasetiawan, S.B., PRB 2008
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VO2 monoclinic phase

quasi-particle poles (solutions of
det[ω + µ−H(k)− Σ(ω)]=0) and band structure
from effective (orbital-dependent) potential

(→ for spectrum of insulating VO2: independent
particle picture not so bad!! (but LDA is!)) – p. 93



Optical Conductivity of VO 2
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[Verleur et al.] : single crystals

[Okazakiet al.] : thin filmsE ⊥ [001], Tc=290 K

[Qazilbashet al.] : polycrystalline films, preferential

E ⊥ [010], Tc=340 K
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Cerium fluorosulfide CeFS

Mott insulator,
paramagnetic

Need to treat both, localised f-states and delocalised
p-electrons→ How to incorporate atomic physics into
electronic structure theory ?

– p. 95



CeSF from Bloch’s perspective

No gap!
→ band picture
gives ametal!
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CeFS        
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Cerium fluorosulfide CeFS
Spectral function (LDA+DMFT(∗) within Hubbard-I
approximation and scissor operator (d-shift)):

red: Ce-4f
green: Ce-5d
blue: S-p

Tomczak, Pourovskii, Vaugier, Georges, SB, PNAS 2013
(∗) LDA+DMFT = combination of DFT-LDA with dynamical mean field theory – p. 97



Beyond LDA+DMFT?
Motivations ...:

• Hubbard U ?
• double counting ?
• correction to LDA for “uncorrelated orbitals” ?
• non-local self-energy effects ?

→ “GW+DMFT” scheme

– p. 98



Beyond LDA+DMFT?
Motivations ...:

• Hubbard U ?
• double counting ?
• correction to LDA for “uncorrelated orbitals” ?
• non-local self-energy effects ?

→ “GW+DMFT” scheme:
Baym-Kadanoff-like functionalΨ[G,W ]
approximated by a combination of Hedin’s “GW”
approximation for the non-local part and DMFT for
the local part.
S.B., Aryasetiawan, Georges PRL 2003 + cond-mat/0401653;
Ayral, Werner, SB, PRL 2012, PRB 2013; Tomczak, Casula,
Miyake, SB, arxiv2013

– p. 99



The representability point of view
Representphysical quantity of interest of real system
by an effective model, with effective quantities

Quantity – Model – Auxiliary quantity:
• Density Functional Theory:

Density – non-interacting system –
(Kohn-Sham-) potential

• DMFT:
local Green’s function G – impurity model
– Weiss fieldG0

• GW+DMFT: as in DMFT, but in addition:
screened local Coulomb interactionWloc –
impurity model with dynamical interaction –
(dynamical) HubbardU

– p. 100



Can we calculate ...
... Wlocal from a (dynamical) impurity model?

→ Question of representability !
• DMFT: Glocal calculated from impurity model
• What aboutWlocal ?

Self-consistency requirement:
• Gimpurity = Glocal of the solid
• Wimpurity = Wlocal of the solid

→ “GW+DMFT”
(S.B., F. Aryasetiawan, A. Georges PRL90086402 (2003) +
cond-mat/0401653)
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Beyond LDA+DMFT?
Motivations ...:

• Hubbard U ?
• double counting ?
• correction to LDA for “uncorrelated orbitals” ?
• non-local self-energy effects ?

→ “GW+DMFT” scheme:

Now only: dynamical screening and Hubbard U
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What’s U in a solid?
A simpler answer ?

– p. 103



What’s U in a solid?
... an answer from RPA:

DivideP = Pd + Pr wherePd = polarization of the
correlated orbitals (e.g. 3d orbitals)
Then:

W = [1− vP ]−1v

= [1−WrPd]
−1Wr

whereWr that does not include 3d-3d screening:

Wr(ω) = [1− vPr(ω)]
−1v

IdentifyU = 〈|Wr(ω = 0)|〉 !
F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S.B., A. I. Lichtenstein PRB70195104 (2004)
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What’s U in a solid?
... an answer from RPA:

DivideP = Pd + Pr wherePd = polarization of the
correlated orbitals (e.g. 3d orbitals)
Then:

W = [1− vP ]−1v

= [1−WrPd]
−1Wr

whereWr that does not include 3d-3d screening:

Wr(ω) = [1− vPr(ω)]
−1v

IdentifyU(ω) = 〈|Wr(ω)|〉 !
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Example: SrVO3
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SrVO3: LDA bands
SrVO3 atom  0    size 0.20
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Dependence on ...
... choice of orbitals:
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This is physical! U has to be basis-dependent!
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CRPA
can be viewed as an approximation to the calculation
of U within a full GW+DMFT scheme!
(S.B., F. Aryasetiawan, A. Georges PRL90086402 (2003) +
cond-mat/0401653)
What about “LDA+U(ω)+DMFT”?
Casula, Rubtosv, SB., PRB 2012
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BaFe2As2
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BaFe2As2
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BaFe2As2: dynamical interaction
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Ba1−xKxFe2As2: spectral function

Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Physics 2012 – p. 113



Ba1−xKxFe2As2: self-energies

Optimally doped Ba1−xKxFe2As2: at the onset of
square-root self-energy behavior!
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Optimally doped Ba1−xKxFe2As2

Huge T-dependence! – p. 115



BaFe2As2: doping and T-dependence

Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Physics 2012 – p. 116



Ba1−xKxFe2As2: k-resolved spectra

x = 0 x = 0.4 x = 0.8
Werner, Casula, Miyake, Aryasetiawan, Millis, SB, Nature Physics 2012
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BaFe2As2: p and d character

Asymmetry in pd-hybridization between electron and
hole states!
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Conclusions?
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Not everything ...
... depends only on the average occupation!
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Not everything ...
... depends only on the average occupation!
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Not everything ...
... depends only on the average occupation!

〈n↑n↓〉 6= 〈n↑〉〈n↓〉
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Conclusion and perspectives
There is a world beyond the one-electron
approximation!

• Mott insulators
• Correlated metals (electrons become

schizophrenic ...)

How to describe these phenomena on an equal
footing?

• Hubbard model: kinetic energy↔ Coulomb cost
• Hubbard goes realistic: “LDA+DMFT”
→ correlated d- and f-electron materials
accessible to first principles calculations!

• What’s next?→ “GW+DMFT” (or on how to get
rid off U – and LDA ...!)
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