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Searching for non-magnetic ground states

• In a spin model, magnetic order is expected at (mean field):

kBTN ∝ zS(S + 1)|J|
z is the coordination number, S is the spin and J is the super-exchange coupling

χ =
C

T − θcw
T ≫ TN

θCW is the Curie-Weiss temperature

f =
|θcw |
TN

• Can quantum fluctuations prevent magnetic order down to T = 0?
=⇒ Look for low spin S , low coordination z , competing interactions:

?
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Ultimate frustration?

Looking for a magnetically disordered ground state

• Many theoretical suggestions since P.W. Anderson (1973)
Anderson, Mater. Res. Bull. 8, 153 (1973)

Fazekas and Anderson, Phil. Mag. 30, 423 (1974)

“Resonating valence-bond” (quantum spin liquid) states

Idea: the best state for two spin-1/2 spins is a valence bond (a spin singlet):

|VB〉R,R′ =
1√
2
(| ↑〉R| ↓〉R′ − | ↓〉R| ↑〉R′)

Every spin of the lattice is coupled to a partner
Then, take a superposition of different valence bond configurations

Ψ = + + + ...
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Valence-bond states: liquids and solids

Valence-bond solid
breaks translational/rotational
symmetries

Short-range RVB + + ...

Long-range RVB + + ...
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General properties of valence-bond states

• The formation of a valence bond implies a gap to excite those two spins

• Long-range valence bonds are more weakly bound: a gapless spectrum is possible

• The number of resonating valence-bond states is vast
(according to different linear superpositions)

• It is now clear that the number of distinct quantum spin liquids is also huge
hundreds of different quantum spin liquids have been classified
(all with the same symmetry =⇒ topological order)
Wen, Phys. Rev. B 65, 165113 (2002)

• It is usually believed that such states may be described by gauge theories
(at least at low energies/temperatures)
=⇒ Gauge excitations should be visible in the spectrum!
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Candidate materials for S = 1/2 spin liquids

• Many experimental efforts to synthetize new materials

Two-dimensional Kagome lattice: Herbertsmithite and Volborthite

ZnCu3(OH)6Cl2 and Cu3V2O7(OH)2 2H2O

Two-dimensional anisotropic lattice: organic materials

κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2
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Candidate materials for S = 1/2 spin liquids

Jeong et al., Phys. Rev. Lett. 107, 237201 (2011)

Kanoda and Kato, Annu. Rev. Condens. Matter Phys. 2, 167 (2011)

Shimizu et al., Phys. Rev. Lett. 91, 107001 (2003)

Federico Becca (CNR and SISSA) Quantum Spin Liquids Königstein 8 / 38



Candidate materials for S = 1/2 spin liquids

Material Lattice |θcw | f

κ-(BEDT-TTF)2Cu2(CN)3 ≈ triangular 375K > 103

EtMe3Sb[Pd(dmit)2]2 ≈ triangular 350K > 103

ZnCu3(OH)6Cl2 kagome 240K > 103

Cu3V2O7(OH)2 · 2H2O ≈ kagome 120K ≈ 100

BaCu3V2O8(OH)2 ≈ kagome 80K > 102

Cs2CuCl4 quasi one-dimensional 4K ≈ 10
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From Hubbard to Heisenberg

• Zero temperature T = 0

• Correlated electrons on the lattice

The starting point is the Hubbard model:

H = −
∑

i,j,σ

ti,jc
†
i,σcj,σ + h.c.+ U

∑

i

ni,↑ni,↓

At half-filling (i.e., Ne = Ns) for U ≫ t, an insulating state exists

For U/t → ∞, by perturbation theory, we obtain the Heisenberg model:

H =
∑

i,j

Ji,jSi · Sj +
∑

i,j,k,l

(Pi,j,k,l + h.c.) + . . .

• Spin SU(2) symmetric models

Here, I will discuss spin models (frozen charge degrees of freedom)
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Simple considerations for classical spins

We want to find the lowest-energy spin configuration for classical spins
Consider the case of Bravais lattices (i.e., one site per unit cell)

E [{Si}] =
1

2

∑

i

∑

r

J(r)Si · Si+r

with the local constraint S2
i = 1

By Fourier transform:

E =
1

2

∑

k

J(k)Sk · S−k

Look for solutions with the global constraint:
∑

i S
2
i = N −→

∑

k Sk · S−k = N

Assume J(k) minimized for k = k0

Take Sk = 0 for all k’s except for k = ±k0

Sk0 =

√
N

2





1
i

0



 S−k0 = S∗
k0

=

√
N

2





1
−i

0
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Simple considerations for classical spins

Si =
1√
N

(

Sk0e
ik0ri + h.c.

)

= {cos(k0ri ), sin(k0ri ), 0}

The local constraint is automatically satisfied!

Spiral configuration (in general non-collinear – coplanar)

Example: Classical J1−J2 model on the square lattice

J(k) = 2J1 (cos kx + cos ky ) + 4J2 cos kx cos ky

• For J2/J1 < 1/2, k0 = (π, π)

• For J2/J1 > 1/2, k0 = (π, 0) or (0, π)
The two sublattices are decoupled
(free angle between spins in A and B sublattices)

• For J2/J1 = 1/2, k0 = (π, ky ) or (kx , π)
highly-degenerate ground state:
H = const.+

∑

plaquettes
(S1 + S2 + S3 + S4)

2

J
J1

2
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Quantum fluctuations

In order to include the quantum fluctuations, perform a 1/S expansion

H =
∑

i,j

Ji,jSi · Sj

• Let us denote by θj = k0 · rj
• Make a rotation around the z axis







S̃x
j = cos θjS

x
j + sin θjS

y
j

S̃
y
j = − sin θjS

x
j + cos θjS

y
j

S̃z
j = Sz

j

• Perform the Holstein-Primakoff transformations:















S̃x
j = S − a

†
j aj

S̃
y
j ≃

√

S
2

(

a
†
j + aj

)

S̃z
j ≃ i

√

S
2

(

a
†
j − aj

)
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Quantum fluctuations

At the leading order in 1/S , we obtain:

Hsw = Ecl +
S

2

∑

k

{

Aka
†
kak +

Bk

2

(

a
†
ka

†
−k + a−kak

)

}

Where:

Ecl =
1

2
NS

2
Jk0

{

Ak = Jk +
1
2
(Jk+k0 + Jk−k0)− 2Jk0

Bk = 1
2
(Jk+k0 + Jk−k0)− Jk

By performing a Bogoliubov transformation:

Hsw = Ecl +
∑

k ωk(α
†
kαk +

1
2
)

• Leading-order corrections to the magnetization 〈S̃x
j 〉 = S−〈a†j aj〉

• Excitations are called magnons (analog of phonons for lattice waves)
• Presence of gapless excitations for broken SU(2) systems (Goldstone mode)
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Renormalization of the classical state

The classical ground state is “dressed” by quantum fluctuations

~NNN

• The lattice breaks up into sublattices
• Each sublattice keeps an
extensive magnetization

S(q) =
1

N
〈Ψ0|

∣

∣

∣

∣

∣

∑

j

Sje
iqrj

∣

∣

∣

∣

∣

2

|Ψ0〉 =
1

N

∑

j,k

〈Ψ0|Sj · Sk |Ψ0〉e iq(rj−rk )

S(q) =

{

O(1) for all q’s → short-range correlations
S(q0) ∝ N forq = q0 → long-range order
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Fingerprints in finite clusters

• Spontaneous symmetry breaking is only possible in the thermodynamic limit
Spontaneously broken SU(2) symmetry =⇒ Gapless spin waves

• How can we detect it on finite lattices (e.g., by exact diagonalizations)?
=⇒ Tower of states
Anderson, Phys. Rev. 86, 694 (1952)

Bernu, Lhuillier, and Pierre, Phys. Rev. Lett. 69, 2590 (1992)

Bernu, Lecheminant, Lhuillier, and Pierre, Phys. Rev. B 50, 10048 (1994)

A family of states with S up to O(
√
N)

collapse to the ground state with
∆ES ∝ S(S + 1)/N

In the thermodynamic limit ∆ES → 0
Linear combinations of states with
different S =⇒ broken SU(2) symmetry
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Inelastic Neutron scattering: magnon excitations and continuum

The inelastic Neutron scattering is a probe for the dynamical structure factor

S(q, ω) =

∫

dt〈Ψ0|Sα

−q(t)S
α

q (0)|Ψ0〉e iωt =
∑

n 6=0

|〈Ψn|Sα

q |Ψ0〉|2δ(ω −∆ωn0)

Within the harmonic approximation
there is only a single branch of
excitations (magnons)

π 2π0

q

ω

Single−magnon
excitations

In reality, a continuum of multi-magnon
excitations exists above the threshold.
Single magnon excitations are well defined
S(q, ω) = Zqδ(ω − ωq)+ incoherent part

π 2π0

Multi−magnon continuum

q

ω

Single−magnon
excitations
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Mechanisms to destroy the long-range order

We have to stay away from the classical limit

• Small value of the spin S , e.g., S = 1/2 or S = 1

• Frustration of the super-exchange interactions
(not all terms of the energy can be optimized simultaneously)

?

• Low spatial dimensionality: D = 2 is the “best” choice
In D = 1 there is no magnetic order, given the Mermin-Wagner theorem
(not possible to break a continuous symmetry in D=1, even at T = 0)
Pitaevskii and Stringari, J. Low Temp. Phys. 85, 377 (1991)

• [Large continuous rotation symmetry group, e.g., SU(2), SU(N) or Sp(2N)]

Arovas and Auerbach, Phys. Rev. B 38, 316 (1988); Arovas and Auerbach, Phys. Rev. Lett. 61, 617 (1988)

Read and Sachdev, Phys. Rev. Lett. 66, 1773 (1991); Read and Sachdev, Nucl. Phys. B316, 609 (1989)
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Absence of magnetic order in the strongly frustrated regime

H =
∑

〈i,j〉

Si · Sj + α
∑

〈〈i,j〉〉

Si · Sj

J
J1

2

Chandra and Doucot, Phys. Rev. B 38, 9335 (1988)

Neel order Collinear order

Spin singlet

0 0.5 1
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Absence of magnetic order in one dimension

In D=1 many exactly solvable models (e.g., Heisenberg and Haldane-Shastry)
Bethe, Z. Phys. 71, 205 (1931).

Haldane, Phys. Rev. Lett. 60, 635 (1988); Shastry, Phys. Rev. Lett. 60, 639 (1988).

Simple example: the one-dimensional XY model:

H = J
∑

i

(Sx
i S

x
i+1 + S

y
i S

y
i+1) =

J

2

∑

i

(S+
i S

−
i+1 + S

−
i S

+
i+1)

• Representing spin operators via hard-core bosons

S
+
i = b

†
i S

−
i = bi S

z
i = b

†
i bi −

1

2

• Perform a Jordan-Wigner transformation
Jordan and Wigner, Z. Phys. 47, 631 (1928).

bj = cje
iπ

∑
n<j c

†
n cn ⇐= String

ci are (spinless) fermionic operators

H =
J

2

∑

i

(c†i ci+1 + h.c.)

Free fermions with gapless excitations
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Ground state and excitations

H =
J

2

∑

i

(c†i ci+1 + h.c.)

Boundary conditions depend upon the number N of fermions (or bosons):
N odd =⇒ periodic boundary conditions
N even =⇒ anti-periodic boundary conditions
• Ground state (always unique because of the boundary conditions)

|Ψ0〉 =
∏

|k|>kF

c
†
k |0〉

• Single-particle excitation

|Ψk〉 = ck |Ψ0〉 |k| > kF

does not live in the correct (bosonic) Hilbert space:
One must also change boundary conditions!
=⇒ S+

k or S−
k do not create elementary excitations

• Particle-hole excitations

|Ψk,q〉 = c
†
k+qck |Ψ0〉 |k| > kF and |k + q| < kF

They are terribly complicated in terms of bosons (because of the string)!
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Absence of magnon excitations

• In D = 1 systems, elementary excitations are spinons carrying S = 1/2
Faddeev and Takhtajan, Phys. Lett. 85A, 375 (1981)

S(q, ω) =

∫

dt〈Ψ0|Sz
−q(t)S

z
q (0)|Ψ0〉e iωt =

∑

n 6=0

|〈Ψn|Sz
q |Ψ0〉|2δ(ω −∆ωn0)

S(q, ω) has only the incoherent part
No delta function
Singularity at the bottom of the spectrum

π 2π0

q

ω

Spinon continuum

S(q, ω) can be computed exactly also in the Haldane-Shastry model:

H = J
∑

m<n

[d(m − n)]2Sm · Sn d(n) =
N

π
sin(

πn

N
)

Here, the S = 1 state Sα
n |Ψ0〉 is completely expressible in terms of two spinons

Haldane and Zirnbauer, Phys. Rev. Lett. 71, 4055 (1993)
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Fractionalization

• Majumdar-Gosh chain (1D): H = J
∑

i Si · Si+1 +
J
2

∑

i Si · Si+2

• The exact ground state is known (two-fold degenerate), perfect dimerization

The “initial” S = 1 excitation can
decay into two spatially
separated spin-1/2 excitations
(spinons)

Finite-energy state with an isolated
spinon (the other is far apart)
domain wall between two
dimerization patterns

• A spinon is a neutral spin-1/2 excitation, “one-half” of a S = 1 spin flip.
(it has the same spin as the electron, but no charge)

• Spinons can only be created by pairs in finite systems
In one dimension, they can propagate at large distances, as two elementary particles
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A spin liquid is a state without long-range magnetic order

A spin liquid is a state without magnetic order
the structure factor S(q) does not diverge, whatever the q is

S(q) =
1

N
〈Ψ0|

∣

∣

∣

∣

∣

∑

j

Sje
iqrj

∣

∣

∣

∣

∣

2

|Ψ0〉 =
1

N

∑

j,k

〈Ψ0|Sj · Sk |Ψ0〉e iq(rj−rk )

S(q) =

{

O(1) for all q’s → short-range correlations
S(q0) ∝ N forq = q0 → long-range order

• Can be checked by using Neutron scattering

• Mermin-Wagner theorem implies that any 2D Heisenberg model at T > 0 is a
spin liquid according to this definition
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A spin liquid is a state without long-range magnetic order

∆>0

E

J1−J2 Heisenberg model on the hexagonal lattice
Fouet, Sindzingre, and Lhuillier, Eur. Phys. J. B 20, 241 (2001)

Properties:

• Short-range spin-spin correlations

• Spontaneous breakdown of some lattice symmetries → ground-state degeneracy

• Gapped S = 1 excitations (“magnons” or “triplons”)
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Spin liquid: a second definition

A spin liquid is a state without any spontaneously broken (local) symmetry

• It rules out magnetically ordered states that break spin SU(2) symmetry
(also NEMATIC states)

• It rules out valence-bond crystals that break some lattice symmetries

Remark I: “local” means that there is a physical order parameter
that can be measured by some local probe

Remark II: within this definition we also rule out chiral spin liquids
that break time-reversal symmetries

Wen, Wilczek, and Zee, Phys. Rev. B 39, 11413 (1989)
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Quantum paramagnets

There are few examples of magnetic insulators without any broken symmetry

SrCu2(BO3)2
Kageyama et al., Phys. Rev. Lett. 82, 3168 (1999)

CaV4O9

Taniguchi et al., J. Phys. Soc. Jpn. 64, 2758 (1995)

E

∆>0

Non-degenerate
ground state

Properties:

• No broken symmetries

• Even number of spin-1/2 in the unit cell

• Adiabatically connected to the (trivial) limit of decoupled blocks

• No phase transition between T = 0 and ∞ =⇒ “simple” quantum paramagnet
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Quantum paramagnets:excitation spectrum

λ=0

λ<<J

k

∆ES=1(k)

( )↓↑−↑↓=
2

1

J

k

∆ES=1(k)

J ∼λ 

λ
J

Federico Becca (CNR and SISSA) Quantum Spin Liquids Königstein 28 / 38



Quantum paramagnets and VBCs are not fractionalized

r

J

λ

V(r)

r

J

2J

J-λJ
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The Lieb-Schultz-Mattis et al. theorem

A system with half-odd-integer spin in the unit cell
cannot have a gap and a unique ground state

Valid in the thermodynamic limit for periodic boundary conditions and
L1 × L2 × · · · LD = odd

• The original theorem by Lieb, Schultz, and Mattis refers to 1D
Lieb, Schultz, Mattis, Ann. Phys. (N.Y.) 16, 407 (1961); Affleck and Lieb, Lett. Math. Phys. 12, 57 (1986)

• Since then, several attempts to generalize it in 2D
Affleck, Phys. Rev. B 37, 5186 (1988); Bonesteel, Phys. Rev. B 40, 8954 (1989);

Oshikawa, Phys. Rev. Lett. 84, 1535 (2000); Hastings, Phys. Rev. B 69, 104431 (2004)

∆>0

∆=0

E

∆>0

Gapped paramagnet

= forbidden at T=0

Case 1) Ground-state degeneracy
a) Valence-bond crystal
b) Resonating-valence bond spin liquid
(gapped but with a topological degeneracy)
Case 2) Gapless spectrum
a) Continuous broken symmetry (magnetic order)
b) Resonating-valence bond spin liquid
(gapless, i.e., critical state)
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The short-range RVB picture

• Anderson’s idea: the short-range resonating-valence bond (RVB) state:
Anderson, Mater. Res. Bull. 8, 153 (1973)

Linear superposition of many (an exponential number) of valence-bond configurations

=+ + … Spatially uniform state

• Spin excitations? No dimer order → we may have deconfined spinons

• Spinon fractionalization and topological degeneracy

Distinct ground states that are not connected by any local operator

Wen, Phys. Rev. B 44, 2664 (1991); Oshikawa and Senthil, Phys. Rev. Lett. 96, 060601 (2006)
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Spin liquid: a third definition

A spin liquid is a state without any spontaneously broken (local) symmetry,
with a half-odd-integer spin in the unit cell

• It rules out magnetically ordered states that break spin SU(2) symmetry
(also NEMATIC states)

• It rules out valence-bond crystals that break some lattice symmetries

• It rules out quantum paramagnets that have an even number of spin-half per unit cell

A spin liquid sustains fractional (spin-1/2) excitations
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Inelastic Neutron scattering: spinon continuum

The inelastic Neutron scattering is a probe for the dynamical structure factor

S(q, ω) =

∫

dt〈Ψ0|Sα

−q(t)S
α

q (0)|Ψ0〉e iωt

• The elementary excitations are spin-1 magnons:
S(q, ω) has a single-particle pole at ω = ω(q)

• The spin-flip decays into two spin-1/2 excitations
S(q, ω) exhibits a two-particle continuum
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Inelastic Neutron scattering: spinon continuum

Neutron scattering on Cs2CuCl4
Coldea, Tennant, Tsvelik, and Tylczynski , Phys. Rev. Lett. 86, 1335 (2001)

Almost decoupled layers

Strongly-anisotropic triangular lattice

J ′ ≃ 0.33J: quasi-1D
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Entanglement entropy

• Given the ground-state wave function |Ψ〉, the density matrix of the whole lattice is

ρ = |Ψ〉〈Ψ|
• Suppose to split the lattice in two regions (system A and environment B)

Environment B

System A

• Define the reduced density matrix of the system A:

ρA = TrB|Ψ〉〈Ψ|
• The von Neumann entropy of the system A is

SA = −TrA(ρA log ρA)

Hard to compute (easy by density-matrix renormalization group)

Rényi entropy =⇒ SA = 1
1−n

logTrA(ρ
n
A)
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Entanglement entropy

• SA quantifies the entanglement between A and B

For example: given two spins

| ↑〉| ↑〉 =⇒ SA = 0

1√
2
(| ↑〉| ↓〉 − | ↓〉| ↑〉) =⇒ SA = log 2

• “Standard” ground states have the area law

SA = αLD−1 + · · ·

The area law is due to the local
entanglement across the boundary of A
The coefficient α is non-universal

In gapless 1D systems: SA = c
3
log L+ · · ·

where c is the central charge

Environment B

System A

• Free fermions have a deviation from the area law (due to the Fermi surface)

=⇒ SA = αLD−1 × log L
Wolf, Phys. Rev. Lett. 96, 010404 (2006); Gioev and Klich, Phys. Rev. Lett. 96, 100503 (2006)
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A fourth definition for (gapped) spin liquids

• In two dimensions, topologically ordered states have an extra term:

SA = αL− γ + · · ·

• γ is the topological entanglement entropy (related to fractionalized excitations)

γ assumes universal values in gapped states:

γ = log
√

∑

a d
2
a

da are “quantum dimensions” of particles

For example γ = log2 for the toric code
Kitaev, Ann. Phys. 303, 2 (2003)

Environment B

System A

Kitaev and Preskill, Phys. Rev. Lett. 96, 110404 (2006)

Levin and Wen, Phys. Rev. Lett. 96, 110405 (2006)

A gapped spin liquid is a highly entangled state with
a finite and universal topological entanglement entropy
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A fourth definition for (gapped) spin liquids

A linear combination of different entropies may be considered

−γ = SA + SB + SC − SAB − SBC − SAC + SABC

• γ is a topological invariant

• γ is a universal quantity (unchanged by smooth deformations of the Hamiltonian,
i.e., unless a quantum critical point is encountered)
Kitaev and Preskill, Phys. Rev. Lett. 96, 110404 (2006)
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