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Experiments on Persistent Currents
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Bloch’s Criterion for Persistent Currents™

* for a single-species system in the one-dimensional ring geometry,
Bloch showed that the ground state energy takes the form

2
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where e,(L) 1s even and periodic:
eo(—L) =eo(L), eo(L+ Nh) =eo(L)

0 1 2 v/N 0 i 2 v/N

* Bloch argued that, if £,(L) exhibits local minima at ,, = nN#A,
persistent currents are stable

*F. Bloch, Phys. Rev. A7, 2187 (1973)



Yrast spectrum of the Lieb-Liniger model and connection to
the soliton solutions of the GP equation

 the Hamiltonian for 1D bosons interacting via a delta function
potential is given by
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 the many-body wavefunctions can be obtained using the Bethe
ansatz (Lieb and Liniger, 1963)

* particle momentum shows no BEC 1n the thermodynamic limit

* the yrast spectrum corresponds to Lieb’s type II excitations (Lieb,
1963); 1t can be determined explicitly using the Lieb-Liniger
solution (Kaminishi et al., 2011)

* the excitations corresponding to the yrast spectrum can be identified
as solitons (Ishikawa and Takayama, 1980)



Mean-field Analysis for the Single-component Case

* the Gross-Pitaevskii energy functional for bosons on a ring 1s
B 2m d w
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* the yrast spectrum is obtained by minimizing the GP energy with
respect to 1 subject to the constraint that the average angular
momentum has the value
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* this can be achieved by minimizing the functional
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where () and (1 are Lagrange multipliers

* this leads to the GP equation
=" (0) + 1)’ (0) + 2myp(0)y(0) = ()



Mean-field Solutions and Yrast Spectrum

* the mean-field solutions for a general value of / are solitons

* this stationary state solution represents a travelling soliton as
viewed 1n a rotating frame; in the lab frame, the soliton is the time-

dependent state
¥(0,t) = (0 — Qt)e™ M
* the energy of the mean-field soliton agrees with the exact many-
body energy if the interactions are not too strong (Kanamoto et al.,
2010)

Eo(l) —v/2




Extension of Bloch’s Argument to the Two-species System

\\\

——

* we consider an ideal 1D ring geometry with N, particles of mass
M , and N, particles of mass My; N =N, +N,, M, = N M ,+N M,

* the many-body wave function can be written as

‘PLa(Qh ey 9N) = eXp(iNl@cm)XLa(ela “eey 9N)
where

N
1
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* X10),-.-.0y) 1s a function of coordinate differences 6, — 6. and 1s
therefore a zero angular momentum wave function



Extension of Bloch’s Argument, cont’d

* x:.0,,...,0,) satisfies the Schrodinger equation

L2
Hxroa = ea(L o a(l) = Eq(L) —
XL € ( )XL € ( ) ( ) 2MTR2
with the boundary conditions
M;
XLQ(792+27T7):eXp (_Zzﬂ_y )XLOé( ,91’)
M

* it M /My = p/q, a rational number, e (L) 1s a periodic function with
period N7 where

~

N =pNjs +qNp

* for M,=M,; =M, p=q = I and the periodicity i1s NV as for the
single-species case



Connection with Landau’s Criterion

* M,= M, = M, Bloch’s argument allows for persistent currents at
L, =nNh;forL =1L, +AL

1
Eo(L, + AL) = §MTR2Q§ + Q, AL + Ey(AL)

where we have defined the angular velocity

~ MprR?

 assuming £,(AL) to correspond to a single quasiparticle excitation
with energy &(m) and angular momentum AL = mh, we have

Eo(L, + AL) = Ey(L,) + (m) + mhSd,

Qn

* Bloch’s criterion for persistent currents, £,(L, + AL) > E,(L,), then
implies (m)
elm
% < (5t

* this 1s the Landau criterion for a ring




Bogoliubov Excitations in a Ring

* the two-species system has Bogoliubov excitations with energies
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 the Landau criterion is satisfied for most choices of the parameters,
implying the stability of superfluid flow at L,

* however, if M, = Myand U, U, = U’ 5, the E_mode is particle-
like and supercurrents are not stable at L,



Mean-field Analysis

* the stability of persistent currents can be analyzed using mean-field
theory; this was first done by Smyrnakis et al.*

* for the special case M, = Mzand U, , = Uy, = U, = U, the so-
called symmetric model, the Gross-Pitaevskii energy functional 1s

2 2 2 27
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with

£y =Ns/N, xp=Np/N, ~=NMR*U/nh?

* the objective 1s to minimize the GP energy with respect to 1, and
1, subject to the constraint that the average total angular
momentum has the value L = [Nh

* this can be achieved by minimizing the functional

27
Fla,¢p] = Elba,¥p] — QL — Ziﬁsﬂs/o dfs(0)]*
where () and us are Lagrange multipliers

*J. Smyrnakis et al., Phys. Rev. Lett 103, 100404 (2009)



Minimizing the GP Energy

* the condensate wave functions are expanded as

sz(Q) — Z Cm¢m(9)7 ¢B<9) — Z dm¢m<9)

m

where

* the expansion coefficients must satisfy the normalization

constraints
D lemlP =1, ) ldm*=1

and the angular momentum constraint

L=z mlen|” +ap Y mldy|?



Two-component Analysis

* the simplest variational ansatz 1s

Ya = copo + 191, Yp = dopo + did
* minimizing the energy with respect to ¢, ¢, d, and d,, one finds

Eo(l) =1+1/2 E, ()
 this result is exact if /

.
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* as predicted by the Landau criterion, superfluid flow 1s unstable at L,

* however, there is a possibility that persistent currents might be stable
for / in the range x, </ <x,

* to examine this possibility, an improved variational ansatz is required



Persistent Currents at | =x, + n

Ey (D)

e Eo(l) = I° + (1)

0 xp xp } | | 2 Fl

* the stability of persistent currents at / = x , + n 1s determined by the
slope i
dEo(l) =2n—1-—\
dl I=(xa+n—1)—

» for n = I, the critical value of the interaction parameter 1s

3

Ter = 94z s — 3)

* this gives the correct value of y.. = 3/2 for x, = /; however, the

above expression predicts that persistent currents are not possible
for n > I (Smyrnakis et al., 2009)



Analytic Soliton Solutions”

the coupled GP equation for equal interactions strengths

=1y (0) + i (0) + 2myp(0)1)s (0) = p1s1)s(6)

* here, the angular velocity, €2, is a Lagrange multiplier
introduced to ensure the angular momentum takes a specific
value /

* modulus-phase representation

. 27
5(8) = Vs ()@, A 46 p,(0) = 1

* boundary conditions
ps(0+2) — py(6) = 0
bs(0 +27) — ¢ (0) = 2w J,, Jo=0,41,£2,---

* J. 1s the soliton winding number

*7. Wu and E. Zaremba, Phys. Rev. A 88, 063640 (2013)



Density Ansatz

* the ansatz (Porubov and Parker, 1994; Smyrnakis et al., 2012)
1—r

PB= 5 +TrpA
reduces the coupled system to two uncoupled equations for the
densities
1 " 1 ’\2 3 ~ 2 W2
s - — 2 s S o = =
5PsPs = 7 (Ps)” = 2mysps + fispy — — = =0

with different interaction strengths

Ya = (za +71TB)Y

v = (r"tza+ap)y
* the density equation for the single-component system was
solved by others; it has analytic solutions in terms of Jacobi
elliptic functions
K
ps(0) = N(na) [1 +mdn® (ulm)]  u =" g,)

-
where j 1s the soliton train index and 7), 1s a number which

depends on y, (hence x,, y and r); m 1s the elliptic parameter

defining the complete elliptic integral K(m)



Phase Boundary Condition

 with the density solutions in hand, the phase boundary
condition gives

1 27
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* this equation provides a relation between the elliptic index m
defining the density distributions and the parameter » appearing
in the density ansatz

* the different branches

34 25 =02 | 0 correspond to different

35 / soliton states in different
e e J ranges of angular
g = t— .
<37 \ T =2 momentum given by

38 T=1 > \\_‘_‘_‘_‘_‘_) krp <Il<(k+1)xp

-3.9 T g . .

T =1 * the winding numbers J,
-2

0 0.5 1 5 o3 1 and J, take specific values
v =23 along each of the branches
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Soliton States and Yrast Spectrum
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Persistent Currents at Higher Angular Momenta

0.5

ol

* the soliton solutions explain how
the xp — 0 limit is reached

* persistent currents are in fact
possible at higher angular momenta
for sufficiently small x, and
sufficiently large y



Asymmetric Interactions: YAA, VBB, YAB

* there are no known analytic solutions to the coupled GP equations
for asymmetric interactions — the density ansatz used for the
symmetric model does not work

* the analysis of the symmetric model showed that certain plane
wave states are special in that they can be yrast states and can
sustain persistent currents

* we expect certain plane wave states to continue playing an
important role in the yrast spectrum of the asymmetric model

Can one obtain a criterion for determining whether a plane
wave state is an yrast state and secondly, whether this state
supports persistent currents?



Local Minima of the GP Energy Functional®

* we suppose (¢, ¢, ) 1s a candidate plane-wave yrast state

e for an arbitrary deviation ¥4 = ¢, + Y4, ¥p = ¢, + 09, the
change in GP energy 1s
OE = E[Ya, 5] — E[du, d]
= Z V]an,Hmea Vm = (5cﬂ—m 5C;+m 0y —m 5d;‘|‘m)T

m>0

* the energy has a local minimum if #,, is positive-definite; this
yields the following conditions:

204744 + 1 — 4,&2 > 0
(2za7v44 + 1 —4p°)(2zpyep + 1 — %) — dzg2575p > 0

* if these conditions are not satisfied, persistent currents are not
possible

*Z. Wu et al., Phys. Rev. A 92, 033630 (2015)



Effect of Interaction Asymmetry on the Stability of
Persistent Currents
* the mnequalities allow one to determine the range of parameters

for which persistent currents at a particular plane-wave state are
possible

e example of (¢1, P0)

RA = 0.1

7= VAB
Yaa =14+ ra)y, v8B = (1 4+ KB)Y

e for kx =-1/11,YAAYBB — Vap = 0;
the x -y boundary 1s similar to that
found in the symmetric model




On the Cusp

 for a plane-wave yrast state supporting
persistent currents at [o = ux 4 + va g, the
yrast spectrum looks locally like:

* the slopes of the yrast spectrum can be obtained by minimizing
the GP energy functional subject to the constraint L = [y + dl

(1) = 2200

 one obtains a quartic with roots

< Q9 < Q3 <Yy
 the middle two give the slopes of the
yrast spectrum at the plane-wave state

A * 1if one of these roots goes to zero,
HEE persistent currents are no longer

0 possible; this happens precisely when
the inequality 1s violated




Possible Criterion for Plane-wave Yrast States

 a double root of the quartic signals when the plane-wave state
ceases to be an yrast state

E(1) ) E(1) E(1) )
o / / _—
lO 7 lo 7 lO 7
! \"""!:::—_-__:;—;—_—; ----------------------------------------
I NN \‘ |+ whether this scenario is correct must
5 \ be checked by numerical calculations
o k=002 |\
8 : k= 0.05 ]
0.4 k=0.1
02 pd e
) /ﬂ,‘m—;;:_‘—f':. e e




Numerical Solutions, Preliminary Results

Energy, shifted
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Yrast spectrum

one can obtain solutions to the
coupled GP equations by imaginary
time propagation

the results support the criterion for the
stability of persistent currents at
plane-wave states

but there 1s evidence that the criterion
for a plane-wave state being an yrast
state 1s not generally valid

there is no difficulty solving the GP
equations for arbitrary masses; results
for mass ratios equal to rational
numbers are consistent with our
general predictions



