
Persistent Currents in a Two-component Bose 
Gas in the Ring Geometry!

Eugene Zaremba 
Queen’s University, Kingston, Ontario, Canada 

  Financial support from NSERC 

            Work done in collaboration with Konstantin Anoshkin and Zhigang Wu; also 

                                                   Smyrnakis, Magiropoulos, Efremidis and Kavoulakis 



Experiments on Persistent Currents!

S. Moulder et al., Phys. Rev. A 86, 013629 (2012) 

A. Ramanathan et al., Phys. Rev. Lett. 106, 130401 (2011) 



Bloch’s Criterion for Persistent Currents*!
•  for a single-species system in the one-dimensional ring geometry, 

Bloch showed that the ground state energy takes the form 

•  Bloch argued that, if E0(L) exhibits local minima at                    , 
persistent currents are stable 

E0(L) =
L2

2MTR2
+ e0(L)

   where e0(L) is even and periodic: 

Ln = nN~

*F. Bloch, Phys. Rev. A7, 2187 (1973) 

L = ⌫~ Yrast Spectrum 

e0(�L) = e0(L), e0(L+N~) = e0(L)



Yrast spectrum of the Lieb-Liniger model and connection to 
the soliton solutions of the GP equation!

•  particle momentum shows no BEC in the thermodynamic limit 

•  the yrast spectrum corresponds to Lieb’s type II excitations (Lieb, 
1963); it can be determined explicitly using the Lieb-Liniger 
solution (Kaminishi et al., 2011) 

•  the many-body wavefunctions can be obtained using the Bethe 
ansatz (Lieb and Liniger, 1963) 
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•  the excitations corresponding to the yrast spectrum can be identified 
as solitons (Ishikawa and Takayama, 1980) 

•  the Hamiltonian for 1D bosons interacting via a delta function 
potential is given by 



Mean-field Analysis for the Single-component Case!
•  the Gross-Pitaevskii energy functional for bosons on a ring is 

•  the yrast spectrum is obtained by minimizing the GP energy with 
respect to ψ subject to the constraint that the average angular 
momentum has the value  

•  this can be achieved by minimizing the functional  

   where     and     are Lagrange multipliers   ⌦
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•  this leads to the GP equation  
� 00(✓) + i⌦ 0(✓) + 2⇡�⇢(✓) (✓) = µ (✓)

µ



Mean-field Solutions and Yrast Spectrum!
•  the mean-field solutions for a general value of l are solitons 

•  this stationary state solution represents a travelling soliton as 
viewed in a rotating frame; in the lab frame, the soliton is the time-
dependent state  

 (✓, t) =  (✓ � ⌦t)e�iµt

•  the energy of the mean-field soliton agrees with the exact many-
body energy if the interactions are not too strong (Kanamoto et al., 
2010) 
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Extension of Bloch’s Argument to the Two-species System!

•  we consider an ideal 1D ring geometry with NA particles of mass 
MA and NB particles of mass MB; N = NA+NB, MT = NAMA+NBMB 

•  the many-body wave function can be written as 

 L↵(✓1, ..., ✓N ) = exp(iNl⇥cm)�L↵(✓1, ..., ✓N )
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   where 

•  χLα(θ1,…,θN) is a function of coordinate differences θi – θj and is 
therefore a zero angular momentum wave function	



Extension of Bloch’s Argument, cont’d!

•  if MA/MB = p/q, a rational number, eα(L) is a periodic function with 
period       where 

•  χLα(θ1,…,θN) satisfies the SchrÖdinger equation	

H�L↵ = e↵(L)�L↵

   with the boundary conditions 

Ñ = pNA + qNB

•  for MA = MB  = M,  p = q = 1 and the periodicity is N as for the 
single-species case 
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Connection with Landau’s Criterion!

   where we have defined the angular velocity 

•  MA = MB  = M; Bloch’s argument allows for persistent currents at  
Ln = nN~
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•  assuming E0(ΔL) to correspond to a single quasiparticle excitation 
with energy ε(m) and angular momentum                 , we have 

E0(Ln +�L) = E0(Ln) + "(m) +m~⌦n

•  Bloch’s criterion for persistent currents, E0(Ln + ΔL) > E0(Ln), then 
implies 
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•  this is the Landau criterion for a ring 

�L = m~

   ; for   L = Ln +�L



Bogoliubov Excitations in a Ring!

•  the Landau criterion is satisfied for most choices of the parameters, 
implying the stability of superfluid flow at Ln  

•  the two-species system has Bogoliubov excitations with energies 
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•  however, if MA = MB and UAAUBB = U2
AB , the E_ mode is particle-

like and supercurrents are not stable at  Ln  



Mean-field Analysis!

*J. Smyrnakis et al., Phys. Rev. Lett 103, 100404 (2009) 

   with 

•  for the special case MA = MB and UAA = UBB = UAB = U,  the so-
called symmetric model, the Gross-Pitaevskii energy functional is 

•  the stability of persistent currents can be analyzed using mean-field 
theory; this was first done by Smyrnakis et al.* 
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•  the objective is to minimize the GP energy with respect to ψA and 
ψB subject to the constraint that the average total angular 
momentum has the value  L = lN~

•  this can be achieved by minimizing the functional  
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   where     and      are Lagrange multipliers   ⌦ µs



Minimizing the GP Energy!
•  the condensate wave functions are expanded as 

•  the expansion coefficients must satisfy the normalization 
constraints 
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Two-component Analysis!
•  the simplest variational ansatz is 

 A = c0�0 + c1�1,  B = d0�0 + d1�1

•  minimizing the energy with respect to c0, c1, d0 and d1, one finds 

Ē0(l) = l + �/2

•  this result is exact if 

0  l  xB or xA  l  1

xA l0 1 2xB

E0 )l(

•  as predicted by the Landau criterion, superfluid flow is unstable at Ln 

•  however, there is a possibility that persistent currents might be stable 
for l in the range xB < l < xA  

•  to examine this possibility, an improved variational ansatz is required 



Persistent Currents at l = xA + n!

•  the stability of persistent currents at l = xA + n is determined by the 
slope 
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•  for n = 1, the critical value of the interaction parameter is 

�cr =
3

2(4xA � 3)
•  this gives the correct value of γcr = 3/2 for xA = 1; however, the 

above expression predicts that persistent currents are not possible 
for n > 1 (Smyrnakis et al., 2009) 

Ē0(l) = l2 + ē0(l)



Analytic Soliton Solutions*!

•  the coupled GP equation for equal interactions strengths 

•  Js is the soliton winding number 

•  here, the angular velocity, Ω, is a Lagrange multiplier 
introduced to ensure the angular momentum takes a specific 
value l 

•  modulus-phase representation 
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*Z. Wu and E. Zaremba, Phys. Rev. A 88, 063640 (2013) 



Density Ansatz!
•  the ansatz (Porubov and Parker, 1994; Smyrnakis et al., 2012) 

•  the density equation for the single-component system was 
solved by others; it has analytic solutions in terms of Jacobi 
elliptic functions  

   reduces the coupled system to two uncoupled equations for the 
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   where j is the soliton train index and ηs is a number which 
   depends on γs (hence xA, γ and r); m is the elliptic parameter  
   defining the complete elliptic integral K(m) 

   densities 



Phase Boundary Condition!
•  with the density solutions in hand,  the phase boundary 

condition gives 

•  this equation provides a relation between the elliptic index m 
defining the density distributions and the parameter r appearing 
in the density ansatz 
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•  the different branches 
correspond to different 
soliton states in different 
ranges of angular 
momentum given by 

xB = 0.04xB = 0.2

� = 23

kxB  l  (k + 1)xB

•  the winding numbers JA 
and JB take specific values 
along each of the branches 



 Soliton States and Yrast Spectrum!
xB = 0.04 � = 23

xB = 0.2, 0.04, 0.008, 0



 Persistent Currents at Higher Angular Momenta!

xB = 0.04

•  the soliton solutions explain how 
the               limit  is reached                                                             xB ! 0

•  persistent currents are in fact 
possible at higher angular momenta 
for sufficiently small xB and 
sufficiently large γ                                                           



Asymmetric Interactions:!

Can one obtain a criterion for determining whether a plane 
wave state is an yrast state and secondly, whether this state 
supports persistent currents? 

•  there are no known analytic solutions to the coupled GP equations 
for asymmetric interactions – the density ansatz used for the 
symmetric model does not work 

•  the analysis of the symmetric model showed that certain plane 
wave states are special in that they can be yrast states and can 
sustain persistent currents 

•  we expect certain plane wave states to continue playing an 
important role in the yrast spectrum of the asymmetric model 

�AA, �BB , �AB



Local Minima of the GP Energy Functional*!
•  we suppose                is a candidate plane-wave yrast state 

•  for an arbitrary deviation                                                      , the 
change in GP energy is 

(�µ,�⌫)

 A = �µ + � A,  B = �⌫ + � B

•  the energy has a local minimum if        is positive-definite; this 
yields the following conditions: 

2xA�AA + 1� 4µ2
> 0

(2xA�AA + 1� 4µ2)(2xB�BB + 1� 4⌫2)� 4xAxB�
2
AB > 0

•  if these conditions are not satisfied, persistent currents are not 
possible 

*Z. Wu et al., Phys. Rev. A 92, 033630 (2015) 
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Effect of Interaction Asymmetry on the Stability of 
Persistent Currents!
•  the inequalities allow one to determine the range of parameters 

for which persistent currents at a particular plane-wave state are 
possible 
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κB = −1/11

κB = −2/11
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•  example of   

•  for κ = -1/11,                                ;  
the xB-γ boundary is similar to that 
found in the symmetric model                                                                

�AA = (1 + A)�, �BB = (1 + B)�

�AA�BB � �2
AB = 0



On the Cusp!
•  for a plane-wave yrast state supporting 

persistent currents at                              , the 
yrast spectrum looks locally like: 

l0 = µxA + ⌫xB

•  the slopes of the yrast spectrum can be obtained by minimizing 
the GP energy functional subject to the constraint  ̄L = l0 + �l

⌦(l) =
@Ē0(l)

@l

•  one obtains a quartic with roots                                                          
⌦1 < ⌦2 < ⌦3 < ⌦4

•  the middle two give the slopes of the 
yrast spectrum at the plane-wave state                                                          

•  if one of these roots goes to zero, 
persistent currents are no longer 
possible; this happens precisely when 
the inequality is violated                                                          



Possible Criterion for Plane-wave Yrast States!
•  a double root of the quartic signals when the plane-wave state 

ceases to be an yrast state 

•  whether this scenario is correct must 
be checked by numerical calculations                                                        



Numerical Solutions; Preliminary Results!
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•  one can obtain solutions to the 
coupled GP equations by imaginary 
time propagation                                                        

•  the results support the criterion for the  
stability of persistent currents at 
plane-wave states                                                       

•  but there is evidence that the criterion 
for a plane-wave state being an yrast 
state is not generally valid                                                       

•  there is no difficulty solving the GP 
equations for arbitrary masses; results 
for mass ratios equal to rational 
numbers are consistent with our 
general predictions                                                        


