Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate

Π

FF

F H H

Π

H

D.

H

10-

H

7.

H

7

1

Frank Vewinger Universität Bonn

12

What are we dealing with?

System: $10^4 - 10^5$ Photons "ultracold": 300K Box: Curved mirror cavity A few µm long

1) Photon BEC: HowTo

2) Thermodynamic Properties of Photons

3) Fluctuations & Symmetry Breaking

Work done with

Julian Schmitt Tobias Damm Jan Klaers (now@ETH Zürich) Martin Weitz

1) Photon BEC: HowTo

2) Thermodynamic Properties of Photons

3) Fluctuations & Symmetry Breaking

The box: Dispersion

$$E = \frac{\hbar c}{n} \sqrt{k_z^2 + k_r^2} \approx \frac{\hbar c}{n} \left(k_z + \frac{k_r^2}{2 k_z^2} \right)$$

$$= \frac{\pi \hbar c q}{n D_0} + \frac{\pi \hbar c q}{n R D_0^2} r^2 + \frac{\hbar c D_0}{2\pi q n} k_r^2$$
$$= m_0 c^2 + \frac{1}{2} m_0 \Omega^2 r^2 + \frac{k_r^2}{2m_0}$$

- \Rightarrow Photons in the microcavity behave as
- Massive particles
- Two-dimensional
- Harmonically trapped

The box: Dispersion

$$E = \frac{\hbar c}{n} \sqrt{k_z^2 + k_r^2} \approx \frac{\hbar c}{n} \left(k_z + \frac{k_r^2}{2 k_z^2} \right)$$

$$= \frac{\pi \hbar c q}{n D_0} + \frac{\pi \hbar c q}{n R D_0^2} r^2 + \frac{\hbar c D_0}{2\pi q n} k_r^2$$
$$= m_0 c^2 + \frac{1}{2} m_0 \Omega^2 r^2 + \frac{k_r^2}{2m_0}$$

- \Rightarrow Photons in the microcavity behave as
- Massive particles
- Two-dimensional
- Harmonically trapped

Dye reservoir:

- Thermalizes gas
- Sets chemical potential

$$e^{\frac{\mu_{\gamma}}{k_B T}} = \frac{w_{\downarrow} M_{\uparrow}}{w_{\uparrow} M_{\downarrow}} e^{\frac{\hbar (\omega_C - \Delta)}{k_B T}}$$

Dye reservoir:

- Thermalizes gas
- Sets chemical potential

$$e^{\frac{\mu_{\gamma}}{k_B T}} = \frac{w_{\downarrow} M_{\uparrow}}{w_{\uparrow} M_{\downarrow}} e^{\frac{\hbar (\omega_C - \Delta)}{k_B T}}$$

Scales

Energy scales

- Trap frequency Thermal energy Cavity cutoff
- $\hbar \Omega \approx 150 \mu eV$ $k_B T \approx 25 m eV$ $\hbar \omega_{cutoff} \approx 2.1 eV$
- →Photon mass $\approx 10^{-7} m_e$
- →Critical particle number

$$N_c \cong \frac{\pi^2}{3} \left(\frac{k_{\rm B}T}{\hbar \Omega} \right)^2 \approx 80.000 \ @ \ 300K$$

→Critical phase space density

$$n_c \cong 1.3/\mu m^2$$

Klaers, Schmitt, Vewinger & Weitz, *Nature* **468**, 545 (2010) See also Marelic & Nyman, PRA **91**, 033826 (2015)

Scales

Energy scales

- Trap frequency Thermal energy Cavity cutoff
- $\hbar \Omega \approx 150 \mu eV$ $k_B T \approx 25 m eV$ $\hbar \omega_{cutoff} \approx 2.1 eV$
- →Photon mass $\approx 10^{-7} m_e$
- →Critical particle number

$$N_c \cong \frac{\pi^2}{3} \left(\frac{k_{\rm B}T}{\hbar\Omega}\right)^2 \approx 80.000 \ @ \ 300K$$

→Critical phase space density

$$n_c \cong 1.3/\mu m^2$$

Klaers, Schmitt, Vewinger & Weitz, *Nature* **468**, 545 (2010) See also Marelic & Nyman, PRA **91**, 033826 (2015)

Scales

Energy scales

- Trap frequency Thermal energy Cavity cutoff
- $\hbar \Omega \approx 150 \mu eV$ $k_B T \approx 25 m eV$ $\hbar \omega_{cutoff} \approx 2.1 eV$
- →Photon mass $\approx 10^{-7} m_e$
- →Critical particle number

$$N_c \cong \frac{\pi^2}{3} \left(\frac{k_{\rm B}T}{\hbar\Omega}\right)^2 \approx 80.000 \ @ \ 300K$$

→Critical phase space density

 $n_c \cong 1.3/\mu m^2$

Brute force theory: Appl Phys B 105, 17–33 (2011)

universität**bonn**

Microscopic models: de Leeuw, PRA 88, 033829 (2013). Kirton/Keeling, PRL 111,100404 (2013) Kopylov et al., PRA 92, 063832 (2015)

Klaers, Schmitt, Vewinger & Weitz, *Nature* **468**, 545 (2010) See also Marelic & Nyman, PRA **91**, 033826 (2015)

Experimental setup

Experimental setup

photo multiplier

Experimental setup

Properties?

Properties?

1) Photon BEC: HowTo

2) Thermodynamic Properties of Photons

3) Fluctuations & Symmetry Breaking

Condensate Fraction

Entropy per Particle

1) Photon BEC: HowTo

2) Thermodynamic Properties of Photons

3) Fluctuations & Symmetry Breaking

Coherence of a Bose-Einstein condensate

P. W. Anderson (1986): "Do two superfluids which have never 'seen' one another possess a relative phase?"

Spontaneous symmetry breaking

Phase selection: long-range order

Andrews et al., Science 275 (1997)

Damping of density fluctuations

Coherence of a Bose-Einstein condensate

P. W. Anderson (1986): "Do two superfluids which have never 'seen' one another possess a relative phase?"

Closed vs. open system

 $\Delta n, \Delta E \simeq 0$

 $\Delta n, \Delta E \neq 0$

Phase selection: long-range order

Andrews et al., Science 275 (1997)

Damping of density fluctuations

\rightarrow BEC correlations in open environments?

Heat bath and particle reservoir for light

Grand canonical ensemble, $\Omega(T, V, \mu)$ if $M \gg n$

universität**bonn**

Sob'yanin, *PRE* 85 (2012)

Limiting cases for BEC number statistics

Grand-canonical ensemble ($M \gg n^2$)

Bose-Einstein statistics ("flickering" BEC)

Canonical ensemble ($M < n^2$)

Poisson statistics ("quiet" BEC)

Experiment: intensity correlations of BEC

Schmitt et al., *Phys. Rev. Lett.* **112**, 030401 (2014) see also: *Physics* **7** (2014)

Experiment: intensity correlations of BEC

universitätbonn

Response of condensate phase $\phi(t)$ to statistical fluctuations?

Response of condensate phase $\phi(t)$ to statistical fluctuations?

Canonical ensemble ($M \leq \bar{n}^2$, second-order coherence)

Schmitt et al., Phys. Rev. Lett. 116, 033604 (2016)

Response of condensate phase $\phi(t)$ to statistical fluctuations?

Schmitt et al., Phys. Rev. Lett. 116, 033604 (2016)

Response of condensate phase $\phi(t)$ to statistical fluctuations?

universitätbonn

- Rate of fluctuations & phase jumps (1/ $\tau_{\rm c}^{(2)}$ & $\Gamma_{\rm PJ}$) vs. increasing system size \bar{n}
- Suppressed fluctuations & phase jumps

Schmitt et al., *Phys. Rev. Lett.* **116**, 033604 (2016) **Analysis ignores phase diffusion**,

- Rate of fluctuations & phase jumps (1/ $\tau_{\rm c}^{(2)}$ & $\Gamma_{\rm PJ}$) vs. increasing system size \bar{n}
- Suppressed fluctuations & phase jumps

Schmitt et al., Phys. Rev. Lett. 116, 033604 (2016)

Analysis ignores phase diffusion,

- Rate of fluctuations & phase jumps (1/ $\tau_{\rm c}^{(2)}$ & $\Gamma_{\rm PJ}$) vs. increasing system size \bar{n}
- Suppressed fluctuations & phase jumps

Schmitt et al., Phys. Rev. Lett. 116, 033604 (2016)

Analysis ignores phase diffusion,

- Rate of fluctuations & phase jumps (1/ $\tau_{\rm c}^{(2)}$ & $\Gamma_{\rm PJ}$) vs. increasing system size \bar{n}
- Suppressed fluctuations & phase jumps

Schmitt et al., Phys. Rev. Lett. 116, 033604 (2016)

Analysis ignores phase diffusion,

- Rate of fluctuations & phase jumps (1/ $\tau_{\rm c}^{(2)}$ & $\Gamma_{\rm PJ}$) vs. increasing system size \bar{n}
- Suppressed fluctuations & phase jumps

200

Schmitt et al., Phys. Rev. Lett. 116, 033604 (2016)

Analysis ignores phase diffusion,

1) Photon BEC: HowTo

2) Thermodynamic Properties of Photons

3) Fluctuations & Symmetry Breaking

4) Conclusion

Photon BEC: Summary

Photon BEC \rightarrow versatile platform

- grand canonical physics
- open & closed system dynamics
- reservoir effects
- mediated interaction

Statistics:

(a)

Tunable from canonical to grand canonical \rightarrow Effective temperature

Calorimetry:

"Textbook" properties of the ideal Bose gas

Phase evolution: Fluctuation-induced phase jumps

Spatial phase coherence Arbitrary potentials Time

Josephson physics with reservoir

Photon BEC Team Erik Busley Christian Kurtscheid Christian Schilz Tobias Damm David Dung Fahri Öztürk Hadiseh Alaeian Julian Schnmitt Frank Vewinger Jan Klärs Martin Weitz

Bonn-Cologne Graduate School of Physics and Astronomy

What's next?

