

Superfluidity and interactions in topologically and geometrically nontrivial bands Päivi Törmä

Aalto University, Finland

WE-Heraeus-Seminar on "Ultracold Quantum Gases – Current Trends and Future Perspectives" Bad Honnef, Germany 9th May 2016

Contents

Superfluidity in topologically non-trivial flat bands S. Peotta, PT Nature Communications 6, 8944 (2015)

Geometric origin of superfluidity in the Lieb lattice flat band A. Julku, S. Peotta, T.I. Vanhala, D-H. Kim, PT arXiv:1603.03237 (2016)

Topological phases in the Haldane-Hubbard model T.I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, PT, Phys. Rev. Lett. accepted, arXiv:1512.08804 (2015)

Sebastiano Peotta Tuomas Vanhala Aleksi Julku

POSTER: Excitations and impurity dynamics in a fermionic Mott insulator with nearest-neighbour interactions

A.-M. Visuri, T. Giamarchi, P. Törmä, Phys. Rev. B 93, 125110 (2016)

Contents

Superfluidity in topologically non-trivial flat bands S. Peotta, PT Nature Communications 6, 8944 (2015)

Geometric origin of superfluidity in the Lieb lattice flat band A. Julku, S. Peotta, T.I. Vanhala, D-H. Kim, PT arXiv:1603.03237 (2016)

Topological phases in the Haldane-Hubbard model T.I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, PT arXiv:1512.08804 (2015)

Sebastiano Peotta Tuomas Vanhala Aleksi Julku

Flat bands: a route to room-temperature superconductivity?

Parabolic band

Flat band

 $U \ll J \Rightarrow T_c \propto e^{-\frac{1}{Un_0(E_F)}}$

 $U \gg J \Rightarrow T_c \propto U n_0(E_F) \propto U/J$

Our question: if the band is flat, is there any supercurrent?

Our answer: yes; superfluid transport is possible in a flat band. It is guaranteed if the band is topologically nontrivial.

M is Brillouin-zone averaged quantum geometric tensor.

We show that superfluidity and quantum metric are connected!

Flat bands and room-temperature superconductivity

Parabolic band

$$U \ll J \Rightarrow T_c \propto e^{-\frac{1}{Un_0(E_F)}}$$

Flat band

$$U \gg J \Rightarrow T_c \propto U n_0(E_F) \propto U/J$$

Realization of the Harper Hamiltonian in ultracold gases

Fig. taken from Ref. 1

[1] Aidelsburger et al., PRL **111**, 185301 (2013) [2] Miyake et al., PRL **111**, 185302 (2013)

- Time-reversal symmetry is preserved
- Lowest bands are quasi-flat (Landau levels)
- Non-zero Chern number

Superfluid density and superfluid weight

Definition of superfluid density and superfluid weight

$$\begin{split} \frac{\Delta F}{V} &= \frac{1}{2}\rho_s v_s^2 = \frac{1}{2}D_s p_s^2 & \Delta \neq 0 \\ v_s &= \frac{\hbar \mathbf{q}}{m} \quad \text{Cooper pair velocity} & D_s \neq 0 \\ 2p_s &= 2\hbar \mathbf{q} \quad \text{Cooper pair momentum} \end{split}$$

 $\mathbf{J} = D_s \hbar \mathbf{q}$ Supercurrent density

See e.g. M. Holzmann and G. Baym, Phys. Rev. B 76, 092502 (2007)

Superfluid weight from the grand potential

$$[D_{s}]_{i,j} = \frac{4\pi^{2}}{Vh^{2}} \frac{\partial^{2}\Omega}{\partial q_{i}\partial q_{j}}\Big|_{\mu,\Delta,q=0}$$

Supercurrent $\Delta = |\Delta| e^{2i q \cdot r}$

Gauge transformation to make the order parameter real and to move q to the kinetic Hamiltonian (Peierls substitution):

$$K_{i,j} \to K_{i,j} e^{i\boldsymbol{q} \cdot (\boldsymbol{r_i} - \boldsymbol{r_j})} K_{i,j} \propto J$$

NOTE: Peierls substitution is justified only if there exist exponentially localized Wannier functions!

Chern number and Wannier functions

PRL 98, 046402 (2007)

PHYSICAL REVIEW LETTERS

week ending 26 JANUARY 2007

Exponential Localization of Wannier Functions in Insulators

Christian Brouder,¹ Gianluca Panati,² Matteo Calandra,¹ Christophe Mourougane,³ and Nicola Marzari⁴

Theorem: Exponentially localized Wannier functions can be constructed in 2D or 3D iff the Chern number(s) is zero

$$\begin{split} \mathbf{A}(\mathbf{k}) &= i \langle g_{n\mathbf{k}} | \partial_{\mathbf{k}} g_{n\mathbf{k}} \rangle & \text{Berry connection} \\ \Omega(\mathbf{k}) &= \hat{z} \cdot \boldsymbol{\nabla} \times \mathbf{A}(\mathbf{k}) & \text{Berry curvature} \\ C &= \frac{1}{2\pi} \int_{\mathrm{B.Z.}} d^2 \mathbf{k} \, \Omega(\mathbf{k}) & \text{Chern number} \end{split}$$

Therefore Peierls substitution is not justified for topologically non-trivial (nonzero Chern number) bands.

The way out: multiband approach

Bloch function for band n

Superfluid weight in a BCS multiband superconductor

$$\begin{split} \frac{\Delta F}{V} &= \frac{1}{2} \rho_s v_s^2 = \frac{1}{2} D_s (\hbar \mathbf{q})^2 \qquad [D_s]_{i,j} = \frac{4\pi^2}{Vh^2} \frac{\partial^2 \Omega}{\partial q_i \partial q_j} \bigg|_{\mu,\Delta,q=0} \\ [\mathcal{G}_{\mathbf{k}}]_{\alpha,n} &= g_{n\mathbf{k}\uparrow}(\alpha) \qquad D_s = D_{s,1} + D_{s,2} + D_{s,3} \\ \\ \text{Bloch function} \qquad [D_{s,1}]_{i,j} &= \frac{2}{Vh^2} \sum_{\mathbf{k}} \operatorname{Tr} \left[\mathcal{V}_{\mathbf{k}} \mathcal{V}_{\mathbf{k}}^{\dagger} \partial_{k_i} \partial_{k_j} \varepsilon_{\mathbf{k}} \right] \longrightarrow \begin{array}{c} \text{Conventional term} \\ \text{present in the} \\ \text{single band case} \end{array} \\ \\ \mathcal{D}_{\mathbf{k}}(\mathbf{q}) &= -\mathcal{G}_{\mathbf{k}-\mathbf{q}}^{\dagger} \Delta \mathcal{G}_{\mathbf{k}+\mathbf{q}} \\ [D_{s,2}]_{i,j} &= \frac{2}{Vh^2} \sum_{\mathbf{k}} \operatorname{Tr} \left[\mathcal{V}_{\mathbf{k}} \mathcal{U}_{\mathbf{k}}^{\dagger} \partial_{q_i} \mathcal{D}_{\mathbf{k}} \right] \\ [D_{s,3}]_{i,j} &= \frac{2}{Vh^2} \sum_{\mathbf{k}} \sum_{n,n'} \frac{[B_{\mathbf{k},i}]_{n,n'}[B_{\mathbf{k},j}]_{n',n}}{E_{n\mathbf{k}} + E_{n'\mathbf{k}}} \\ B_{\mathbf{k},i} &= \mathcal{U}_{\mathbf{k}}^{\dagger} \partial_{q_i} \mathcal{D}_{\mathbf{k}} \mathcal{U}_{\mathbf{k}} + \mathcal{V}_{\mathbf{k}}^{\dagger} \partial_{q_i} \mathcal{D}_{\mathbf{k}} \mathcal{V}_{\mathbf{k}} + \mathcal{V}_{\mathbf{k}}^{\dagger} \partial_{k_i} \varepsilon_{\mathbf{k}} \mathcal{U}_{\mathbf{k}} - \mathcal{U}_{\mathbf{k}}^{\dagger} \partial_{k_i} \varepsilon_{\mathbf{k}} \mathcal{V}_{\mathbf{k}} \end{split}$$

Superfluid weight in a flat band

Assumption: $\Delta_{\alpha} = \Delta = \text{const.}$

- $n_{\phi}^{-1} = N_{\alpha}$ Number of orbitals with nonzero pairing order parameter
 - \bar{n} partially filled flat band
 - ν flat band filling

$$\Delta = U n_{\phi} \sqrt{\nu (1 - \nu)}$$

Aalto University School of Science

 $\mathcal{B}_{ij}(\mathbf{k}) = 2\mathrm{Tr}[(\partial_{k_i}\bar{\mathcal{G}}_{\mathbf{k}}^{\dagger})(\partial_{k_j}\bar{\mathcal{G}}_{\mathbf{k}})] + 2\mathrm{Tr}[\bar{\mathcal{G}}_{\mathbf{k}}^{\dagger}(\partial_{k_i}\bar{\mathcal{G}}_{\mathbf{k}})\bar{\mathcal{G}}_{\mathbf{k}}^{\dagger}(\partial_{k_j}\bar{\mathcal{G}}_{\mathbf{k}})]$

We show that the flat band superfluid weight is proportional to the Brillouin-zone averaged quantum metric, and derive a lower bound to it

$$\mathcal{M}_{ij} = \mathcal{M}^R_{ij} + i\epsilon_{ij}C \ge 0 \Rightarrow \det(\mathcal{M}^R) \ge |C|^2$$

Chern number
$$D_s \ge |C|$$

Parabolic band vs. flat band

Parabolic band

$$\begin{split} D_s &= \frac{n_{\rm p}}{m_{\rm eff}} \left(1 - \left(\frac{2\pi\Delta}{k_{\rm B}T}\right)^{1/2} e^{-\Delta/(k_{\rm B}T)} \right) \\ & n_{\rm p} & \text{Particle density} \\ \frac{1}{m_{\rm eff}} \propto J & \text{Bandwidth} \end{split}$$

Physical picture: global shift of the Fermi surface

Aalto University School of Science

Flat band

$$[D_s]_{i,j} = \frac{2Un_\phi}{\pi\hbar^2}\nu(1-\nu)\mathcal{M}_{ij}^R$$

Linearly proportional to the coupling constant U!

Physical picture:

Delocalization of Wannier functions

Overlapping Cooper pairs: pairing fluctuations support transport if pairs can be created and destroyed at distinct locations

c.f. A.J. Leggett, Phys. Rev. Lett. 25, 1544 (1970); Bounds on supersolids related to (dis)connectedness of the density Commun. Math. Phys. 76, 289-301 (1980)

Riemannian Structure on Manifolds of Quantum States

J. P. Provost and G. Vallee Physique Theorique, Universite de Nice*·**

$$\langle | \rangle$$

$$\|\psi(s+ds) - \psi(s)\|^{2} = (\partial_{i}\psi, \partial_{j}\psi)ds_{i}ds_{j}\left(\partial_{i} = \frac{\partial}{\partial s_{i}}\right)$$

$$(\partial_i \psi, \partial_j \psi) = \gamma_{ij} + i\sigma_{ij}$$

Gauge invariant version:

$$g_{ij}(s) = \gamma_{ij}(s) - \beta_i(s) \beta_j(s) \qquad \beta_j(s) = -i(\psi(s), \partial_j \psi(s))$$

Distance between two nearby quantum states

$$d\ell^2 = g_{ij} ds_i ds_j$$

QGT $g_{ij} + i\sigma_{ij}$ Quantum metric

Berry curvature

Contents

Superfluidity in topologically non-trivial flat bands S. Peotta, PT Nature Communications 6, 8944 (2015)

Geometric origin of superfluidity in the Lieb lattice flat band A. Julku, S. Peotta, T.I. Vanhala, D-H. Kim, PT arXiv:1603.03237 (2016)

Topological phases in the Haldane-Hubbard model T.I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, PT Phys. Rev. Lett. accepted, arXiv:1512.08804 (2015)

Sebastiano Peotta Tuomas Vanhala Aleksi Julku

Lieb lattice

What about superfluidity in topologically trivial flat bands?

Lieb lattice: superfluid weight

 \mathcal{V} Total filling (1< ν <2 for the flat band)

 D_s on the flat band depends strongly on ${\it U}$

 $D_{s}\,\mathrm{on}$ dispersive bands roughly constant

 $D_{s} \,$ for the trivial flat bands is non-zero and large!

Lieb lattice: geometric contribution

Large D_s and its strong dependence on U within the flat band is explained by the geometric superfluid weight contribution $D_{s,geom} = D_{s,2} + D_{s,3}$

For isolated flat band, the BCS wavefunction is exact!

(for bipartite lattices)

The mean-field prediction of finite flat band superfluidity is exact for bipartite lattices and isolated flat bands.

For partially flat bands we have confirmed the results by DMFT and ED.

See POSTER 30 on the Lieb lattice superfluidity

Sebastiano Peotta

Contents

Superfluidity in topologically non-trivial flat bands S. Peotta, PT Nature Communications 6, 8944 (2015)

Geometric origin of superfluidity in the Lieb lattice flat band A. Julku, S. Peotta, T.I. Vanhala, D-H. Kim, PT arXiv:1603.03237 (2016)

Topological phases in the Haldane-Hubbard model T.I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, PT Phys. Rev. Lett. accepted, arXiv:1512.08804 (2015)

Sebastiano Peotta Tuomas Vanhala Aleksi Julku

Haldane-Hubbard model

Noninteracting model a well known model of a topological insulator

Take a two-component version: What are the effects of an on-site Hubbard repulsion?

Mean field: Physica B 481, 53-58; PRB 84, 035127; PRB 85, 205107; J. Phys B. 26, 175601 Feng, Kou, Huber groups

Exact diagonalization and DMFT: two complementary methods

- ED: Finite system, but correlations treated exactly
 - Can map out topological phase boundaries using twisted boundary conditions
- DMFT: Thermodynamic limit, but only local quantum correlations treated exactly
 - Chern numbers using the "topological Hamiltonian" (Z. Wang and S.-C. Zhang, Phys. Rev. X 2, 031008, 2012)

Interactions oppose the effect of the sublattice potential difference

Strong interactions: U drives antiferromagnetism, Δ_{AB} density wave

Comparison with pure mean field

Intermediate insulating phase with C=1

One spin component in the quantum Hall phase, the other one in the band insulating (density wave) phase.

arXiv:1512.08804

Geometry and topology make superfluidity possible even in flat bands

Chern number C=1 phase in the Haldane-Hubbard model

Blender art: Antti Paraoanu