Generation & dynamics of solitonic defects: Kibble-Zurek in reduced dimensionality

Fabrizio Larcher EC Center Trento & JQC Durham-Newcast

I-K. Liu, P. Comaron, S. Serafini, M. Barbiero, M. Debortoli, S. Donadello, G. Lamporesi, G. Ferrari, S.-C. Gou, I. Carusotto , F. Dalfovo and N. P. Proukakis

616th WE-Heraeus Seminar, 12 May 2016 Bad Honnef - Germany

UNIVERSITÀ DEGLI STUDI

National Changhua University of Education

Outline

8

- Kibble-Zurek Mechanism;
- a relevant experiment (Nat. Phys. 9, 2013);
- solitons vs "solitonic" vortices (PRL 113, 201
- stochastic defect generation;
- solitonic vortex dynamics and interactions (PRL 115, 2015);

BE Kibble-Zurek Mechanism

The system evolution slows down at the phase transition. Fast enough quenches could result in defect creation Defect number $N_S \propto \tau_q^{-\alpha}$ ν, z equilibrium critical exponents

BRibble-Zurek in cold atoms

The lifetime puzzle

Solitons in 3D are expected to undergo two kinds of instability:

- Thermal (unless at T = 0)
- Dynamical (snaking instability)

Why do they live for such a long time?

<u>G.Lamporesi</u> et al., Nat. Phys. 9, 656 (2013)

Solitonic vortices

- Vortex oriented perpendicularly to the axis of an axisymmetric elongated trap.
- Quantized vorticity
- <u>Anisotropic phase pattern Planar</u>

M. Tylutki et al., EPJ-ST 224, 577 (2015

BE Random orientation

S. Donadello et al., Phys. Rev. Lett. 113, 065302 (2

BE Scaling and aspect ratio

Simulations:

Stochastic Projected Gross-Pitaevskii equ $d\psi = \hat{P} \left\{ -\frac{i}{\hbar} \, \hat{L}_0 \psi + \frac{\gamma}{K_P T(t)} \left[\mu(t) - \hat{L}_0 \right] \psi \right\} dt + dW$

$$\hat{L}_0 = -\frac{\hbar^2 \nabla^2}{2\mathrm{m}} + V(\mathbf{r}) + g|\psi|^2$$

$$\langle dW^*(\mathbf{r})dW(\mathbf{r}')\rangle = 2\gamma\delta(\mathbf{r}-\mathbf{r}')dt$$

Experimental data matched through:

$$N_{TOT}^{exp} = \int d^3r \left[|\psi|^2 + \int d^3p n_{E>E_R}(\mathbf{r}, \mathbf{p}) \right]$$

•
$$\psi$$
 represents the condensate and a number of thermal modes.

• Condensate extracted by numerical diagonalisation [Penrose-Onsager].

numerical diagonalisation [Penrose-Onsager]. Blakie et al., Adv. in Phys.,

Scaling exponent for the defect density

K. Liu et al, in preparation.

Long term evolution of solitonic vortices

Quasi-non destructive stroboscopic imaging:

- Magnetic harmonic trap in $|1, -1\rangle$ with $\{\omega_{\perp}, \omega_z\}/2\pi = \{131, 13\}$ Hz;
- 13 ms of expansion in $|2, -2\rangle$, with RF refocusing dressing;
- Up to 20 consecutive extractions.

Serafini et al., Phys. Rev. Lett. **115**, 170402

Serafini et al., Phys. Rev. Lett. **115**, 170402 (2015)

Ζ

• It follows equipotential elliptical orbits around Orbital period:

 r_0

$$T_{SV} = \frac{4(1 - r_0^2)\mu}{3\hbar\omega_{\perp}\ln(R_{\perp}/\xi)}T_z$$

being: $T_z = \frac{2\pi}{\omega_z}$ the axial trapping frequency;
 $r_0 = \frac{z_{max}}{R_z} = \frac{y_{max}}{R_y}$ the maximum amplitude
 ξ the condensate healing length.

The extraction procedure changes the number of particles in time:

Hence, the period itself should depend on time: $T_{SV} \propto \mu \propto N(t)^{2/5}$

Serafini et al., Phys. Rev. Lett. 115, 1704

Period decay

Serafini et al., Phys. Rev. Lett. 115, 1704

Destructive absorption images show random orientation of vortex lines

The experimental system seems a good benchmark for studying in real time vortex decay processes and reconnections, if only an axial non-destructive observation method is developed.

Observations:

- Unperturbed trajectory or
- Change in visibility and/or
- Trajectory phase shift.

P

Bouncing

Reconnections

Ł

Single

Double

L. Galantucci and C. Barenghi, in

BE Two-dimensional systems

L. Chomaz et al., Nat. Comm.

BE Two-dimensional systems

L. Chomaz et al., Nat. Comm.

P. Comaron et al., in

A. Jelić et al., J. Stat. Mech.

MACRO Mini-Conference & JQC Symposium

Tue 13th -Fri 16th September 2016 Newcastle upon Tyne Multicomponent Atomic Condensates & **ROtational** dynamics

Keynote speakers include: V. Bagnato, N. Berloff, H. Rubinsztein-Dunlop, I. June, 2016 Itiple contributed talk slots available to applicants.

conferences.ncl.ac.uk/jqcma

Registration deadline: 30th

Backslides

BE Kibble-Zurek Mechanism

Power law scaling:

coherence length

A. del Campo, W. H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014)

 Mean-field theory $(\nu = \frac{1}{2}, z = 2)$ $\frac{1}{2}$ 2 $\frac{5}{4}$ 1/4

 Experiments/F model $(\nu = \frac{2}{3}, z = \frac{3}{2})$ $\frac{2}{3}$ $\frac{7}{3}$ $\frac{3}{2}$ 1/3

Dimensionality has a role in

scaling! Del Campo *et al.*, NJP **13**, 083022 (2011Žurek, PRL **102**, 105702 (2009

1

7/6

Scaling exponent

•The number of defects is expected to follow a power-law as a function of the quench time (fixed size of the system)

$$N_S \propto \tau_Q^{-\alpha}$$

where α is determined by
the critical exponents of
the phase transition.

F-model prediction for solitons in 3D:

 $\alpha = 7/6 = 1.17.$

Zurek, W. H. Phys. Rev. Lett. 102, 105702

Other period characterisations

Serafini et al., Phys. Rev. Lett. 115, 1704

K. Liu et al, in preparation.

Vortex length

P. M. Walmsley and A. I. Golov, Phys. Rev. **100**, 245301

Vortex decay

Single vortex lifetime is limited by scattering with thermal excitations.

 $\tau_1 = (910 \pm 100) \text{ms}$ $\tau_2 = (1050 \pm 100) \text{ms}$ $\tau_3 = (490 \pm 100) \text{ms}$

 τ is compatible for $N_V(0) = 1, 2$, but not for $N_V(0) = 3$. Does this mean that two-vortex interactions are suppressed? suppressed?

•BKT free vortices give a correction in the predicted vortex density for KZM:

$$\rho_v(\tau_Q) \simeq \left(\lambda \; \frac{\tau_Q + \hat{t}}{\ln((\tau_Q + \hat{t})/t_0)}\right)^{-1}$$

A. Jelić et al., J. Stat. Mech. 2011(02), 2011

Polaritons

$$i\hbar\frac{\partial\psi}{\partial t} = \left[-\frac{\hbar^2\nabla^2}{2m} + i\frac{\hbar}{2}\left(\frac{P_0(\boldsymbol{r},t)}{1+\frac{|\psi|^2}{n_s}} - \gamma\right) + \frac{\hbar}{2}\frac{P_0(\boldsymbol{r},t)}{\Omega}\frac{\partial}{\partial t} + g\left(|\psi|^2 - \frac{1}{dV}\right)\right]\psi + \eta(\boldsymbol{r},t)$$

 γ loss rate; P_0 pumping strength; n_s saturation density;

A steady state is reached when the system equilibrates between driving and dissipation.

BE Vortex number decay

P. Comaron et al., in

BE Two-dimensional KZM

•BKT phase transition:

- Due to the Mermin-Wagner theorem, no condensation in an infinite 2D system for any T > 0.
- However, a superfluid transition occurs at finite T.
- Berezinskii-Kosterlitz-Thouless (BKT) at T_{BKT} :
 - For $T < T_{BKT}$ vortices of opposite circulation are coupled in pairs.
 - For $T > T_{BKT}$ they gradually become free.

