The Bose polarontheory and experiments

Georg M. Bruun Aarhus University

R. S. Christensen, J. Levinsen & GMB, PRL **115**, 160401 (2015)
J. Levinsen, M. M. Parish & GMB, PRL **115**, 125302 (2015)
N. B. Jørgensen et al, arXiv:1604.07883

Bose Polaron

Mobile impurity interacting with *bosonic* reservoir

- Electrons coupled to phonons
- Helium mixtures
- High T_c superconductors
- Elementary particles coupled to the Higgs boson

Nice to have experimental realisation in cold atoms

Fermi polaron gave lots of new insights

- 1. Schirotzek *et al.*, Phys. Rev. Lett. **102**, 230402 (2009)
- 2. Kohstall *et al.*, Nature **485**, 615 (2012)
- 3. Koschourek et al., Nature 485, 619 (2012)

Very recently *two* independent experimental realisations of the Bose polaron:

- N. B. Jørgensen *et al.*, arXiv:1604.07883
- Ming-Guang Hu *et al.*, arXiv:1605.00729

This Talk

1. Theory

Good understanding, both at weak and strong coupling

2. Experiment

First observation of long lived Bose polaron using RF spectroscopy

People

Experiment

Jan Arlt

Jørgensen

Wacker

Kristoffer T. Skalmstang

Aarhus University

Theory

Rasmus S. Jesper Meera Christensen Levinsen Parish Monash University

Theory

Astrakharchik & Pitaevskii, Phys. Rev. A **70**, 013608 (2004) Cucchietti & Timmermans, Phys. Rev. Lett. **96**, 210401 (2006) Kalas & Blume, Phys. Rev. A **73**, 043608 (2006) Bruderer, Bao & Jaksch, Eu. Phys. Lett. **82**, 30004 (2008)

Huang & Wan, Chin. Phys. Lett. 26, 080302 (2009)
Tempere *et al.*, Phys. Rev. B 80, 184504 (2009)
Fröhlich: Castels & Wouters, Phys. Rev. A 90, 043602 (2014)
Grust *et al.*, Sci. Rep. 5, 12124 (2015)
Vlietinck *et al.*, New J. Phys. 17, 033023 (2015)

Field theory: Rath & Schmidt, Phys. Rev. A 88, 053632 (2013)

Variational: Li & Das Sarma, Phys. Rev. A 90, 013618 (2014) Schhaddilova, Schmidt, Grusdt & Demler, arXiv:1604.06469

Perturbation theory

$$H = \sum_{\mathbf{k}} \epsilon_{k}^{B} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \frac{1}{2\mathcal{V}} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} V_{B}(q) a_{\mathbf{k}+\mathbf{q}}^{\dagger} a_{\mathbf{k}'-\mathbf{q}}^{\dagger} a_{\mathbf{k}'} a_{\mathbf{k}}$$

$$+ \sum_{\mathbf{k}} \epsilon_{k} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} + \frac{1}{\mathcal{V}} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} V(q) c_{\mathbf{k}+\mathbf{q}}^{\dagger} c_{\mathbf{k}'-\mathbf{q}}^{\dagger} a_{\mathbf{k}'} c_{\mathbf{k}}$$

$$Impurity \qquad Impurity-BFC interaction$$

BEC weakly interacting $na_B^3 \ll 1 \Rightarrow$ Bogoliubov theory

Perturbation theory V(q):

Replace $V(q) \rightarrow T_v = 2\pi a/m_r$ in a consistent way

Diagrams like \mathcal{T}_{v} comes from expanding $\mathcal{T}(p) = \frac{\mathcal{T}_{v}}{1 - \mathcal{T}_{v}\Pi_{11}(p)} = \mathcal{T}_{v} + \mathcal{T}_{v}^{2}\Pi_{11}(p) + \dots$

Self-energy in powers of a:

$$\Sigma(p,\omega) = \Sigma_1(p,\omega) + \Sigma_2(p,\omega) + \Sigma_3(p,\omega) + \dots$$

$$Energy$$

$$E(0)$$

$$E(0)$$

$$Same structure as$$

$$Same structure as$$

$$Lee-Huang-Yang +$$

$$Lee-Huang-Yang +$$

$$Lee-Huang-Yang -$$

$$max(a, a_B)$$

<u>a=a_B:</u>

 $\frac{E}{N} = \frac{4\pi na}{m} \left[1 + \frac{32}{3\sqrt{\pi}} (na^3)^{1/2} + 4(\frac{2}{3}\pi - \sqrt{3})na^3 \ln(na^3) \right]$

Weakly interacting BEC

 $\frac{E}{N} = \frac{2\pi na}{m} \left[1 + \frac{128}{15\sqrt{\pi}} (na^3)^{1/2} + 8(\frac{4}{3}\pi - \sqrt{3})na^3 \ln(na^3) \right]$

Residue & Effective Mass

 $C(1) = 2\sqrt{2}/3\pi$ $D(1) \approx 0.64$ $F(1) = 16\sqrt{2}/45\pi$ $G(1) \simeq 0.37$

Condition for Z~1:
$$\frac{a^2}{a_B\xi} \ll 1$$

Breaks down for ideal BEC

Variational Theory

Multichannel model

$$\hat{H} = \sum_{\mathbf{k}} \left[E_{\mathbf{k}} \beta_{\mathbf{k}}^{\dagger} \beta_{\mathbf{k}} + \epsilon_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} + \left(\epsilon_{\mathbf{k}}^{\mathrm{d}} + \nu_{0} \right) d_{\mathbf{k}}^{\dagger} d_{\mathbf{k}} \right]$$
Bog. modes Impurity Molecule
$$+g\sqrt{n_{0}} \sum_{\mathbf{k}} \left(d_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} + h.c. \right) + g \sum_{\mathbf{k},\mathbf{q}} \left(d_{\mathbf{q}}^{\dagger} c_{\mathbf{q}-\mathbf{k}} b_{\mathbf{k}} + h.c. \right)$$

Introduces effective range r₀ Regularises 3-body problem

k

Weak coupling: Variational theory agrees with pert. theory Strong coupling: Pert. theory breaks

down. Many-body continuum significant

Theory - bottom lines

- Analytical perturbation theory to 3.0rder in a/ξ
- Polaron well-defined for weak coupling
- Strong coupling: Variational ansatz including 3body Efimov correlations
- Significant many-body continuum for strong coupling
- Impurity atoms in BEC not the Fröhlich model

Experiment bottom lines

Jan Arlt

- First realisation of the Bose polaron (See also JILA group)
- Well-defined polaron both for repulsive and attractive interaction
- Many-body continuum dominates at strong coupling
- Excellent agreement with theory
- 3-body decay has no significant effects

Earlier experiments

Impurity in thermal Spethman *et al.* Phys. Rev. Lett. **109**, 235301 (2012) bose gas:

 Charged or fixed
 Zipkes *et al.*, Nature **464**, 388 (2010)

 Schmid *et al.*, Phys. Rev. Lett. **105**, 133202 (2010)

 Impurities in BEC:
 Balewski *et al.*, Nature **502**, 664 (2013)

 Scelle *et al.*, Phys. Rev. Lett. **111**, 070401 (2013)

Impurities in lattice: Ospelkaus et al., Phys. Rev. Lett. 96, 180403 (2006)

Magnons: Marti *et al.*, Phys. Rev. Lett. **113**, 155302 (2014)

Experimental procedure

 $|1\rangle = |F = 1, m_F = -1\rangle$ $\xi \omega_{
m RF}$ BEC of ³⁹K in |1> $|2\rangle = |F = 1, m_F = 0\rangle$ RF flip $\leq 10\%$ to $|2\rangle$ Wait for a while 3-body loss TOF Count # $|1\rangle$ remaining as fⁿ atoms of detuning $\Delta = \omega_0 - \omega_{RF}$ Remaining Independent of wait time \Rightarrow $k_n a = -0.84$ loose 100% of $|2\rangle$ atoms \Rightarrow lost $|1\rangle$ atoms = 3×created $|2\rangle$ atoms

Experiment takes place here. a_B~9a₀

Advantages of RF flipping out of BEC

- OPerfect spatial overlap between impurities and BEC
- Selectively probe only k=0 polarons
- Simple theoretical interpretation

$$\dot{N}_{2} = -2\Omega^{2} \operatorname{Im} D(\omega)$$

$$D(t - t') = -i\theta(t - t') \langle \left[\sum_{\mathbf{k}} a_{\mathbf{k}1}^{\dagger}(t)a_{\mathbf{k}2}(t), \sum_{\mathbf{k}'} a_{\mathbf{k}'2}^{\dagger}(t')a_{\mathbf{k}'1}(t')\right] \rangle$$
Bogoliubov theory: $D(\omega) = n_{0}G_{2}(\mathbf{k} = \mathbf{0}, \omega)$

RF probes k=0 impurity spectral function: $\dot{N}_2 \propto A(\mathbf{k} = \mathbf{0}, \omega) = -2 \text{Im}G_2(\mathbf{k} = \mathbf{0}, \omega)$

Contrast with Fermi gas or thermal Bose gas

Generic Physics

 $k_n = (6\pi^2 n)^{1/3} \qquad E_n = \frac{k_n^2}{2m}$

&Clear shift away from ω_0

★Excellent agreement between experiment and 2 bog. theory (trap averaging important!)

★Well-defined polaron for weak coupling

Many-body continuum dominates for strong coupling

Trap averaging & Fourier broadening

Remarkable agreement between experiment and theory (some problems at strong repulsion)

 \Rightarrow Pert. theory explains data for weak coupling \Rightarrow well defined polaron

sta3-body decay <u>not</u> needed $\Gamma \propto n_0^2 a^4$ weak coupling to explain width

 $\Gamma \propto E_n$ unitarity Makotyn et al., Nat. Phys. 10, 116 (2014)

Conclusions

- Good theoretical understanding of Bose polaron both for weak and for strong coupling
- Experimental observation of Bose polaron for the first time

R. S. Christensen, J. Levinsen & GMB, PRL **115**, 160401 (2015) J. Levinsen, M. M. Parish & GMB, PRL **115**, 125302 (2015) N. B. Jørgensen et al, arXiv:1604.07883

EFB23

23RD EUROPEAN CONFERENCE ON FEW-BODY PROBLEMS IN PHYSICS

DEPARTMENT OF MATHEMATICS, AARHUS UNIVERSITY, DENMARK 8TH-12TH AUGUST 2016

INVITED SPEAKERS

Arnoldas Deltuvas, Vilnius University Artem Volosniev, TU Darmstadt Brian Lester, JILA Boulder Chen Ji, ECT* Trento Chris Greene, Purdue University Dorte Blume, Washington State University Elzbieta Stephan, University of Silesia Evgeny Epelbaum, Bohum Univesrity Francesca Sammarruca, University of Idaho Frank Deuretzbacher, ITP University of Hannover Laura Marcucci, Pisa University Lucas Platter, University of Tenessee Mohammad Ahmed, Duke Iniversity Nicholas Zachariou, JLAB Nir Barnea, Racah Institute of Physics HUJI Or Hen, MIT Patrick Achenbach, University of Mainz Selim Jochim, University of Heidelberg Susumo Shimoura, University of Tokyo Valery Nesvizhevsky, Institut Laue-Langevin Yusuke Nishida, Tokyo Institute of Technology

International Advisory Committee: Alejandro Kievsky, Chris Greene, Christian Forssen, Craig Roberts, Doerte Blume, Eduardo Garrido, Francisco Fernandez Gonzalez, Hans-Werner Hammer, Henryk Witala, Jaume Carbonell, Jean-Marc Richard, Johann Haidenbauer, Kalman Varga, Lauro Tomio, Mantile Leslie Lekala, Nasser Kalantar-Nayestanaki, Nina Shevchenko, Nir Barnea, Peter Schmelcher, Peter Zoller, Pierre Descouvemont, Stanisław Kistryn, Teresa Pena, Victor Mandelzweig, Werner Tornow, Willibald Plessas, Xiaoling Cui

Local Organisers: Dmitri Fedorov (Chair), Georg Bruun, Hans Fynbo, Jan Arlt, Michael Drewsen, Nikolaj Thomas Zinner

Conference Secretary: Karin

http://conferences.au.dk/efb23

Linear Response regime

Increasing RF power

