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Non-Hermitian P77 symmetric Hamiltonians
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FIG. 1. Energy levels of the Hamiltoniai = p? — (ix)" as
a function of the paramete¥. There are three regions: Whi
N = 2 the spectrum is real and positive. The lower bot
of this region,N = 2, corresponds to the harmonic oscillat
whose energy levels arg€, = 2n + 1. Whenl < N <2,
there are a finite number of real positive eigenvalues ans
infinite number of complex conjugate pairs of eigenvalt
As N decreases from 2 to 1, the number of real eigenva
decreases; wheN = 1.42207, the only real eigenvalue is tt
ground-state energy. A#& approachesl™, the ground-statt
energy diverges. Fa¥ = | there are no real eigenvalues.

Bender, Boettcher PRL 80, 5243 (1998)



Symmetry operators:

o Parity: spatial reflections P: 2 — —x, p— —p
o Timereversal T:z—>z, p— —p,

i— —i

[PT,H] =0

@ Necessary condition

[PT,H|=PT (—2+V( )) ( —
= (V' (=) -

V(zx)) PT =
@ Required form of the potential
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Optical waveguides

Theoretical description and eigenvalues

@ Optical waveguide with gain @ Real eigenvalues are found
and loss terms represented by a below a critical value of the
complex potential. imaginary contribution.

@ Description equivalent to a @ Beyond an exceptional point
one-dimensional Schrédinger the modes become complex and
equation. complex conjugate.
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S. Klaiman et al., Phys. Rev. Lett. 101, 080402 (2008)



Optical waveguides

Temporal evolution and experimental verification
Aa=0[cm™] Aa=5[cm™] Aca=8[cm™]

: : Left: Power distribution of a

propagating mode (increasing

imaginary contribution from left to

right), theory

S. Klaiman et al., Phys. Rev. Lett. 101, 080402 (2008)

Bottom: Experimental setup

C. E. Riiter et al., Nature Physics 6, 192 (2010)
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@ Setup with matter waves: real quantum system

@ Bose-Einstein condensate in a double well.
o First well: particles are injected: gain term

@ Second well: particles are removed: loss term

Vix) § ¥i(x)
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ReV(z)

V(x) = ﬂwfcxz + 22 (v + 22) + voe™ " + iTze P

2 2 Y,z

PT symmetry in x direction:

. 4

RIeV(x)
8t mV 13 .
1 If ) Gain/loss term T':
7t {2
. . o influences the
1 = probability amplitude of

’ 0z the whole condensate
4t -1

@ atoms are
’ -2 in-/outcoupled
2f 13 coherently
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System of units:
o Length scale: ag = \/h/mw, .
e Unit of energy: Ey = h?/2ma3
e Dimensionless potential:
V(z) = wa?® + y? + 22 + vge =% + iLze=r*"

ip(,t) = (~A +V(2) - glv(a, 1)) ¥(,1)

«O0>» 4F>» «=)r « =)
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Gross-Pitaevskii equation

System of units:

o Length scale: ag = \/h/mw, .
e Unit of energy: Ey = h?/2ma3
@ Dimensionless potential:
V(z) =w?z? + 9% + 22 + voe =% + ilzere’

Time-dependent Gross-Pitaevskii equation

11/)(% t) = (_A + V(CC) - g|’t[](:1}, t)lz) d)($a t)

o Interaction term: —gli(x, t)|?

@ The wave function ¢ (x,t) affects the symmetry of the
Hamiltonian's real part.

@ The Hamiltonian is only P77 symmetric if the solution's square
modulus |1 (x,t)|? is a symmetric function of z!

] = =



Vix)

2

k=1

U(z,x) = Z o~ (AL (2=’ +A . (> +27) —ipf (v —a5) +¢")

Variational parameters:

1

o widths: A;,Ai,Ay,wAg,z eC
e positions: ¢3,¢2 € R

e momenta: pl,p2 € R

e amplitudes/phases: ¢!, p? € C
In total: 16 real parameters
72 * (12 in one dimension)

2(t) = {AL(1), Ay . (1), ¢ (1), D5 (t), ¥*}

=] 5
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Equations of motion

McLachlan time-dependent variational principle

5T = 8|[ip(t) — HY@)|2 =0, =g

@ Equations of motion:

Ay = —4i ((A5)? + (47.)%) +1V3,
ds = 2p; + sy
Pk = —Re vf;w —2Im AFs* — 2Re Vngcq’;
PF = ivg + (A5 + A} L) —i(py)? — iphsh +idpvt, + g5 Valay
1
with s® = §(Re A’;)_l(lmv’f;x +2Im Vkaqf,)
o Effective potential terms v = (vf,...,01,p,..., Vay,...): Kv =17
matrix K: (weighted) overlap integrals of the Gaussians

vector r: (weighted) Gaussian averages of all potential terms



Stationary states

Conditions
A’; = AZZ =¢=pt=0 12 conditions
Sbk =ip 4 conditions
[l =1 1 condition

Numerical procedure:

@ Arbitrary global phase — one Gaussian parameter is free:
property of the Gross-Pitaevskii equation

@ 15 Gaussian parameters can be varied together with Re 1 and Im g
— 17 parameters

@ Stationary states can be found with a 17-dimensional root search.
@ In one dimension: 13 conditions and 13 parameters

@ Only a small difference in the numerical effort.



S
Procedure:

@ The arbitrary global phase is exploited: Tm(0) =0
@ Five real initial values have to be chosen:

Rey(0), ¢'(0)eC, pneC
@ Five conditions have to be fulfilled:

$(0) =0, ¥(-00) =0,
@ Five-dimensional root search.

¢l =1
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Spectrum without nonlinearity (g = 0)
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T

Summary

Im g

0 < T < 0.08, variational
(solid) and numerically exact
(dashed) eigenvalues:
@ Two real solutions below
I'gp.
@ Appearance of an
exceptional point.
@ Two complex conjugate
solutions for I > I'gp.

The model reveals the known features of complex Hamiltonians with PT
symmetry.




Spectrum with increasing nonlinearity (¢ = 0...0.3)
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0 < T < 0.08, variational (solid) and
numerically exact (dashed)
eigenvalues

Observation

@ Real eigenvalue branches merge
and vanish at a value I'gp.

e Complex eigenvalues are born
at a value I'; < I'gp.

@ For sufficiently small
nonlinearities there is a range in
which only real eigenvalue
solutions exist.
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all important features.

@ Expectation: The one-dimensional calculation should contain already
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Eigenvalues of the three-dimensional problem

@ Expectation: The one-dimensional calculation should contain already
all important features.
e Comparison of the eigenvalues of the full three-dimensional problem
with those in one dimension.
o An energy shift of Ay = 2 is expected: harmonic oscillator ground

states for y and z directions.
e The nonlinearity parameter g has to be rescaled: We require

/ d dy dz gspsn ()[* = / dz giprn (z)]*
R3 R

and obtain

giD = g3D /]R<2 dydz|¢0(y)|4|w0(z)|4

g3sp = 27Tg1Dp.



Comparison of the energies in three and one dimension

4.52

4.48

4.46 gip — 0...0.2
s 444 a o -
E @ solid: three-dimensional

" calculation

438 @ dashed: one-dimensional

4.36 - a

s calculation shifted by Ay = 2
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r
0.08 . o
w0 Finding
0.06 —— gsp =027
0.01 gop = 0.4 @ Almost no difference.

gap = 0.6m

0.02 @ One-dimensional description is

very good.

Im i
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@ One-dimensional calculations in
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Wave functions for real eigenvalues

Does the nonlinearity g|v(z)|?

destroy the PT symmetry of the
Hamiltonian?

4

g =0.2, T =0.03, ground (upper

panel) and excited (lower panel)
state:

@ Square modulus: symmetric




Wave functions for real eigenvalues

Does the nonlinearity g|t(z)[?

destroy the P7T symmetry of the
Hamiltonian?

4

‘ g =0.2, T =0.03, ground (upper
— panel) and excited (lower panel)
/\\ state:

@ Square modulus: symmetric
@ The nonlinear Hamiltonian

picks as eigenstates wave

functions which render itself
PT symmetric!




Wave functions for complex eigenvalues

0.6

0.5
0.4
0.3

e 0.2

0.6

0.5

Rey
Tm )

g=0.2, T' = 0.03, states with
Re < 0 (upper panel)
Im p > 0 (lower panel)

Important differences:

@ Wave functions with broken
PT symmetry!

@ Also the Hamiltonian loses its
PT symmetry!

@ Solutions lose their physical
relevance: decay or growth of
the probability amplitude —
nonlinear potential term g|v|?
changes with time!

] = =




@ Assoon as g #0, inarange I'c <T' < I'gp PT symmetric and PT
broken states coexist.

@ The appearance of PT broken states depends on both the
nonlinearity and the non-Hermiticity.
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with respect to quantum fluctuations?

Will the stationary PT symmetric states be observable? Are they stable

@ Ansatz for small perturbations:

82
8a2 ") =

D@, t) = vo(z, t) + s~ ikt (u(x)e**t + v*(x)e”)
@ Bogoliubov-de Gennes equations:
= (V@) = p—ix* =29 o (@) ) u(x) - gui(x)e(z)
32
Sv(e) = (V@) =i +ix = 2g [ (@) ) olx) - g5 (2)ula)
@ Variational approach: Jacobian

0z =Jéz, with J= gz , 0Z(t) = 62(0)eMt

=] 5

DA



0.08 -
007 |

0.06

0.05 F 4 —0.

0.04
0.03
0.02
0.01
0
—0.01

—0.02

0

0.005 0.01

0.015 0.02 0.025 0.03
T

0.035 0.04 0.045

Red ——
ImA ——

0

0.005 0.01

0.015 0.02 0.025 0.03
T

0.035 0.04 0.045

0 < T < 'gp, ground (upper panel)
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@ Imaginary eigenvalues: stable,
real eigenvalues: unstable.

@ Ground state: becomes
unstable as soon as the PT
broken branches emerge!

o Excited state: always stable.
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Analytic continuation

Complete mathematical structure of an exceptional point

The real branches vanish at the branch point and the complex
eigenvalues bifurcate only from the ground state. Can this be explained?
.

Analytic extension

e g|v(z)|? is non-analytic.

o Eigenstates with complex eigenvalues bifurcating from the branch
point can be found by an appropriate analytic continuation.
@ Idea: Below the branch point we have *(z) = ¢(—x).

@ The replacement g|v(z)|? — (x)w(—x) will not change the PT
symmetric states.
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@ Two complex conjugate
eigenvalues bifurcate from the
branch point at which the real
eigenvalues vanish.

@ Structure known from
exceptional points appears.

@ Other analytic forms might
resolve the extension of the PT
broken states for I < T'...
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Temporal evolution for I' < I'gp

(z,t=0

3
- H .5
240

240

0

(¢GS( )+ Yes(z))

g=0.2, T =0 (upper panel) and
I' = 0.02 (lower panel)

Observation

@ The probability density
oscillates between both wells.

@ The beat frequency and the
phase relation between both
wells depend on T'.




Temporal evolution for I' > I'gp

0.3

0
0 60 120 180 240 300

0 20 40 60 80 100 120

g=02,T =004

Probability amplitude pulsates
in both wells.

g=02T=003

t = 0: Only the well with loss is
populated.

The probability amplitude
“explodes”.
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Summary

@ PT symmetric Bose-Einstein condensates are stable up to a critical
strength of the contact interaction and should be observable in an
experiment.

e PT symmetric eigenfunctions exist in nonlinear quantum systems
and render the Hamiltonian itself P77 symmetric.

o Complex energy eigenvalues belong to eigenstates with broken PT
symmetry destroying the Hamiltonian's symmetry. They influence
the stability of the ground state.

@ At a branch point two real eigenvalues vanish, however, a pair of

complex conjugate eigenvalues emerging at the critical parameter
value can only be exposed in an analytic extension of the model.



Summary

@ PT symmetric Bose-Einstein condensates are stable up to a critical
strength of the contact interaction and should be observable in an
experiment.

e PT symmetric eigenfunctions exist in nonlinear quantum systems
and render the Hamiltonian itself P77 symmetric.

o Complex energy eigenvalues belong to eigenstates with broken PT
symmetry destroying the Hamiltonian's symmetry. They influence
the stability of the ground state.

@ At a branch point two real eigenvalues vanish, however, a pair of
complex conjugate eigenvalues emerging at the critical parameter
value can only be exposed in an analytic extension of the model.
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@ Better understanding of the nonlinearity’s influence: matrix models,

@ More detailed investigation of the stability change of the ground
state.

@ Possible extension: additional long-range dipole-dipole interaction.

@ Detailed microscopic treatment: improved understanding of the loss
and gain processes.
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Solutions with complex p are no true stationary states of the
time-dependent Gross-Pitaevskii equation. Are they meaningless?

e Comparison of the norm N2 = [ ||? dz for the correct temporal
evolution with the expectation from exp(—2Im ut)

DA




Solutions with complex chemical potential

Solutions with complex p are no true stationary states of the
time-dependent Gross-Pitaevskii equation. Are they meaningless?

o Comparison of the norm N? = [ |)|> dz for the correct temporal
evolution with the expectation from exp(—2Im ut)

@ Introduce the norm difference:

D=\// |w|2dw—\// [P da
right well left well

@ Comparison of the norm difference D of the correct temporal

evolution with that of stationary solutions with adapted effective g:

g — gN?
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actual time development

exp(—2puit) ——

J1vP

20 30

Onset of the norm growth is correctly described by the imaginary part of
the energy eigenvalue.




actual time development
20 40

adapted broken/sym eigenstate
60

80 100

120 140 160
t

Growth for long times “along” the adapted “stationary” state with
positive imaginary part.
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actual time development

adapted broken eigenstate
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Time evolution follows the line of the adapted “stationary” state. Its
influence does not vanish completely.
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PT symmetry and nonlinear systems

Considerations of P77 symmetric systems with nonlinearity include:

@ PT symmetric Bose-Hubbard system
E.M. Graefe, H. J. Korsch, and A. E. Niederle, Phys. Rev. Lett. 101, 150408 (2008)
E. M. Graefe, U. Giinther, H. J. Korsch, A. E. Niederle, J. Phys. A 41, 255206 (2008)
E.M. Graefe, H. J. Korsch, and A. E. Niederle, Phys. Rev. A 82, 013629 (2010)

@ Quantum mechanical model potentials
Z. Musslimani, K.G. Makris, R. El-Ganainy, and D.N. Christodoulides, Phys. Rev. Lett. 100, 30402 (2008)
Z.H. Musslimani, K.G. Makris, R. El-Ganainy, and D.N. Christodoulides, J. Phys. A 41, 244019 (2008)

@ Optical systems with nonlinearity
H. Ramezani, T. Kottos, R. El-Ganainy, and D.N. Christodoulides, Phys. Rev. A 82, 043803 (2010)

@ Bose-Einstein condensate in an idealized double § trap
H. Cartarius and G. Wunner, Model of a PT symmetric Bose-Einstein ], in a delta-fi
double well, preprint arXiv:1203.1885, 2012
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