

Bose-Einstein Condensation of Light

Martin Weitz

Institut für Angewandte Physik der Universität Bonn

Bose-Einstein condensation of atoms: matter waves in lockstep

T~100nK

- cold atomic gases
- thermodynamics of a two-dimensional photon gas in a dye-filled optical microcavity
- Bose-Einstein condensation of photons

Cold Atomic Gases: Temperature Scale

From Thermal Gas to Bose-Einstein-Condensate

classical gas

cold gas, but T>T_c atoms show wave properties $\lambda_{dB} = h/mv \propto 1/\sqrt{T}$

T<<T_c pure Bose-Einstein-condensate

BEC of rubidium atoms @ 180nK

Ground State of Bosonic Ensembles (3D-Regime)

Bose-Einstein-condensate

Earlier Work related towards a Photon BEC

- Proposal for a photon BEC in Compton scattering off a thermal electron gas

Zel'dovich and Levich, 1969

... Earlier Work

- Exciton-polariton condensates

strong coupling (,half matter, half light'); in equilibrium for condensed part

Yamamoto, Deveaud-Pledran, Littlewood, Snoke, ...

- Proposal for photon fluid in nonlinear resonator

photon-photon scattering (four-wave mixing)

R. Chiao

Bonn 2D-Photon Gas Experimental Scheme

- use curved-mirror microresonator to modify photon dispersion

- thermal equilibrium of photon gas by scattering off dye molecules...

Spectrum of Perylene-Dimide Molecule (PDI)

Photon Gas Thermalization: Background

Collisionally induced thermalization in dye medium

$$\frac{f(\omega)}{\alpha(\omega)} \propto \exp\left(-\frac{\hbar\omega}{k_B T}\right)$$

T: (internal rovibrational) temperature of dye solution

Kennard 1912, Stepanov 1956

Model for Photon Thermalization

multiple absorption and emission processes by dye molecules in resonator

(many times)

Photon Number Variation during Thermalization?

 \rightarrow photon average number conserved

,white-wall box' for photons

Photon Trapping versus Atom Trapping

- quadratic photon dispersion

In paraxial approximation (k_z>>k_r): $E = \hbar c \sqrt{k_z^2 + k_r^2} \cong \hbar c \left(k_z + \frac{k_r^2}{2k_z} \right)$ $= m_{eff} c^2 + \frac{(\hbar k_r)^2}{2m_{eff}}$ with $m_{eff} = \hbar k_z / c \equiv \hbar \omega_{cutoff} / c^2$

.. Photon versus Atom trapping

- trapping potential from mirror curvature

System formally equivalent to 2D-gas of massive bosons with $m_{eff} = \hbar \omega_{cutoff} / c^2$ $E = m_{eff} c^2 + \frac{(\hbar k_r)^2}{2m_{eff}} + \frac{1}{2} m_{eff} \Omega^2 r^2$ \rightarrow BEC expected for $N > N_c = \frac{\pi^2}{3} \left(\frac{k_B T}{\hbar \Omega}\right)^2 \cong 77000$ (T=300K, $\Omega = 2\pi \cdot 4 \cdot 10^{10}$ Hz, $m_{eff} \cong 6.7 \cdot 10^{-36}$ kg $\cong 10^{-10} \cdot m_{Rb}$)

BEC versus Lasing

Optical laser

Photon BEC

thermodynamic state:

far from equilibrium

thermal equilibrium

gain/thermalisation medium:

three or more levels, inversion (or quantum coherence, high coupling eff. to single cavity mode)

non-inverted twolevel system sufficient (many transversal cavity modes)

phase transition condition:

for the lasing mode: gain (stim. emission) > loss

Two-Dimensional Photon Gas in Dye-Filled Optical Resonator

Experimental Setup: 2D Photon Gas

Spectrum of Thermal Photon Gas in Cavity

 \rightarrow evidence for thermalized two-dimensional photon gas with $\mu \neq 0!$

J. Klaers, F. Vewinger, M. Weitz, Nature Phys. 6, 512 (2010)

Spectra for Different Cavity Cutoff Frequencies

... Reabsorption: Required for Photon Thermalization

Snapshot: Thermalization of Photon Gas in Dye Microcavity

Thermalization – Photon Diffusion towards Center

Photon Gas at Criticality

Rh6G, duty cycle 1:16000, 0.5µs pulses

Bose-Einstein condensate of Light

below threshold

Bose-Einstein condensate

Cooling (or increase of $n\lambda_{db}^2$)

Light Bulb

ground state: filament off

Spectra for Densities around Photonic BEC Threshold

J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

Spatial Intensity Distribution around BEC Threshold

mode diameter increase could be explained by photon mean field interaction with $g_{eff,2D} \cong 7 \cdot 10^{-4}$ (too small for Kosterlitz-Thouless physics) \rightarrow BEC expected for atoms: $g_{eff,2D} \cong 10^{-1} - 10^{-2}$ (Dalibard,Phillips)

Michelson Interference Pattern above Photon BEC Threshold

optical path length difference: 15 mm

Phase Transition Onset versus Resonator Geometry

expected critical optical power: $P_c = N_c \frac{\hbar\omega}{\tau_{rt}} = \frac{\pi^2}{12} (k_B T)^2 \frac{\omega}{\hbar c} R$

- Variation of mirror radius R

n=7, R variable

.. Phase Transition Onset

- Variation of resonator length

Published Results for the Phase Transition of a Microlaser

FIG. 1. Laser phase transitions for microcavity dimensions $d = \overline{d} \equiv \lambda/2$ and $d = 5\lambda$. The emitted intensities shown for $d = 5\lambda$ should be multiplied by 10 to be compared with the \overline{d} data.

De Martini+Jacobovitz, PRL 60, 1711 (1988)

.. Phase Transition Onset

- Variation of resonator length

Condensation for Off-Center Pumping

Effective Particle Exchange of Photons with Dye Excitations

average photon number is fixed, but fluctuations of the photon number around the average value can occur

for a large number M of dye molecule, the photon gas is well decribed by a grandcanonical model

Ensembles for Bose-Einstein Condensation

(similar: canonical ensemble)

Poissonian particle statistics in condensed state, $g^{(2)}(0) = 1$ grandcanonical ensemble

enhanced particle fluctuations in condensed state, $g^{(2)}(0) = 2$

general theory grandcanonical BEC fluctuations: Fujiwara et al. (1970), Ziff et al. (1977), Holthaus (1998)

Expected Phase Diagram

J. Klaers et al., PRL 108, 160403 (2012), see also: D. Sobyanin, PRE 85, 061120 (2012)

Measured Photon BEC Intensity Correlation vs. Delay Time

Laser Cooling by Collisional Redistribution

Experiment

Rb + 200 bar argon filled cell

cooling inside cell: $410^{\circ}C \rightarrow -120^{\circ}C$

U. Vogl and M. Weitz, Nature **461**, 70 (2009); A. Sass, U. Vogl, M. Weitz, to be published

Conclusions

- thermal 2D-photon gas with nonvanishing chemical potential (average particle number conserved)

- Bose-Einstein condensation of photons. Signatures:

Bose-Einstein distributed photon energies

10¹ 10⁰ 565 570 575 580 585 10⁻¹ 565 570 575 580 585 580 585 580 585 580 585 580 585 580 585 580 585 580 585 phase transition absolute value+scaling

condensation for off-center pumping

Outlook

- photon thermalization: concentration of diffuse sunlight

- photon BEC: new states of light
 - (some) future directions:
 - canonical vs. grandcanonical photon ensemble regimes
 - study of quantum manybody states in periodic potentials
- light sources in new wavelength regimes, coherent UV sources

possible application: lithography

Quantum optics group, IAP Bonn:

- J. Klaers
- S. Kling
- A. Sass
- H. Brammer
- J. Schmitt
- T. Damm
- C. Grossert
- J. Ulitzsch
- M. Leder
- D. Dung
- T. Burgermeister
- S. Hüwe
- P. Moroshkin
- F. Vewinger
- M. Weitz