stochastic models for turbulence and turbulent driven systems

Dank an Mitarbeiter
J. Gottschall
M. Hölling,
M.R. Luhur
St Lück
P. Millan
A. Nawroth
Ph. Rinn
N. Reinke
Ch. Renner
R. Stresing
M. Wächter

Koopertionen

R. Friedrich
D. Kleinhans
M. Kühn
R. Tabar
Ch. Vassilicos
synergetic approach to turbulence

stochastic cascade model - n-point statistics of turbulence

deeper insights into turbulence and turbulent driven systems
synergetic approach

order parameter

complex system
interacting subsystems

\{ slaving to low dimensional dynamics

synergetics and hierarchical structures

hierarchical cascade structure--allows this a simplification, too? order parameters?
synergetics and hierarchical structures

• turbulence
 • cascade structure of interacting vorticities

\[
\begin{align*}
L & \quad \text{integral length} \\
r & \quad \eta & \quad \text{dissipation length}
\end{align*}
\]
synergetics and hierarchical structures

• turbulence
 • cascade structure of interacting vorticities
 • Rudolf - look at the interacting structures on different scales

\[p(u_r, r | u_{r'}, r') \]
\[\partial_r p(u_r, r) \]

\(r \) process evolving in the cascade parameter
synergetic approach to turbulence

stochastic cascade model - n-point statistics of turbulence

deep insights to turbulence and turbulent driven systems
turbulence

- comprehensive description by n-point statistics

\[p(u(x_1), \ldots, u(x_{n+1})) \]

using velocity increments:

\[u_{r_i} = u(x + r_i) - u(x_i) \]

\[p(u(x_1), \ldots, u(x_{n+1})) = p(u_{r_1}, \ldots, u_{r_n}, u(x_1)) \]
n-point statistics

\[p(u(x_1), ..., u(x_{n+1})) = p(u_{r_1}, ..., u_{r_n}, u(x_1)) \]

\[= p(u_{r_1}, ..., u_{r_n} | u(x_1)) \cdot p(u(x_1)) \]

Bayes theorem - joint pdf by cond. pdf

\[= p(u_{r_1} | ..., u_{r_n} u(x_1)) p(u_{r_2} | ..., u_{r_n} u(x_1)) \cdot p(u(x_1)) \]

Mittwoch, 14. November 12

ForWind
Center for Wind Energy Research

HWK 2012
n-point statistics

\[p(u(x_1), \ldots, u(x_{n+1})) = p(u_{r_1}, \ldots, u_{r_n}, u(x_1)) \]
\[= p(u_{r_1}, \ldots, u_{r_n} | u(x_1)) \cdot p(u(x_1)) \]

Bayes theorem - joint pdf by cond. pdf

\[= p(u_{r_1} | \ldots, u_{r_n} u(x_1)) p(u_{r_2} | \ldots, u_{r_n} u(x_1)) \ldots \cdot p(u(x_1)) \]

can this be simplified?

\[= p(u_{r_1} | u_{r_2}, u(x_1)) \ldots p(u_{r_{n-1}} | u_{r_n}, u(x_1)) \cdot p(u(x_1)) \]

or even one increment statistics?

\[p(u_{r_1}) \ldots p(u_{r_n}) \]
\(\nabla \) time signals, \(u(t) \),

\(\nabla \) measured increments \(u_r \) for different \(r \)

\[p(u_{r1} | \ldots, u_{rn}, u(x_1)) \]
simplification
(1) \[p(\tilde{u}_1, r_1 | \tilde{u}_2, r_2; \ldots; \tilde{u}_n, r_n) = p(\tilde{u}_1, r_1 | \tilde{u}_2, r_2) \]
(2) \[p(\tilde{u}_1, r_1 | \tilde{u}_2, r_2; \ldots; \tilde{u}_n, r_n) = p(\tilde{u}_1, r_1) \]

experimental test

experimental result:
\[p(u_1 | u_2, u_3) = p(u_1 | u_2) \]
(1) holds
(2) not
\[p(u(x_1), ..., u(x_{n+1})) \]
\[= p(u_{r_1} | u_{r_2}, u(x_1)) \cdots p(u_{r_{n-1}} | u_{r_n}, u(x_1)) \cdot p(u(x_1)) \]

new view of cascade process: three point closure
three point quantity

\[p(u_{r_1} | u_{r_2}, u(x_1)) \]
\[p(u(x_1), \ldots, u(x_{n+1})) = p(u_{r_1} | u_{r_2}, u(x_1)) \ldots p(u_{r_{n-1}} | u_{r_n}, u(x_1)) \cdot p(u(x_1)) \]

new view of cascade process:
three point closure
local in the cascade means no memory
or Markow process in \(r \)
\[p(u(x_1), \ldots, u(x_{n+1})) = p(u_{r_1} | u_{r_2}, u(x_1)) \ldots p(u_{r_{n-1}} | u_{r_n}, u(x_1)) \cdot p(u(x_1)) \]

Markow prop & cascade with Fokker-Planck Equ.

\[-r_j \frac{\partial}{\partial r_j} p(u_{r_j} | u_{r_k}, u(x_1)) = \left\{ -\frac{\partial}{\partial u_{r_j}} D^{(1)}(u_{r_j}, r_j, u(x_1)) + \frac{\partial^2}{\partial u_{r_j}^2} D^{(2)}(u_{r_j}, r_j, u(x_1)) \right\} p(u_{r_j} | u_{r_k}, u(x_1))\]
\[-r_j \frac{\partial}{\partial r_j} p(u_{r_j} | u_{r_k}, u(x_1)) = \{- \frac{\partial}{\partial u_{r_j}} D^{(1)}(u_{r_j}, r_j, u(x_1)) + \frac{\partial^2}{\partial u_{r_j}^2} D^{(2)}(u_{r_j}, r_j, u(x_1))\} p(u_{r_j} | u_{r_k}, u(x_1))\]

Markow prop. \Rightarrow Fokker-Planck Equ. measured by KM coefficients

\[D^{(n)}(u_r, r) = \frac{1}{n!} \cdot \lim_{\Delta \to 0} \int (\tilde{u}_r - u_r)^n p(\tilde{u}_{r+\Delta}, r + \Delta | u_r, r) d\tilde{u}_r\]

- shift of drift function, no u-dependence of diffusion function

HWK 2012

Mittwoch, 14. November 12
n-point statistics

3. Verification of the measured Fokker-Planck equation
- numerical solution compared with experimental results
- \Rightarrow n-scale statistics

$\rho(u,r)$

$p(u_r,r|u_{r_0},r_0)$

$\frac{u_0}{\sigma_\infty}$

synergetic approach to turbulence

stochastic cascade model - n-point statistics of turbulence
 - stochastic process in r - tremendous reduction in complexity

shift of drift function, no u-dependence of diffusion function
synergetic approach to turbulence

stochastic cascade model - n-point statistics of turbulence

• stochastic process in r - tremendous reduction in complexity

deeper insights to turbulence and turbulent driven systems

shift of drift function, no u-dependence of diffusion function
reconstruction of time series

no u dependence

\[D^{(1)}(u_r, r, u) = d_{10}(r, u) - d_{11}(r)u_r \]

\[D^{(2)}(u_r, r, u) = D^{(2)}(u_r, r) \]

with u dependence

blow up
turbulence - classical theory

\[-r_j \frac{\partial}{\partial r_j} p(u_{r_j} | u_{r_k}, u(x_1)) = \left\{ -\frac{\partial}{\partial u_{r_j}} D^{(1)}(u_{r_j}, r_j, u(x_1)) + \frac{\partial^2}{\partial u_{r_j}^2} D^{(2)}(u_{r_j}, r_j, u(x_1)) \right\} p(u_{r_j} | u_{r_k}, u(x_1)) \]

Kolmogorov 41

\[D^{(1)}(u) = \frac{1}{3} u \]

Langevin equation

\[\frac{\partial}{\partial r} u_r = \frac{1}{3} \frac{u_r}{r} \quad u_r \propto r^{1/3} \]

\[\langle u_r^n \rangle \propto r^{n/3} \]

Kolmogorov 62

\[D^{(1)}(u_r) = \gamma u_r \quad D^{(2)}(u_r) = \beta u_r^2 \]

\[\langle u_r^n \rangle \propto r^{n/3 + \mu(n)} \]

RF & JP PRL 78 (1997)
Functional form of the coefficients $D^{(1)}$ and $D^{(2)}$ is presented

\[
\frac{\partial}{\partial \tau} p(R, \tau) = \left[-\frac{\partial}{\partial R} D^{(1)}(R, \tau) + \frac{\partial^2}{\partial R^2} D^{(2)}(R, \tau) \right] p(R, \tau)
\]

Example: Volkswagen, $\tau = 10$ min
multi-scale statistics

additive term in the diffusion term: \(\rightarrow\) additive noise

\[
D^{(1)}_{1}(u_r, r) = d^u_1(r) u_r \\
D^{(2)}(u_r, r) = d_2(r) + d^u_2(r) u_r + d^{uu}_2(r) u_r^2
\]

Gaussian tip

Comparison of data with numerical solution of the Kolmogorov equation
wake flow behind a cylinder - turbulent structures

drift term as function of r
wake flow behind a cylinder - turbulent structures

phase transition to isotropic turbulence

drift term as function of r
Markov-length - a coherence length

statistics of longitudinal and transversal increments

universality of turbulence:

fractal grid turbulence

role of transferred energy ε_r:

fusion rules $r_i \Rightarrow r_{i+1}$ (Davoudi, Tabar 2000; L’vov, Procaccia 1996)

passive scalar (Tutkun, Mydlarski 2004)

Lagrangian turbulence (Friedrich 2003, 2008)
turbulent driven systems
open question - what is the corresponding dynamics

\[\dot{x} = ?? \]

\[x(t + \tau) = ?? \]
synergetic approach

order parameter

complex system
interacting subsystems

{ }

slaving to
low dimensional

dynamics

• deterministic part

\[\dot{x}(t) = D^{(1)}(x(t_j), t_j) + \sqrt{D^{(2)}(x(t_j))\Gamma'(t_j)} \]
Markov process - Langevin Equation

\[\dot{x}(t) = D^{(1)}(x(t), t) + \sqrt{D^{(2)}(x(t))} \Gamma'(t) \]

the basic element is the transition probability

\[p(\tilde{x}, t + \tau | x, t) \]

from this we can get

\[D^{(1)}(x) = \lim_{\tau \to 0} \frac{1}{\tau} \left\langle X(t + \tau) - x \right\rangle \Big|_{X(t) = x} \]

\[D^{(2)}(x) = \lim_{\tau \to 0} \frac{1}{\tau} \left\langle (X(t + \tau) - x)x(X(t + \tau) - x)^T \right\rangle \Big|_{X(t) = x} \]

Rayleigh Benard Experiment

max. temperature difference 20°C
Ra < 9*10⁹

measurements with ultrasonic dopper
Anemometer DOP200β
Rayleigh Benard Experiment

DOP2000 - profile measurements

red rising, blue sinking

Mittwoch, 14. November 12
Rayleigh Benard Experiment

\[Ra = 10^{10} \]
Rayleigh Benard Experiment

Analysis as stochastic process in time - Langevin Equation

\[\dot{x}(t) = D^{(1)}(x(t_j), t_j) + \sqrt{D^{(2)}(x(t_j))} \Gamma'(t_j) \]

Ra = 10^{10}

PDF and its reconstruction

Potential
Rayleigh Benard Experiment

tilting - by less than 1°

Potential

MA Thesis
M. Peters M. Langner

Mittwoch, 14. November 12
turbulent driven systems

\[\text{turbulent wind energy} \]
dynamics of power conversion

\[P_{WT} = \frac{1}{2} c_p(\lambda) \, \rho \, u_{wind}^3 \cdot A \]
working conditions for wind turbine
stochastic motion in a potential

\[\dot{P} = D^{(1)}(P|u) + \sqrt{D^{(2)}(P|u)} \cdot \Gamma \]
conversion of wind power a stoch. process

\[\dot{P} = D^{(1)}(P|u) + \sqrt{D^{(2)}(P|u)} \cdot \Gamma \]
summed up difference in the power production with the same measured wind data as input
Experimental set-up
- Three configurations
 - undamaged
 - heated
 - cut on 40% of the circumference
- Turbulent inflow conditions

Numerical simulation: FEM model
- Element 2 was “damaged”
 - Stiffness was reduced in 10% steps
 - Eight configurations: 0% to 70%

Deflection in x- and y-direction was measured
characterization of dynamic stall with turb inflow

\[
\frac{dc_L(t)}{dt} = -\nabla \Phi(c_L(t), u) + g(c_L(t), u) \cdot \Gamma(t)
\]

J. Schneemenn et al, EWEC 2010;
synergetics for complexity

- time dependent complexity
 - slaving to low dimensional dynamics
 - hierarchical cascade structure-- allows this a simplification, too
- scale dependent complexity

♫ stochastic equation are measurable
 - comprehensive description of complex systems
 - deeper insights
 - high accuracy
and all best wishes