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Miniaturization of Semiconductor Lasers
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Engineering Photon -Semiconductor Interaction
Radiative coupling between light and semiconductor
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Engineering the Densities of States
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Why Nanolasers?
From Application Point of View

 Optical and electronic integration, size compatibility with
electronic devices

 VLSI photonics: more functions in smaller volume

« On-chip light sources (e.g., micro and nano-fluidic)

e General trends in nanotechnology development: the
smaller the better

* Other new applications not envisioned yet, but will be
enabled once smaller and smaller lasers are available
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Moore’s Law In Photonics
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Moore’s Law In Photonics
Technology Breakup
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Moore’s Law for Microelectronics

Transistors
Per Die
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Challenges for Nanophotonics

Size, Size, and Size

a) Passive devices (waveguides): > A/2n, single mode fiber:
5 um; silicon wire or other semiconductor nanowire: 10 0-200 nm
b) Active devices: (lasers): gain length requiredt o achieve threshold:
1-100 um, large footprint, difficult for integrate

« Complexity, diversity, and cost: diversity of devic es and
materials, small market share of each device, expen sive
manufacturing

e Compatibility with silicon for integration with ele ctronics
light emitting materials: non-silicon (llI-V, 1I-VI ) such as
GaAs, InP

No silicon light source (external to CMOS)
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Examples of Smallest Lasers...( before 2007)

(what is in common: pur
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55 nm-think ZnO nanocrystal layer is
dispersed on a SiO, disk of 10 microns in
diameter, Liu et al, APL (2004)
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InAs/AlGaAs single layer of QD, 60 nW output
(Painter group, Opt. Exp. 2006)
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ectric waveguide struc

tures)

Erbium doped silica disk of 60 microns in diameter on a
silicon stem (Kippenberg, PRA 2006) (optically pumped)

Park et al. Science 305, 1444
(2004).
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Questions

 Can lasers be made even smaller?
e What is the ultimate size limit?
 How about electrical injection, rather than optical ?

« (Can you make a laser that is smaller than vacuum
wavelength in all three dimensions (DARPA
NACHOS program)?

NACHOS (Nanoscale Architectures for Coherent Hyper-  Optic Sources)

Goals: Electrical injection, room temperature, subw avelength in all 3-
dimensions
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How to Make Smaller Cavities?

« Pure dielectric cavities are not adequate
 Metallic, especially plasmonic structures offer
potential hope

Plasmonics, Spasers, Before 2007....
 Bergman and Stockman, PRL 2003
« Stockman and Bergman, Laser Phys, 2004
 Nezhad, Tedz, and Fainman, Opt. Exp. 2004
e Maier, Opt. Comm. 2006
» Miyazaki and Kurokawa, PRL 2006
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Plasmon Photon Coupling

Plasma/Plasmon: Longitudinal excitation of electron motion
(in metals or doped semiconductors)

Drude model:
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EM wave and plasmon excitation at the interface of a
dielectric layer and a metallic layer.
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Surface Plasmon Polariton (SPP)

SPP wave along the interface

Semiconductor
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Near SPP Resonance:

1) Huge wave compression (35 nm)
2) Strong localization ( few nm)
3) Huge loss (3.6 million 1/cm)
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Lasers, Spasers, and Photon -Plasmon Coupling

Plasmonicitv

SPASERS: Bergman and Stockman,
Phys. Rev. Lett. 90, 027402 (2003)
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Light Coupling to SPP Mode:
Dramatic Purcell Enhancement
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Feasibility of a Semiconductor-Core Metal-Shell
(Jan 2007 SPIE Paper)

Size reduction of a semiconductor nanowire laser
by using metal coating

A V. Maslov® and C. Z. Ning{’

"NASA Ames Research Center, Mail Stop 229-1, Moffett Field, CA 94035, USA;
*Department of Electrical Engineering, Arizona State University, Tempe, AZ 95287, USA

Maslov-Ning , 2007

ABSTRACT

We explore the possibility of coating semiconductor nanowires with metal (Ag) to reduce the size of nanowire

lasers operating at photon energles around 0.8-2 eV, Our results show that the material gain of a typical III-V
semmiconductor in nanowire may be sufficient to compensate Joule losses of such metal as Ae. The most promising

Fhysics and Simulation of Optoelectronic Devices XY, edited by Marek Osinski, Fritz Henneberger, Yasuhiko Arakawa,
Froc. of SPIE Vol. 6468, 646801, (2007) - 0277-786X/07/318 - doi: 101117M12.723786

Proc. of SPIE Vol. 6468 6462011
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First Experimental Demonstration of
the Semiconductor-Metal Core-Shell Laser
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A Zoo of Nanolaser Designs... after 2007
(What is in Common? Everyone Likes Metals)
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Summary of Short History and Status

» Design and theoretical study: Maslov and Ning, Proc . SPIE 6468, (2007)64680I

« 15t experimental demonstration: M. Hill et al. Nat. Pho  tonics, 1, (2007),589
 Electrical injection sub-half-wavelength laser: Hil | et al, Opt. Exp., 2009

» Metal encased in a doped shell: Noginov et al.,, 200 9

« Wire on a metal surface: Oulton et al., 2009

» Metal-semiconductor disk laser, Parahia et al, APL, 95 (2009) 201114

» Optically pumped lasing at RT: Nezhad et al, Nat. Ph  ontonics, 4, (2010),395

* Nano patch laser: Yu et al., Opt. Exp. , 18 (2010) 8790

* Nano pan laser: Kwon et al. (2010), Nano. Lett, 10, (2010),3679

» Metallic cavity VCSEL, RT operation, Lu et al, Appl . Phys. Lett, 96, 251101 (2010)

Goals: Sub-wavelength, CW RT operation, electrical Injection
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Semiconductor-Metal Core-Shell Nanolaser
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= Circular pillars: diameters ~280nm to 500nm

= Rectangular pillars: 6 and 3 micron long; core widt h

15.0kV 13.3mm x50.0k SE(U) 5/16/08 18:13 . ~80nm +/_ 20nm to ~340nm
Hill, Marell, Leong, Smalbrugge, Zhu, Sun, Veldhoven, Geluk, Karouta, Oei, Notzel, Ning, Smit, Opt. Exp.,17, 11107 (2009)
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Lasing in a Silver-Coated 90+40 nm -Thick Pillar:
(thickness below half-wavelength limit)

Total light output vs current
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Optical thickness=3.1X90 + 2X20X2 + 2X10X2=400nm< DL =A4/2=670nm
(Semicond.) (Dielectric)  (Metal)
The thinnest electrical injection laser ever demonstrated !

Hill, Marell, Leong, Smalbrugge, Zhu, Sun, Veldhoven, Geluk, Karouta, Oei, N6tzel, Ning, Smit, Opt. Exp.,17, 11107 (2009)
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More Recent Progress on Nanolasesers™w
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'NEWSFOCUS

NAMOLASERS

Ever-Smaller Lasers Pave the Way
For Data Highways Made of Light

New materials and technigues are bringing researchers close to a once-unthinkable
goal: optical devices tiny enough to work hand in hand with electronic circuits

The dream of optical computing—replacing
clectronic devices with much faster ones
based on light—has tantalized scientists
for generations. Nowadays, computer cir-
cuitry has grown too complex to be replaced
wholesale. Instead, researchers talk about
using lasers and other optical components as
high-speed data highways between special-
ized electronic processors on chips. So far,
lasers and other optical components have
been far too big to make this integration
possible, “It's hard to integrate the two tech-
nologies when the optical devices are 10(H)
times larger than the electronic devices,”
says Cun-Zheng Ning, a physicist at Arizona
State University, Tempe.

But the gap is narrowing. In recent years,
researchers around the world have married
traditional optical materials with metals to
create lasers a mere tens of nanometers thick.
Just last month, two groups reported mak-
inge lagers nirraemall in all thres dimensions

visible light can’t be much smaller than 200
to 300 nanometers across, and most conven-
ticnal optical components are much larger
than that. Current transistors and other elec-
tronic devices, by contrast, include features
that measure just tens of nanometers acmss.

n - contact

Glimmers of a breakthrough came in the
late 19805 and 19905 from researchers study-
ing the way light interacts with electrons in
metals. Metals are sirong light absorbers. But
researchers found that shining a light beam
at the interface between a metal and a non-
conductive {or “dielectric™) medium such as
glass caused mobile electrons at the interface
to oscillate back and forth at the same fre-
quency as the light but with a much shorter
wavelength. That discovery offered the hope
that by coupling a laser's gain medium with
a dielectric-metal interface, they could effec-
tively squeeze the wavelength of the light pro-
duced by the device and thus make the overall
device smaller.

Making such lasers took several vears o
pull off, but recent progress has been

Flip the switch. Structure of an electrically activated
nanolaser (lgft) and SEM image of its se miconducting core.

810 14 MAY 2010 VOL 328 SCIENCE
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VIEW FROM... IEEE PHOTONICS SOCIETY ANNUAL MEETING

Smaller is better

Miniature lasers with dimensions approaching the nanoscale could provide the ultimate integrated source of bright
and coherent light if losses can be overcome and electrical pumping made efficient.

David Pile

as high efficiency are concerned. However,
incorporating metals to achieve highly

confined modes seems to be one of the
best options towards truly nanoscale Tasers,

despite the associated losses. u
N —

MATURE PHOTONICS | VOLS | JAMUARY 201 | www.naturecom/haturaphotonics
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Disappearance of Threshold in Nanolasers
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|
1 Similar to disappearance of phase transitions in
— [ ]V finite or lower dimensional systems, threshold
ﬁ becomes increasingly soft and disappears

eventually in nanolasers as size decreases

Thresholdless ? Yes.
But approaching zero (lasers)? or infinity (LED)?
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Photon Statistics Near Threshold
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Further on Nanolasers...
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Summary

 Nanolsaer research is driven both by the engineering
of photonic and electronic densities of states and by
future applications in nanophotonic integrated
systems

« Plasmonic structures provide an interesting means
for the cavity miniaturization to reach nanoscale

 There seems to be a fundamental limit in terms of
how small a laser cavity can be: when the cavity is
so small that spontaneous emission coupling to the
lasing mode is approaching 100%, the threshold
becomes increasingly high!
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Thank You!
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