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The price formation process: multitude of complex global interactions
Not possible to run experiments: just one single history, one realization
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The price formation process: multitude of complex global interactions
Not possible to run experiments: just one single history, one realization
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Forq = 1.4, a 10-sigma event has probabilty
p = 0.028% (about 1 in a decade)

*This is equally probable as a 3.45-sigma event
based on a Gaussian distribution

For a Gaussian, a 10-sigma event has probability
p=0%



Exploring the joint stochastic process

What do we know about volatility?

- Across time for a given stock Part 1

- Across stocks at agiventime  Part 2



Some more properties of financial time-series
Universal features: Across time, Across the globe

For stocks (IBM), Commodities (Qil), Currencies (EUR/USD) etc

Power Law distributions, persistent

Slow decay to Gaussian

Volatility clustering

Close-to log-normal distribution of volatility
Time-reversal asymmetry

Leverage effect
(Skew: Negative returns --> Higher volatility)



Across Time:
Vast number of anomalous statistics (stylized facts)
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Challenge:

A somewhat realistic model of price variations

Important for real-world reasons:

- Risk control

- Hedging

- Development of trading strategies
- Option pricing

- Pricing of credit risk
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Century long quest:
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First random walk model by Bachelier in 1900

Gaussian model,
basis for celebrated 1974 Black-Scholes option pricing formula
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Real log-returns not Gaussian

100 SP stocks, daily

10 NASDAQ stocks, 1 min, 2001
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The ideal model:

- Intuitive
- Analytically tractable

-Parsimonious

Popular models:

-Stochastic Volatility (Heston 1993)

-Levy noise

-GARCH

- Multi-fractal model (Bacry,Delour Muzy PRE 64 2001)



Exploring the Joint Stochastic Process:
Across time ....

1. A non-Gaussian model of returns
2. Options pricing incorporating fat-tails

3. Applications



Non-Gaussian model based on statistical feedback

dS = uSdt + oSdQ



Non-Gaussian model based on statistical feedback

dS = uSdt + oSdQ2

1-q

dQ=P(Q) * dw

For stocks g =1.4

Borland L, Phys. Rev.Lett 89 (2002)
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Mathematical details: the non-Gaussian model

P(Omega)
ds = uSdt + oSdQ |
1-¢q -

dQ=P(Q) * dw

2 p2-
dpP — Ld"P™" Nonlinear Fokker-Planck
dt 2 dQ’

_(1 (1- q)ﬁ(t)Q )Lq Tsallis Distribution (Student-t)

Z(2)




In other words: After inserting the expression for P -->

a state dependent deterministic model

1

dQ, =[a, +(q-1)b(Q, -Q1* do,

Work with

Q = Q(S)

as a computational tool allowing us to find the solution

Genralization: M.Vellekoop and H. Nieuwenhuis, QF, 2007
Averaging and conditioning w.r.t variable Q,



Not a perfect model of returns:

Well-defined starting price and time

Nevertheless:
Reproduces fat-tails and volatility clustering
Closed form option-pricing formulae

Success for options and credit (CDS) pricing
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Reproduces fat-tails and volatility clustering



With a model of stock behavior, we want to study more
complicated derivative markets

Some derivatives:
- Options

-Credit default swaps

Like stocks, these are traded in large volumes, across the world
How to price them?

The price must be related to the underlying instrument, the stock



Options

The right to buy or sell a stock at a certain price (the
strike) at a certain time in the future.

Greek mathematician Thales used call options on olives to
make a huge profit when he foresaw a good harvest.
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1973 - the Nobel-prize winning
Black-Scholes option pricing formula.




Black-Scholes Option Pricing Paradigm
S the risky stock

F(S) the risky option on S

Risk-less portfolio: [I1=S5+nkF

Returnon Il must be risk-free rate r, due to no-arbitrage

This leads to the famous

Black-Scholes PDE for solving F (1973, Nobel prize 1997)
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Black-Scholes Option Pricing Paradigm

Equivalently:

Price options as expectations with respect to a
(risk-neutral) equivalent martingale measure

F = <e-"Th(S)>Q

where h = the payoff of the option

(Whole field of mathematical finance based on these notions)



Example European Call Option (F=C): the right to buy at strike Kat time T

c = <e‘rT max[S(T) - K,O]>Q
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Call Option Price
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Expiration T

0 | 2I0 | 4I0 | 6]0 | 8I0 | 1(;0
Strike K
The price of the call option depends on S(0), K, T, r and (O

Problem: Black-Scholes model must use a different O for each K.

Volatility Smile: the plot of O  versus K.



Options: Real-time pricing and hedging
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Volatility smile in the example of previous slide
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Traders intuitively correct for the tails by bumping up the Black-Scholes
volatility at far strikes



Part 1: Across time ....

1. A non-Gaussian model of returns
2. Options pricing incorporating fat-tails

3. Applications



Non-Gaussian option pricing with statistical feedback model:

There is a unique equivalent martingale measure -
can obtain closed-form option pricing formulae

Note: This is not the case for Levy noise or stochastic volatility

Parsimony:

Because the model incorporates tails for g = 1.4, we only need one
value of sigma to capture all option prices across strikes



1) Exploit PDE’ s implied by arbitrage-free portfolios

Solve PDE to get option price

Generalization: M.Vellekoop and H. Nieuwenhuis, 2007

2) Convert prices of assets into martingales

Take expectations to get option price

C = <e-"Th(S(T)>Q

?Detail



Use non-Gaussian model as basis for stock price dynamics

o’ g
S(T) = S(0) exp{QT 7= jj P(Q) dt}

T

Integrate using generalized
Feynman-Kac

2
~y(T)<2

- Approximation allows for closed-form solutions

- Due to the approximation:
111 ?” o 2
Martingale “breaks down™ but valid for o°'T <<1

?Detail



European Call C = <e‘rT max[S(T) — K,O]>
Stock Price

Q
0,2
S(T) = 5(0) GXP{GQT +rl-—-yr=( —q)gfﬁi}

Payoff if {S(T) > K} S dl < QT < d2

c=e" f(S(T) - K)P,(Q,)dQ;

q = |: P1s Gaussian q>1:P 1s fat tailed Tsallis dist.
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S(0) = $50, 1= 6%, O =03




Implied Black-Scholes Volatility
(from q = 1.4 model with sigma = .3)
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This is very similar to the volatilities that traders use

Implied Volatility Sigma

Need only one sigma across all strikesifg=1.4




Example (Japanese Yen futures)



Implied Volatility JY Futures 16 May 2002 T=17 days
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Implied Volatility JY Futures 16 May 2002 T=37 days

14

13

Vol

11 -

10

72 76 80 84
Strike



Implied Volatility JY Futures 16 May 2002 T=62 days
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Implied Volatility JY Futures 16 May 2002 T=82 days
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Implied Volatility JY Futures 16 May 2002 T=147 days
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Extension to include skew (asymmetry) in the model  [Borland and Bouchaud, 2004]

Price crashes induce higher volatility than price rallies Leverage effect

l1-¢q
Fluctuations modeled as O'SaP dw o<1

q Controls the tail
o  Controls the skew

O  Volatility parameter

We obtain closed-form formulae for call options Pade expansion, Feynman-Kac



Implied Volatility
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Part 1: Across time ....

1. A non-Gaussian model of returns
2. Options pricing incorporating fat-tails

3. Applications



-Can fit the model to historical distribution =2
calculate option prices

100 SP 100

Probability Density

-Can imply the parameters from the option
- market
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Results for stocks (top 100 stocks in S&P index®
In both stock and option markets:

- g=14 converging slowly to Gaussian
- a=03

o = 30%



Back test of trading strategy (with A. Christian Silva)

Exploit slight deviations which should converge

Live returns 2009 Cumulative Profit
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Options look good ... what about pricing credit?

Credit Default Swaps:
Payment if the
company defaults

Protection ) Protection
Buyer Seller
Premium (CDS price)
CDS price depends on probability to default. g=12-14
We get pricing formula from the non-Gaussian model. | 4 =02-0.5
o =30%

Weimplied ¢ o o from empirical CDS prices:




Non-Gaussian model well describes many features of:

Stock Markets
Option Markets
Debt and Credit Markets

« Key ingredient of success for statistical feedback model:
long-range memory (with respect to a single time)

« Random increments are uncorrelated but not
iIndependent



Motivation of statistical feedback model:

Intuition - traders react to extreme events

Generalization: Multi timescale statistical feedback model:

Intiuition -
different classes of traders react on different time-scales

For example: HARCH (Muller et al)
FIGARCH (Baillie et al)
Multi-timescale statistical feedbacl (Borland and Bouchaud)



A multi-time scale non-Gaussian model of stock return [Borland and Bouchaud 2012]

Reproduces “all” stylized facts across time




Motivation: Traders act on all different time horizons

A multi-time scale non-Gaussian model of stock return [Borland and Bouchaud 2012]
y = log(Stock Price)
W, Gaussian noise uncorrelated in time
O, Volatility

gaa Parameters

For t-1=0 recovers

().tZ = ()'g 1+ gzlia(yf —_ y(t—l))2 Statistical feedback
[=1

model

Reproduces “all” stylized facts across time

g controls the feedback

GARCH

o controls the memory HARCH (Muller et al)
FIGARCH (Baillie et al)



In our study: Simulations
Some analytic calculations

Calibration to stylized facts

I Simulation

=

= |

©

14

7 SP 500
| | | | | ! |
0 2000 4000 6000 8000 10000
Time

Other typical calibration methods: - Method of moment
- Maximum likelihood



Distribution of Volatility
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Interesting analogy between multi-timescale models and
multi-fractal (cascade) models

In P.(r)

Turbulent velocity increments
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For finance, multi-timescale makes more sense because of
time-reversal asymmetry



So far, we have studied models of stock prices across time

Now let us look at the dynamics across stocks [Correlations]



Exploring the joint stochastic process

What do we know about volatility?

- Across time for a given stock Part 1

- Across stocks at agiventime  Part 2



Across stocks ....

1. Cross-sectional dispersion

2. Cross-sectional kurtosis

3. Correlations

4. Do markets exhibit a phase-transition in times of panic?

5. Asimple model

See also “Borland L, “Statistical signatures in times of panic: markets as a self-organizing system”, (2009)
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Kurtosis

Dispersion
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Cross-Sectional Dispersion

1

Cross-Sectional Kurtosis

Even by eye you can see
the very high negative correlation between cross-
sectional dispersion and kurtosis

<Disp(t) Kurt(t)>= -30%



Defining Market Panic

SP500 returns and Cross-Sectional Kurtosis

0.3

kurtosis

0.2

Arbitrary units
0.1

SP 500

0.0
1

-0.1

In times of market panic:
c-s kurtosis LOW Dbut c-s dispersion HIGH

Some panic periods: Fall 2008, Sep 08 - April 09, 2002



This implies that the distribution of cross-sectional
returns is different in panic or normal states

Distribution of cross-sectional returns
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Cross-sectional returns (normalized by daily ¢c-s vol, scaled by average c-s vol)
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Next thing to look at are correlations
- Perform rolling Principal Components Analysis

Look at percentage of variance captured by first eigenvector

Variance captured by First Eigenvector

[{

T 1 T | I 1
1998 2000 2002 2004 2006 2008

0.6

05

04

Percentage of Variance
0.3

0.2

Returns

Larger percentage -> More of a “market model”
-> Higher cross-sectional co-movement of stocks



Distribution becomes more Gaussian in panic times

Two possible explanations:

1) Distribution of individual stock volatilities narrows

2) Correlations among random stock moves increases



Distribution becomes more Gaussian in panic times

Two possible explanations:

1) Distribution of individual stock volatilities narrows

2) Correlations among random stock moves increases



Define on each day the quantity

Where ST is the number of stocks that had positive moves

!

§" is the number of stocks that had negative moves



Correlations:

Define on each day the quantity

ST—SJ'

st + s

S =

Where ST Is the number of stocks that had positive moves

S¢ Is the number of stocks that had negative moves

If s=0 nocorrelation, if s#0 correlation among stocks

s can be seen as an Order Parameter



Analogy:

s is the Order Parameter
O (external volatility perception) is the Control Parameter

V(s) = as” + bs*

Potential Well Potential Well

O <0, 8 “‘, O >0,
@ /C”)\ ?
N2 /
o 0
s=0 a= OC(O'C - 0)
5= i\/% |s| = correlations
If O <0, sisinthe disordered state - low correlation across
stocks

o >0, sisinthe ordered state - high correlation
Symmetry breaking (can be positive or negative)



If this is plausible we expect to see

-unimodal distribution of s in normal times

-bimodal distribution of s in panic times
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A simple phase transition model:
Statistical signatures in times of panic [L. Bprland. Quantitative Finance 2011]

- Log returns follow multi timescale model across time

- Log returns correlated across stocks with corr =|s|
(disorder to order)

- The transition is triggered by a volatility shock
We get:
Kurtosis down

Dispersion up
Distribution of s bimodal



Putting it all together

For each stock i across time t y = log(stock price)
i PR ;2 2 NN Y
dyt=0tdwt G; =0 1+gzl_a(yrl_y;—l)
I=1 _

Across stocks for each time

If a>0=>s5=0: disordered state, correlations <w,w;>_.=0

If a<0=s=0: ordered state, correlations <ww] > =3
S s bs 4 F a=0,-0, o = critical volatility
dt t

Market volatility can increase due to:

i) Exogenous jumps (news)
ii) Endogenous jumps (multi time-scale dynamics)



Returns

SIMULATIONS :

dy; =0 ;da); Simulated market returns with panic

N
T - / 8
. O.tl = E? yt ytl +Kl=10 l(yt yt l)
EI." EI:IJD 4[I:IE' ﬁl.i.ID E-'II]L'.I
_ Extension to include skew
a = UC — OM Panic:a <0 [Borland and Hasaad 2010
o, = 2 standard deviations of recent market returns

O, =

Current market volatility



RESULTS Histogram of s: Normal Period

Histogram of s: Panic Period
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Kurtosis

Dispersion: Panic caused by external shock (simulation)

o -
-
-

I I I I I I 1

0 50 100 150 200 250 3o0

Correlation
Kurtosis: Panic caused by external shock (simulation) -1 5%

8 -
8
E —
_—

I I I I I I 1

o 50 100 150 200 250 3o

Time



Summary and Open Questions

A realistic model of the joint stochastic process of stock prices
Dynamics across time reproduced

Market volatility drives correlations across stocks

In times of panic, fluctuations become more correlated

In times of panic, cross-sectional distribution becomes more Gaussian . All stocks
experience higher volatility.

All our models have been extended to incorporate the asymmetry that negative
returns lead to more panic than positive ones.

Calibration ?
Prediction of critical sigma ?

Analytic solutions (e.q. for option pricing, trading strategies)?
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