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PREFACE

The 9th International Conference on Path Integrals – New Trends and

Perspectives (PI07) was held at the Max Planck Institute for the Physics

of Complex Systems (MPI PKS) in Dresden, Germany during the period

September 23–28, 2007. The present volume contains the material of most

of the talks delivered at this meeting and a selection from the poster pre-

sentations.

The general format and style of the conference followed the accepted

and well-developed pattern of the series, focusing on the development, re-

finement, and important applications of the techniques of path integration.

Since its founding in 1983, the series of international path-integral confer-

ences has been coordinated by an International Advisory Committee (IAC)

whose permanent members are listed on page vii. The previous conferences

in Albany, NY (1983), Bielefeld (1985), Bangkok (1989), Tutzing (1992),

Dubna (1996), Florence (1998), Antwerp (2002), and Prague (2005) have

emphasized the broad range of path-integral applications in many fields

of physics and chemistry. Thus, the series has an interdisciplinary role,

bringing together scientists whose interest in the path integral spans many

fields, allowing them to exchange opinions, discuss problems, and dissemi-

nate new ideas. In particular, the series aims at fostering the exchange of

ideas and techniques among physicists applying many-body techniques in

such diverse areas as nuclear and subnuclear physics, atomic and molecular

physics, quantum chemistry, condensed matter physics, complex systems,

quantum field theory, elementary particle physics, and astrophysics.

Continuing this tradition, the 9th International Conferencex under the

motto Path Integrals – New Trends and Perspectives focused on recent de-

velopments and new directions of the path-integral approach in this trans-

disciplinary setting. This is reflected in the main topics in this Proceedings

volume, which first cover in two parts more traditional fields such as gen-

eral quantum physics and quantum field theory. Applications of generalized

path integrals to quantum gravity, astrophysics, and cosmology are sepa-

rately collected in the next part. This is followed by articles on statistical

field theory and an overview of the many modern Monte Carlo techniques
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based on the path-integral approach. The next two parts deal with topi-

cal subjects such as atomic and molecular Bose-Einstein condensation and

many other modern developments in condensed matter physics where path

integrals have turned out to be a useful tool. Next, the part on spin models

surveys phenomena that can be modeled by discrete lattice formulations.

Finally, the concluding part reports on many other challenging applications,

ranging from the study of thermal fluctuations of polymers and membranes

in the realm of biophysics to the treatment of stochastic processes such as

option pricing and risk management in econophysics.

The Max Planck Institute for the Physics of Complex Systems (MPI

PKS) in Dresden provided a truly perfect and stimulating environment for

such a meeting. A total of about 120 scientists from all over the world

attended, representing more than 20 different countries. Plenary and par-

allel lectures comprised the core of the scientific program and were sup-

plemented by a poster presentation on Monday evening. The special social

event was an excursion on Wednesday afternoon with Martin Gutzwiller’s

“River Elbe boat talk”posing the provocative question Quo vadis, physica?.

The day was concluded by the conference dinner at Fortress Königstein. On

Thursday evening, a very active round-table discussion, chaired by Cécille

DeWitt-Morette, continued the theme by providing controversial answers

to the question Quo vadis, path integrals?. This was preceded by historical

reflections on both the personal and the scientific relationship between Ein-

stein and Feynman in the evening talk of Tilman Sauer. These three special

events are also documented in the prologue of the present volume.

We gratefully acknowledge generous financial support for the confer-

ence from the MPI PKS, the German Science Foundation (DFG), and the

Wilhelm and Else Heraeus Foundation. Furthermore, we cordially thank

Marita Schneider for her efficient assistance with all organisational matters

and Andreas Nußbaumer for his invaluable technical assistance in produc-

ing the abstract booklet for the conference. Finally, we also thank him along

with Elmar Bitter, Aristeu Lima, and Moritz Schütte for their help during

the conference.

Wolfhard Janke Universität Leipzig, Germany

Axel Pelster Universität Duisburg-Essen, Germany

July 2008
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REMARKS ON THE ORIGIN OF PATH INTEGRATION:

EINSTEIN AND FEYNMAN

T. SAUER

Einstein Papers Project,
California Institute of Technology 20-7,

Pasadena, CA 91125, USA
E-mail: tilman@einstein.caltech.edu

I offer some historical comments about the origins of Feynman’s path-integral
approach, as an alternative approach to standard quantum mechanics. Looking
at the interaction between Einstein and Feynman, which was mediated by
Feynman’s thesis supervisor John Wheeler, it is argued that, contrary to what
one might expect, the significance of the interaction between Einstein and
Feynman pertained to a critique of classical field theory, rather than to a direct
critique of quantum mechanics itself. Nevertheless, the critical perspective on
classical field theory became a motivation and point of departure for Feynman’s
space-time approach to non-relativistic quantum mechanics.

Keywords: History of quantum mechanics; Einstein; Feynman.

1. Introduction

In this paper, I am interested in the genesis of Feynman’s path-integral

approach to non-relativistic quantum mechanics. I take Feynman’s 1948

paper on “A Space-Time Approach to Quantum Mechanics”1 as the point

in time when the approach was fully formulated and published and made

available to the community of physicists. I will take a look into the prehis-

tory of Feynman’s 1948 paper. I shall not attempt to give anything like a

balanced, or even complete historical account of this prehistory. Instead, I

will focus on a little footnote in Feynman’s paper:

The theory of electromagnetism described by J. A. Wheeler and

R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945) can be expressed

in a principle of least action involving the coordinates of particles

alone. It was an attempt to quantize this theory, without reference

to the fields, which led the author to study the formulation of quan-

tum mechanics given here. The extension of the ideas to cover the
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case of more general action functions was developed in his Ph.D.

thesis, “The principle of least action in quantum mechanics” sub-

mitted to Princeton University, 1942. (Ref. 1, p. 385)

My guide in organizing my remarks will be to look at what we know about

any direct and indirect interaction between Feynman and Einstein. Let me

briefly motivate this focus on Einstein and Feynman.

Feynman was born in New York in 1918, did his undergraduate studies

at MIT, and took his Ph.D. with John A. Wheeler at Princeton University

in 1942, before going to Los Alamos during the war years. After the war,

he was first at Cornell and in 1951 he went to Caltech. In 1954, Feynman

received the Einstein Award,2 as a 36-year old man for his work on quantum

electrodynamics that in 1965 would earn him the Nobel prize for physics.

The Einstein Award was a prestigious award, established in 1949 in

Einstein’s honor, but it seems that Einstein had not much to do with the

awarding of the prize to Feynman.

At the time of Feynman’s receiving the Einstein award, Einstein himself

was a 76-year old world famous man. He had been living in Princeton since

his emigration from Nazi-Germany in 1933 and was scientifically engaged in

a search for a unified field theory of gravitation and electromagnetism.3 But

he also still thought about problems of the foundations of quantum mechan-

ics. Among his extensive research notes and manuscripts with calculations

along the unified field theory program, there is, e.g., a manuscript page

from around 1954 with a concise formulation of Einstein’s of the famous

Einstein-Podolsky-Rosen incompleteness argument for standard quantum

mechanics. Probably in reaction to David Bohm’s reformulation of the orig-

inal argument, Einstein here also formulates the incompleteness argument

for spin observables.4

With both Feynman and Einstein being concerned with the foundations

of quantum mechanics, one might hope that an interaction between the two

physicists, if there was any, might give us some insight into the historical

development of our understanding of the principles of quantum theory.

A similar question was also asked once by Wheeler. In 1989, after Feyn-

man’s death, he recalled:

Visiting Einstein one day, I could not resist telling him about Feyn-

man’s new way to express quantum theory.5

After explaining the basic ideas of Feynman’s path-integral approach to

Einstein, Wheeler recalls to have asked:
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“Doesn’t this marvelous discovery make you willing to accept quan-

tum theory, Professor Einstein?” He replied in a serious voice, “I

still cannot believe that God plays dice. But maybe,” he smiled, “I

have earned the right to make my mistakes.”5

So is this the end of my story?

According to Feynman’s own account, he himself met Einstein only

twice. One of these encounters was at the occasion of Feynman’s first techni-

cal talk, as a young graduate student, in the Princeton physics department.

The occasion probably took place in late 1940. Wheeler had suggested that

Feynman was to talk on their joint work, and Feynman recalls

Professor Wigner was in charge of the colloquium, so after I said I

would do it, he told me that he had heard from Wheeler about the

work and he knew something about it. I think we had discussed it

a little bit with him. And he thought it was important enough that

he had taken the liberty to invite especially Professor Henry Norris

Russell from the astronomy department, the great astronomer, you

know, John von Neumann from the mathematics department, the

world’s great mathematician, and Professor Pauli, who was visit-

ing from Zurich, would be there. And Professor Einstein had been

especially invited—and although he never comes to the colloquia,

he thinks he will come!

So I went through fire on my first. I must have turned a yellowish-

green or something [...].a

Feynman continues to recount details of this seminar, he relates how his

excitement and anxiety abated once he started to talk about physics, and

indicates how some members of his audience, including Einstein, reacted to

his presentation in question time.

In the following, I will take this encounter between Feynman and Ein-

stein as a point of departure for a historical argument: the interaction be-

tween Feynman and Einstein reminds us of a significant historical context of

discovery of the path-integral method. This original context is still promi-

nently visible in Feynman’s 1942 thesis9 but it is already reduced to a

footnote in his 1948 publication.1 For an appreciation of the path-integral

method, even today, it may nevertheless still be useful to recall the historical

aRef. 6, p. 133. I am quoting from the transcript of an oral history interview conducted
by C. Weiner with Feynman in 1966. For slightly different versions of the episode, see
also Ref. 7, pp. 64f, and Ref. 8, p. 66.
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circumstances of its discovery.

Specifically, I will address and discuss the following four questions:

(1) What is the Wheeler-Feynman theory that Feynman presented in his

first seminar at Princeton?

(2) What does Einstein have to do with this?

(3) What does this have to do with path integrals?

(4) Why is this context of the origin of the path-integral approach only

mentioned in a footnote in Feynman’s 1948 paper?

Most of the information that the argument is based on can be found in

Schweber’s book on the history of quantum electrodynamics.10 The signif-

icance of the Wheeler-Feynman theory for Feynman’s subsequent develop-

ment is also emphasized by Feynman himself in his Nobel lecture.11

2. The Wheeler-Feynman Absorber Theory

The results of their joint work that Feynman presented in the Princeton

physics colloquium were not published at the time. Feynman gave his pre-

sentation again, shortly thereafter, at a meeting of the American Physical

Society in Cambridge, Massachussetts, that took place on 21 and 22 Febru-

ary 1941. Of this talk, an abstract was published.12 There exists also a

typescript by Feynman giving an account of the theory,13 dated to spring

1941 (Ref. 10, p. 383). The abstract identifies radiative damping as a prob-

lem in Lorentz’s classical electron theory and in Dirac’s theory of a point

electron, and then summarizes the main points of Feynman’s paper:

We postulate (1) that an accelerated point charge in otherwise free

space does not radiate energy; (2) that, in general, the fields which

act on a given particle arise only from other particles; (3) that

these fields are represented by one-half the retarded plus one-half

the advanced Liénard-Wiechert solutions of Maxwell’s equations.

In a universe in which all light is eventually absorbed, the absorb-

ing material scatters back to an accelerated charge a field, part of

which is found to be independent of the properties of the material.

This part is equivalent to one-half the retarded field minus one-half

the advanced field generated by the charge. It produces radiative

damping (Dirac’s expression) and combines with the field of the

source to give retarded effects alone.12

A detailed account of the Wheeler-Feynman theory was published after

the war in two papers. The first paper appeared in 1945 under the title
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‘Interaction with the Absorber as the Mechanism of Radiation.’14 As indi-

cated in a first footnote to the title, this paper essentially gives an account

of the theory that Feynman had presented in 1941.

In a long second footnote to the title of the paper, Wheeler then ex-

plains that this first paper was actually planned to be the third part of a

projected series of five papers. Of the missing four parts, only the second

one actually appeared, four years later, in 1949, under the title ‘Classical

Electrodynamics in Terms of Direct Interparticle Action’.15

The core of the Wheeler-Feynman theory thus concerned a special prob-

lem that arose out of a broader research program, laid out, in part, in the

later 1949 paper. In qualitative terms, the broader research program con-

cerned this.

Among the many difficulties with attempts to come to a quantum the-

ory of electrodynamics in the late thirties, Wheeler and Feynman thought

some had to do with difficulties that occur already at the level of classical

electrodynamic field theory. As a radical response, Wheeler and Feynman

questioned whether the notion of an electromagnetic field is, in fact, a useful

one. They argued that one should in principle be able to express all elec-

tromagnetic phenomena in terms of direct interaction between point-like

particles. Any notion of a field would be a derived concept. The primary

notion would be a collection of point-like charges that interact with each

other through Liénard-Wiechert retarded and advanced potentials.

They found that such a theory is expressible in terms of an action princi-

ple that involves a variation over the world-lines of charged electrons. They

wrote the action principle as15

J = −∑amac
∫
(−daµdaµ) 1

2 +
∑
a<b(eaeb/c)

×
∫∫

δ(abµab
µ)(daνdb

ν) = extremum, (1)

where the sums are over electrons of mass ma and charge ea, da denotes

derivative with respect to the respective proper time, and abµ ≡ aµ −
bµ is short for the four-vector of the separation between the particles, a

somewhat unusual notation introduced in order to be able to make use of

the Einstein summation convention. The attractive feature of this action

is that “all of mechanics and electrodynamics is contained in this single

variational principle” (Ref. 15, p. 425). Note that the single action principle

incorporates both the Maxwell equations and the Lorentz force law. The

idea and the action (1) were known before, they can be found, in more

or less explicit terms, in older papers by Schwarzschild,16 Tetrode,17 and

Fokker.18



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

8 T. Sauer

The only problem with this formulation was the issue of radiative reac-

tion. In classical theory, an accelerated electron radiates and loses energy to

the field. To avoid the notion of a field, Wheeler and Feynman postulated

that a single electron alone in the universe, if accelerated, would, in fact,

not radiate. Instead, they succeeded to show that radiative reaction can

arise in a universe with a surrounding material that absorbs all outgoing

radiation. The electrons of the absorber interact with the electron at the

source through advanced potentials, such that an accelerated electron feels

a radiative force. This is the main point that Feynman was elaborating on

in his Princeton seminar.

3. Einstein and the Electromagnetic Arrow of Time

Feynman recalled that immediately after his presentation, Pauli asked crit-

ical questions and then asked Einstein whether he would agree.

Anyway, Professor Pauli got up immediately after the lecture. He

was sitting next to Einstein. And he says, “I do not think this the-

ory can be right because of this, that and the other thing—” it’s

too bad that I cannot remember what, because the theory is not

right, and the gentleman may well have hit the nail on the bazeeto,

but I don’t know, unfortunately, what he said. I guess I was too

nervous to listen, and didn’t understand the objections. “Don’t you

agree, Professor Einstein?” Pauli said at the end of his criticism. “I

don’t believe this is right—don’t you agree, Professor Einstein?”

Einstein said,“No,” in a soft German voice that sounded very pleas-

ant to me, and said that he felt that the one idea, the one thing

that seemed to him, was that the principles of action and distance

which were involved here were inconsistent with the field views,

the theory of gravitation, of general relativity. But after all general

relativity is not so well established as electrodynamics, and with

this prospect I would not use that as an argument against you, be-

cause maybe we can develop a different way of doing gravitational

interaction, too.

Very nice. Very interesting. I remember that.b

We also know, both from Feynman (Ref. 6, p. 133) and Wheeler (Ref. 19,

p. 167) as well as, independently, from a letter by Wheeler to Einstein, that

bRef. 6, p. 134, see also Ref. 7, p. 66, Ref. 8, pp. 67–68.
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Feynman and Wheeler visited Einstein once in his house in Princeton and

discussed the “interpretation of the force of radiation in terms of advanced

and retarded action at a distance.”20 It is unclear when the meeting took

place,c and I am not aware of any detailed account of the discussion that

took place, but it seems that Einstein alerted Feynman and Wheeler to

existing literature on the subject, including some in which he himself was

involved. In a footnote to their 1945 paper, Wheeler and Feynman acknowl-

edge Einstein’s input:

We are indebted to Professor Einstein for bringing to our attention

the ideas of Tetrode and also of Ritz, [...] (Ref. 14, p. 10).

Somewhere else in the article, they

recall an inconclusive but illuminating discussion carried on by

Ritz and Einstein in 1909, in which “Ritz treats the limitation to

retarded potentials as one of the foundations of the second law

of thermodynamics while Einstein believes that the irreversibility

of radiation depends exclusively on considerations of probability.”

(Ref. 14, p. 160)

The Einstein-Ritz controversy,22–24 from which they quoted, was about the

origin of irreversibility of electromagnetic radiation phenomena.26 In the

1941 typescript, Feynman observed that their theory is in full agreement

with Einstein’s position against Ritz, that the fundamental electrodynami-

cal equations are time-reversal invariant, and that the radiative irreversibil-

ity is a macroscopic, statistical phenomenon:

The apparent irreversibility in a closed system, then, either from

our point of view or the point of view of Lorentz is a purely macro-

scopic irreversibility. The present authors believe that all physical

phenomena are microscopically reversible, and that, therefore, all

apparently irreversible phenomena are solely macroscopically irre-

versible. (Ref. 13, p. 13.1; quoted in Ref. 10, p. 386)

Feynman here has a footnote saying

cIt is even unclear whether the meeting in Einstein’s house took place before or after
Feynman’s Princeton colloquium. In 1966, Feynman did not remember but was “pretty
sure” that it was before the colloquium “because he knew me,” see Ref. 6, pp. 133, 139,

Wheeler (Ref. 19, p. 167) recalls that it was “while working on our second action-at-a-
distance paper”, but from his letter to Einstein, we know that it must have been before
November 1943, see also Ref. 21, p. 118.
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That this and the following statement are true in the Lorentz theory

was emphasized by Einstein in a discussion with Ritz. (Einstein and

Ritz, Phys. Zeits. 10, 323 (1909)). Our viewpoint on the matter

discussed is essentially that of Einstein. (We should like to thank

Prof. W. Pauli for calling our attention to this discussion.) (ibid.)

Although Pauli is credited here for alerting Feynman to the Ritz-

Einstein controversy, we may assume that the point was also a topic when

Feynman and Wheeler discussed their ideas with Einstein during their visit

at his Princeton home. There is, in any case, an English translation, in

Feynman’s hand, of the Ritz-Einstein controversy24 in the Feynman pa-

pers.25

4. Path Integrals for Actions with no Hamiltonian

In 1942, Feynman was recruited for the Los Alamos project. Before leaving

for Los Alamos, Wheeler urged Feynman to write up his thesis.27 Feynman’s

thesis9 is not directly dealing with the Wheeler-Feynman absorber theory

but it rather gives a discussion of the ‘Principle of Least Action in Quantum

Mechanics’, and is, in fact, a direct forerunner of Feynman’s 1948 paper.

But the thesis is very explicit about its original motivation. The discussion

of quantizing systems expressed in terms of a Lagrangian is given in the

context of solving the general problem of finding a quantum version of the

Wheeler-Feynman theory of action-at-a-distance. The main point here is

that

the theory of action at a distance finds its most natural expression

in a principle of least action, which is of such a nature that no

Hamiltonian may be derived from it. That is to say the equations

of motion of the particles cannot be put into Hamiltonian form in a

simple way. This is essentially because the motion of one particle at

one time depends on what another particle is doing at some other

time, since the interactions are not instantaneous.28

This is not just a remark made in (a draft version of) the preface to mo-

tivate the approach. An example that derives directly from the action (1)

is discussed also in the body of the text. At some point, Feynman explains

how to generalize the quantization procedure to more general actions, for

example those involving time-displaced interactions:

The obvious suggestion is, then, to replace this exponent by i
~

times the more general action. The action must of course first be



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Remarks on the origin of path integration: Einstein and Feynman 11

expressed in an approximate way in terms of qi, ti in such a way that

as the subdivision becomes finer and finer it more nearly approaches

the action expressed as a functional of q(t).

In order to get a clearer idea of what this will lead to, let us choose

a simple action function to keep in mind, for which no Hamiltonian

exists. We may take,

A =

∫ ∞

−∞

{
mẋ(t)2

2
− V (x(t)) + k2ẋ(t)ẋ(t+ τ)

}
dt,

which is an approximate action function for a particle in a poten-

tial V (x) and which also interacts with itself in a mirror by half

advanced and half retarded waves, [...]. (Ref. 9, p. 41)

In the 1941 typescript Feynman comes close to showing how this simple

action follows from the general action (1) by considering the special case

of two charges at a distance apart in otherwise free space, neglecting their

electrostatic interaction. Of course, the path-integral quantization of actions

that are non-local in time is considerably more involved29 and Feynman

does not give an explicit discussion of his example. Nevertheless, it confirms

his remark in the (actual) preface of the thesis which

is concerned with the problem of finding a quantum mechanical

description applicable to systems which in their classical analogue

are expressible by a principle of least action, and not necessarily

by Hamiltonian equations of motion. (Ref. 9, p. 6)

5. The Demise of the Early Context of Path Integration

In 1949, even before the second of the Wheeler-Feynman papers appeared

in print, Feynman himself submitted another one of his famous papers,

entitled ‘Space-Time Approach to Quantum Electrodynamics.’30 In it, one

finds this little footnote:

These considerations make it appear unlikely that the contention

of J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157

(1945), that electrons do not act on themselves, will be a successful

concept in quantum electrodynamics. (Ref. 30, p. 773)

Why did Feynman retract a basic assumption of his joint work with

Wheeler, with explicit reference to their earlier paper? Two years later,

Feynman wrote a letter to Wheeler asking him about his opinion about the

status of their earlier work:
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I wanted to know what your opinion was about our old theory of

action at a distance. It was based on two assumptions:

(1) Electrons act only on other electrons;

(2) They do so with the mean of retarded and advanced potentials.

The second proposition may be correct but I wish to deny the cor-

rectness of the first. The evidence is two-fold. First there is the

Lamb shift in hydrogen which is supposedly due to the self-action

of the electron. [...]

The second argument involves the idea that the positrons are elec-

trons going backwards in time. [...]

So I think we guessed wrong in 1941. Do you agree?31

I am not aware of an explicit response by Wheeler to this letter, but several

remarks in his autobiography19 indicate that he, too, eventually gave up

his belief in an action-at-a-distance electrodynamics: “[...] until the early

1950s, I was in the grip of the idea that Everything is Particles.” (Ref. 19,

p. 63)

For Feynman, one of the two reasons for giving up the theory of action-

at-a-distance was an experimental finding, the Lamb shift. Lamb had pre-

sented data from his experiments on the fine structure of hydrogen at the

Shelter Island conference. This conference, devoted to problems of the quan-

tum mechanics of the electron, took place in June 1947 and was an event

of considerable impact in the history of post-war physics (Ref. 10, ch. 4).

It brought together the leading theorists for the first time after the war

for a meeting which helped to determine the course of American physics in

the atomic age. 9 of the 23 participants ended up being awarded the Nobel

prize, a significant fraction of the participants were of the young generation.

It was at this conference that Feynman presented his ‘space-time approach

to quantum mechanics’, essentially the work of his thesis, and soon after

the conference he penned his classic 1948 paper.1

Incidentally, the Shelter Island conference could have provided an oc-

casion for a third encounter between Feynman and Einstein: following a

suggestion of Wheeler, who was present as well, Einstein was among the

invitees but he declined, due to ill health (Ref. 10, pp. 169f). It is tempting

to speculate how Einstein would have reacted to Feynman’s presentation of

his new approach to quantum mechanics at this meeting.

When Feynman wrote up his approach for publication, he decided to

mention the original motivation for his work only in passing. Given the

generality of the path-integral formulation, it may be seen a wise decision on

Feynman’s part to reduce the historical context of its genesis to a footnote.
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E-mail: moongutz@aol.com

The history of physics is short, compared with mathematics and astronomy,
starting in about 1800. After the first century of electrodynamics and ther-
modynamics, come 60 years of quantum, relativity, and nuclei. In the last 50
years, physicists have profited from an incredible boom in their research. That
is threatened now, because the applications of physics have become very com-
plicated engineering. At the other end of the spectrum, a lot of esoteric physics
is going nowhere. It is not the job of the universities to produce specialists.
Young people have to learn and get a chance to use their intelligence and
imagination. Professors have to show them the way, and industry has to have
confidence in them.

1. Introduction

”Quo Vadis?”is the title of a very famous novel by the Polish writer Hendryk

Sienkiewicz who got the Nobel Prize of Literature in 1905, partially for this

work. Hollywood then made probably more than one very successful movie,

but I neither have read the book nor seen the movie. The title comes directly

from the Gospel of St. John. The apostles and disciples were anxious and

confused when they saw Christ again after his crucification, and were afraid

to ask the simple question, ”Where are you going?”

The title of this paper has been used already in a talk I was invited to

present 4 years ago in Valencia, Spain, for a general audience of scientists.

It was then translated into Catalan by a colleague, J. Navarro. I like the

solemn character of the expanded question because I feel quite strongly that

physics is at a critical moment of its development. Young physicists don’t

know which way to turn, nor are the older ones clear about the future.

Physics is in a difficult position. Its further rise in the 21-th century is

hard to imagine, because its success all through the 20-th century will be

hard to match. It has been reluctantly recognized as the foundation of most

other sciences. But physics plays this role only in a general and abstract
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way, and the connection particularly with the life sciences is tenuous.

In order to find some views of the future, we are bound to look into

three separate questions: 1) What is our position now among the other

hard sciences? 2) When was physics generally recognized, and how did we

get there? 3) Are we getting closer to the firm foundations of the sciences

that we are seeking and claiming? To answer question 1) we need to worry

about our successors, like students looking for a job, and scientific contacts

outside physics. For 2) some knowledge of our history is necessary, and for

3) we have to look very critically at the important claims we love to make.

These are very far-ranging problems, and I will only try to present some

of the viewpoints and answers on the basis of my special interests and my

own work. Physicists generally are too busy to worry about the history and

philosophy of their subject. But we would be reduced to the status of mere

technicians if we do not have some perspective on our work. Among other

things I study history and philosophy hoping to learn some physics.

2. Some Input from Philosophy

Descartes was a first-class mathematician and a very good physicist. In

one of his more general treatises he says in the preface: ”Philosophy is

like a tree”. There are the roots, the trunk, and then three main branches

with lots of leaves. The analogy of Descartes specifies: the roots represent

”metaphysics”, the trunk stands for ”physics”, the three branches carry as-

signments from left to right, ”mechanics”, ”morals”, ”medicine”. The more

detailed interpretation is my invention, but I think that many scientists

would agree with my highly simplified picture.

”Mechanics” includes all of astronomy, physics as we see it today, chem-

istry, geology and their subfields, most importantly engineering of all sorts.

”Medicine” contains the whole range of the life-sciences from botany and

agriculture all the way to medicine and psychiatry. ”Morals” is the center

of the tree, and in my view there is the whole organization of our society,

the laws, politics, education, social services including responsibility and sol-

idarity.

”Metaphysics” is a word of the middle ages, and is applied to one of

the volumes of Aristotle’s work on logic and related topics. I include all

classical and modern mathematics as well as computers. Now what about

the trunk called ”physics”, and its role in this picture? Descartes believed in

demonstrating the existence of God by starting in the roots. Few scientists

would agree. But many physicists believe that the tools in ”metaphysics”

should suffice to go very far in the explanation of the world around us.
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Are we really able to reach the ”morals” branch starting with the ideas

contained in the roots? Nevertheless, most of us believe that most of the

sciences in the ”medicine” branch can be reached. The fundamental laws

and facts of today’s physics go a long way in explaining biophysics, and

then on to the stupendous construction of our living organs. And what

about the brain? If anything, it is a very close call. Of course, we are still

a long way from the complete understanding, but there is most interesting

work to do.

The optimism of Descartes (contemporary of Galileo and Kepler), did

not survive the progress in the work of Isaac Newton. The role of ”physics”

was not denied, but it was reduced in the opinion of Immanuel Kant. What-

ever we observe and then explain, is not nature itself, but our picture and

the ways we think about it. Our reason can only recognize in nature what-

ever we have first accepted in our own way of thinking. Our experiments

serve only to force an approval by nature for what we have figured out. If

we are lucky we get an affirmative answer. But we have to be very careful

in basing further speculation on such a limited result. Every possible con-

sequence of our thoughts should be tested as specifically as possible, and

should never be considered final.

As an example, the standard model of particle physics does a credible

job in explaining the very-high-energy experiments. But our present tech-

niques allow us only to measure the probability of exceedingly complicated

scattering phenomena. The standard model has as yet to explain the well

known low-energy properties of simple nuclei. The magnetic moment of the

proton is known for 70 years, and the shell-model for 60 years. The nuclear

physicists, however, have had only empirical models and energy-level statis-

tics in the last 50 years. The applicable theory is a generalization of the

original quantum electro-dynamics (QED). Large-scale computations now

are barely quite able to handle the mathematics, and they get more difficult

at the low energies of ordinary nuclei.

These difficulties, including many ad-hoc remedies, have not held back

many theoretical physicists from going way-out beyond what is known from

feasible experiments. It goes under various names like string theory, quan-

tizing general relativity, inflationary model of cosmology, and others. It is

jumping to the Planck length, which is smaller than the radius of the pro-

ton by 18 factors 10! No experiment has even been proposed, although the

ideas have been bantered around for some 40 years. Every person is free

to entertain ideas about nature that have found no confirmation. Such re-

search programs, however, should not be supported in the long run by public
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funds. They are the entertainment as well as the personal responsibility of

the researchers themselves with few exceptions.

3. The Short History of Physics

The word ’physics’ was introduced by Aristotle as a reference to nature in

general. For 2000 years ’Physica’ was used in a very wide sense. Nowadays

it should be translated as ’Natural Philosophy’. Newton used it in the title

of his ”Principia Mathematica Philosophiae Naturalis”. The publications of

the academic societies that started in France, England, Germany in the

second half of the 17-th century used ’physics’ in various ways. A lot of

the works were put into the well-known categories, like mathematics, as-

tronomy, chemistry, geography, and the remainder was called (sometimes

’general’) ’physics’. Pieces from the life sciences were put together with

special topics of the hard sciences. After long discussions the modern inter-

pretation was adopted at the end of the 18-th century.

As a further illustration let me present a list of famous physicists born in

the 18-th and working in the 19-th century. As a starting honorary physicist

there is Immanuel Kant (1724-1804), then C. A. Coulomb (1736-1806),

Alessandro Volta (1745-1827), Thomas Young (1773-1829), Joseph Fourier

(1768-1830), Sadi Carnot (1796-1832), A. M. Ampere (1775-1836), S. D.

Poisson (1781-1840), John Dalton (1791-1876), J. L. Gay-Lussac (1778-

1950), H. C. Oersted (1773-1829), Amadeo Avogadro (1776-1856), Michael

Faraday (1791-1867). The choice is perhaps arbitrary. There are 6 French, 3

British, 2 Italian, and 1 Danish physicist, but no German unless we include

the mathematician Gauss.

Can we set up a list of great physicists for the earlier periods in human

history? The obvious heroes like Galileo, Huygens, and Newton did most of

their remarkable work in astronomy. Galileo’s reports on his experiments

in mechanics are ambiguous; Huygens’ discussion of the centripetal force

found its first application in deriving Kepler’s third law; Newton’s superb

experiments in optics did not receive a valid interpretation. We should com-

pare that to the great Greek mathematicians and astronomers whose basic

texts are still very fundamental and enjoyable reading. The chemists prof-

ited from many practical applications that were refined over the centuries

and recognized as being in a special category. All the marvelous mechanics

in the advanced civilizations, for building temples, bridges, ships, transport

equipment, weapons, and so on, did not become objects of special scientific

investigations. The French Academy of Science had a section of Mechanics,

and the Royal Society of London classified papers as ’mechanical philoso-
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phy’. It was considered useful, but not very fundamental.

Around 1800, both the French Revolution and the British Industrial

Revolution were promising a better life. A deeper technical understand-

ing was required for all the many new applications, mechanical, optical,

acoustical, even electrical and magnetic. Physics became a new branch of

scientific activity, next to its much older companions. The 19-th century

was dominated by the advances in chemistry, particularly after many of the

’organic’ processes inside living beings were found to be of the same chem-

ical nature as the ’inorganic’ processes. The fundamental role of atoms was

recognized and accepted by most chemists after Dalton. But physicists re-

sisted the idea and were looking for a deeper justification of such a strange

foundation of nature.

4. Quantum Physics, Relativity, and the Nucleus until 1957

No doubt, the years from 1900 to about 1957 (!) are the most productive in

the history of physics. The most fundamental principles of physics were dis-

covered, and many of the basic applications were successfully worked out.

The latter include superconductivity, nuclear power, semi-conducting de-

vices, lasers, nuclear magnetic resonance. At the end of this epoch the USA

were undoubtedly the leaders in physics, because the European countries

were only recovering from their two World Wars. After the unusual effort

in WWII, most research in physics, in the USA and in Europe, returned

to its academic base, with few institutes that depended directly from the

government. In 1945 I started my professional life as a student at the ETH

(Swiss Federal Institute of Technology) in Zürich. My further comments on

physics in the modern world will be mostly based on my own experiences

and observations.

The ETH until 1928 had only one professor of physics; at that time

it was Peter Debye. He was succeeded for the next 30 years by two full

professors, Wolfgang Pauli and Paul Scherer. When I was a student, the

Department of Mathematics and Physics had moreover 10 full professors

in mathematics and 1 in astronomy. In spring 1949 I asked Pauli, whether

he would supervise me for the required short (6 months) thesis. With the

help of his assistant Felix Villars (later at MIT), I calculated the magnetic

moment of the proton/neutron coupled to a vectorial, charged and massive

field, using the tricks recently invented by Schwinger and Feynman. No

course was taught in quantum mechanics, let alone in field theory. I got it

directly from Sommerfeld, Dirac, and Wentzel.

After passing the oral exams I was ready in principle to start working
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on a PhD thesis. There was no assistantship or any other source of sup-

port available, and I decided to accept a job at Brown Boveri Co. (BBC).

The necessary equipment for the telephone connection between Zürich and

Geneva via microwaves was all invented and built at BBC, and I was help-

ing the installation. I enjoyed doing it; but after a year and a half I wanted

to continue in physics. I applied for a stipend to the USA much too late,

but I got an offer. Wentzel from the University of Chicago encouraged me,

and I came to the USA as a graduate student in 1951.

The little known University of Kansas had 4 full professors of physics,

very active, including Max Dresden, a small group of junior professors, and

graduate students; everybody congenial, receptive for ideas, free of ranking,

reputation, and external pressures from funding agencies. After two years

of a very pleasant life I had finished my PhD thesis on QED in deSitter

space.

In spite of my immigration visum I had a hard time finding a job,

because of the communist scare in the USA. The geophysical laboratory of

Shell Oil Company in Houston had no trouble because it had no contract

with the government. It was the best thing for me to happen. My thesis

work in quantum field theory was in line with all my colleagues who had

essentially the same esoteric background. They were working on completely

different problems. I was first asked to look into the plastic flow of crystals,

then into the magnetic behavior of sedimentary rocks, and finally into the

generation and propagation of seismic waves from a disturbance on the

surface.

5. The Boom in Physics from 1957 to 2007

Exactly 50 years ago, October 1957, the Russians sent the first ever artificial

moon into space, called Sputnik. The US government reacted by making a

great show of going to promote almost any science much more than after

WWII. Meanwhile the Europeans had recovered sufficiently to start their

own scientific enterprises, nationally or internationally like CERN, Centre

Europeen de Recherche Nucleaire. Industry in all countries was setting up

their own research centers, like IBM near Zürich where I found my third job

in 1960. I had an easy start after learning about magnetism at Shell. I moved

back with my family in 1963, because I had a chance to teach a course of

solid-state physics in the engineering school of Columbia University in New

York City while continuing to work for IBM.

Some years after Sputnik, scientific institutes and universities in the

USA and Western Europe started a great push to increase their research
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programs. The financial means were provided for by local and national gov-

ernments as well as by industry according to the field of interest. Suddenly

there existed scholarships for getting a PhD, junior positions for the lower

academic ranks, and promotions to the higher ranks. Government and in-

dustry were offering quasi-permanent employment, with certain restrictions

concerning the type of work and the area of science. New universities were

founded, and many small ones hired people to start research projects.

In 1960 the physics institute of the ETH was still the same as during my

years as a student. When I came back for the second time in 1973 to teach a

special course on electron correlations in metals, I found myself in a palatial

campus of 6 buildings on the outskirts of Zürich. All 6 were dedicated to

physics and provided with large auditoria, library, and a restaurant. By

2005 there were 25 full professors and more than 400 other paid people

from PhD candidates on up the ladder with all the other work to be done.

Industry stopped hiring and started closing their research facilities al-

ready in the 1980’s. The USA federal government was somewhat protected,

but a number of its laboratories changed their orientation, with the ex-

ception, of course, of defense oriented places. The university laboratories,

however, kept on struggling quite successfully for the support of the gov-

ernment, trying to beat at least the inflation. The senior teaching staff likes

to stay beyond the former maximum of 70 years, because the law does not

allow discrimination against age, gender, etc.. They can even claim their

pensions after 70 in addition to their salary!

The departure of physicists from industry was protected by the same

statute. But after 2 years of large deficit, IBM decided to get rid of the

scientists whose merit was to maintain the scientific reputation of their

laboratory. In spring of 1993 we were faced with a proposal that offered a

gift with promises or a threat of a new work assignment. The gift as well

as the promises have been kept so far, and at my age I felt quite satisfied.

6. Things to be Expected

The first three sections of this report tried to show that physics has a special

role among the sciences. Originally it was ”Natural Philosophy”, whereas

mathematics, astronomy, chemistry, geology, and mechanics had each a well

understood domain. But with mathematics starting to play an essential role

in astronomy, somewhat later in mechanics, and finally in electricity and

magnetism, ’physics’ took on a special task, like the trunk in Descartes’

picture. Physics was destined to dig deeper to find the origins for its main

topics. During the 19-th century it competed with the chemists who had



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Quo vadis, physica? 21

gotten ahead of them about the atoms. But since 1900, physics took on

itself a very fundamental role.

The physics boom fell into the time when a large number of simple,

but fundamental applications had been discovered, e.g. for lasers, electro-

magnetic and semi-conducting devices. Also ideas for sophisticated ma-

chines in biophysics and medicine were proposed. They came from physics

laboratories, and have since produced an avalanche of useful products. A

vast engineering effort has effectively become almost independent of physics.

Similarly, the late 1950’s and then 1960’s coincided with great progress

in the explanation of particle physics that lead eventually to the Standard

Model. A number of new accelerators were planned, then built, and finally

run for many years. As the energy necessary increased things became ever

more expensive and complicated. The boundary of the field was pushed

forward until only the proton collider of CERN is left. Everybody waits

for it. In both cases the physicists had found interesting problems, and

started working on them in increasing numbers. But after two or three

decades, either the engineers took over or the problem grew too much for

continuing.

As a rule during the last 50 years, the number of physicists grows much

faster than the number and variety of new fields in physics. Each new area

demanded ever more complicated apparatus and theory. As a result the

physics community divided itself into many more specialties. This can be

seen in the advertisements of Job Opportunities in Physics Today. The var-

ious specialists belong explicitly or implicitly to some organization of their

specialty. That gets compounded by the competition among universities

and laboratories aiming at establishing a general class system in physics.

The periodic worldwide ranking by an Anglo-Saxon outfit comes out with

a long list where the Physics Department of highest rank in Germany gets

number 200!

Life in the physics departments of the universities will change. Many

professors will have to concentrate on teaching, and on reorienting their

field of research. Such a development is taking place already in other de-

partments, as unfortunately also in the classic languages Latin and Greek.

Students will have to choose carefully the area of their research, because

their opportunities will depend heavily later on what experience they have

gained. Moreover, they cannot expect to get a lot of guidance in their choice.

In the last 50 years, physics has often proclaimed its role as the science

that will find the foundations for all of nature. The support of research from

outside sources was centered on this idea, in addition to the promise of new
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products for industry, and of course the military requirements. But high-

energy physics slowed down because its experiments were so expensive. At

the same time, however, the theory of the standard model is beyond our

mathematical skills, let alone all the fancy models. It is doubtful, whether

we are able to understand nature on the smallest and on the largest scale.

Was our role of providing Descartes’ tree with a trunk too much to ask?

Mathematics and astronomy will continue what they have done so well

over more than 2000 years. Physics has to become more down-to-earth in

its literal meaning. It is already broken up into numerous areas with many

associated engineering fields. The danger is that physicists bury themselves

into one particular, esoteric specialty while ignoring most of the others. As

human being a physicist should try to maintain many contacts in order to

mix life and profession. Each existence might resemble the life of a skilled

artisan. Many variations would allow each individual to show special talents

and tastes, as well as methods and style.



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

23

ROUND-TABLE DISCUSSION

The round-table discussion on Thursday evening was held under the

provocative title Quo vadis, path integrals – new trends and perspectives?.

After a brief introduction by the chair woman Professsor Cécille DeWitt-

Morette, the panel members presented their opinions in the form of a few

concise “theses” written on a black board. The final outcome is recorded

in the photograph on the next page. These initial thoughts by the panel

members were then taken up by the other participants who very actively

contributed with their own ideas on how the field should develop, so that

a vivid discussion emerged.

Chair:

Cécille DeWitt-Morette – University of Texas at Austin, USA

Panel members:

Jozef T. Devreese – Universiteit Antwerpen, Belgium

Martin C. Gutzwiller – Yale University, New York, USA

Akira Inomata – State University of New York at Albany, USA

John R. Klauder – University of Florida at Gainesville, USA

Hagen Kleinert – Freie Universität Berlin, Germany

Lawrence S. Schulman – Clarkson University at Potsdam, USA

Jean Zinn-Justin – CEA-Saclay, France
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AN APPETIZER: A SAMPLER OF MAIN COURSES

C. DEWITT-MORETTE

Department of Physics – Center for Relativity, University of Texas at Austin,
Austin, Texas 78712-1081, U.S.A.

E-mail: cdewitt@physics.utexas.edu, www.utexas.edu

This paper discusses two basic issues of functional integration: domains of
integration and volume elements adapted to a given domain of integration.
Two examples of domain of integration are given explicitly in Sections 2 and
3 respectively: the domain of integration is a space of contractible paths and
the domain of integration is a space of Poisson paths. A property of volume
element, presented in Section 3, namely the Koszul formula, valid on totally
different geometries (riemannian, symplectic, grassman) can be used for some
infinite dimensional geometries.

Keywords: Domain of integration; Volume element; Contractible space; Sym-
metry; Poisson path; Koszul formula.

1. Introduction

I chose two topics relevant to all aspects of functional integration, namely

identifying domains of integration, say X, and choosing volume elements

appropriate for X.

Examples of domain of integration are presented in the first two appe-

tizers. A property (the Koszul formula) of volume elements valid in very

different geometries, riemannian, symplectic, grassmann, and expected to

be valid in function spaces is presented in the third appetizer.

The other issues in the general theory of functional integration are:

• characterizing functionals integrable with respect to the chosen volume

element

• computing the integral (or an approximation), or using the information

encoded in the integral. For instance, the solution of a PDE consists

of a large class of functions together with a choice of initial conditions

compatible with the PDE, whereas a functional integral is the solution

of a PDE satisfying a given set of initial conditions.



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

28 C. DeWitt-Morette

See Ref. 1 and references therein.

2. When Symmetries Define a Path Integral; A Basic

Theorem on Spaces of Pointed Paths

(i) A space of pointed paths is a space of paths x mapping R into a D-

dimensional manifold MD

x : T ⊂ R −→ M
D, xǫP0M

D (1)

such that for a certain value t0 ǫ T all the paths take the same value x0

x(t0) = x0ǫM
D for every xǫP0M

D (2)

A space of pointed path P0MD is a very desirable domain of integration

because it is contractible and can be parametrized by pointed paths z ǫ

P0RD taking their values on RD.

x(t, z)ǫMD, zǫP0R
D (3)

An integral over P0MD can be expressed as an integral over P0RD.

A well known example is the Cartan development map that maps a path

on a riemannian manifold MD into a path on RD.

(ii) Consider now a system having symmetries, i.e. a system with invariances

under a group of transformations {σα}α defined by dynamical vector fields

{Xα}α, generators of integral curves {σα}α on M
D

d

dr
(xo · σ(α)(r)) = X(α)(xo · σ(α)(r)) (4)

X(α)(x) =
d

dr
(x · σ(α)(r))r=0 (5)

The map from P0RD into P0MD that parametrizes the paths on MD is

rarely known explicitly, but is usually known implicitly by the equations:

dx(t, z) = X(α)(x(t, z))dzα(t) (6)

x(t, z) = x0 · Σ(t, z) (7)

where {Σ(t, z)} is a group action on M
D.
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(iii) Given the following information:

a “reasonable” function on MD, φ : MD → R

a space of pointed paths x ǫ P0MD

a set of dynamical vector fields {X(α)}α on MD

a quadratic form on RD

Q(z) :=

∫

T

dt hαβ ż
α(t)żβ(t), (8)

then the function Ψ on R×MD defined by the following functional integral

on RD

Ψ(t,xo) :=

∫

PoRD

Ds,Qz · exp(−π
s
Q(z))Φ(xo · Σ(t, z)) (9)

is a solution of the parabolic equation on MD:

∂Ψ

∂t
=

s

4π
hαβLX(α)

LX(β)
Ψ (10)

with

Ψ(to,x) = Φ(x) (11)

3. Solutions of PDE Other Than Parabolic; Spaces of

Poisson Paths

In 1956, Mark Kac delivered a Colloquium Lecture at the Magnolia

Petroleum Company on “Some stochastic problems in physics and mathe-

matics.” He used the Monte Carlo method based on Poisson processes for

solving the telegraph equation. There are two equivalent characteristics of

Poisson Processes:

(i) by waiting times between events {T1, ...Tn} with a probability law (see

Fig. 1)

Pr(tk ≤ Tk ≤ tk + dt) = a e−atkdt (12)

(ii) by n jumping times {t1, ...tn}
Pr(x = n) = e−λλn/n! (13)

A path x can then be written δt1 + ... + δtn . Mark Kac notes that the

waiting-times characterization is a “ridiculous scheme for a Monte Carlo

calculation of the telegraph equation,” but that the characterization by

jumping times is very powerful.
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Fig. 1. A Poisson process can be stated in terms of waiting times between events or in
terms of jumping times.

Interestingly, the waiting-times characterization cannot be adapted to

quantum physics (i.e. to “imaginary time”) but the jumping-times charac-

terization makes it possible to define spaces of Poisson paths for functional

integrals solutions of Klein and Dirac equations.

Let Xn be the space of Poisson paths jumping n times during the time

interval T = [0,T]. The space X of Poisson paths is

X = ∪nXn (14)

The following equation defines a volume element on X:
∫

X

Da,Txe
2πi<f,x> := exp

∫

T

a dt (e2πif(t) − 1) (15)

where

vol X = exp vol T = exp aT (16)

An interesting example “A two-state system interacting with its envi-

ronment” combines Poisson and Gaussian paths.

For other techniques, in particular solutions of elliptic equations in terms

of first exit times, we refer to the Cartier/DeWitt book and references

therein.

4. A General Property of Volume Elements; the Koszul

Formula

Measures are not the appropriate concept for functional integrals; volume

elements may be an easier concept than measures for use in infinite dimen-

sional spaces.

On M
D, a volume element is a D-form (a top form).
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There are no top forms on infinite dimensional spaces.

There are not top forms in grassmann analysis.

On infinite dimensional spaces:

• Volume elements can be characterized by integrals (e.g. Gaussian volume

elements and Poisson volume elements)

• The Koszul formula provides a differential characterization of

volume elements in a great variety of cases

Let LX be the Lie derivative defined by the vector field X .

Let ω be a volume element.

Let D(x) be a (generalized) divergence of x: LXω = D(x) · ω.

The Koszul formula defines the divergenceD(x) as the change of the volume

element ω under the group of transformations generated by X . It is valid

in riemannian, symplectic, and grassmann spaces.

A Berezin integral is a derivation and does not readily generalize to func-

tional integrals. However, Roepstorff has proposed a formalism for Berezin

functional integrals and applied it to Euclidean Dirac Fields.
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WHAT DOES OPERATOR ORDERING HAVE TO DO WITH

THE DENSITY OF PATHS?

L. S. SCHULMAN

Physics Department, Clarkson University,
Potsdam, NY 13699-5820, USA
E-mail: schulman@clarkson.edu

In joint work with M. Roncadelli, I have shown that the quantum Hamilton-
Jacobi equation, which at one time attracted considerable attention but was
abandoned as intractable, could be solved through its relation to the propaga-
tor. (Of course solving for the propagator is also far from trivial.) This article
reviews that work and discusses applications. In one application we find that
quantum operator ordering reveals the classical density of paths.

Keywords: Semiclassical propagator; Quantum Hamilton-Jacobi.

1. Introduction

This report is based on joint work with Marco Roncadelli.1

There is a famous article by Wigner2 on the “Unreasonable effectiveness

of mathematics.” Sometimes I wonder about a narrower question: the un-

reasonable effectiveness of classical mechanics for quantum mechanics, and

occasionally, vice-versa.

What I will tell you is how Roncadelli and I started from an old, and

at the time unsuccessful, way to quantize, how we made this technique

a bit more tractable, and how finally it forced us to consider that same

“unreasonable effectiveness”to which I alluded. As you will see, our progress

depended on recognizing the propagator when it appeared, and perhaps

more important, exploiting our result brought us squarely into the world

of path integrals, where the occasional solved propagator can lead to new

results for this quantization scheme. In particular—and this is what the

title of this article refers to—the solved quantum problem can come back

and give subtle information about the related classical mechanics.

What you would like to do is start from the classical Hamilton-Jacobi

equation and replace the “c-number” p’s and q’s by operators. The time de-
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pendence of these operators (in the Heisenberg picture) should be given by

the usual rules for a canonical transformation. As for the classical problem,

solving this system gives you the full time dependence. However, unlike the

classical equation, which is itself far from trivial, you now encounter op-

erator ordering problems. Because the canonical transformation mixes the

“old” and “new” variables in a peculiar way, operator ordering issues arise

even when the Hamiltonian does not by itself have these ambiguities. As

a result, although one usually thinks of operator ordering issues as having

O(~2) consequences, the effects we shall see are O(~1).

I will not dwell on the history of this problem except to say that quan-

tum canonical transformations entered early into the fabric of quantum me-

chanics, especially in the works of Born, Heisenberg and Jordan,3,4 Dirac5

and London.6 A later advocate was Schwinger,7 especially in his work on a

quantum action principal.8

In Sec. 2 I present the operator or quantum Hamilton-Jacobi equation.

The next section describes the progress Roncadelli and I made towards its

solution. Following that, in Sec. 4 I give actual and potential applications

that we have found. The final section is a discussion.

2. The Quantum Hamilton-Jacobi Equation

As for classical canonical transformations,9 one has a generating function

that is a function of two (sets) out of the four (sets of) variables, q̂, p̂, Q̂, P̂ ,

in the usual notation—except that now we place circumflexes over the

variables to indicate their operator nature. We take the generating func-

tion to be a function of q̂ and Q̂. Calling that function W (q̂, Q̂, t), with

q̂ = {q̂k|k = 1, . . . , N}, etc., the transformation is given by (i = 1, . . . , N)

p̂i =
∂

∂q̂i
W (q̂, Q̂, t) , (1)

P̂i = − ∂

∂Q̂i
W (q̂, Q̂, t) , (2)

K(Q̂, P̂ , t) = H(q̂, p̂, t) +
∂

∂t
W (q̂, Q̂, t) . (3)

These expressions are meaningless until operator ordering is prescribed. We

follow Jordan and Dirac and adopt what they call well-ordering: operators

represented by capital letters go to the right of those labelled by lower case

letters. Thus W (q̂, Q̂, t) should have the structure

W (q̂, Q̂, t) =
∑

α

fα(q̂, t) gα(Q̂, t) , (4)



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

34 L. S. Schulman

for suitable functions fα(·) and gα(·). Throughout, we suppose that oper-

ator generating functions are well-ordered. With well-ordering a classical

function f(q,Q) is fully defined by the replacements q → q̂ and Q→ Q̂.

Time evolution follows the classical method. One seeks a generating

function that brings the canonical variables in the Heisenberg picture, q̂(t),

p̂(t), to constant values at an initial time t0, values that we call Q̂ and

P̂ . Such a transformation brings the transformed Hamiltonian to zero, so

that, from Eq. (3), the generating function W (q̂, Q̂, t) obeys the operator

quantum Hamilton-Jacobi equation

H

(
q̂,
∂

∂q̂
W (q̂, Q̂, t), t

)
+
∂

∂t
W (q̂, Q̂, t) = 0 . (5)

The function W (q̂, Q̂, t) should be a complete solution of Eq. (5), i.e., it

should depend on N independent “integration constants” Q̂i.

This framework provides a complete formulation of quantum theory.

But at the level of operator equations little progress was made in the many

years since it was proposed. This is not surprising, given the difficulty of

solving a nonlinear operator partial differential equation (PDE).

3. The Equivalent c-Number Problem

Our method is to find a c-number PDE whose solution can lead to a solution

of Eq. (5). We do this for the general Weyl-ordered Hamiltonian

H(q̂, p̂, t) = 1
2aij(q̂)p̂ip̂j + p̂iaij(q̂)p̂j + 1

2 p̂ip̂jaij(q̂)

+bi(q̂)p̂i + p̂ibi(q̂) + c(q̂) , (6)

where aij(·), bi(·), and c(·) are functions of q̂k, and summation over repeated

Latin indices is understood. Using the abbreviation Ŵ for W (q̂, Q̂, t),

Eq. (5) reads

1
2aij(q̂)

∂Ŵ

∂q̂i

∂Ŵ

∂q̂j
+
∂Ŵ

∂q̂i
aij(q̂)

∂Ŵ

∂q̂j
+ 1

2

∂Ŵ

∂q̂i

∂Ŵ

∂q̂j
aij(q̂) + bi(q̂)

∂Ŵ

∂q̂i

+
∂Ŵ

∂q̂i
bi(q̂) + c(q̂) +

∂Ŵ

∂t
= 0 . (7)

The main simplifying step is to take the matrix element of Ŵ between
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states 〈q| and |Q〉. This leads to the following c-number equation

1
2aij(q)

〈
q

∣∣∣∣∣
∂Ŵ

∂q̂i

∂Ŵ

∂q̂j

∣∣∣∣∣Q
〉

+

〈
q

∣∣∣∣∣
∂Ŵ

∂q̂i
aij(q̂)

∂Ŵ

∂q̂j

∣∣∣∣∣Q
〉

+ 1
2

〈
q

∣∣∣∣∣
∂Ŵ

∂q̂i

∂Ŵ

∂q̂j
aij(q̂)

∣∣∣∣∣Q
〉

+ bi(q)

〈
q

∣∣∣∣∣
∂Ŵ

∂q̂i

∣∣∣∣∣Q
〉

+

〈
q

∣∣∣∣∣
∂Ŵ

∂q̂i
bi(q̂)

∣∣∣∣∣Q
〉

+ c(q) 〈q|Q〉 +

〈
q

∣∣∣∣∣
∂Ŵ

∂t

∣∣∣∣∣Q
〉

= 0 . (8)

Matrix elements of Ŵ alone would be no problem—it’s assumed to be well-

ordered. But the expressions in Eq. (8) are not well-ordered, and it is the

unravelling of these terms to which we now turn our attention. In doing

this our main tool is the canonical commutation relations. We use them

together with the fact that for any function G(·)

[G(q̂), p̂i] = i~
∂G(q̂)

∂q̂i
. (9)

Making use of p̂i = ∂W (q̂, Q̂, t)/∂q̂i, Eq. (9) becomes

∂Ŵ

∂q̂i
G(q̂) = G(q̂)

∂Ŵ

∂q̂i
− i~

∂G(q̂)

∂q̂i
. (10)

Now comes a lot of algebra. We take G(q̂) ≡ bi(q̂), G(q̂) ≡ aij(q̂) and

G(q̂) ≡ ∂aij(q̂)/∂q̂j. This allows us to move these functions, which may be

inconveniently sandwiched to the right of Q operators, to the left, so that

they can take as their arguments q’s (since 〈q| is on the left). We also make

use of the expansion (4) in our intermediate steps. Defining the function

W (q,Q, t)

〈q|Ŵ |Q〉 = W (q,Q, t)〈q|Q〉 , (11)

after many steps (see Ref. 1) we arrive at

2aij(q)

(
∂W (q,Q, t)

∂qi

∂W (q,Q, t)

∂qj
− i~

∂2W (q,Q, t)

∂qi∂qj

)

+2

(
bi(q) − i~

∂aij(q)

∂qj

)
∂W (q,Q, t)

∂qi
+ c(q) − i~

∂bi(q)

∂qi

−~2

2

∂2aij(q)

∂qi∂qj
+
∂W (q,Q, t)

∂t
= 0 . (12)

This equation should be familiar. It is the equation satisfied by W if

ψ(q,Q, t) ≡ exp{(i/~)W (q,Q, t)} , (13)



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

36 L. S. Schulman

and ψ satisfies the time-dependent Schrödinger equation. One often sees

this (perhaps for simpler Hamiltonians) when deriving the semiclassical

approximation.10

What have we proved so far? If you know Ŵ , then you can get something

satisfying the Schrödinger equation. But to know which solution of the

Schrödinger equation you have, you need to check the boundary conditions.

In terms of time, Schrödinger’s equation is first order, so we only need

establish the t→ 0 behavior of W (q,Q, t). From the nature of the quantum

Hamilton-Jacobi equation, Ŵ should become the identity transformation

as t → 0, but, as for the corresponding classical object, we run into a

bit of trouble. For sufficiently small t, unless the potential is singular, the

dynamics, whether classical or quantum, should be that of a free particle.

So the classical solution is F (q,Q) = m(Q − q)2/2t. Note that when one

uses this in (the c-number version of) Eq. (1) or Eq. (2), the result is not

well-defined for t = 0, but rather gives a limiting form.

As a way to guess the small-time solution of the quantum Hamilton-

Jacobi equation we start with the classical version and well-order it. This

turns out to be insufficient, so we will do our calculation on a slightly more

general function than that given by the “F” just displayed, specifically we

add a possible function of time. The candidate for a solution to Eq. (5) for

small times is thus

Ŵ =
m

2t

(
Q̂2 − 2q̂Q̂+ q̂2

)
+ g(t) . (14)

Substituting into Eq. (5), the squaring of Ŵ generates a term −(q̂Q̂+ Q̂q̂),

rather than −2q̂Q̂, so that satisfying Eq. (5) requires

0 =
m

2t2
[q̂, Q̂] +

∂g(t)

∂t
. (15)

To calculate the small-t commutator, one can again neglect the influence

of the potential, and the commutator is deduced from the free particle

Heisenberg picture relation q̂ = Q̂+ P̂ t/m. Equation (15) becomes ∂g/∂t =

i~/2t and we obtain

Ŵ =
m

2t

(
Q̂2 − 2q̂Q̂+ q̂2

)
+
i~

2
ln t , for t → 0 . (16)

This in turn leads to

ψ(q,Q, t) = const ·
√

1

t
exp

(
i

~

m

2t

(
Q2 − 2qQ− q2

))
, for t→ 0 , (17)

with the constant arising from integrating ∂g/∂t = i~/2t.
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The ψ of Eq. (17) is familiar: it is the free particle propagator and its

t → 0 limit is—up to a constant multiplier—a δ-function. This constant is

not fixed by the properties of Ŵ and with an appropriate choice of constant

we reach the following conclusion:

The solution of Schrödinger’s equation in Eq. (13),

for W (q,Q, t) = 〈q|Ŵ |Q〉, is the propagator.

This is good news if you know Ŵ (which is seldom), but it’s even better

news if you know the propagator (which we’ll call here K(q, t;Q, t)). That’s

because if you do know K you can construct Ŵ by taking logK and well-

ordering. In this next section we exploit this feature.

4. Applications

The propagator of course is the central object of path-integral studies and

there are a few known non-trivial explicit propagators.11 In this article I

will mention two examples. In one the quantum Hamilton-Jacobi equation

reinforces the sentiments I expressed in opening this article: quantum me-

chanics seems to know about subtle properties of the classical mechanics.

I’ll also mention another example, but in less detail.

From Eq. (13), if you know the propagator, K(q,Q, t) you can obtain

Ŵ from

Ŵ = −i~ logK(q̂, Q̂, t)|wo , (18)

where the subscript “wo” indicates well-ordering. Thus one takes the c-

number function K, substitutes the appropriate operators in the appropri-

ate places, and well-orders.

4.1. The semiclassical propagator

Now consider a situation where the semiclassical approximation is valid

and there is but one classical path between the initial and final

points. As is well-known, in this approximation, K(q,Q, t) = const ·√
det ∂2S/∂q∂Q exp(iS(q,Q, t)/~), with S(q,Q, t) Hamilton’s principal

function (a solution of the classical Hamilton-Jacobi equation). It follows

from Eq. (18) that W (q̂, Q̂, t) = S(q̂, Q̂, t)|wo − 1
2 i~ log det ∂2Ŝ/∂q∂Q|wo.

Now imagine that this expression is inserted in Eq. (5). If not for the well

ordering, S alone would solve the equation. Therefore we conclude that the

effect of the well-ordering is precisely to demand the presence of the addi-

tional term, 1
2 i~ log det ∂2S/∂q∂Q (where “wo” has been dropped because
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there is already an ~ in the expression). But that additional term (famously)

has a meaning of its own: it goes back to van Vleck and represents the den-

sity of paths along the classical path; it plays an essential role, for example,

in the Gutzwiller trace formula. Our result says that this density of paths

can be thought of as arising from the commutation operations necessary to

bring S to well-ordered form.

This relation took us completely by surprise. To check it, we worked

a simple but non-trivial example (our earlier demonstration comparing

the boundary conditions for K and W already showed it to be true

for the free particle). Let H = p2/2 + V with V = V0Θ(a/2 − |x|)
and x in one dimension. To lowest order in V the action is S(x, y, t) =

(x − y)2/2t − V0at/(x − y) for y < −a/2 and x > a/2. We checked our

relation, with x → q̂ and y → Q̂ and with well-ordering implemented

by [1/(q̂ − Q̂)]wo =
∫∞
0 du exp(−uq̂) exp(uQ̂). Using the Baker-Campbell-

Hausdorff formula and other techniques and keeping only lowest order in V

and ~, indeed the relation checked out!

4.2. The δ-function propagator

For the Hamiltonian H = p2/2 + λδ(x), x ∈ R, an integration by parts

brings the known propagator12,13 into the form

G(x, t; y) = g0(x−y, t)−g0(|x|+|y|, t)−
∫ ∞

0

e−λug′0(|x|+|y|+u, t)du , (19)

where g0(ξ, t) ≡ exp
(
iξ2/2~t

)
/
√

2πi~t, and g′0 is the derivative with respect

to the spatial argument. This holds for both positive and negative λ.

At present there is no sensible semiclassical theory for this Hamiltonian.

With a barrier (λ > 0), classical mechanics predicts reflection, no matter

how energetic the incoming particle. For a well (λ < 0), there is perfect

transmission. Quantum mechanically, neither is true. By looking at the

case x > 0, y < 0 one can use the known propagator to provide a complex

classical mechanics, giving us some inkling of a more sensible limit. However,

this work is still in preliminary form.

5. Discussion

In conclusion, I have shown how to construct solutions to the operator

quantum Hamilton-Jacobi equation starting from the quantum propagator

K(q,Q, t) for the same Hamiltonian. Explicitly, once K(q,Q, t) is known

we get its “complex phase” W (q,Q, t) via Eq. (13). Then, by demanding
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well-ordering, the replacement q → q̂, Q → Q̂ uniquely produces the op-

erator W (q̂, Q̂, t). Alternatively, by convolving K(q,Q, t) with an arbitrary

φ(Q) one can produce any solution of the Schrödinger equation. While this

obviously works for exact propagators, it also enables one to find approxi-

mate operator solutions by exploiting approximate propagators. In particu-

lar we used the semiclassical approximation to the propagator to show that

the commutation operations establishing well-ordering provide just what

is needed to get the density of paths around the classical path. This den-

sity of paths satisfies a continuity equation which, as O’Raifeartaigh and

Wipf14 emphasize, is in a sense of order ~ (even though it involves classical

quantities only and has no ~ in it!). Although our proof establishes this sur-

prising relation, there remains the provocative question of understanding

its intuitive basis.

References

1. M. Roncadelli and L. S. Schulman, Phys. Rev. Lett. 99, 170406 (2007).
2. E. P. Wigner, Comm. Pure Appl. Math. 13, 1 (1960); reprinted in Ref. 15.
3. M. Born, W. Heisenberg, and P. Jordan, Zeit. Phys. A 35, 557 (1926).
4. P. Jordan, Z. Phys. 37, 383 (1926), ibid. 38, 513 (1926).
5. P. A. M. Dirac, Physik. Zeits. Sowjetunion 3, 64 (1933), reprinted in Ref. 16.
6. F. London, Z. Phys. 37, 915 (1926).
7. J. Schwinger, Phys. Rev. 82, 914 (1951), ibid. 91, 713 (1953).
8. J. Schwinger, Quantum Kinematics and Dynamics (Benjamin, New York,

1970).
9. H. Goldstein, Classical Mechanics, 2nd edition (Addison-Wesley, Reading,

Massachusetts, 1980).
10. K. Gottfried, Quantum Mechanics, 1st edition (Benjamin, New York, 1966).
11. L. S. Schulman, Techniques and Applications of Path Integration (Dover,

New York, 2005). With supplements. (Original publication, Wiley, New York,
1981).

12. See Ref. 11, pp. 381–382, Dover edition.
13. B. Gaveau and L. S. Schulman, J. Phys. A 19, 1833 (1986).
14. L. O’Raifeartaigh and A. Wipf, Found. Phys. 18, 307 (1987).
15. E. P. Wigner, Symmetries and Reflections: Scientific Essays of Eugene P.

Wigner (Indiana Univ. Press, Bloomington, 1967). Eds. W. J. Moore and M.
Scriven.

16. J. Schwinger, Selected Papers on Quantum Electrodynamics (Dover, New
York, 1958).



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

40

NEAR ACTION-DEGENERATE PERIODIC-ORBIT

BUNCHES: A SKELETON OF CHAOS

A. ALTLAND

Institut für Theoretische Physik, Zülpicher Str 77, 50937 Köln, Germany
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Long periodic orbits of hyperbolic dynamics do not exist as independent in-
dividuals but rather come in closely packed bunches. Under weak resolution
a bunch looks like a single orbit in configuration space, but close inspec-
tion reveals topological orbit-to-orbit differences. The construction principle
of bunches involves close self-“encounters” of an orbit wherein two or more
stretches stay close. A certain duality of encounters and the intervening “links”
reveals an infinite hierarchical structure of orbit bunches. — The orbit-to-orbit
action differences ∆S within a bunch can be arbitrarily small. Bunches with
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Fig. 1. Cartoon of simplest orbit bunch. One orbit has small-angle crossing which the
other avoids. Difference between orbits grossly exaggerated.

1. Introduction

Extremely unstable motion, so sensitive to perturbation that long-term pre-

diction is impossible, is the common notion of chaos, deterministic laws à la

Newton notwithstanding. As a contrasting feature of chaos, within the con-

tinuum of unstable trajectories straying through the accessible space, there

is a dense set of periodic orbits,1 and these are robust against perturbations.

Here we report that long periodic orbits associate to hierarchically struc-

tured bunches. — Orbits in a bunch are mutually close everywhere and yet

topologically distinct. The construction principle for bunches is provided

by close self-encounters where two or more stretches of an orbit run mutu-

ally close over a long (compared to the Lyapounov length) distance. The

self-encounter stretches are linked by orbit pieces (“links”) of any length.

Different orbits in a bunch are hardly distinct geometrically along the links

in between the self-encounters, but the links are differently connected in

self-encounters. Under weak resolution a bunch looks like a single orbit,

and the orbits in a bunch may have arbitrarily small action differences. —

Orbit bunches are a new and largely unexplored topic in classical mechanics

but also spell fascination by their strong influence on quantum phenomena:

Bunches with orbit-to-orbit action differences smaller than Planck’s con-

stant are responsible for universal fluctuations in energy spectra,2–6 as well

as for universal features of transport through chaotic electronic devices.7,8

The simplest orbit bunch, exhibited in Fig. 1, is a pair of orbits differing

in an encounter of two stretches (a “2-encounter”).

Arrows on the two orbits indicate the sense of traversal. That elementary

bunch was discovered by Sieber and Richter2,3 who realized that each orbit

with a small-angle crossing is “shadowed” by one with an avoided crossing.

Bunches may contain many orbits. Anticipating the discussion below we

show a multi-orbit bunch in Fig. 2; besides a 2-encounter, two 3-encounters

(each involving three stretches) are active; the various intra-encounter con-

nections are resolved only in the inset blow-ups.
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Fig. 2. Bunch of 72 orbits looking like a single orbit: Only blow-ups resolve intra-
encounters connections distinguishing orbits; each inter-encounter link is 72-fold, with
separations yet smaller than in encounters.

As an interesting phenomenon in bunches we meet “pseudo-orbits”; Fig-

ure 3 depicts the prototype where the replacement of a crossing by an

avoided crossing entails decomposition of the original orbit into two shorter

orbits; the latter are then said to form a pseudo-orbit.

The distinction of genuine periodic orbits and their pseudo-orbit part-

ners is further illustrated in Fig. 4, for the bunch of Fig. 2.

We shall show how orbit bunches come about, illustrating our ideas for

a particle moving in a two dimensional chaotic billiard, like the cardioid

of Fig. 5. The particle moves on a straight line with constant velocity in

between bounces and is specularly reflected at each bounce.

2. Unstable Initial Value Problem vs Stable Boundary

Value Problem

To prepare for our explanation of orbit bunches it is useful to recall some

basic facts about chaos. We consider hyperbolic dynamics where all tra-

jectories, infinite or periodic, are unstable (i. e. have non-zero Lyapounov

rate λ): Tiny changes of the initial data (coordinate and velocity) entail

exponentially growing deflections both towards the future and the past.

Turning from the initial value problem to a boundary value problem we

may specify initial and final positions (but no velocity) and ask for the con-

necting trajectory piece during a prescribed time span. No solution needs

to exist, and if one exists it needs not be the only one. However, hyperbol-

icity forces a solution to be locally unique. Of foremost interest are time

spans long compared to the inverse of the Lyapounov rate. Then, slightly

shifted boundary points yield a trajectory piece approaching the original
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Fig. 3. Simplest pseudo-orbit, a partner of an orbit with a 2-encounter.

Fig. 4. Different intra-encounter connections of the bunch of Fig. 2: (a) One of the 24
genuine orbits, (b) one of the 48 pseudo-orbits.

one within intervals of duration ∼ 1/λ in the beginning and at the end, like

; towards the “inside” the distance between the perturbed

and the original trajectory decays exponentially. (That fact is most easily

comprehended by arguing in reverse: only an exponentially small transverse

shift of position and velocity at some point deep inside the original trajec-

tory piece can, if taken as initial data, result in but slightly shifted end

points.)

When beginning and end points for the boundary value problem are

merged, each solution in general has a cusp (i. e. different initial and final

velocities) there. If the cusp angle is close to π one finds, by a small shift

of the common beginning/end, a close by periodic orbit smoothing out the

cusp and otherwise hardly distinguishable from the cusped loop, like in

either loop of Fig. 3.

3. Self-Encounters

Figure 5 depicts a long periodic orbit. It appears to behave ergodically,

i. e. it densely fills the available space. Figure 5 also indicates that a long

orbit crosses itself many times. The smaller the crossing angle the longer

the two crossing stretches remain close; if the closeness persists through
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Fig. 5. Cardioid billiard with nearly ergodic orbit.

many bounces we speak of a 2-encounter.

A general close self-encounter of an orbit has two or more stretches close

to one another. We speak of an l-encounter when l stretches are all mutually

close throughout many bounces. For a precise definition one may pick one of

the l encounter stretches as a reference and demand that none of the (l−1)

companions be further away than some distance denc; the latter “encounter

width” must be chosen small compared to the billiard diameter D and such

that the ensuing “encounter length” Lenc is much larger than D. To sum

up, a close encounter is characterized by the following order of the various

length scales,

denc ≪ D ≪ Lenc ≪ L , (1)

with L the orbit length.

4. Orbit Bunches

In the setting of Fig. 1 we can formulate an important insight into chaotic

dynamics.2,3 The equations of motion allowing for the self-crossing orbit

also allow for a partner orbit which has the crossing replaced by a narrowly

avoided crossing (see dashed line in Fig. 1). The existence of the partner

follows from the shadowing theorem.9 Arguing more explicitly, we invoke

the exponential stability of the boundary value problem mentioned above.

Namely, the two loops of the orbit with a crossing may be regarded as

solutions of the boundary value problem with the beginning and end at the

point of crossing. We may slightly shift apart beginning and end for each

loop while retaining two junctions, as → , with nearly no change for

those loops away from the junctions. By tuning the shifts we can smooth
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out the cusps in the junctions, → , and thus arrive at the partner

orbit with an avoided crossing and reversed sense of traversal of one loop.

Throughout the links outside the encounter the two orbits are expo-

nentially close. The length (and thus action) difference is the smaller the

narrower the encounter:2,3 it is quadratic in the crossing angle, ∆L ∝ ǫ2.

The foregoing mechanism for generating partner orbits works for l-

encounters with any integer l. Each encounter serves as a “switch”: Its l

orbit stretches allow for l! different connections of the nearly fixed links

outside. For a given orbit a single l-encounter may and in a certain sense

does give rise to (l! − 1) partner orbits. The “certain sense” refers to the

already mentioned fact that a partner so generated may be a pseudo-orbit,

i. e. decompose into two or more shorter orbits (see Fig. 3).

A long orbit has many close self-encounters, some with l = 2, some

with l = 3, etc. Every such encounter gives rise to partner (pseudo-)orbits

whereupon many-orbit bunches come about; the number of orbits within a

bunch acquires from each close self-encounter the pertinent factor l!. Fig-

ure 2 illustrates a multi-orbit bunch; among the (3!)22! = 72 constituents

there are 24 genuine periodic orbits and 48 pseudo-orbits. In the various

(pseudo-)orbits of a bunch, links are traversed in different order, and even

the sense of traversal of a link may change if time reversal invariance holds

(see Fig. 1).

5. Hierarchies of Bunches

We would like to mention two ramifications of the concept of orbit bunches.

At first, orbit bunches form hierarchical structures, due to the near indis-

tinguishability of different orbits of a bunch within links. Every link of a

bunch may thus be considered as an extremely close encounter of the par-

ticipating (pseudo-)orbits, and reconnections therein produce new longer

(pseudo-)orbits; the length (and action) of the new (pseudo-)orbit is ap-

proximately a multiple of that of the original one. (The Sieber-Richter pair

of Fig. 1 makes for a pedagogical example: Considering, say, the two left

links as stretches of an encounter we may switch these and thereby merge

the two orbits.) This “process” of creating ever longer orbits by selecting a

link of a bunch and treating the orbit links therein as inter-orbit encounters

to switch stretches can be continued. Each step produces action differences

between (pseudo-)orbits exponentially smaller than the previous step. A

sequence of steps establishes an infinite hierarchical structure, and we may

see a duality of encounters and links as its basis. — Second, when an orbit

closely encounters an orbit from another bunch, the encounter stretches



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

46 A. Altland, P. Braun, F. Haake, S. Heusler, G. Knieper, and S. Müller

may be switched to merge the two orbits such that the original lengths are

approximately added; clearly, the associated bunches then also unite.

6. Quantum Signatures of Bunches

The new perspective on classical chaos arose as a byproduct from work on

discrete energy spectra of quantum dynamics with chaotic classical limits.

As first discovered for atomic nuclei and later found for atomic, molecular,

and many mesoscopic dynamics, the sequence of energy levels displays uni-

versal fluctuations on the scale of the mean level spacing. For instance,

each such spectrum reveals universal statistical variants of repulsion of

neighboring levels which depend on no other properties of the dynamics

than presence or absence of certain symmetries, most notably time reversal

invariance; correlation functions of the level density also fall in symme-

try classes. A successful phenomenological description was provided by the

Wigner/Dyson theory of random matrices (RMT); that theory employs av-

erages over ensembles of Hermitian matrices modelling Hamiltonians, rather

than dealing with any specific dynamical system.

Proving universal spectral fluctuations for individual chaotic dynam-

ics was recognized as a challenge in the 1980’s. Only quite recently it

has become clear that orbit bunches generated by switching stretches of

close self-encounters provide the clue, within the framework of Gutzwiller’s

periodic-orbit theory. The quantum mechanically relevant bunched orbits

have, as already mentioned, action differences of the order of Planck’s con-

stant. Using such bunches the validity of RMT predictions for universal

spectral fluctuations of individual chaotic dynamics has been demonstrated

recently.2–6

Concurrently with the developing understanding of spectral fluctuations

just sketched, it was realized that the role of encounters as switches is not

restricted to periodic orbits but also arises for long entrance-to-exit trajec-

tories between different leads of chaotic cavities.7,8,10–12 Bunches of trajec-

tories connecting entrance and exit leads could be invoked to explain uni-

versal conductance fluctuations of conductors. Like the semiclassical work

on spectra, that explanation is a welcome step beyond RMT inasmuch as

it applies to individual conductors rather than ensembles.

7. Conclusion

To conclude, bunches of periodic orbits are a hitherto unnoticed phe-

nomenon in classical chaos, in close correspondence to universal quan-
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tum phenomena. System specific behavior in mesoscopic situations is also

amenable to the new semiclassical methods10–12 and we may expect further

application there. A semiclassical theory of localization phenomena stands

out as a challenge. — Classical applications of orbit bunches comprise ac-

tion correlations among periodic orbits;5,13 others could arise in a theory

of the so-called Frobenius-Perron resonances which describe the approach

of ergodic equilibrium for sets of trajectories. Similarly, orbit bunches can

be expected to become relevant for the well known cycle expansions14 of

classical observables (where an important role of pseudo-orbits was first

noticed long since). — The hierarchical structure of bunches, a beautiful

phenomenon in its own right, deserves further study.
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1. Introduction

In the present paper, we study path integration in the field of a dispiration

– the combined structure of a screw dislocation and a wedge disclination –

around which the squared line element is given by1

ds2 = dr2 + σ2 r2 dθ2 + (dz + βdθ)2 (1)

where β and σ are the parameters related to the Burgers vector of the dis-

location and the Frank vector of the disclination, respectively. The medium

characterized by (1) has a non-Euclidean structure with singular torsion

and curvature along the dispiration line. The quantum behavior of a parti-

cle bound by the harmonic oscillator potential in such a medium has been

studied by using Schrödinger’s equation.2

Schrödinger’s equation in curved space may be written as
{
− ~2

2m
∆ + η~2R+ V (r)

}
ψ(r, t) = i~

∂

∂t
ψ(r, t) (2)

where ∆ is the Laplace-Beltrami operator, η a constant, and R the curva-

ture scalar. While Podolsky3 defined the Schrödinger equation without the

curvature term (η = 0), DeWitt4 proposed by comparing with Feynman’s

path integral that the curvature term is needed. More recently Kleinert5

argued that there is no need of the curvature term. This controversy stems



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Path integration in the field of dispiration 49

from the fact that the Hamiltonian cannot uniquely be converted into a

differential operator because of the operator ordering problem, and has not

fully been settled. Since both torsion and curvature of the present medium

have a singularity at r = 0 making the medium topologically nontrivial, it is

uncertain whether the curvature term has no role in Schrödinger’s equation.

Our purpose is not to resolve the controversy, but to report that the path

integration results differ from the one obtained from Schrödinger’s equation

(2) with η = 0.

2. Gauge Approach to the Dispiration

The dispiration we consider is a combination of the screw dislocation

along the z-axis and the wedge disclination about the z-axis. Although

the gauge formulation of dislocation and disclination has been extensively

discussed,1,6 here we present very briefly the gauge approach to a dispira-

tion.

A screw dislocation lying along the z-axis (with the Burgers vector

pointing in the z-direction) is a translational deformation (obtained by

gauging the z-translation group T (1)):

x′ = x +
bθ

2π
ez, θ = tan−1(y/x) ∈ [0, 2π), (3)

and the wedge disclination about the z-axis (with the Frank vector pointing

in the z-direction) is a rotational deformation (obtained by gauging SO(2)),

x′ = D(θ)x (4)

with the rotation matrix

D(θ) =




cos(γθ/2π) − sin(γθ/2π) 0

sin(γθ/2π) cos(γθ/2π) 0

0 0 1



 . (5)

The connection one-form for the dispiration is defined by

ω = dx + Γ(R)x + Γ(T ). (6)

Here the rotation connection has the form

Γ(R) = D · dD−1 =
γ

2π
dθm, m =




0 −1 0

1 0 0

0 0 0


 (7)
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and the translation connection Γ(T ) = (b/2π) dθ ez. Accordingly the con-

nection one-form reads

ω =




dx − (γ/2π)y dθ

dy + (γ/2π)xdθ

dz + (b/2π)dθ



 . (8)

Using this connection form as the coframe we get the line element in the

vicinity of the dispiration,

ds2 = δabω
a ⊗ ωb = dr2 + σ2 r2 dθ2 + (dz + βdθ)2 , (9)

where σ = 1 + γ/(2π) and β = b/(2π).

The torsion two-form T = Tij dx
i ∧ dxj for this system is given by,

T = dω + Γ(R) ∧ ω =
γ

2πr2
m · x dx ∧ dy + bδ(2)(x, y) ez dx ∧ dy, (10)

which has a singularity along the z-axis. The Burgers vector is calculated

by

b =

∫

∂C

T = b ez. (11)

The parameter b = 2πβ in (3) is indeed the magnitude of the Burgers

vector.

The curvature two-form R = Rij dx
i dxj takes the form

R = dΓ(R) + Γ(R) ∧ Γ(R) =
γ

2π
m d2θ = γδ(2)(x, y)m dx ∧ dy, (12)

which has also a singularity along the z-axis and whose nonvanishing

components are only R12 = −R21. Thus the Frank vector defined by

f = {Φ23,Φ31,Φ12} with the surface integral Φ of R becomes

f = Φ12 ez =

∫

∂C

R12 = γ ez. (13)

The parameter γ appearing in (9) turns out to be the magnitude of the

Frank vector, which is the deficit angle of the disclination. Apparently σ > 1

for the positive curvature and σ < 1 for the negative curvature.

3. The Propagator

The Lagrangian: Since the dispiration field is characterized by the line

element (1), the Lagrangian for a particle of mass M bound in the field of



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Path integration in the field of dispiration 51

the dispiration under the influence of a two-dimensional central potential

V (r) with r2 = x2 + y2,

L =
1

2
M

{
ṙ2 + σ2r2θ̇2 +

(
ż + βθ̇

)2
}
− V (r). (14)

Here we assume the scalar potential of the form,

V (r) =
1

2
Mω2r2 +

κ~
2

8Mσ2r2
. (15)

Thus the Feynman kernel (or the propagator in quantum mechanics) for

the system is

K (r′′, z′′; r′, z′; τ) = (16)
∫

exp

[
i

~

∫ t′′

t′

{
M

2

(
ṙ2 + σ2r2θ̇2

)
+
M

2

(
ż + βθ̇

)2

− V (r)

}
dt

]
D2rDz

where r is a collective symbol for two variables (r, θ).

The z-integration: The z-integration can easily be carried out by chang-

ing the variable as ζ = z+βθ. The z-integration is nothing but the Gaussian

path integral for a one-dimensional free particle, the result of integration

being
∫

exp

[
i

~

∫ t′′

t′

M

2
ζ̇2dt

]
Dζ =

√
M

2πi~τ
exp

[
iM (ζ′′ − ζ′)2

2~τ

]
, (17)

which we put into the form,
√

M

2πi~τ
exp

[
iM (ζ′′ − ζ′)2

2~τ

]
=

1

2π

∫ ∞

−∞

e−i~τk
2/2Mei(ζ

′′−ζ′)kdk. (18)

Noting that

ζ′′ − ζ′ = z′′ − z′ + β′ (θ′′ − θ′) = z′′ − z′ + β

∫ t′′

t′
θ̇dt, (19)

we obtain

K (x′′,x′; τ) =
1

2π

∫ ∞

−∞

dkeik(z
′′−z′)e−i~τk

2/2MK(k) (r′′, r′; τ) (20)

with the two-dimensional propagator for a fixed k value,

K(k) (r′′, r′; τ) =
∫

exp

[
i

~

∫ t′′

t′

{
M

2

(
ṙ2 + σ2r2θ̇2

)
+ βk~θ̇ − V (r)

}
dt

]
D2r. (21)
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Discretized propagator: To evaluate the path integral for the k-

propagator (21), we use the time-sliced approach:

K(k) (r′′, r′; τ) = lim
N→∞

∫ r′′=r(t′′)

r′=r(t′)

N∏

j=1

K(k) (rj , rj−1; ǫ)

N−1∏

j=1

d2rj . (22)

The short time propagator is given by

K(k) (rj , rj−1; ǫ) = Aj exp

(
i

~
Sj

)
, (23)

with the short time action

Sj =

∫ tj

tj−1

[
M

2
(ṙ2 + σ2r2θ̇2) + βk~θ̇ − V (r)

]
dt. (24)

The integration measure is chosen to be Aj d
2rj = (Mσ/2πi~ǫ) rj drj dθj .

As is well-known, in path integration, (∆θ)2 ∼ ǫ. Hence (∆θ)4/ǫ cannot

be ignored. Thus, making the following replacement θ̇2 → 2[1− cos(∆θ)]/ǫ,

we approximate the short time action by

Sj =
M

2ǫ

{
(∆rj)

2 + 2σ2rjrj−1 [1 − cos(∆θj)]
}

+ βk~∆θj − V (rj)ǫ. (25)

Moreover we use the approximation,7

cos (∆θ) − aǫ∆θ ≃ cos (∆θ + aǫ) +
1

2
a2ǫ2, (26)

to write the short time action multiplied by (i/~) as

i
~
Sj =

iM

2ǫ

(
r2j + r2j−1

)
+ (σ−2 − 1)

Mσ2rjrj−1

i~ǫ

+
Mσ2rjrj−1

i~ǫ
cos

(
∆θj +

βk~ǫ

Mσ2rjrj−1

)
+

(4β2k2 + κ)~ǫ

8Miσ2rjrj−1
− iǫ

~
Ṽj (27)

where Ṽj = (Mω2/4)(r2j + r2j−1) is the contribution from the harmonic os-

cillator portion of the potential V (rj).

Angular integration: To separate the angular variable from the radial

function, we employ the asymptotic recombination technique.8 Basic to this

technique is the conjecture that the Edwards-Gulyaev one-term asymptotic

formula for the modified Bessel function,9,10

I|ν| (z) ∼
1√
2πz

exp

[
z − 1

2z

(
ν2 − 1

4

)]
, (28)
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is valid for large z and for arg z < π/2 when used in path integration. From

(28) we can derive the following asymptotic relation,

I|ν|(az) e
bz ec/z ∼

√
a+ b

a
I|µ| [(a+ b)z] , (29)

where a, b and c are real constants, and

µ =

[
a+ b

a
ν2 − b

4a
− 2(a+ b)c

]1/2
. (30)

Combining this asymptotic relation with the Jacobi-Anger formula,

ez cosϑ =

∞∑

m=−∞
eimϑIm(z) (31)

leads to another asymptotic relation,8

exp

{
bz + z cos

[
∆θ + i

d

z

]
− (d2 − 2c)

2z

}

.
=

√
1 + b

∞∑

m=−∞
eim∆θ I|µ| [(1 + b)z] , (32)

where

µ =
[
(1 + b){(m+ d)2 − 2c} − b/4

]1/2
. (33)

Letting b = σ−2 − 1, z = Mσ2rjrj−1/(i~ǫ) and d = −βk, we utilize the

asymptotic relation (32) to separate variables of the short time propagator

(23) with the action (27) as

K(k) (rj , rj−1; ǫ) = Aj exp

(
i

~
Sj

)

=
1

2π

∞∑

mj=−∞
eimj(ϑj−ϑj−1)Rmj (rj , rj−1; ǫ) (34)

with the short time radial propagator,

Rmj (rj , rj−1; ǫ) =
M

i~ǫ
exp

[
iM

2~ǫ

(
r2j + r2j−1

)
− iǫ

~
Ṽj

]
Iµ(mj)

(
Mrjrj−1

i~ǫ

)

(35)

where µ(mj) =
[
4(mj − βk)2 + σ2 − 1 + κ

]1/2
/(2σ). Now the angular in-

tegration of (34) can easily be achieved, which results in mj = mN ≡ m.
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Radial propagator: After angular integration the short time radial prop-

agator (35) takes the form similar to that of the radial harmonic oscillator,

Rm(rj , rj−1; ǫ) =

M

i~ǫ
exp

[
iM

2~ǫ
(r2j + r2j−1) −

iMω2ǫ

4~
(r2j + r2j−1)

]
Iν(m)

(
Mrjrj−1

i~ǫ

)
(36)

where

µ(m) =
1

2σ
[4(m− βk)2 + σ2 − 1 + κ]1/2. (37)

The radial path integration for the harmonic oscillator has been calcu-

lated.8,11 The finite time radial propagator for the present system can also

be obtained by following the same procedure. Since the page number is

limited, we just write down the result. Namely,

Rm (r′′, r′; τ) =
Mω

i~ sinωτ
exp

[
iMω

2~

(
r′2 + r′′2

)
cotωτ

]
Iµ(m)

(
Mωr′r′′

i~ sinωτ

)

(38)

where µ(m) is given by (37). This result can also be formally derived from

the radial propagator for a free particle by applying the deAlfano-Fubini-

Furlan-Jackiw transformation,12 r → r sec(ωt) and ωt → tan(ωt), and

replacing the angular momentum quantum number m by µ(m) of (37).13

4. Energy Spectrum

The information concerning the energy spectrum and the radial wave func-

tions is all contained in the radial propagator (38). In order to read off

such information out of (38), we make use of the Hille-Hardy identity (GR:

8.976.1),14

Iµ

(
2
√
xyz

1 − z

)
(xyz)−µ/2

1 − z
exp

[
−z x+ y

1 − z

]

=

∞∑

n=0

n!

Γ(n+ µ+ 1)
L(µ)
n (x)L(µ)

n (y)zn , (39)

where L
(µ)
n (x) is the Laguerre polynomial related to the confluent hyperge-

ometric function as

L(µ)
n (x) =

Γ(n+ µ+ 1)

Γ(µ+ 1)n!
F (−n, µ+ 1;x). (40)
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Letting x = (Mω/~)r′2, y = (Mω/~)r′′2, and z = e−2iωτ in (39), we write

(38) as

Rm (r′′, r′; τ) =
2Mω

~

(
Mω

~
r′r′′

)µ/2
exp

[
− iMω

2~

(
r′2 + r′′2

)]

×
∞∑

n=0

n! e−iω(2n+µ+1)τ

Γ(n+ µ+ 1)
L(µ)
n

(
Mωr′2

~

)
L(µ)
n

(
Mωr′′2

~

)
.(41)

From this radial propagator, we can read off the radial wave functions,

χm,n(r) = Nm,n r
µ(m) e−(Mω/2~)r2 F

(
−n, µ(m) + 1;

Mω

~
r2
)

(42)

with the normalization factor

Nm,n =
1

Γ(µ(m) + 1)

[
Γ(n+ µ(m) + 1)

n!

]1/2(
Mω

~

)(µ(m)+1)/2

, (43)

and the energy spectrum,

Em,n = ~ω

{
2n+ 1 +

1

2σ

√
4(m− βk)2 + σ2 − 1 + κ

}
, (44)

where we have used (37) for µ(m). If we let κ = σ2 − 1, then the above

spectrum reduces to the one obtained from Schrödinger’s equation.2

5. Concluding Remarks

In the above we have discussed a partial wave expansion of the Feynman

kernel for a particle bound in the field of a dispiration. The partial wave

expansion can be converted into the winding number expansion classifying

homotopically inequivalent paths. The expansion coefficients turns out to

form a one-dimensional unitary representation of the fundamental group

π1
∼= Z, being consistent with the Laidlaw-deWitt-Schulman theorem.15

This result will be reported elsewhere. Next we wish to make the following

remarks on the energy spectrum (44). (a) The screw dislocation plays a role

similar to that of a magnetic flux tube for the Aharonov-Bohm effect and

in Wilczek’s anyon model.16 (b) Although the Dirac fields are understood

as giving rise to torsion in Einstein-Cartan theory,17 the present spectrum

shows that the torsion field due to the dislocation gives rise to spin. (c)

The harmonic oscillator potential is introduced only for creating the bound

states in two dimensions. (d) If the deficit angle is positive, then σ2−1 > 0

and the short-range force is enhanced. The disclination with the positive

singular curvature appears to generate a repulsive force. If the deficit angle
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is negative, then σ2−1 < 0 and an attractive force is induced. The negative

singular curvature could behave as a sink; if m−βk is small and κ = 0 then

there will be no bound states. (e) For reproducing the spectrum resulted

from Schrödinger’s equation with η = 0, the Lagrangian has to contain an

inverse-square potential with κ = −(σ2 − 1) as a counter term.
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The dynamics of strongly confined laser driven semiconductor quantum dots
coupled to phonons is studied theoretically by calculating the time evolution
of the reduced density matrix using the path integral method. We explore
the cases of long pulses, strong dot-phonon and dot-laser coupling and high
temperatures, which up to now have been inaccessible. We find that the decay
rate of the Rabi oscillations is a non-monotonic function of the laser field
leading to the decay and reappearance of the Rabi oscillations in the field
dependence of the dot exciton population.

Keywords: Quantum dynamics; Quantum dot; Path-integral approach.

1. Introduction

Coherent manipulation of exciton states in semiconductor nanosize quan-

tum dots (QD) using Rabi oscillations is vital for their applications in quan-

tum communication and information.1 However, in the coherence of the QD

carrier states is destroyed by coupling to the environment, leading to decay

of the oscillations.2–5 The phonon-dot coupling provides a basic dephasing

mechanism which is present in any sample and all setups and thus marks a

lower limit for the total decoherence.6–9 This work focuses on the influence

of the acoustic (LA) phonon modes on the dynamics of the QD exciton

states.

A theoretical description of a strongly confined QD reduces can be done
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using a two-level independent boson model (TLIB) coupled to an exter-

nal field.9 A fully non-perturbative analysis of TLIB is possible only for

ultra-short laser pulses.6 A general situation of arbitrary excitation pulses

requires approximations, e.g. perturbation analysis,10 the correlation7,11,12

and cumulant8 expansions, non-interacting blip approximation13 or a Gaus-

sian approximation, where the phonon influence is reduced to simple damp-

ing.5 These approaches are generally unsuitable for the strong phonon cou-

pling and at large temperatures.

We present a solution of the TLIB obtained using the numerical real-

time path integral calculations. Calculations of the real time path integrals

usually run into the well known dynamical sign problem.14 However, if the

phonon memory time is finite this problem can be solved by reformulating

the path integral calculation in the form of a pseudo-Markovian evolution

of the so-called augmented density matrix.15 We apply a modification of

this formalism combined with the “on-fly” path selection algorithm16–18 to

study QD dynamics in the previously inaccessible regimes of long evolution

times, strong phonon coupling and high temperatures.

2. Model and Numerical Path-Integral Calculation

The TLIB Hamiltonian coupled with the laser field is written (in Bohr

units) in the rotation wave approximation as

H = σzΩ0 +σz
∑

q

γq(b
+
q +bq)+

∑

q

ωqb
+
q bq+ME(t)σ+ +M∗E∗(t)σ− (1)

where σz = σz + 1/2, σ± = σx ± iσy are Pauli matrices acting on the QD

states, Ω is the exciton energy, bq are phonon operators, ωq is phonon disper-

sion, γq is the phonon coupling, M± is the dot-field coupling constant and

E(t) = f(t)eiωt is resonant laser field of a frequency ω = Ω0−
∑
q(|γq|/ωq)2

with f(t) being a real envelope function. As discussed, only LA phonons

are accounted for in Eq. (1).6,19 The dynamics of the density matrix is

obtained by solving the Liouville-von Neumann equation with the initial

condition that the system is in a temperature equilibrium. The dynamics of

the exciton subsystem is obtained by taking the trace of the density matrix

over the phonon states. For Eq. (1) the trace is calculated explicitly leading

to the well known Feynman-Vernon functional.20 A discretized version of

the path integral for the time dependence of the reduced density matrix at
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time slices t = N∆t assumes the following form

ρρ
σ
+
N
σ
−
N

=

1∑

σ±
0 ...σ

±
N=0

RN (σ±
0 . . . σ

±
N )ρσ+

0 σ
−
0
, (2)

where σ±
i = 0, 1, ρσ+

0 σ
−
0

is the initial exciton density matrix and

RN (σ±
0 . . . σ

±
N ) =

∏

i

Mσ+
i+1σ

+
i
Mσ−

i+1σ
−
i

∏

j≤i
eSij . (3)

Here the rotation matrix is M = exp(iσx
∫ ti
ti−1

f(t)dt). The influence func-

tional is Sij = −(σ+
i −σ−

i )(Ki−jσ
+
j −K∗

i−jσ
−
j ), the memory kernel in which

is

Ki−j>0 =

∫ ti

ti−1

ds

∫ tj

tj−1

ds′ Γ(s− s′), K0 =

∫ ti

ti−1

ds

∫ t

ti−1

ds′ Γ(s− s′), (4)

where

Γ(s) =
∑

q

γ2
q

{
coth

( ω
2T

)
cos(ωs) − i sin(ωs)

}
. (5)

In order to calculate Eq. (2) we utilize the fact that for the dot-phonon

coupling the memory kernel decays rapidly with time so one uses Ki>Nc =

0. Then one writes the recurrence relation for the next time slice RN+1 =

TN+1RN , where the ”transfer” matrix TN+1 is

TN+1 = Mσ+
N+1σ

+
N
Mσ−

N+1σ
−
N

jN+1∏

j=N+1−Nc
eSN+1−j , (6)

which depends on Nc variables σ±
i , i = N + 1 − Nc...N + 1. Defining the

augmented density matrix as RN =
∑

σ±
0 ...σ

±
N−Nc

RN one obtains a new

recurrence relation

RN+1 =
∑

σ±
N+1−Nc

TN+1RN . (7)

Further calculations are done using a 3 step algorithm: 1) If all contributing

configurations (paths) are known at time N , for which RN > ǫ (ǫ defines

accuracy) then 2) multiply RN by TN+1 as in Eq. (7) and find all new con-

figurations with RN+1 > ǫ and 3) sum over σ±
N−Nc in Eq. (7) and return

to step 1). Then one finds RN and thus ρd at arbitrary N . The described

procedure is similar to the Monte-Carlo algorithms, where the paths are

constructed recursively. The advantage of this procedure is that by calcu-

lating the augmented density matrix at the time ∆N one automatically

obtains it for all n < N , i.e. for the entire time interval.
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Fig. 1. Time evolution of the QD exciton population at T = 10, 20, 50 K and for the
time integrated pulse area fatf = 80π.

3. Results and Discussion

Numerical calculations are done for GaAs QD of a spherical shape with the

diameter 5 nm. Details of the model and values of the material parameters

for the dot-phonon coupling can be found elsewhere.6 The memory kernel

can be neglected at t > 5 ps which defines the cutoff as Kn>5 ps/∆ = 0.

For the sake of clarity we present results for the rectangular pulses fa(t) =

const, which allow for a transparent physical interpretation while being

qualitatively general.

The dynamics of a QD exciton occupation, ρ11, shown in Fig. 1 dis-

plays decaying Rabi oscillations, that approach a stationary limit 1/2

at large time. The dynamics can be approximated by a simple formula
1
2 [1 − cos(ΩRt) exp(−t/Td)], where Td and ΩR serve as the decay time and

the Rabi frequency, respectively, and are found from the best fit of the

numerical solution. Both ΩR and Td depend on T and f . As expected Td
decreases with rising T . However, Td(f) is a non-monotonous function as

shown in Fig. 2. At smaller fields Td(f) is a decreasing function, reaching

its minimum at fa ≈ 1−2 ps−1, while at larger fields it increases with f .

This leads to the decay and reappearance of the Rabi oscillations in

the field dependence of the exciton occupation, measured after the pulses

of a fixed duration, as demonstrated in Fig. 3. Such definition of the Rabi

oscillations (Rabi rotations) is frequent in experimental literature, because

the full time evolution of system is harder to obtain. At larger T one obtains

a more pronounced decay-reappearance pattern.

The non-monotonous fields dependence of the decay time can be qual-

itatively explained by invoking results of the perturbation theory.10 The

critical field with the maximal decay is equal to the inverse of the phonon

kinetic time, τph ≈ 0.5 ps. This fact is not accidental and follows from that
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Fig. 2. Decay time Td as a function of the field amplitude f and temperature T .
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Fig. 3. Exciton occupation as a function of pulse area, calculated at T = 10, 20, 50 K
for the pulse length t = 20 ps.

the Rabi rotations introduces an energy scale ΩR into the system which

has to be compared with the characteristic energy of the phonons. Exact

numerical results confirms this and establishes the parameter range where

the minimal value of Td is reached.

4. Conclusions

We present numerical path integral calculations for the dynamics of a res-

onantly excited strongly confined QD. The long time evolution is obtained

using the modified version of the augmented density matrix formalism. The

decay time of the oscillations is a non-monotonous function of the field, hav-

ing its minimum when the field is approximately equal to the characteristic

frequency of the phonon coupling. This yields the decay and reappearance

of the Rabi oscillations in the field dependence of the exciton occupation.

We note that this should not be mixed with the collapse-revival of the

oscillations in the Jaynes-Cummings model. The decay-reappearance phe-
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nomenon can be understood within a general physical picture, based on the

commensurability of the Rabi oscillations and the phonon coupling charac-

teristic energy scales, which indicates its wide applicability.
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In a reasonably self-contained and explicit presentation we illustrate the ef-
ficiency of the Feynman–Kac formula by the rigorous derivation of three in-
equalities of interest in non-relativistic quantum mechanics.
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tonicities; Integrated density of states.

1. Feynman–Kac Formula

In 1923 Norbert Wiener1 introduced a certain probability distribution µ

concentrated on the set of continuous paths w : [0,∞[→ Rd, τ 7→ w(τ) from

the positive half-line [0,∞[⊂ R1 into d-dimensional Euclidean space Rd,

d ∈ {1, 2, 3, . . .}. This distribution is a mathematically well-defined positive

measure in the sense of abstract measure theory2 and therefore induces

a corresponding concept of integration over paths, which we denote by∫
µ(dw)(·). The Wiener measure µ is uniquely determined by requiring that

it is Gaussian with normalization
∫
µ(dw) = 1, first and second moments

∫
µ(dw)wj(τ) = 0,

∫
µ(dw)wj(τ)wk(σ) = δjk min{τ, σ} (1)

for all j, k ∈ {1, . . . , d} and all τ, σ ∈ [0,∞[. Here wj(τ) denotes the j-th

component of the path w evaluated at (time) parameter τ ≥ 0. The simple

Wiener integrals (1) imply that the components of w are — in probabilistic

language — centered, independent and identically distributed. Moreover,

the Chebyshev inequality shows for σ = τ = 0 and k = j that for each

j the variable wj(0) is in fact not random, but equal to its mean value

µ-almost surely. In other words, all paths start with probability 1 at the

origin of R
d .
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To Wiener integrals apply — in contrast to Feynman path integrals —

all the rules and computational tools provided by abstract measure and in-

tegration theory, most notably Lebesgue’s dominated-convergence theorem.

As a consequence, Wiener integration often serves — via the Feynman–Kac

formula — as an efficient technique for obtaining results in quantum me-

chanics with complete rigour. An impressive compilation of such results was

given by Barry Simon already in 1979. Since then not much has changed

which is reflected by the fact that the second edition of his book3 differs

from the first one only by an addition of bibliographic notes on some of the

more recent developments. Still Wiener integration should be considered

neither as a secret weapon nor as a panacea for obtaining rigorous results

in quantum mechanics. In any case, the Feynman–Kac formula is more than

just a poetic rewriting of a Lie–Trotter formula. Ironically Richard Feyn-

man himself took advantage of that as early as 1955 in his celebrated paper

on the polaron, in particular, by using the Jensen inequality.4

Now, what is the Feynman–Kac formula? Let us consider a spinless

charged particle with configuration space Rd subjected to a scalar potential

v : Rd → R1, q 7→ v(q), q = (q1, . . . , qd) and a vector potential a : Rd →
Rd, q 7→ a(q), a = (a1, . . . , ad). The latter generates a magnetic field (tensor)

defined by bjk := ∂ak/∂qj − ∂aj/∂qk. The corresponding (non-relativistic)

quantum system is informally given by the Hamiltonian

H(a, v) :=
(
P − a(Q)

)2
/2 + v(Q) , (2)

where Q = (Q1, . . . , Qd) and P = (P1, . . . , Pd) denote the d-component

operators of position and canonical momentum, respectively. They obey

the usual commutation relations QjPk − PkQj = iδjk1. Here i =
√
−1 is

the imaginary unit and we have chosen physical units where the mass and

charge of the particle as well as Planck’s constant (divided by 2π) are all

equal to 1. Under rather weak assumptions5 on v and a, H(a, v) can be

defined as a self-adjoint operator on the Hilbert space L2(Rd) of all (equi-

valence classes of) Lebesgue square-integrable complex-valued functions on

R
d. Furthermore its “Boltzmann–Gibbs operator” e−βH(a,v) even possesses

for each β ∈]0,∞[ an integral kernel 〈q|e−βH(a,v)|q′〉 (in other words, posi-

tion representation or Euclidian propagator) which is jointly continuous in

q, q′ ∈ Rd.

We are now prepared to recall the Feynman–Kac formula. Apart from

mathematical subtleties its content is most concisely expressed by the fol-

lowing representation free version:
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e−βH(a,v) =

∫
µ(dw) e−iw(β)·P exp

{
−
∫ β

0

dτ v(w(τ)1 +Q)
}

× exp
{

i

∫ β

0

dτẇ(τ) · a
(
w(τ)1 +Q

)}
. (3)

Here the dot “ · ” denotes the usual scalar product of Rd and the integral

containing the vector potential is a suggestive notation for a stochastic line

integral in the sense of R. L. Stratonovich and D. L. Fisk (correspond-

ing to a mid-point discretization). In (3) the Wiener integration serves to

disentangle the non-commuting operators P and Q in e−βH(a,v). By go-

ing informally to the position representation of (3) one gets the rigorously

proven formula

〈q|e−βH(a,v)|q′〉 =

∫
µ(dw) δ

(
w(β) + q′ − q

)
exp

{
−
∫ β

0

dτ v
(
w(τ) + q′

)}

× exp
{
i

∫ β

0

dτ ẇ(τ) · a
(
w(τ) + q′

)}
. (4)

It even holds for a class of potentials v for whichH(a, v) is not bounded from

below.5 The Dirac delta in (4) indicates that all paths w to be integrated

over arrive in q− q′ ∈ Rd at time β > 0. In fact, they may be considered to

end there, because µ is Markovian and the integrand in (4) does not depend

on w(τ) for τ > β. More precisely, the path integration may be performed

with respect to the Brownian bridge.3,5

In the remaining three sections we are going to illustrate the usefulness

of (4) by deriving three inequalities of interest in quantum mechanics.

2. Diamagnetic Inequality

Theorem 2.1. ∣∣∣〈q|e−βH(a,v)|q′〉
∣∣∣ ≤ 〈q|e−βH(0,v)|q′〉 (5)

holds for all β > 0 and all q, q′ ∈ Rd.

Proof. Inequality (5) is an immediate consequence of (4) by taking the

absolute value and observing the “triangle inequality”
∣∣∫ µ(dw) (·)

∣∣ ≤∫
µ(dw) |(·)| and the elementary identity

∣∣ex+iy
∣∣ = ex for x, y ∈ R1.

Remarks:

(i) This elegant proof is due to Edward Nelson, see Ref. 6 (also for other

historic aspects of (5) and related inequalities).
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(ii) If
∫

Rd
dq e−βv(q) < ∞, the free energy −β−1 ln

∫
Rd

dq 〈q|e−βH(0,v)|q〉 at

inverse temperature β > 0 exists and (5) then implies that it can-

not be lowered by turning on a magnetic field. Under weaker assump-

tions on v, for example for the hydrogen atom (that is, for d = 3 and

v(q) = −1/|q|) (5) still implies in the limit β → ∞ the same sort of

stability for the ground-state energy. Altogether this explains the name

diamagnetic inequality.

(iii) There are also diamagnetic inequalities in case the particle is confined

to a bounded region in Rd with Dirichlet, Neumann or other boundary

conditions.7,8 Moreover, the proof of the diamagnetic inequality easily

extends to the case of many (interacting) particles, provided there is

no spin and no Fermi statistics involved.

An interesting question is what can be said if a 6= 0 is changed (pointwise)

to another vector potential a′ 6= 0. For a partial answer see Sec. 4 below.

3. Quasi-Classical Upper Bound on the Integrated Density

of States in the Case of a Random Scalar Potential

In the single-particle theory of electronic properties of disordered or amor-

phous solids the scalar potential v in H(a, v) is considered to be a random

field on R
d which is distributed according to some probability measure ν.

We denote by
∫
ν(dv) (·) the corresponding (functional) integration or av-

eraging. One example is a Gaussian ν with vanishing first moments and

second moments
∫
ν(dv) v(q)v(q′) = C(q − q′) for all q, q′ ∈ Rd with some

(even) covariance function C : Rd → R1. The fact that the second mo-

ments only depend on the difference q− q′ reflects the assumed“homogene-

ity on average”. We also assume that C is continuous, C(q) tends to zero

as |q| → ∞ and the single-site variance obeys 0 < C(0) < ∞. The Rd-

homogeneity together with the decay of the correlations of the fluctuations

at different sites with increasing distance amounts to the Rd-ergodicity of

the (Gaussian) random potential.

A quantity of basic interest in the above-mentioned theory is the inte-

grated density of states. It may be defined5,9 as the non-decreasing function

N : R1 → R1, E 7→ N(E, a, q) where

N(E, a, q) :=

∫
ν(dv) 〈q|Θ(E1 −H(a, v)|q〉. (6)

Here Θ denotes Heaviside’s unit-step function and the (non-random) vec-

tor potential a as well as q ∈ R
d are considered as parameters. If the ran-

dom potential (characterized by ν) and the magnetic field (generated by a)
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are both homogeneous, then N(E, a, q) actually does not depend on q. Of

course, in the physically most relevant cases the random potential should

be even ergodic, so that N(E, a, 0) coincides in the infinite-volume limit for

ν-almost all realizations v with the number of eigenvalues per volume of a

finite-volume restriction of H(a, v) below the energy E ∈ R1. Nevertheless

the following estimate holds also for random potentials and magnetic fields

which are not homogeneous.

Theorem 3.1. If the probability measure ν of the random potential has the

propertya that Lβ := ess supr∈Rd

∫
ν(dv) e−βv(r) <∞ for all β > 0, then

N(E, a, q) ≤ (2πβ)−d/2Lβ eβE (7)

holds for all energies E ∈ R1 and all β > 0.

Proof.

N(E, a, q) e−βE ≤
∫
ν(dv) 〈q|e−βH(a,v)|q〉 ≤

∫
ν(dv) 〈q|e−βH(0,v)|q〉 (8)

=

∫
µ(dw) δ

(
w(β)

) ∫
ν(dv) exp

{
−
∫ β

0

dτ v(w(τ) + q)
}

(9)

≤
∫ β

0

dτ

β

∫
µ(dw) δ

(
w(β)

) ∫
ν(dv) e−βv(w(τ)+q) ≤ (2πβ)−d/2 Lβ. (10)

Here (8) is due to the elementary inequality Θ(E1 − H(a, v)) ≤
eβ(E1−H(a,v)) and (5). Equation (4) then gives (9). The next inequality

is Jensen’s with the uniform average β−1
∫ β
0 dτ (·). The claim now follows

from the definition of Lβ, Eq. (4) with (a, v) = (0, 0) and
∫ β
0

dτ = β. The

various interchanges of integrations can be justified by the Fubini-Tonelli

theorem.

Remarks:

(i) Theorem 3.1 is a slight extension of a result which goes back to Pas-

tur, see Thm. 9.1 in Ref. 10. The right-hand side (RHS) of (7) is

quasi-classical in the sense that it does not depend on a and does

not take into account — due to the Jensen inequality in (10) — the

non-commutativity of the kinetic and potential energy.

(ii) While the estimate (7) holds for rather general random potentials, the

various inequalities in its proof are responsible for its roughness, even

aGiven a function f : R
d → R

1, then ess supr∈Rd |f(r)| denotes the smallest M ∈ [0,∞]
such that |f(r)| ≤M holds for Lebesgue-almost all r ∈ R

d.
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when optimized with respect to β > 0. Nevertheless, it shows that

N(E) decreases to 0 at least exponentially fast as E → −∞. For

a homogeneous Gaussian random potential (and a constant magnetic

field) the optimized estimate even reflects the exact Gaussian decay9,10

lnN(E) ∼ −E2/2C(0) as E → −∞. For a non-Gaussian random po-

tential like a repulsive Poissonian one the leading low-energy decay of

N , the Lifshitz tail, typically is of true quantum nature9–11 and can

therefore not be reflected by the RHS of (7). Although the (universal)

leading high-energy growth N(E) ∼ (E/2π)d/2/Γ(1 + d/2) as E → ∞,

see Refs. 9,10 and references therein, is purely classical, it is overesti-

mated by the RHS of (7) (due to the elementary inequality in (8)).

4. A Simple Diamagnetic Monotonicity

For a partial answer to the question raised at the end of Sec. 2 we only

consider the planar case R2 with v = 0 and a perpendicular magnetic

field not depending on the second co-ordinate q2. We assume that b := b12
is a continuously differentiable function of q1 ∈ R1. One possible vector

potential generating b, not depending on q2 either, is given by a(b)(q) :=(
0,
∫ q1
0 dr b(r)

)
. In the following theorem H(b) denotes any Hamiltonian on

L2(R2) which is gauge equivalent to H(a(b), 0) = P 2
1 /2+

(
P2−a(b)

2 (Q1)
)2
/2

for the given b. The assertion (11) is therefore gauge invariant. Nevertheless,

in the proof we will use H(a(b), 0) and see that one can dispense with the

absolute value on the RHS of (11) in this particular gauge.

Theorem 4.1. If b and B are two magnetic fields as just described and

satisfy either |b(r)| ≤ B(r) or |b(r)| ≤ −B(r) for all r ∈ R1, then
∣∣∣〈q|e−βH(B) |q′〉

∣∣∣ ≤
∣∣∣〈(q1, 0)|e−βH(b) |(q′1, 0)〉

∣∣∣ e−(q2−q′2)2/(2β) (11)

holds for all β > 0, all q = (q1, q2) ∈ R2 and all q′ = (q′1, q
′
2) ∈ R2.

Proof. By (4) the LHS of (11) is invariant under a global sign change

of B. Therefore it suffices to consider the case B(r) ≥ 0. For notational

transparency we write a and A for a
(b)
2 and a

(B)
2 , respectively. For given

β > 0, q′1 ∈ R1 and a one-dimensional Wiener path w : [0,∞[→ R1 we

introduce the notations

mβ(a,w, q
′
1) := β−1

∫ β

0

dτ a(w(τ) + q′1), (12)

s2β(a,w, q
′
1) := β−1

∫ β

0

dτ
(
a(w(τ) + q′1)

)2 −
(
mβ(a,w, q

′
1)
)2

(13)
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for the mean and variance of a
(
w(τ) + q′1

)
with respect to the uniform

average β−1
∫ β
0 dτ (·), and similarly with A instead of a. Next we observe

the following two “doubling identities”

2β2
[
s2β(A,w, 0) − s2β(a,w, 0)

]
(14)

=

∫ β

0

dτ

∫ β

0

dσ
{[
A(w(τ)) −A(w(σ))

]2 −
[
a(w(τ)) − a(w(σ))

]2}
(15)

=

∫ β

0

dτ

∫ β

0

dσ
[
a+(w(τ)) − a+(w(σ))

][
a−(w(τ)) − a−(w(σ))

]
. (16)

The last integrand is non-negative, because the two functions r 7→ a±(r) :=

A(r) ± a(r) =
∫ r
0

dr′
(
B(r′) ± b(r′)

)
, r ∈ R1, are both non-decreasing since

B(r′) ≥ |b(r′)| ≥ ∓b(r′) by assumption. The same arguments apply when

the path w is replaced by the rigidly shifted one w+ q′1. To summarize, we

have shown so far that

s2β(a,w, q
′
1) ≤ s2β(A,w, q

′
1) (17)

for all w, all q′1 and all β > 0.

Since H(B), in the particular gauge chosen, commutes with P2, we may

decompose it according to H(B) =
∫

R1 dkH(B)(k) ⊗ |k〉〈k|, using an in-

formal notation. Here the one-parameter family of effective Hamiltonians

associated with the 1-direction

H(B)(k) := P 2
1 /2 +

(
k1− A(Q1)

)2
/2, k ∈ R

1, (18)

acts on the Hilbert space L2(R1). By this decomposition we get

〈q|e−βH(B) |q′〉 = (2π)−1

∫

R1

dk〈q1|e−βH
(B)(k)|q′1〉 eik(q2−q′2) (19)

= (2πβ)−1/2e−(q2−q′2)2/(2β)

∫
µ(dw)δ(w(β) + q′1 − q1)

× exp
{
− βs2β(A,w, q

′
1)/2

}
exp

{
i(q2 − q′2)mβ(A,w, q

′
1)
}
.

(20)

Here we have used (4) with d = 1, a = 0 and v = (k − A)2/2 and then

performed the (Gaussian) integration with respect to k. By applying the

“triangle inequality” to (20) and then using (17) we finally obtain

e(q2−q′2)2/(2β)
∣∣∣〈q|e−βH(B) |q′〉

∣∣∣

≤ (2πβ)−1/2

∫
µ(dw)δ(w(β) + q′1 − q1) exp

{
− βs2β(a,w, q

′
1)/2

} (21)

= 〈(q1, 0)|e−βH(b) |(q′1, 0)〉 =
∣∣∣〈(q1, 0)|e−βH(b) |(q′1, 0)〉

∣∣∣ . (22)
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The last two equalities follow again from (20) with a instead of A.

Remarks:

(i) To our knowledge, Theorem 4.1 first appeared in Ref. 12. It comple-

ments some of the results obtained by Loss, Thaller and Erdős.13,14 For

a survey of results of this genre see Sec. 9 in Ref. 15.

(ii) For a given sign-definite B the RHS of (11) becomes explicit by choosing

for b the globally constant field B0 := infr∈R |B(r)|, so that

∣∣∣〈q|e−βH(B) |(q′〉
∣∣∣ ≤ B0/4π

sinh(βB0/2)
exp

{
−B0

4

(q1 − q′1)
2

tanh(βB0/2)
− (q2 − q′2)

2

2β

}
.

If B0 6= 0, the Gaussian decay on the RHS is faster along the 1- than

along the 2-direction. Such an anisotropy has been found also for the

almost-sure transport properties in the case thatB is an ergodic random

field with non-zero mean.16
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The behavior of the electron density of states (DOS) for the Lifshitz tail states
is studied in the limit of low energy using the Feynman path-integral method.
This method was used to study the heavily doped semiconductors for the case of
a Gaussian random potential. The main results obtained are that the tail states
behave as DOS∼ exp (−B (E)), with B (E) = En, n = 1

2
for short-range inter-

action and n = 2 for long-range interaction. In this study it is shown that with-
out the Gaussian approximation, the behavior of the Lifshitz tails for the Pois-
son distribution is obtained as DOS∼ exp (−B (E)) with B (E) = En, n = − 3

2
.

As in the case of heavily doped semiconductor, the method can be easily gen-
eralized to long-range interactions. A comparison with the method developed
by Friedberg and Luttinger based on the reformulation of the problem in terms
of Brownian motion is given.

Keywords: Density of states; Lifshitz tails.

1. Introduction

In a previous paper1 we presented a method for calculating the density of

states (DOS) of an electron moving in a random potential containing high

number of impurities or scatterers with weak scattering potential. This

model is equivalent to treating the random system as Gaussian random

potential. By formulating the random system using Feynman path integrals

we have shown that the behavior of the DOS in the Gaussian random

system in three dimensions deep in the tail goes roughly as exp(−B (E))

where B (E) is a function of energy and is proportional to En with n varying

from 1
2 for small autocorrelation length to 2 for large autocorrelation length.

For general statistics without the Gaussian approximation the behavior of

the DOS is drastically different from the Gaussian approximation. It was

Lifshitz2 who has first presented the intuitive arguments and showed that

the DOS should behave as ∼ exp
(
−E− 3

2

)
. The Lifshitz ideas are as follows.
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The probability of finding a large region of volume V being free of impurities

is proportional to exp(−ρV.). Then the main contribution to the probability

of finding a low-level E for a system will be proportional to the probability

of finding the region V whose energy level is E. The lowest-level E in the

empty volume of radius R0 with the boundary conditions that the wave

function vanishes on its surface is given by E = π2

2R2
0
; or R0 =

√
π2

2E with

m = ~ = 1. The probability of such a region existing is proportional to

exp
(
−ρ
(

4π
3

)
R3

0

)
so that the DOS of the low-lying level will be given by

D (E) ∼
E→0

exp
(
−cE(− 3

2 )
)

with c =
1

3
4π

(
π2

2

) 3
2

ρ. (1)

The first attempt to derive the Lifshitz conjecture is given by Friedberg and

Luttinger3 based on the reformulation of the problem in terms of Brown-

ian motion. They showed that the solution of this problem is equivalent

to the knowledge of D (E) for small energy. A variational method is used

for solving this problem and the solution is reduced to solving the non-

linear differential equation. This equation is solved in the long-time limit

and obtained the Lifshitz conjecture. In this paper we derive the Lifshitz

conjecture using the Feynman path-integral formulation developed in our

previous paper for handling the heavily doped semiconductors. Without

the Gaussian approximation we derive the average propagator for general

statistics or Poisson distribution. After performing the random average the

system becomes translation invariant and therefore it is reasonable to model

the system with a nonlocal harmonic oscillator trial action. A variational

principle is used to obtain the Lifshitz conjecture for the large-time limit.

In the second section we derive the model action. The DOS is obtained in

the third section and a comparison between the Friedberg and Luttinger

result is given. The final section is devoted to the discussion.

2. Model System

Following the method given in Ref. 1, we consider an electron moving among

a set of N rigid impurities or scatterers, confined within a volume V , and

having a density ρ = N/V . Such a system is described by the Hamiltonian

H = − ~2

2m
∇2 +

∑

i

v
(−→x −−→

R i

)
, (2)
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where v
(−→x −−→

R i

)
represents the potential of a single scatterer at position

−→
R i. The propagator K (−→x 2,

−→x 1; {v}) of such a system can be expressed as

K (−→x 2,
−→x 1; t, {v}) =

∫
D (−→x (τ)) exp

[
i

~

∫ t

0

dτ

(
m

2

−→·
x 2 (τ) −

∑

i

v
(−→x −−→

R i

))]
, (3)

where D (−→x (τ)) denotes the path integral to be carried out with the

boundary conditions −→x (0) = −→x 1,
−→x (t) = −→x 2. The probability distri-

bution of the scattering potential is assumed to be P
[−→
R
]
d
([−→
R
])

=

Π
N,V→∞

dR1dR2...dRN
V N

. Performing the configuration average we obtain

G (−→x 2,
−→x 1; t) = lim

N,V→∞

∫
P
[−→
R
]
d
([−→
R
])
K (−→x 2,

−→x 1; t, [v]) (4)

=

∫
D (−→x (τ)) exp

[
i

~
S

]

with the action

S =

∫ t

0

dτ

{
m

2

−→·
x 2 (τ) − ρ

∫
d
−→
R

[
exp

(
− i

~

∫ t

0

dτv
(−→x (τ) −−→

R
))

− 1

]}
.

(5)

After the configuration average, the system becomes translation invari-

ant, therefore it is reasonable to introduce the nonlocal harmonic oscillator

trial action. This action was used to be applied to the band tail problems

in heavily doped semiconductors. The model trial action is

S0 =

∫ t

0

dτ

(
m

2

−→·
x 2 (τ) − ω2

2t

∫ t

0

dτ |−→x 2 −−→x 1|2
)
, (6)

where ω is an unknown parameter to be determined. Such a translational

invariant action proves to be important to obtain the prefactor in the DOS.

The propagator associated with the nonlocal harmonic trial action is3

G (−→x 2,
−→x 1; t, ω) =

∫
D (−→x (τ)) exp

[
i

~

∫ t

0

dτ

(
m

2

−→·
x 2 (τ) − ω2

2t
|−→x 2 −−→x 1|2

)]
. (7)

3. Density of States

The DOS per unit volume is given by the Fourier transform of the diagonal

part of the configurationally average propagator as

D (E) =
1

2π~

∫ ∞

−∞
dtG (0, 0; t) exp

(
i

~
Et

)
. (8)
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Therefore the problem of the DOS calculation within the framework of the

path-integral approach consists in evaluating the exact propagator by inte-

grating over all possible paths using S. Rewriting the diagonal propagator

G (0, 0; t) = G0 (0, 0; t, ω)

〈
exp

i

~
(S − S0)

〉

S0

, (9)

where G0 (0, 0; t, ω) =
(

m
2πi~t

) 3
2

[
ωt

2 sin( 1
2ωt)

]3
is the diagonal propagator of

the non-local trial action propagator given in Ref. 4. Hear the symbol

〈O〉S0
denotes the path-integral average with respect to the trial action

S0. To prove the Lifshitz conjecture we approximate the diagonal prop-

agator G (0, 0; t) by keeping only the first cumulant, Eq. (7). To obtain

G1 (0, 0; t, ω) we have to find the average 〈(S − S0)〉S0
. Since the kinetic

energy terms in the actions S and S0 are always canceled out with each

other, we shall denote 〈S0〉S0
and 〈S〉S0

as the average without the kinetic

terms. We first consider the average 〈S〉S0
:

〈S〉S0
= ρ

∫
d
−→
R

[〈
exp

(
− i

~

∫ t

0

dτv
(−→x (τ) −−→

R
))〉

S0

− 1

]
. (10)

The average over the scattering potential can be conveniently evaluated by

making the Fourier decomposition of the potential v. We obtain

〈S〉S0
= ρ

∫
d
−→
R


 exp

(
− i

~

∫ t
0 dτ

∫
d
−→
k

(2π)3
v−→
k

exp
(
−i−→k · −→R

))

× exp
(
− 1

2k
2 1

3

〈
x2
〉
S0

)
− 1


 . (11)

Next we consider the average 〈S0〉S0
which can be written as

〈S0〉S0
= −ω

2

2t

∫ t

0

dτ

∫ t

0

dσ
〈
|−→x 2 −−→x 1|2

〉

S0

. (12)

From the above Eqs. (11) and (12) we can see that the average

〈(S − S0)〉S0
can be expressed solely in terms of the following averages:

〈−→x (τ)〉S0
, 〈−→x (τ) · −→x (σ)〉S0

. To obtain the Lifshitz tails, we assume that

the scattering potential is a Gaussian function with finite interacting length.

For short length the scattering potential reduces to the white noise delta

function potential. This limit can be compared with the Friedberg and Lut-

tinger model of using a square well with finite width and depth. We now

take the scattering potential as a Gaussian function with finite length l and

u, where u is the parameter introduced to take care of the dimension of the

system. This parameter u is essential when one takes the white noise limit.
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The scattering potential is

v
(−→x (τ) −−→

R
)

= u
(
πl2
)− 3

2 e
(−→x (τ)−−→

R)
2

l2 . (13)

Taking the Fourier transform and performing the
−→
k integration, we have

〈S〉S0
= ρ

∫
d
−→
R


exp




− i
~

∫ t
0
dτu

[
4π
(
l2

4 + 1
6

〈−→x 2 (τ)
〉
S0

)]− 3
2

×e
−

−→
R2

4( l24 + 1
6 〈−→x 2(τ)〉S0

)


− 1


 .

(14)

To obtain the ground states, we take the limit t→ ∞; then
〈−→x 2 (τ)

〉
S0

=
t→∞

~

2mω , so that
(
l2

4 + ~

2mω

)
= l2

4

(
1 + 4~

2

2ml2~ω

)
= l2

4

(
1 + 4El

Eω

)
, and we have

defined El = ~
2

2ml2 and Eω = ~ω. Finally for large t, we obtain 〈S0〉S0
=

t→∞
3
4ωt and

G1 (0, 0; t, ω) =
t→∞

(15)

( m

2πi~t

) 3
2 ωt

2
e
i
4ωt exp





ρ

∫
d
−→
R


exp




− i
~
tu
[
πl2
(
1 + 4El

Eω

)]− 3
2

× exp

(
−

−→
R2

l2
“
1+

4El
Eω

”
)


− 1








.

Scaling the R integration,
−→
R′2 =

−→
R 2l−2

(
1 + 4El

Eω

)−1

, we then have

G1 (0, 0; t, ω) =
t→∞

( m

2πi~t

) 3
2

(
i

~
Eωt

)3

e
i
4ωt (16)

× exp

[
ρl3
(

1 +
4El
Eω

) 3
2
∫
d
−→
R′
[
exp

(
− i

~
tξle

−
−→
R′2
)
− 1

]]
,

where we have defined ξl = u
[
πl2
(
1 + 4El

Eω

)]− 3
2

. For white noise, l → 0,

corresponding to 4El
Eω

≫ 1, we get

G1 (0, 0; t, ω) =
t→∞

( m

2πi~t

) 3
2

exp

[
3 ln

(
i

~
Eωt

)
− 3

4

i

~
Eωt− ρl3

(
4El
Eω

) 3
2

f (t, ω)

]
, (17)

where f (t, ω) =
∫
d
−→
R′
[
exp

(
− i

~
tξl exp

(
−−→
R′2
))

− 1
]
.

To consider the leading contribution, we assume that i
~
tξl = 1. Then the

function becomes a constant, f (t, ω) = f. Minimizing the exponent, and
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for large t we can neglect the ln
(
i
~
Eωt

)
term as compared to Eωt. Then we

have Eω = (it)
− 2

5

[
ρl32~ (4El)

3
2 f
] 2

5

. The function f is

f =

∫
d
−→
R′
[
exp

(
− exp

(
−
−→
R′2
))

− 1
]
≈
∫ ∞

0

4πr2dr
[
exp

(
−r2

)]
= 2π

3
2 ,

(18)

and substituting the variational parameter Eω in Eq. (18) we have

G1 (0, 0; t) =
t→∞

( m

2πi~t

) 3
2

(
i

~
Eωt

)3

exp

[
− 5

4~
(it)

3
5

[
ρl32~ (4El)

3
2 f
] 2

5

]
.

(19)

The density of states is

D (E) =
1

2π~

∫ ∞

−∞
dt
( m

2πi~t

) 3
2

(
i

~
Eωt

)3

exp

[
−α (it)

3
5 +

i

~
Et

]
(20)

=
5

4~

[
ρl32~ (4El)

3
2 f
] 2

5

.

Minimizing the exponent, we have d
dit

(
−α (it)

3
5 + i

~
Et
)

= 0 and perform-

ing the saddle-point calculation we obtain

D (E) ≈ exp

[
−
(

5

4~

) 5
2
(

5

3~

)− 3
2 [
l32~ (4El)

3
2 f
]
ρE(− 3

2 )

]
. (21)

Finally we obtain the Lifshitz tail

D (E) ≈ exp

[
−
(

3

4

) 5
2
(

5

3~

)[
2~

4

(
2

m

) 3
2

4π
1

2

√
π

]
ρE(− 3

2 )

]
. (22)

In order to compare with the Friedberg-Luttinger result, we set m = 1

and ~ = 1. We have D (E) ≈ exp
[
− 15π

2

√
3π
2 ρE

− 3
2

]
, while the Liftshitz

result is D (E) ∼
E→0

exp
(
−cE− 3

2

)
with c = 4

3π
(
π2

2

) 3
2

ρ and the Friedberg-

Luttinger method yieldsD (E) ∼
E→0

exp
(
−cE− 3

2

)
with c = 4

3π
(
π2

2

) 3
2

ρ.

4. Discussion

In this paper we applied the Feynman path-integral method developed

in our previous paper for handling the heavily doped semiconductors to

the Lifshitz tail problem. The statistics used in this problem is the Poisson

distribution. Instead of using a square well interaction potential as used
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by Friedberg and Luttinger we use a Gaussian interaction with finite inter-

action length. This finite interaction allows us to discuss the short range

interaction or the white noise problem. In order to be able to carry out

the calculation analytically we introduce the quadratic model trial action.

The variational principle is used to obtain the variational parameter and

a saddle point calculation is used to obtain the Lifshitz tail behavior. It

is noted that the factor in front of the Lifshitz tail is different from that

of Friedberg and Luttinger. The difference is due to the different potential

used in handling the problem. In the Friedberg and Luttinger approach

the squared potential with finite depth and finite width is used as a varia-

tional parameter. In this approach a harmonic potential is used. However,

both approaches lead to the Lifshitz tails behavior. The advantage of this

approach is that it is easily generalized to finite interaction length. For

very long range, this approach gives the behavior of the density of states

as energy power of minus one. This approach can be generalized to study

the Lifshitz tails in the case of strong magnetic field or the quantum Hall

problem.
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Observing that distribution theory offers an extension of the concept of inte-
gration, we review a framework in which the Feynman integral becomes math-
ematically meaningful for large classes of interaction potentials. We present
some examples and open problems.

Keywords: Path-integral methods; White noise theory; Schrödinger equation;
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1. Introduction: The Feynman “Integral”

It must be said that many of the innumerable successes of Feynman quanti-

zation present themselves to the mathematician as just one more ill defined

or open problem. Since the times of Gelfand-Yaglom1 and of Cameron2

we all know that the Feynman sum over histories is not an integral in the

mathematical sense of the word. But something has to be right, even math-

ematically, about such an immensely successful concept: we are reminded of

Dirac’s delta function which, initially, the mathematicians had great doubts

about.

Example 1.1.

I =

∫ ∞

−∞
dx exp(−x

2

2
)

is an integral.

J(f) =

∫ ∞

−∞
dxδ′(x)f(x) = −f ′(0)

is NOT an integral:

J : f → J(f) = −f ′(0)
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f ∈ S(R) ⊂ L2(R, dx) ⊂ S∗(R) ∋ J (1)

is a “generalized function”, a continuous linear map from the test functions

to the real (or complex) numbers.

Example 1.2.

I =

∫
dµB.M.(x) exp

(
−
∫ t

0

V (x(s)) ds

)
f(x(t))

is an integral (Feynman-Kac).

J =

∫
d∞x exp

(
i

∫ t

0

(T (ẋ) − V (x(s))) ds

)
f(x(t))

is NOT an integral.

Is

J = J(f) =

∫
d∞x exp (iS[x]) f [x],

if not an integral, a continuous map from test functions (on path space)

to complex numbers, in analogy to the improper “integrals” of distribution

theory? Trouble is, there is no reasonable flat measure d∞x. The next best

choice is an infinite-dimensional Gaussian one, characterized by its Fourier

transform
∫

S∗(R)

dµ (ω) exp

(
i

∫
ω(s)f(s)ds

)
= exp

(
−1

2

∫
f2(s)ds

)
.

With this “white noise” measure we are given an L2 space

(L2) = L2(S∗(R), dµ).

Smooth and generalized functions can then be constructed in analogy to

the finite-dimensional case:3–6

(S) ⊂
(
L2
)
⊂ (S)

∗
.

White noise ω is a model for (Brownian motion) velocity:

ω(t) =
dB

dt
, B(t) =

∫ t

0

ω(s)ds.
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2. How to Recognize a Generalized Function When You

See One

Among white noise test functions ϕ = ϕ (ω) ∈ (S), a prominent example is

ϕf (ω) ≡ exp
(
i
∫
ω(t)f(t)dt

)
with f ∈ S(R).

Example 2.1. Generalized functions Φ = Φ (ω) ∈ (S)∗:

(1) ΦK (ω) ≡ N exp
(

1
2 (ω,Kω)

)
if 1 /∈ spectrum(K) “Gauss kernel”

(2) Φa (ω) ≡ δ (B (t) − a) “Donsker’s δ-function”.

It is not hard to calculate3 the action of these distributions Φ on the

exponential test functions ϕf (ω) = ei
R
ω(t)f(t)dt:

〈ΦK , ϕf 〉 = exp

(
−1

2

(
f, (1 −K)

−1
f
))

,

〈Φa, ϕf 〉 =
1√
2πt

exp


−

(∫ t
0 if(s)ds− a

)2

2t


 exp

(
−1

2
(f, f)

)
.

Setting 〈Φ, ϕf 〉 ≡ TΦ(f) we note that in both examples TΦ(zf1 + f2) is

analytic in z for any f1, f2, and |TΦ(zf)| < aeb|zf |
2
p . Remarkably, these two

conditions are sufficient to characterize generalized white noise functions

Φ ∈ (S)∗.

Theorem 2.1.3 A functional G(f), f ∈ S(R), is the T-transform of a

unique “Hida distribution” Φ ∈ (S)∗ iff for all fi ∈ S(R), G(zf1 + f2)

is analytic in the whole complex z-plane and of second order exponential

growth.

A bigger distribution space is obtained if we admit T-transforms which

are analytic and bounded near zero only (“Kondratiev distributions”7).

3. Construction

We describe the paths by a Brownian ansatz

x(t0 + τ) = x0 +

(
~

m

)1/2

B(τ). (2)

Informally, the Feynman integrand yielding the propagator should be

I = I0 · exp

(
−i
∫ t

t0

V (x (τ)) dτ

)
(3)
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with

I0 (x, t | x0, t0) (ω) = N exp

(
i+ 1

2

∫

R

ω2 (τ) dτ

)
δ (x (t) − x) . (4)

Remark 3.1. i
2

∫
R
ω2 (τ) dτ in the expression for I0 is just the free action.

The extra real part compensates the Gaussian“non-flat”nature of the white

noise measure. The mathematical validation amounts to a verification that

the heuristic expression

〈I, ϕf 〉 “=”

∫
dµ (ω) I(ω) exp

(
i

∫
ω(s)f(s)ds

)

is indeed the T-transform of a well defined generalized function I ∈ (S)−1,

via the characterization theorem above.

4. Classes of Admissible Interactions

As with any mathematical formulation of Feynman integrals, the crucial

question to ask of it is: “What interactions can you handle?” For this see

the recent Ref. 8 and references therein.

A rather surprising class is given by potentials which are Laplace trans-

forms of measures:9

V (x) =

∫

Rd

eα·xdm(α) , (5)

where m is any complex measure with
∫

Rd

eC|α| d|m|(α) <∞, ∀C > 0. (6)

Example 4.1. V (x) = g eax. Likewise, one obtains potentials such as,

e.g., sinh (ax), cosh(ax), and the Morse potential

V (x) = g(e−2ax − 2γe−ax) with g, a, x ∈ R and γ > 0.

Example 4.2. A Gaussian measure m gives the anharmonic oscillator

potentials V (x) = gebx
2

. Entire functions of arbitrary high order of growth

are also in this class.

Remarkably, in each case the construction of the Feynman integrand is

perturbative,
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I = I0 · exp

(
−i
∫ t

t0

V (x (τ)) dτ

)
(7)

=
∞∑

n=0

(−i)n
n!

∫

[t0,t]n

∫

Rdn

I0 ·
n∏

j=1

eαj ·x(τj)
n∏

j=1

dm(αj) dnτ (8)

Because of its interest in applications we take a close look at one of the

above examples, the Morse potential. Its Hamilton operator is

H = −m
2
△x + g

(
e−2ax − 2γe−ax

)
(9)

Remark 4.1. H is essentially self-adjoint for g ≥ 0 and it is not essentially

self-adjoint for g < 0. The Green function, the eigenvectors and the discrete

eigenvalues are not analytic in g near zero.

On the other hand it follows from the above series that the propaga-

tor admits a convergent perturbation series ! In fact, quite unexpectedly,

the propagators for all the potentials (5) admit convergent perturbation

series for their propagators while this is not the case for the corresponding

“Euclidean” heat equations !

The potentials considered above are singular at infinity but smooth

locally. This however is not a crucial limitation, and can be relaxed.8

5. Boundary Value Problems

Quantum dynamics on a restricted manifold M ⊂ Rd will in general require

boundary conditions on ∂M.10

A simple case is the restriction of position space to the positive half-line:

M = R+ ⊂ R1.

Boundary conditions are required at x = 0. To make the Hamiltonian H =

H0 +V self-adjoint and time development unitary, all wave functions in the

domain of H =Hα,β should obey

lim
x→+0

(αψ(x) − βψ′(x)) = 0

for a fixed pair of real α, β. Such general boundary conditions are fulfilled

for

KV (x, t | x0, t0) = KV̂ (x, t | x0, t0) +KV̂ (x, t | −x0, t0)
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if we put

V̂ (x) = γδ(x) + V (|x|) , γ = α/β.

This kind of potential is admissible as stated in Ref. 8.

6. Beyond Perturbation Theory

All the above examples admit a perturbation expansion for the Green func-

tion. This restriction, however, is not an essential one. Up to trivial factors,

the T-transform of the Feynman integrand solves the Schrödinger equation

(
i
∂

∂t
+

1

2
△d − V (x) − x · f ′́

(t)

)
K(f) (x, t | x0, t0) = 0 (10)

and admissibility hinges on the existence of a perturbation series only in

the Kato-small auxiliary term x · f ′́
(t) .

For quantum dynamics in a bounded domain this perturbation is in

fact even bounded and convergence of the corresponding series, hence the

required holomorphy of the T-transform can be shown easily.11 ForM = Rd

an operator theoretic proof is complicated by the fact that the perturbation

is time-dependent; a path space argument may be more effective.

As pointed out by Doss12 there is a solution ψ on [0, T ] × Rd for the

Schrödinger equation, obtainable through complex scaling of Brownian mo-

tion in the Feynman-Kac formula for the heat equation

ψ(t, x) = EB.M.

(
exp

(
− i

∫ t

0

Ṽ (x +
√
iBr)dr

)
f̃
(
x+

√
iBt
)
)

for wave functions f and potentials V which admit suitable analytic con-

tinuations, such as e.g. the non-perturbative interactions

V (x) = gx4n+2.

Clearly the expression inside the expectation needs to be integrable in this

approach; for the existence of the T-transform in the sense of the charac-

terization theorem we only need to include the extra factor

ϕf (ω) ≡ exp

(
i

∫
ω(t)f(t)dt

)
, f ∈ S(R),

which can easily be dominated.13
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7. A Glimpse at (E)QFT

Is there a generalized “vacuum density” ρ ∈ (S)∗, such that for quantum

fields ϕ – canonical, and/or Euclidean – and hopefully non-trivial,

〈Ω |F (ϕ)|Ω〉 = < ρ, F > with ρ ∈ (S)∗?

In other words: can we make sense of this elusive quantity, the “vacuum

density”14 ρ, as a generalized function of white noise? The answer turned

out to be in the affirmative: physical vacuum densities (Euclidean and

Minkowski, P (ϕ)2, Sine-Gordon, etc.) are positive Hida distributions.15–17

Proofs of this use the “Froehlich bounds”. As a result, the Schwinger func-

tions admit a convergent generating function

σ(f) =
∑ in

n!
〈Ω |ϕneucl(f)|Ω〉 =

∑ in

n!

∫
dnxf(x1) . . . f(xn)σ(x1, . . . , xn).

Nothing is known about the convergence after continuation from

Schwinger’s σ to time-ordered functions τ with the proper Minkowski space

arguments, except for the trivial case of free fields where the series continues

to converge. This would imply a representation

τ(f) =

∫

S∗(R)

ei〈ω,f〉ρ (ω)dµ(ω),

again with a generalized white noise function ρ (ω), but in this case not

giving rise to a measure.

8. Things to be Done

• More on non-perturbative Feynman integrals: relax integrability.

• Time ordered expectation values of quantum fields: Is
(
Ω, T eiϕ(f)Ω

)

holomorphic in f?

• A new look at the change of variables in the Feynman integral.

References

1. I. M. Gelfand and A. M. Yaglom, J. Math. Phys. 1, 48 (1960).
2. H. Cameron, J. Math. and Phys. 39, 126 (1960).
3. T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White Noise. An Infinite

Dimensional Calculus (Kluwer Academic, Dordrecht, 1993).
4. Z.-Y. Huang and J.-A. Yan, Introduction to Infinite Dimensional Stochastic

Analysis (Kluwer, Dordrecht, 2000).
5. H. H. Kuo, White Noise Distribution Theory (CRC Press, Boca Raton, 1996).
6. N. Obata, White Noise Calculus and Fock Space, Lect. Notes Math. 1577

(Springer, Berlin/Heidelberg, 1994).



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Feynman integrals as generalized functions on path space: things done and open . . . 85

7. Yu. G. Kondratiev and L. Streit, Reports on Math. Phys. 33, 341 (1993).
8. M. de Faria, M.-J. Oliveira, and L. Streit, J. Math. Phys. 46, 063505 (2005).
9. T. Kuna, L. Streit, and W. Westerkamp, J. Math. Phys. 39, 4476 (1998).

10. C. Bernido, V. Bernido, and L. Streit, in preparation.
11. M. de Faria, J. Potthoff, and L. Streit, J. Math. Phys. 32, 2123 (1991).
12. H. Doss, Comm. Math. Phys. 73, 247 (1980).
13. M. Grothaus, L. Streit, and A. Vogel, in preparation.
14. F. Coester and R. Haag, Phys. Rev. 117, 1137 (1960).
15. S. Albeverio, T. Hida, J. Potthoff, and L. Streit, Phys. Lett. B 217, 511

(1989).
16. S. Albeverio, T. Hida, J. Potthoff, M. Röckner, and L. Streit, Rev. Math.

Phys. 1, 291 and 313 (1990).
17. J. Potthoff and L. Streit, J. Funct. Anal. 111, 295 (1993).



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

86

ACCELERATED PATH-INTEGRAL

CALCULATIONS VIA EFFECTIVE ACTIONS
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We give an overview of a recently developed method which systematically im-
proves the convergence of generic path integrals for transition amplitudes, par-
tition functions, expectation values, and energy spectra. This was achieved by
analytically constructing a hierarchy of discretized effective actions indexed by
a natural number p and converging to the continuum limit as 1/Np. We analyze
and compare the ensuing increase in efficiency of several orders of magnitude,
and perform series of Monte Carlo simulations to verify the results.

Keywords: Effective action; Many-body system; Monte Carlo simulation.

1. Introduction

Path integral formalism offers a general framework for treatment of quan-

tum theories.1 Functional integrals provide easy way for generalization and

extension of quantization methods to more complex physical systems, in-

cluding systems with no classical counterparts. Originally introduced in

quantum mechanics and later most widely used in high energy theory and

condensed matter, path integrals can today be found in almost all areas of

physics, ranging from atomic, molecular and nuclear physics, to the physics

of polymers, biophysics, and chemistry. Moreover, path integrals are start-

ing to play important roles in several areas of mathematics, even in modern

finance. An up to date overview of the path integral formalism and its

various applications can be found in Kleinert’s book.2

The definition of path integrals as a limit of multiple integrals over a

discretized theory makes their numerical evaluation quite natural. How-

ever, path integrals remain notoriously demanding of computing. Consid-

erable research effort has been devoted to the development of approaches

that enable faster numerical convergence to the continuum. Efficient imple-
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mentation of path integral Monte Carlo algorithms, coupled with various

model-related approximations, has enabled the application of path integrals

to real-world problems.3 For a long time the state of the art result was 1/N4

convergence of discretized partition functions.4,5 This was achieved using

a generalized form6 of the Trotter formula. However, it is only the integral

over all the diagonal amplitudes (i.e. cyclicity of the trace) that has the

O(1/N4) behavior, so such approach cannot be applied to the calculation

of general amplitudes or associated (non-thermal) expectation values.

A recently developed method for analytical construction of improved

discretized effective actions,7–9 based on the study of relationship between

discretizations of different coarseness,10,11 has led to substantial speedup

of numerical path-integral calculations of several orders of magnitude. Un-

til now, the method has been limited to one-particle one-dimensional sys-

tems. Here we present the generalization of this formalism to generic non-

relativistic many-particle quantum systems in arbitrary dimensions.

2. Improved Discretized Effective Actions

The presented method is applicable to all quantum theories. For simplicity,

we illustrate the details of the derivation on the case of a non-relativistic

quantum system consisting of M distinguishable particles in d spatial di-

mensions, interacting through the potential V . The imaginary time ampli-

tude A(a, b;T ) for a transition from initial state |a〉 to final state |b〉 in time

T is given as the N → ∞ limit of the discretized amplitude

AN (a, b;T ) =
1

(2πε)
MNd

2

∫
dq1 · · · dqN−1 e

−SN . (1)

In this expression,N is the discretization coarseness (number of time slices),

while SN is the naively discretized action,

SN =

N−1∑

n=0

ε

(
M∑

i=1

1

2

(
δn,i
ε

)2

+ V (q̄n)

)
. (2)

Here the time step is ε = T/N , while discretized velocities are defined as

δn,i = qn+1,i − qn,i, and mid-point coordinates q̄n = (qn + qn+1)/2. The

index n goes over N time steps, and index i goes over M particles.

The above definition of the path integral requires the transition from

continuum to discretized theory, i.e. the introduction of coarseness N . Such

expressions converge to the continuum very slowly, typically as O(1/N).

One of the key features of definition (1) is that the discretization is not

unique. In fact, the choice of discretization strongly affects convergence of
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discretized amplitudes to the continuum. In a recent paper10 we have shown

that for a general theory there exists an ideal discretization (equivalently,

an ideal discretized action S∗), giving the exact (continuum limit) result

for any discretization coarseness N

A∗
N (a, b;T ) = A(a, b;T ) .

This is easily seen if we recall that the defining relation for path integrals as

the continuum limit of discretized amplitudes follows from the completeness

relation

A(a, b;T ) =

∫
dq1 · · · dqN−1 A(a, q1; ε) · · ·A(qN−1, b; ε) , (3)

through the substitution of short-time amplitudes A(qn, qn+1; ε) calculated

to first order in time step ε. A faster converging result may be obtained by

evaluating the amplitudes under the integral in Eq. (3) to higher orders in

ε. From the above relation we directly see that the ideal discretized action

S∗ leads to exact propagation, and is given in terms of the exact amplitude,

A(qn, qn+1; ε) = (2πε)
−Md

2 e−S
∗
n . (4)

The ideal discretized action S∗ is simply the sum of expressions S∗
n. We

will use Eq. (4) to calculate the ideal discretized action as a power series

in ε, which starts from the naive action (2) as the zeroth order term. The

details of this expansion have been inspired by an analogous derivation given

in Kleinert’s book.2 The outlined approach makes possible the systematic

improvement of numerical convergence of path integral calculations, and

the construction of a hierarchy of discretized actions S
(p)
N , denoted by level

number p, giving improved convergence

A
(p)
N (a, b;T ) = A(a, b;T ) +O(1/Np). (5)

In order to calculate the short-time amplitude to the desired order in ε,

we shift integration variable q = ξ + x about a fixed referent trajectory ξ,

and the time to s ∈ [−ε/2, ε/2], so that the short-time amplitude becomes

A(qn, qn+1; ε) = e−Sn[ξ]

∫ x(ε/2)=0

x(−ε/2)=0

[dx] e
−

R ε/2
−ε/2 ds( 1

2 ẋ
2+U(x;ξ)) . (6)

The referent trajectory ξ satisfies the same boundary conditions as q, which

implies that x vanishes at the boundaries. The action Sn[ξ] is defined as

Sn[ξ] =

∫ ε/2

−ε/2
ds

(
1

2
ξ̇2 + V (ξ)

)
, (7)
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and U(x; ξ) = V (ξ+x)−V (ξ)−xξ̈. The amplitude may now be written as

A(qn, qn+1; ε) =
e−Sn[ξ]

(2πε)
Md
2

〈
e
−

R ε/2
−ε/2 ds U(x;ξ)

〉
, (8)

where 〈...〉 denotes expectation values with respect to free massless theory.

The above expression holds for any choice of referent trajectory ξ.

Expansion in powers of U gives

〈
e−

R
ds U(x;ξ)

〉
= 1−

∫
ds 〈U(x; ξ)〉+ 1

2

∫ ∫
dsds′ 〈U(x; ξ)U(x′; ξ′)〉+ . . . ,

where x′ = x(s′), ξ′ = ξ(s′), and U(x; ξ) is further expanded around the

referent trajectory ξ. The expectation values of products 〈xi(s) . . . xj(s′)〉 is

calculated through the use of the massless free theory generating functional.

Note that the generating functional (and as a result the expectation values)

do not depend on the choice of ξ. However, different choices of ξ are related

to different approximation techniques: the choice of classical trajectory for

ξ corresponds to the semiclassical expansion, while the choice of a linear

referent trajectory is the simplest way to obtain short-time expansion.

In order to perform the remaining integrations over s in Eq. (8), due to

the explicit dependence of the referent trajectory on s, we first expand the

potential U and all its derivatives around some reference point. For example,

in the mid-point prescription, we choose q̄n as that reference point. Once

one chooses the trajectory ξ(s), all expectation values in Eq. (8) are given

in terms of quadratures. In this way we obtain a double expansion for S∗

in ε and in δn, i2. In order to retain only the terms that contribute up to a

certain order in ε, we further use the fact that the short time propagation

of the considered class of theories satisfies, to leading order, the diffusion

relation δ2n,i ∝ ε.

The explicit analytical expressions for the many-particle discretized ef-

fective action have been so far derived for p ≤ 12. The derived expressions

become algebraically more complex, and such calculations require the use

of some of the available packages for symbolic calculus. Note that, in prin-

ciple, there are no obstacles in going to as high values of p as desired. The

derived higher level effective actions can be found on our web site.12 We

stress that in would also be quite interesting to attack the problem of solv-

ing Eq. (4) through the use of other approximation schemes, particularly

those that are non-perturbative in ε, e.g. the Feynman-Kleinert variational

approach.13–15
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90 A. Balaž, I. Vidanović, A. Bogojević, and A. Belić
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Fig. 1. Deviations of amplitudes from the continuum limit vs. N for two-particle system
(9) in two dimensions. Solid lines give the leading 1/Np behavior, while dashed lines
correspond to the fitted polynomial functions.

3. Numerical Results

In order to verify the analytically derived speedup in convergence of dis-

cretized path integrals, we have performed a series of path integral Monte

Carlo simulations of transition amplitudes for a two-dimensional system of

two particles interacting through the potential

V (~r1, ~r2) =
1

2
(~r1 − ~r2)

2 +
g1
24

(~r1 − ~r2)
4 +

g2
2

(~r1 + ~r2)
2 . (9)

All numerical simulations were done using the latest version of our

SPEEDUP12 program that has been extended so as to include multi-particle

multi-dimensional systems. The simulations have been performed for differ-

ent values of couplings g1 and g2 and for a variety of initial and final states.

The associated continuum limit amplitudes A(p) have been estimated by

fitting polynomials in 1/N to the discretized values A
(p)
N , according to the

analytically derived relation (5). For all values of p the fitted continuum

values A(p) agree within the error bars. Figure 1 gives the plot of the devi-

ations of discretized amplitudes from the continuum limit for two-particle

system (9) in two dimensions, with g1 = 10, g2 = 0, T = 1, and initial

and final states a = (0, 0; 0.2, 0.5), b = (1, 1; 0.3, 0.6). The number of MC

samples was from 106 for p = 1 to 1010 for p = 4. The increase of level

p leads to an ever faster approach to the continuum. The obtained 1/Np

dependence gives explicit verification of the analytically derived increase in

convergence. As a result of the newly presented method, the usual simu-
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lations proceed much faster than by using standard calculation schemes.

Note that even the p = 4 curve corresponds to a precision of four decimal

places in the case of an extremely coarse discretization such as N = 2.

4. Conclusions

We have presented a derivation of discretized effective actions leading to

substantial, systematical speedup of numerical calculation of path inte-

grals of a generic many-particle non-relativistic theory. The derived speedup

holds for all path integrals - for transition amplitudes, partition functions,

expectation values, energy levels. The newly calculated discretized effective

actions agree with previous approaches. The obtained analytical results

have been numerically verified through simulations of path integrals for an

anharmonic oscillator with quartic coupling for two particles in two spatial

dimensions. The two principle advantages of the new method are: simpler

derivation and straightforward generalization to more complex systems.
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Scientific Computing Laboratory, Institute of Physics Belgrade,
Pregrevica 118, 11080 Belgrade, Serbia

∗E-mail: ivanavi@phy.bg.ac.yu
URL: http://scl.phy.bg.ac.yu/

We present an application of a recently developed method for accelerated Monte
Carlo computations of path integrals to the problem of energy spectra calcu-
lation of generic many-particle systems. We calculate the energy spectra of a
two-particle two dimensional system in a quartic potential using the hierar-
chy of discretized effective actions, and demonstrate agreement with analytical
results governing the increase in efficiency of the new method.
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In addition to their key position in the analytical approach to quantum

theory, path integrals also play an important role in the computational

simulations of realistic many-body systems. The starting point in these cal-

culations is the time-sliced expression for the general quantum-mechanical

amplitude,1

AN (a, b;T ) =
1

(2πε)
MNd

2

∫
dq1 · · ·dqN−1 e

−SN , (1)

where N is the number of time slices ε = T/N and SN is the naively

discretized action for a system of M nonrelativistic particles in d spatial

dimensions. The N → ∞ limit of the above discretized amplitude gives the

continuum amplitude A(a, b;T ).

The performance of the numerical algorithms for the calculation of path

integrals is directly determined by the efficiency of the applied integration

technique, as well as by the speed of convergence of the discretized am-

plitudes to the continuum. The first problem has been essentially solved

through the development of modern efficient integration techniques. Im-
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provement of performance now only depends on improved convergence of

discretized expressions to the continuum.

In a recent series of papers2–5 we focused on the systematic analytical

construction of effective actions S
(p)
N that improve convergence of discretized

transition amplitudes, partition functions and expectation values to the

continuum limit for one-particle one-dimensional systems. More recently6

we have extended this to general many-particle non-relativistic systems,

with the convergence of discretized amplitudes

A
(p)
N (a, b;T ) = A(a, b;T ) +O(1/Np), (2)

with p ≤ 12, where p = 1 corresponds to naive discretization. This improved

convergence translates directly into significant speedup of numerical calcu-

lations.

In this paper we focus on the benefits of the above improved convergence

of amplitudes for the evaluation of energy spectra of many-body systems.

The speedup in the calculation of amplitudes leads to the same improvement

in the convergence of partition functions, owing to the relation

ZN(β) =

∫
dqAN (q, q;β) , (3)

where β is the inverse temperature. The partition function is the central

object for obtaining information about various thermodynamical quantities.

The numerical results of a series of Monte Carlo (MC) simulations

performed clearly demonstrate the analytically derived speedup. Fig-

ure 1 shows increase in convergence of discretized free energy FN (β) =

− logZN (β)/β as the level p of the used effective action S
(p)
N increases. This

is illustrated on the case of a two-dimensional system of two distinguishable

particles interacting through a quartic potential

V (~r1, ~r2) =
1

2
(~r1 − ~r2)

2 +
g1
24

(~r1 − ~r2)
4 +

g2
2

(~r1 + ~r2)
2 . (4)

The convergence of discretized free energies, presented by solid lines in

Fig. 1, is governed by a 1/Np term, corresponding to the analog of the

equation Eq. (2) for FN .

The partition function offers a straightforward way for extracting infor-

mation about the energy spectrum,7 since

Z(β) =

∞∑

n=0

dne
−βEn , (5)
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Fig. 1. Convergence of discretized free energies FN (β) to the continuum as a function
of N for the quartic potential (g1 = 1, g2 = 1, β = 1). Number of MC samples is 107.

where En and dn denote corresponding energy levels and degeneracies. Sim-

ilarly to the free energy, we can introduce a set of auxiliary functions

fn(β) = − 1

β
ln
Z(β) −∑n−1

i=0 die
−βEi

dn
, (6)

which can be fitted for large β to

fn(β) ≈ En − 1

β
ln(1 + ae−βb) , (7)

and which tend to the corresponding energy levels En. In this way, by

studying the large β behavior of the functions fn, one can obtain the energy

spectrum of the model.

In numerical simulations we are inevitably limited to the finite range of

inverse temperatures. In addition, the above procedure for the construction

of the auxiliary functions fn is recursive, i.e. in order to construct fn we need

to know all the energy levels below En. This leads to the accumulation of

errors as n increases, and practically limits the number of energy levels that

can be calculated. Note that the orders of magnitude increase in precision

of the presented method reduces the magnitude of the accumulated error

and thus allows us to extract viable information about a larger number of

energy levels.
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Table 1. Energy levels of the quartic potential, g2 = 1/9. The
corresponding degeneracies of the calculated energy levels are
found to be d0 = 1, d1 = 2, d2 = 3, d3 = 6.

g1 E0 Epert
0 E1 E2 E3

0 1.8857(1) 1.88562 2.3571(6) 2.83(1) 3.3(2)
0.1 1.9019(2) 1.90187 2.374(2) 2.82(1) —
1 2.0228(2) 2.03384 2.497(3) 2.94(3) —
10 2.6327(6) — 3.098(4) 3.57(3) —

Table 1 gives the calculated energy levels for quartic coupling from

g1 = 0 (free theory) to g1 = 10 (strongly interacting theory), obtained

using the p = 5 effective action. The number of MC samples was 109 with

discretization coarseness N = 64, chosen so that FN (β) = F (β) within the

statistical error over the range 1 ≤ β ≤ 11, yielding four decimal places

precision for the ground energy level. The employment of higher level ef-

fective actions makes it possible to use much coarser discretization, thus

substantially reducing the CPU time. For comparison, the table also con-

tains values of the ground state energy Epert
0 obtained using perturbation

expansion up to third order in g1.

To conclude, we have applied the recently derived many-particle dis-

cretized effective actions to the calculation of low-lying energy spectra. Nu-

merical results confirm the analytically derived increase in convergence of

discretized expressions, resulting in substantially more efficient simulations.
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All the geometric phases, adiabatic and non-adiabatic, are formulated in a
unified manner in the second quantized path integral formulation. The ex-
act hidden local symmetry inherent in the Schrödinger equation defines the
holonomy. All the geometric phases are shown to be topologically trivial. The
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formulated in the path integral.
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1. Second Quantization

To analyze various geometric phases in a unified manner,1–8 we start with

an arbitrary complete basis set
∫
d3xv⋆n(t, ~x)vm(t, ~x) = δnm and expand the

field variable as ψ(t, ~x) =
∑
n bn(t)v(t, ~x). The action

S =

∫ T

0

dtd3x[ψ⋆(t, ~x)i~
∂

∂t
ψ(t, ~x) − ψ⋆(t, ~x)Ĥ(~̂p, ~̂x,X(t))ψ(t, ~x)] (1)

with background variables X(t) = (X1(t), X2(t), ..) then becomes

S =
∫ T
0
dt{∑n b

⋆
n(t)i~∂tbn(t) −Heff} with the effective Hamiltonian in the

second quantized version

Ĥeff(t) =
∑

n,m

b̂†n(t)[
∫
d3xv⋆n(t, ~x)Ĥ(~̂p, ~̂x,X(t))vm(t, ~x)

−
∫
d3xv⋆n(t, ~x)i~

∂

∂t
vm(t, ~x)]b̂m(t), (2)

and [b̂n(t), b̂
†
m(t)]∓ = δn,m, but statistics is not important in our application.

We use the fermions (Grassmann variables) in the path integral.
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The Schrödinger probability amplitude with ψn(0, ~x) = vn(0, ~x) is de-

fined by11

ψn(t, ~x) = 〈0|ψ̂(t, ~x)b̂†n(0)|0〉

=
∑

m

vm(t, ~x)〈m|T ⋆ exp{− i

~

∫ t

0

Ĥeff(t)dt}|n〉 , (3)

where the Schrödinger picture Ĥeff(t) is defined by replacing b̂n(t) by b̂n(0)

in Ĥeff(t) with time ordering symbol T ⋆ and |n〉 = b̂†n(0)|0〉. The path

integral representation is given by

〈m|T ⋆ exp{− i

~

∫ t

0

Ĥeff(t)dt}|n〉 =

∫ ∏

n

Db⋆nDbnφ⋆m(b⋆n(t))

× exp{ i
~

∫ t

0

dt[b⋆n(t)i~∂tbn(t) −Heff(t)}φn(b⋆n(0)) (4)

with suitable wave functions φ⋆m(b⋆n(t)) and φn(b⋆n(0)) in the holomorphic

representation .9 The general geometric terms automatically appear in the

second term of the exact Heff(t) of Eq. (2) and thus the naive holomorphic

wave functions are sufficient. This means that the analysis of geometric

phases is reduced to a simple functional analysis in the second quantized

path integral.

If one uses a specific basis

Ĥ(~̂p, ~̂x,X(t))vn(~x;X(t)) = En(X(t))vn(~x;X(t))

and assumes ”diagonal dominance” in the effective Hamiltonian in (4), we

have the adiabatic formula

ψn(t, ~x) ≃ vn(~x;X(t)) exp{− i

~

∫ t

0

[En(X(t)) − v⋆ni~
∂

∂t
vndt} , (5)

which shows that the adiabatic approximation is equivalent to the approx-

imate diagonalization of Heff , and thus the geometric phases are dynami-

cal.10,11

2. Hidden Local Gauge Symmetry

Since ψ(t, ~x) =
∑

n bn(t)vn(t, ~x), we have an exact local symmetry11

vn(t, ~x) → v′n(t, ~x) = eiαn(t)vn(t, ~x), bn(t) → b′n(t) = e−iαn(t)bn(t)

for n = 1, 2, .... This symmetry means an arbitrariness in the choice of

the coordinates in the functional space. The exact Schrödinger amplitude

ψn(t, ~x) = 〈0|ψ̂(t, ~x)b̂†n(0)|0〉 is transformed under this substitution rule as
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ψ′
n(t, ~x) = eiαn(0)ψn(t, ~x) for any t. Namely, we have the ray representation

with a constant phase change, and we have an enormous hitherto unrecog-

nized exact hidden symmetry behind the ray representation.

The combination ψn(0, ~x)
⋆ψn(T, ~x) thus becomes manifestly gauge in-

variant. By this way, one can identify the unique gauge invariant phase, for

example, in the adiabatic approximation (5).11

Parallel transport and holonomy: The parallel transport of vn(t, ~x) is

defined by
∫
d3xv†n(t, ~x) ∂∂tvn(t, ~x) = 0. By using the hidden local gauge

v̄n(t, ~x) = eiαn(t)vn(t, ~x) for general vn(t, ~x), one may impose the condition∫
d3xv̄†n(t, ~x) ∂∂t v̄n(t, ~x) = 0 which gives

v̄n(t, ~x) = exp[i

∫ t

0

dt′
∫
d3xv†n(t′, ~x)i∂t′vn(t

′, ~x)]vn(t, ~x). (6)

The holonomy for a cyclic motion is then defined by

v̄†n(0, ~x)v̄n(T, ~x) = v†n(0, ~x)vn(T, ~x) exp[i

∫ T

0

dt′
∫
d3xv†n(t′, ~x)i∂t′vn(t

′, ~x)].

This holonomy of basis vectors, not Schrödinger amplitude, determines all

the geometric phases in the second quantized formulation.

3. Non-Adiabatic Phase

3.1. Cyclic evolution

The cyclic evolution is defined by ψ(T, ~x) = eiφψ(0, ~x) or by

ψ(t, ~x) = eiφ(t)ψ̃(t, ~x), ψ̃(T, ~x) = ψ̃(0, ~x) (7)

with φ(T ) = φ, φ(0) = 0. If one chooses the first element of the arbitrary

basis set {vn(t, ~x)} such that v1(t, ~x) = ψ̃(t, ~x), one has diagonal Ĥeff(t)

and

ψ(t, ~x) = v1(t, ~x) exp{− i

~
[

∫ t

0

dt

∫
d3xv⋆1(t, ~x)Ĥv1(t, ~x)

−
∫ t

0

dt

∫
d3xv⋆1(t, ~x)i~∂tv1(t, ~x)]} (8)

in (3), and the factor12

β =

∮
dt

∫
d3xv⋆1(t, ~x)i

∂

∂t
v1(t, ~x) (9)

gives the non-adiabatic phase.5
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Note that the so-called ”projective Hilbert space” and the transforma-

tion ψ(t, ~x) → eiω(t)ψ(t, ~x), which is not the symmetry of the Schrödinger

equation, is not used in our formulation. Also, the holonomy of the basis

vector, not the Schrödinger amplitude, determines the non-adiabatic phase.

Our derivation of the non-adiabatic phase (9), which works in the path in-

tegral (4) also, is quite different from that in Ref. 5.

3.2. Non-cyclic evolution

It is shown that any exact solution of the Schrödinger equation is written

in the form,13

ψk(~x, t) = vk(~x, t) exp{− i

~

∫ t

0

∫
d3x[v†k(~x, t)Ĥ(t)vk(~x, t)

−v†k(~x, t)i~
∂

∂t
vk(~x, t)]} , (10)

if one suitably chooses the basis set {vk(~x, t)}, though the periodicity is

generally lost, vk(~x, 0) 6= vk(~x, T ).

By choosing a suitable hidden symmetry vk(t, ~x) → eiαk(t)vk(t, ~x), one

can identify the gauge invariant non-cyclic and non-adiabatic phase6 as the

second term in Eq. (10).13 The present definition also works in the path

integral (4).

It is shown that geometric phases for mixed states7,8 are similarly for-

mulated in the second quantized formulation.13

4. Exactly Solvable Example

We study the model

Ĥ = −µ~ ~B(t)~σ, ~B(t) = B(sin θ cosϕ(t), sin θ sinϕ(t), cos θ) (11)

with ϕ(t) = ωt and constant ω, B and θ.

One can diagonalize the second quantized Heff by defining the constant

α by 2µ~B sinα = ~ω sin(θ − α) and the basis vectors

w+(t) =

(
cos 1

2 (θ − α)e−iϕ(t)

sin 1
2 (θ − α)

)
, w−(t) =

(
sin 1

2 (θ − α)e−iϕ(t)

− cos 1
2 (θ − α)

)

which satisfy w±(0) = w±(T ) with T = 2π
ω , and

w†
±(t)Ĥw±(t) = ∓µ~B cosα, w†

±(t)i~∂tw±(t) =
~ω

2
(1 ± cos(θ − α)).
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The effective Hamiltonian Heff is now diagonal, and the exact solution of

the Schrödinger equation i~∂tψ(t) = Ĥψ(t) is given by13

ψ±(t) = w±(t) exp{− i

~

∫ t

0

dt′[w†
±(t′)Ĥw±(t′) − w†

±(t′)i~∂t′w±(t′)]}.(12)

This exact solution is regarded either as an exact version of the adiabatic

phase or as the cyclic non-adiabatic phase in our formulation.

One can examine some limiting cases of the exact solution:

(i) For adiabatic limit ~ω/(~µB) ≪ 1, we have the parameter α ≃
[~ω/2~µB] sin θ, and one recovers the Berry’s phase by setting α = 0

ψ±(T ) ≃ exp{iπ(1 ± cos θ)} exp{± i

~

∫ T

0

dtµ~B}w±(T ). (13)

(ii) For non-adiabatic limit ~µB/(~ω) ≪ 1, we have the parameter θ −
α ≃ [2~µB/~ω] sin θ, and one obtains the trivial geometric phase by setting

α = θ

ψ±(T ) ≃ w±(T ) exp{± i

~

∫ T

0

dt[µ~B cos θ]}.

This shows that the “monopole-like” phase in (13) is smoothly connected

to a trivial phase in the exact solution (12), and thus the geometric phase

is topologically trivial.10

5. Chiral Anomaly

It is known that all the anomalies in gauge field theory14,15 are understood

in the path integral as arising from the non-trivial Jacobians under sym-

metry transformations.16,17 For example, in the fermionic path integral
∫

Dψ̄Dψ exp{i
∫
d4x[ψ̄iγµ(∂µ − igAµ)ψ]} (14)

and for infinitesimal chiral transformation ψ(x) → eiω(x)γ5ψ(x), ψ̄(x) →
ψ̄(x)eiω(x)γ5 , we have

Dψ̄Dψ → exp{−i
∫
d4xω(x)

g2

16π2
ǫµναβFµνFαβ}Dψ̄Dψ. (15)

The anomaly is integrated for a finite transformation, and it gives rise to

the so-called Wess-Zumino term.18

Based on this observation, one recognizes the following differences be-

tween the geometric phases and chiral anomaly:19

1. The Wess-Zumino term is added to the classical action in path integral,
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whereas the geometric term appears inside the classical action sandwiched

by field variables as in (2). Geometric phases are thus state-dependent.

2. The topology of chiral anomaly, which is provided by gauge fields, is ex-

act, whereas the topology of the adiabatic geometric phase, which is valid

only in the adiabatic limit, is trivial.
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This is a survey of our work in Ref. 1. We give a fairly general class of function-
als for which the phase space Feynman path integrals have a mathematically
rigorous meaning. More precisely, for any functional belonging to our class,
the time slicing approximation of the phase space path integral converges uni-
formly on compact subsets of the phase space. Our class of functionals is rich
because it is closed under addition and multiplication. The interchange of the
order with the Riemann integrals, the interchange of the order with a limit and
the perturbation expansion formula hold in the phase space path integrals. The
use of piecewise bicharacteristic paths naturally leads us to the semiclassical
approximation on the phase space.
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1. Introduction

Let u(T ) be the solution for the Schrödinger equation such that

(i~∂T −H(T, x,
~

i
∂x))u(T ) = 0 , u(0) = v , (1)

∗This work was supported by MEXT. KAKENHI 18740077 and at GFMUL in Portugal
by POCTI/MAT/34924.
†This work was supported by JSPS. KAKENHI(C) 17540170.
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where 0 < ~ < 1 is the Planck parameter. In the theory of Fourier integral

operators (cf. H. Kitada and H. Kumano-go2), we treat u(T ) as

u(T ) =

(
1

2π~

)d ∫

Rd

K(T, x, ξ0)v̂(ξ0)dξ0

=

(
1

2π~

)d ∫

Rd

∫

Rd

K(T, x, ξ0)e
−ix0·ξ0v(x0)dx0dξ0 . (2)

Using the phase space Feynman path integral,3 we formally write

K(T, x, ξ0)e
−ix0·ξ0 =

∫
e
i
~
φ[q,p]D[q, p] . (3)

Here (q, p) : [0, T ] → R2d is the path in the phase space with q(T ) = x,

q(0) = x0 and p(0) = ξ0, and φ[q, p] is the action defined by

φ[q, p] =

∫

[0,T )

p(t) · dq(t) −
∫

[0,T )

H(t, q(t), p(t))dt , (4)

and the phase space path integral
∫

∼ D[q, p] is a sum over all the paths

(q, p). Feynman4 explained his original configuration space path integral as

a limit of a finite dimensional integral, which is now called the time slicing

approximation. Furthermore, Feynman considered the configuration space

path integrals with general functional as integrand (cf. L. S. Schulman5).

In some papers of physics, the phase space path integral has some interpre-

tations of the paths (q, p) (cf. Schulman5).

In this paper, using the time slicing approximation via piecewise bichar-

acteristic paths, we give a fairly general class F of functionals F [q, p] so that

the phase space path integrals with functionals F [q, p]
∫
e
i
~
φ[q,p]F [q, p]D[q, p] , (5)

have a mathematically rigorous meaning. More precisely, for any F [q, p] ∈
F , the time slicing approximation of (5) converges uniformly on compact

subsets of R3d with respect to the endpoints (x, ξ0, x0).

For other mathematical rigorous definitions of phase space path inte-

grals, see I. Daubechies–J. R. Klauder6 , S. Albeverio–G. Guatteri–S. Maz-

zucchi7 and O. G. Smolyanov–A. G. Tokarev–A. Truman.8

2. Main Results

Assumption 2.1. The Hamiltonian function H(t, x, ξ) of (1) is a real-

valued function of (t, x, ξ) ∈ R × Rd × Rd. For any multi-indices α, β,
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∂αx ∂
β
ξH(t, x, ξ) is continuous in R × Rd × Rd, and there exists a positive

constant κα,β such that

|∂αx ∂βξH(t, x, ξ)| ≤ κα,β(1 + |x| + |ξ|)max(2−|α+β|,0) . (6)

Let ∆T,0 = (TJ+1, TJ , . . . , T1, T0) be an arbitrary division of the interval

[0, T ] into subintervals, i.e.,

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 . (7)

Set tj = Tj − Tj−1 for j = 1, 2, . . . , J, J + 1. Let |∆T,0| = max1≤j≤J+1 tj .

Set xJ+1 = x. Let xj ∈ Rd and ξj ∈ Rd for j = 1, 2, . . . , J .

Lemma 2.1. Let j = 1, 2, . . . , J, J + 1 and κ2d(Tj − Tj−1) < 1/2. Then,

for any (xj , ξj−1) ∈ Rd × Rd, there exists a unique solution

q̄Tj ,Tj−1(t) = q̄Tj ,Tj−1 (t, xj , ξj−1) , p̄Tj ,Tj−1(t) = p̄Tj ,Tj−1(t, xj , ξj−1) ,(8)

of the system of equations

∂tq̄Tj ,Tj−1(t) = (∂ξH)(t, q̄Tj ,Tj−1 (t), p̄Tj ,Tj−1(t)) , Tj−1 ≤ t ≤ Tj ,

∂tp̄Tj ,Tj−1 (t) = −(∂xH)(t, q̄Tj ,Tj−1(t), p̄Tj ,Tj−1(t)) , Tj−1 ≤ t ≤ Tj ,

q̄Tj ,Tj−1 (Tj) = xj , p̄Tj ,Tj−1(Tj−1) = ξj−1 . (9)

Using q̄Tj ,Tj−1(t), p̄Tj ,Tj−1 (t), we define the piecewise bicharacteristic path

q∆T,0(t) = q∆T,0(t, xJ+1, ξJ , xJ , ξJ−1, . . . , x1, ξ0, x0) ,

p∆T,0(t) = p∆T,0(t, xJ+1, ξJ , xJ , ξJ−1, . . . , x1, ξ0) , (10)

by

q∆T,0(t) = q̄Tj ,Tj−1 (t, xj , ξj−1) , Tj−1 < t ≤ Tj , q∆T,0(0) = x0 ,

p∆T,0(t) = p̄Tj ,Tj−1(t, xj , ξj−1) , Tj−1 ≤ t < Tj , (11)

for j = 1, 2, . . . , J, J + 1 (see Fig. 1).

Remark 2.1. As a simple case of (10) when T = T1 > T0 = 0, qT,0(t) =

qT,0(t, x, ξ0, x0), pT,0(t) = pT,0(t, x, ξ0) of Theorem 2.4 satisfy

qT,0(t) = q̄T,0(t, x, ξ0) , 0 < t ≤ T , qT,0(0) = x0 ,

pT,0(t) = p̄T,0(t, x, ξ0) , 0 ≤ t < T . (12)

Then φ[q∆T,0 , p∆T,0 ], F [q∆T,0 , p∆T,0 ] are functions of xJ+1, ξJ , xJ , . . . , ξ0, x0.

φ[q∆T,0 , p∆T,0 ] = φ∆T,0(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0) ,

F [q∆T,0 , p∆T,0] = F∆T,0(xJ+1, ξJ , xJ , . . . , ξ1, x1, ξ0, x0) . (13)
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T0 = 0 T1 T2 T3 TJ T = TJ+1

(0, x0)

(T1, x1)

(T2, x2)

(T3, x3)

(TJ , xJ )

(T, x)

Fig. 1. The graphical explanation of q∆T,0 .

We define the phase space Feynman path integral (5) by
∫
e
i
~
φ[q,p]F [q, p]D[q, p] (14)

= lim
|∆T,0|→0

(
1

2π~

)dJ ∫

R2dJ

e
i
~
φ[q∆T,0 ,p∆T,0 ]F [q∆T,0 , p∆T,0 ]

J∏

j=1

dξjdxj ,

if the limit of the right-hand side exists. Even when F [q, p] ≡ 1, the integrals

of the right-hand side of (14) do not converge absolutely. We treat the

multiple integral of (14) as an oscillatory integral.

Definition 2.1 (The class F). Let F [q, p] be a functional whose domain

contains all the piecewise bicharacteristic paths q∆T,0(t), p∆T,0(t) of (10).

We say that F [q, p] ∈ F if F [q, p] satisfies Assumption 2.2.

Assumption 2.2. Let m be a non-negative integer. Let U be a non-negative

constant and let uj, j = 1, 2, . . . , J, J+1 be non-negative parameters depend-

ing on the division ∆T,0 such that
∑J+1
j=1 uj ≤ U <∞. For any non-negative

integer M , there exist positive constants AM , XM such that for any division

∆T,0, any multi-indices αj, βj−1 with |αj |, |βj−1| ≤M , j = 1, 2, . . . , J, J+1

and any integer k with 1 ≤ k ≤ J ,

|(
J+1∏

j=1

∂αjxj ∂
βj−1

ξj−1
)F∆T,0(xJ+1, ξJ , . . . , x1, ξ0, x0)| (15)

≤ AM (XM )J+1(

J+1∏

j=1

(tj)
min(|βj−1|,1))(1 +

J+1∑

j=1

(|xj | + |ξj−1|) + |x0|)m ,
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|(
J+1∏

j=1

∂αjxj ∂
βj−1

ξj−1
)∂xkF∆T,0(xJ+1, ξJ , . . . , x1, ξ0, x0)| (16)

≤ AM (XM )J+1uk(
∏

j 6=k
(tj)

min(|βj−1|,1))(1 +
J+1∑

j=1

(|xj | + |ξj−1|) + |x0|)m .

Theorem 2.1 (Existence of phase space path integrals). Let T be

sufficiently small. Then, for any F [q, p] ∈ F , the right-hand side of (14)

converges on compact subsets of (x, ξ0, x0) ∈ Rd × Rd × Rd.

Theorem 2.2 (Algebra). If F [q, p] ∈ F and G[q, p] ∈ F , then F [q, p] +

G[q, p] ∈ F and F [q, p]G[q, p] ∈ F .

Remark 2.2. Roughly speaking, F contains the following examples:

(1) The evaluation functionals with respect to (t, q) independent of the

momentum p, F [q] = B(t, q(t)) ∈ F if |∂αxB(t, x)| ≤ Cα(1 + |x|)m. In

particular, F [q, p] ≡ 1 ∈ F .

(2) The Riemann integrals F [q, p] =
∫ T ′′

T ′ B(t, q(t), p(t))dt ∈ F if

|∂αx ∂βξB(t, x, ξ)| ≤ Cα,β(1 + |x| + |ξ|)m.

(3) If |∂αx ∂βξB(t, x, ξ)| ≤ Cα,β , then F [q, p] = e
R T ′′
T ′ B(t,q(t),p(t))dt ∈ F .

For the details of the conditions of B, see our paper.1 Applying Theorem

2.2 to these examples, we can produce many functionals F [q, p] ∈ F .

Lemma 2.2. Let 4κ2dT < 1/2. Then, for any (xJ+1, ξ0) ∈ Rd×Rd, there

exists the solution (ξ∗J , x
∗
J , . . . , ξ

∗
1 , x

∗
1) such that

(∂(ξJ ,xJ ,...,ξ1,x1)φ∆T,0)(xJ+1, ξ
∗
J , x

∗
J , . . . , ξ

∗
1 , x

∗
1, ξ0) = 0 . (17)

We define D∆T,0(xJ+1, ξ0) by

D∆T,0(xJ+1, ξ0) (18)

= (−1)dJ det(∂2
(ξJ ,xJ ,...,ξ1,x1)

φ∆T,0)(xJ+1, ξ
∗
J , x

∗
J , . . . , ξ

∗
1 , x

∗
1, ξ0) .

Theorem 2.3. For any multi-indices α, β, there exists a positive constant

Cα,β independent of ∆T,0 such that

|∂αx ∂βξ0(D∆T,0(x, ξ0) −D(T, x, ξ0))| ≤ Cα,β |∆T,0|T , (19)

with a function D(T, x, ξ0). We use this limit function D(T, x, ξ0) as a

Hamiltonian version of the Morette Van Vleck determinant.9
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Theorem 2.4 (Semiclassical approximation as ~ → 0). Let T be suf-

ficiently small. Then, for any F [q, p] ∈ F , we can write
∫
e
i
~
φ[q,p]F [q, p]D[q, p] (20)

= e
i
~
φ[qT,0,pT,0](D(T, x, ξ0)

−1/2F [qT,0, pT,0] + ~Υ(T, ~, x, ξ0, x0)) .

Furthermore, for any non-negative integer M , there exist a positive constant

CM and a positive integer M ′ independent of 0 < ~ < 1 such that

|∂αx ∂βξ0Υ(T, ~, x, ξ0, x0)| ≤ CMAM ′T (U + T )(1 + |x| + |ξ0| + |x0|)m , (21)

for any multi-indices α, β with |α|, |β| ≤M .

Remark 2.3. As a simple case of (13) when T = T1 > T0 = 0, we have

φ[qT,0, pT,0] = φT,0(x, ξ0, x0) , F [qT,0, pT,0] = FT,0(x, ξ0, x0) . (22)

Then φT,0(x, ξ0, x0) = (x− x0) · ξ0 + ωT,0(x, ξ0) and

|∂αx ∂βξ0ωT,0(x, ξ0)| ≤ Cα,βT (1 + |x| + |ξ0|)max(2−|α+β|,0) . (23)

By (15), FT,0(x, ξ0, x0) satisfies

|∂αx ∂βξ0FT,0(x, ξ0, x0)| ≤ AMXM (t1)
min(|β0|,1)(1 + |x| + |ξ0| + |x0|)m . (24)
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Bratislava, Slovakia

Email: fyzibohj@savba.sk

P. PREŠNAJDER
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We propose a non-perturbative method for the evaluation of the functional
integral with fourth order term in the action. We found the result in the form
of an asymptotic series.

Keywords: Non-perturbative methods.

1. Evaluation of x4 Wiener Functional Integral

The simplest non-gaussian functional integral is the Wiener functional in-

tegral with x4 term in the action. In the Euclidean sector of the theory we

have to evaluate the continuum Wiener functional integral:

Z =

∫
[Dϕ(x)] exp(−S) . (1)

In this case the action possesses the fourth order term:

S =

β∫

0

dτ

[
c/2

(
∂ϕ(τ)

∂τ

)2

+ bϕ(τ)2 + aϕ(τ)4

]
.

The continuum Wiener functional integral is defined by a formal limit

Z = limN→∞ ZN . The finite dimensional integral ZN is defined by the

time-slicing method:
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ZN =

+∞∫

−∞

N∏

i=1


 dϕi√

2π△
c


 exp

{
−
N∑

i=1

△
[
c

2

(
ϕi − ϕi−1

△

)2

+ bϕ2
i + aϕ4

i

]}
(2)

where △ = β/N , and a, b, c are the parameters of the model. The quantity

ZN represents the unconditional propagation from ϕ0 = 0 to any ϕ = ϕN
(Eq. (2) contains an integration over ϕN ).

1.1. One-dimensional integral

An important task is to calculate the one dimensional integral

I1 =

+∞∫

−∞

dx exp{−(Ax4 +Bx2 + Cx)} ,

where Re A > 0. The standard perturbative procedure rely on Taylor’s

decomposition of exp(−Ax4) term with consecutive replacements of the

integration and summation order. The integrals can be calculated, but the

sum is divergent.

Instead we propose the power expansion in C:

I1 =
∞∑

n=0

(−C)n

n!

+∞∫

−∞

dx xn exp{−(Ax4 +Bx2)} .

The integrals in the above relation can be expressed by the parabolic

cylinder functions D−ν−1/2(z). Then, the integral I1 reads:

I1 =
Γ(1/2)√

B

∞∑

m=0

ξm

m!
D−m−1/2(z) , ξ =

C2

4B
, z =

B√
2A

, (3)

where we used the abbreviation:

D−m−1/2(z) = zm+1/2 e
z2

4 D−m−1/2(z) .

It was shown, that the sum in the Eq. (3) is convergent and for finite values

z this sum converges uniformly in ξ.

Applying this idea of integration to the N dimensional integral (2) we

proved1 the exact formula:

ZN =

[
N∏

i=0

2(1 + b△2/c)ωi

]− 1
2

SN
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with

SN =
∞∑

k1,··· ,kN−1=0

N∏

i=0

[
(ρ)

2ki

(2ki)!
Γ(ki−1 + ki + 1/2)

√
ωi D−ki−1−ki−1/2 (z)

]
,

where k0 = kN = 0, ρ = (1 + b△2/c)−1, z = c(1 + b△2/c)/
√

2a△3, ωi =

1 −A2/ωi−1, ω0 = 1/2 +Ab△2/c, A = 1/2(1 + b△2/c).

To evaluate SN , we must solve the problem how to sum up the product

of two parabolic cylinder functions. The parabolic cylinder functions are

related to the representation of the group of the upper triangular matrices,

so we implicitly expect a simplification of their product. This problem is

not solved completely yet. We adopt less complex method of summation,

namely we use the asymptotic expansion of one of them, then, exchanging

the order of summations we can sum over ki. The result is degraded to an

asymptotic expansion, but we have an analytical solution of the problem.

This procedure was widely discussed in detail in Ref. 1, here we remind the

result:

SN =

J∑

µ=0

(−1)µ

µ! (2z2△3)µ
△3µ

{
C2µ(N)

}
2µ,0

(4)

The evaluation of the symbols
{
C2µ(N)

}
2µ,0

is described in Ref. 2.

1.2. Gel’fand–Yaglom equation

Gel’fand and Yaglom in their article3 for the harmonic oscillator proved

that nontrivial continuum limit of the finite dimensional integral approxi-

mation to the functional integral should be evaluated from N -dimensional

integral results by a recurrent procedure. For harmonic oscillator Gel’fand

and Yaglom derived for the unconditional measure integral Z(β) the equa-

tion:

∂2

∂τ2
y(τ) =

2b

c
y(τ), (5)

where Z(β) = limN→∞ ZN = y(β)−1/2

Following the idea of Gel’fand and Yaglom we found for an-harmonic

oscillator the generalized Gel’fand–Yaglom equation. We define the uncon-

ditional measure functional integral Z(β) by relation:

Z(β) = lim
N→∞

ZN =
1√
F (β)

, F (β) =
y(β)

S(β)2
.
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Fig. 1. A typical dependence of the functions 4
“

∂
∂τ

lnS(τ)
”2

on τ for positive fixed

values of parameters a, b, c is shown on the figure.

The function S(τ) is given as the continuum limit of Eq. (4). The generalized

Gel’fand–Yaglom equation read:

∂2

∂τ2
y(τ) = y(τ)

[
2b

c
+ 4

(
∂

∂τ
lnS(τ)

)2
]
. (6)

Initial conditions: y(0) = S(0)2, and ∂y(τ)
∂τ

∣∣∣
τ=0

= ∂
∂τ S(τ)2

∣∣∣
τ=0

.

For S(τ) one can use a perturbative expansion in coupling constant a and

then solve Eq. (6). This procedure gives a non-perturbative approximation

of the functional integral (1), see Fig. (1).

2. Conclusions

We find for the functional integral of an an-harmonic oscillator the non-

perturbative equation. Solving Eq. (6) we in principle can find the analytical

solution of the an-harmonic oscillator problems as energy levels, measurable

quantities, etc. Our opinion is that the theory of the differential equations is

more elaborated and flexible than approaches based on naive perturbative

theory and it can give more reliable results than the perturbative theory.
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1. Introduction

Coherent States (CS) have attracted much attention in many branches of

physics.1 In spite of their importance, the theory of CS, when the configura-

tion space has nontrivial topology, is far from complete. CS for a quantum

particle on a circle2 and a sphere have been introduced very recently, and

also the case of the torus has been treated. Although in all these works the

different constructions of the CS for the boson case are practically straight-

forward, the simple addition by hand of 1/2 to the angular momentum

operator J for the fermionic case into the corresponding CS remains ob-

scure and non-natural. The question that naturally arises is: does here exist

any geometry for the phase space in which the CS construction leads pre-

cisely to a fermionic quantization condition? The purpose of this paper is

to demonstrate the positive answer to this question showing that the CS for

a quantum particle on the Möbius strip geometry is the natural candidate

to describe fermions exactly as the cylinder geometry for bosons.

2. Abstract Coherent States

The position of a point into the Möbius strip geometry can be parame-

terized as P0 = (X0, Y0, Z0) and P0 = (X0 +X1, Y0 + Y1, Z0 + Z1). The
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coordinates of P0 describe the central cylinder (generated by the invariant

fiber of the middle of the weight of the strip): Z0 = l, X0 = R cosϕ,

Y0 = R sinϕ. We use the standard spherical coordinates: R, θ, ϕ with

dΩ = R2(dθ2 + sin2 θdϕ2) and r is the secondary radius of the torus.

The coordinates of P1 (the boundaries of the Möbius band) are of P0

plus Z1 = r cos θ, X1 = r sin θ cosϕ, Y1 = r sin θ sinϕ. The weight of the

band is obviously 2r, then our space of phase is embedded into of the Torus:

X = R cosϕ + r sin θ cosϕ, Y = R sinϕ + r sin θ sinϕ, Z = l + r cos θ. The

important point is that the angles are not independent in the case of the

Möbius band and are related by the following constraint: θ = (ϕ+ π)/2.

In order to introduce the coherent states for a quantum particle on the

Möbius strip geometry we follow the Barut-Girardello construction and we

seek the CS as the solution of the eigenvalue equation X |ξ〉 = ξ |ξ〉 with

complex ξ. Taking R = 1 and inserting the constraint into the parame-

terization of the torus we obtain the parameterization of the band: X =

cosϕ+ r cos (ϕ/2) cosϕ, Y = sinϕ+ r cos (ϕ/2) sinϕ, Z = l + r sin (ϕ/2) .

Taking into account the initial condition and the transformation X ′ =

e−ZX , Y ′ = e−ZY , Z ′ = Z, we finally obtain

ξ = e−(l+r sin(ϕ/2))+iϕ (1 + r cos (ϕ/2)) .

Inserting the above expression in the expansion of the coherent state in the

j basis we obtain the CS in explicit form

|ξ〉 =

∞∑

j=−∞
ξ−je−

j2

2 |j〉 =

∞∑

j=−∞
el

′j−iϕje−
j2

2 |j〉 ,

where l′ ≡ (l + r sin (ϕ/2)) − ln (1 + r cos (ϕ/2)) − iϕ. From the above ex-

pression, the fiducial vector is |1〉 =
∞∑

j=−∞
e−

j2

2 |j〉, then

|ξ〉 =

∞∑

j=−∞
e−(ln ξ) bJ |1〉 (1)

As is easily seen the fiducial vector is |1〉 = |0, 0〉r=0 in the (l, ϕ) parame-

terization. This fact permit us to rewrite expression (1) as

|l, ϕ〉 = e[(l+r sin(ϕ/2))−ln(1+r cos(ϕ/2))−iϕ]j |0, 0〉r=0 .

The overlapping or non-orthogonality formulas are explicitly derived∗:

∗The normalization as a function of Θ3: 〈ξ |ξ〉 = Θ3

`

i
π

ln |ξ| | i
π

´

or 〈l, ϕ |l, ϕ〉 =

Θ3

“

il′
π

| i
π

”

.
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〈ξ |η〉 =

∞∑

j=−∞
(ξ∗η)−j e−j

2

= Θ3

(
i

2π
ln (ξ∗η) | i

π

)

〈l, ϕ |h, ψ〉 = Θ3

(
i

2π
(ϕ− ψ) − l′ + h′

2

i

π
| i
π

)
.

3. Physical Phase Space and Natural Quantization

From the expressions obtained in the previous section and Ĵ |j〉 = j |j〉
we notice that the normalization for the cylinder2 (boson case) which

doesn’t depend on ϕ, depends now on ϕ through l′ ≡ (l + r sin (ϕ/2)) −
ln (1 + r cos (ϕ/2)). Also Ĵ |l, ϕ〉 = j |l, ϕ〉, then

〈ξ| Ĵ |ξ〉
〈ξ |ξ〉 = l′ +

∞∑

n=1

2π sin (2l′π) e−π
2(2n−1)

(
1 + e−π2(2n−1)e2iπl′

) (
1 + e−π2(2n−1)e−2iπl′

) ,

where the well known identities for theta functions was introduced. Notice

the important result coming from the above expression: the fourth condition

required for the CS,3 namely
〈
Ĵ
〉

= l for the CS, demands not only l to be

integer or semi-integer (as the case for the circle quantization) but also that

ϕ = (2k + 1)π which leads to a natural quantization similar to the charge

quantization of the Dirac monopole. Precisely this condition over the angle

leads the position of the particle in the internal or the external border of

the Möbius band, that for r = 1/2 is s = ±1/2 as it is requested to be.

In order to compare our case with the CS constructed in Ref. 2 we

consider the existence of the unitary operator U ≡ eiϕ, that [J, U ] = U

then U |j〉 = |j + 1〉 such that the same average as in the previous case for

the Ĵ operator is:

〈ξ|U |ξ〉
〈ξ |ξ〉 = e−

1
4 eiϕ

Θ2

(
il′

π | iπ
)

Θ3

(
il′
π | iπ

) = e−
1
4 eiϕ

Θ3 (l′ + 1/2 | iπ)

Θ3 (l′ | iπ)
, (2)

where in the last equality the relation Θ2 (ν) = eiπ(
1
4 τ+ν)Θ3 (ν + τ/2) was

introduced. Also, as in Ref. 2, we can make the relative average for the oper-

ator U in order to eliminate the factor e−
1
4 then at the first order expression

(2) coincides with the unitary circle. It is clear that the denominator in the

quotient (2), average with respect to the fiducial CS state, plays the role

to centralize the expression of the numerator. However, the claim that U is

the best candidate for the position operator is still obscure and requires a

special analysis that we will be given elsewhere.4
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4. Dynamics

In order to study the dynamics in this non-trivial geometry, we construct

the non-relativistic Lagrangian and the corresponding Hamiltonian:

H =
1

2

{
.
ϕ

2
[
(1 + r cos (ϕ/2) )2 − r2

4
cosϕ

]
+ L2

0

}

With Ĥ |E〉 = E |E〉 if |E〉 = |j〉, imposing the fourth CS requirement3

we have ϕ = (2k + 1)π and the expression for the energy takes the form:

E = 2j2/(4 + r2) + L2
0/2.

From the dynamical expressions given above, it is not difficult to make

the following remarks:

1) the Hamiltonian is not a priori T invariant. The HMS is T invariant

iff TL0 = −L0: the variable conjugate to the external momenta l changes

under T as J manifesting with this symmetry the full inversion of the

motion of the particle on a Möbius strip (evidently this is not the case for

the particle motion on the circle).

2) the distribution of energies is Gaussian: from the Bargmann represen-

tation follows φj (ξ∗) ≡ 〈ξ| E〉 = (ξ∗)−j e−
j2

2 , and by using the approximate

relation from the definition of the Theta function†, the expression for the

distribution of energies can be written as

|〈j |ξ〉|2
〈ξ |ξ〉 ≈ 1√

π
e−(j−l′)2

.

It is useful to remark here that when ϕ = (2k + 1)π, l = l′ and the above

equation coincides exactly in form with the boson case given in Ref. 2 but

l now is semi-integer valuated.
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Quantum Field Theory
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QUANTUM THEORIES

R. JACKIW

Center for Theoretical Physics,
MIT, Cambridge, MA 02139-4307, USA

E-mail: ab jackiw@mit.edu

The functional integral has many triumphs in elucidating quantum theory. But
incorporating charge fractionalization into that formalism remains a challenge.
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This conference celebrates the achievements of path and functional in-

tegration in quantum physics. But it is good to remember that some of

these achievements were hard to attain, because they required resolving

unexpected subtleties of the functional formalism. Two historical examples

will illustrate my point, and then I shall posit a new challenge.

For the first example, we look at the description of rotationally sym-

metric motion in a potential V (r). The classical effective Hamiltonian reads

H =
p2r
2m + L2

2mr2 +V (r), where the centrifugal term represents r2 θ̇2/2m and

vanishes for radially symmetric motion. But in the quantum description of

this motion, when it is confined to a plane, the classical centrifugal term

is replaced by ~2(M2 − 1/4)/2mr2, where M is any integer. In particular

a residual attraction remains for s-waves, M = 0. This quantal attraction

has the important physical consequence that in planar physics bound states

exist, no matter how weakly attractive might be the potential V . (In this

way, planar bound states follow the behavior of one dimensional bound

states, rather than three dimensional, which require a minimum strength

to achieve binding.)

The functional integral involves integration over c-number functions. A

direct change of variables from Cartesian to circular coordinates reproduces

the classical centrifugal barrier, but misses the residual, attractive potential

−~2/8mr2. This is particularly vexing, since coordinate changes are point

canonical transformations, which are allowed in quantum mechanics.
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The resolution of this problem was given by Edwards and Gulyaev.1

But it required returning to the discretized formulation of the path integral

and realizing that the angular step ∆θ, is not of order of the temporal step

∆τ , but rather 0(
√

∆τ). [This issue reappeared in the collective coordinate

quantization of solitons. Investigations based on functional integrals missed

0(~2) terms that were found in an operator approach.2]

For my second example, I turn to the anomaly phenomenon: the clas-

sical action can possess an invariance against a transformation that is not

an invariance after quantization. Where is this effect in the functional inte-

gral, which involves“functional integration”over the exponentiated classical

action? The answer, which was found by Fujikawa (after anomalies were

discovered by conventional methods), located the effect in the functional

measure. Evidently in the anomalous situation it is not invariant; a fact

that is established after the measure is discretized.3

In both instances we see that the validity of formal changes of variables

in a functional integral must be assessed by a return to the discretized

functional sum, in fact, by a return to conventional quantum theory.

Now I shall present another peculiar quantum effect, which as far as

I know has not had a functional integral description, even though a con-

ventional quantal argument establishes it rather easily. I have in mind the

phenomenon of fermion charge fractionalization in the presence of a topo-

logical defect.4

It is well known and also guaranteed by various index theorems, that

the Dirac equation in the presence of a topological defect (kink in one

spatial dimension, vortex in two, monopole in three etc.; we call these “soli-

tons”) possesses an isolated, normalized zero-energy, mid-gap bound state.

Of course the Dirac equation also possesses positive energy solutions and

negative energy solutions. The conventional instruction, given by Dirac,

is to define the vacuum by filling the negative energy states and leaving

the positive states empty; with this definition the vacuum charge vanishes.

But what should one do with the mid-gap, zero-energy bound states, if it

is present? Dirac is silent on this; he did not know about mid-gap bound

states. The answer is that there is double degeneracy in energy, since fill-

ing the mid-gap state costs no energy. Moreover, the empty mid-gap state

carries fermion charge −1/2, and the filled one, +1/2. Remarkably, this

effect has been observed in polyacetylene — a 1-dimensional lineal material

— and it has been proposed for 2-dimensional planar graphene. (Note: the

Dirac equation is relevant to these condensed matter materials not because

of relativistic considerations; rather a well defined linearization of the en-
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ergy dispersion near the Fermi surface gives rise to a linear matrix equation,

which is of the Dirac type.)

Fermion number fractionalization is established by the following argu-

ment. Consider the Dirac Hamiltonian H(ϕ) in a background field ϕ, which

can be topologically trivial or non-trivial. In the trivial case ϕ takes a ho-

mogenous value ϕv, which gives rise to a mass gap in the Dirac spectrum,

between the positive and negative continuum energy eigenstates, which we

call “vacuum states” and denote them by ψE ,

H(ϕv)ψE = E ψE , E ≷ 0. (1)

With the topologically non trivial background ϕ takes a soliton profile ϕS
and the Dirac continuum eigenfunctions are called “soliton states,” denoted

by ΨE . Also there is an isolated normalized state at zero energy, Ψ0,

H(ϕS)ΨE = EΨE , E ≷ 0,

H(ϕS)Ψ0 = 0.
(2)

We wish to compute the charge density in the presence of the soliton.

This is defined relative to the charge density in the vacuum, where the

background field is topologically trivial,

ρ(r) =

0∫

−∞

dE

(
Ψ∗
E (r)Ψ (r) − ψ∗

E (r)ψE (r)

)
. (3)

The further argument proceeds in its simplest form if the Dirac Hamiltonian

possesses an energy reflection symmetry; viz. if there exists a unitary matrix

R, which anti-commutes with the Dirac Hamiltonian HR+RH = 0. Then

R acting on negative energy states produces positive energy states and

vice-versa, while the zero energy state is an eigenstate of R,

RΨ±E = Ψ∓E , Rψ±E = ψ∓E ,

RΨ0 = ±Ψ0.
(4)

(The effective Dirac Hamiltonians for polyacetelyne and graphene possess

this property.) As a consequence the charge density at energy E is an

even function of E, both in the vacuum and soliton sectors: ψ∗
E ψE =

ψ∗
−E ψ−E , Ψ∗

E ΨE = Ψ∗
−E Ψ−E ,⇒ ρE = ρ−E ; and (3) may be presented

as

ρ =
1

2

∞∫

−∞

dE (Ψ∗
E ΨE − ψ∗

E ψE) . (5)
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The vacuum continuum wave functions ψE in (5) are complete; the solitonic

vave functions ΨE are one short of being complete because the zero energy

state Ψ0 is absent. Therefore

ρ (r) = −1

2
Ψ∗

0 (r)Ψ0 (r) (6)

and the charge Q is

Q =

∫
dr ρ (r) = −1

2
. (7)

Although this simple argument does not show it, one can prove that the

fraction is an eigenvalue without fluctuations, rather than an expectation

value with fluctuations — the latter would not be interesting.

One may easily contemplate Hamiltonians that do not possess energy

reflection. For example, take a Hamiltonian with that property, and ap-

pend to it a term proportional to the previously described matrix R. The

new Hamiltonian no longer anti-commutes with R, and calculation of the

fractional charge becomes much more involved.

Two methods have been developed for dealing with this more difficult

situation. One can take a field theoretic approach and calculate in per-

turbation theory the induced vacuum current in the presence of a soliton

< ψ̄ γµ ψ >. Here ψ̄ γµ ψ is the field theoretic current operator, and < | >
signifies the field theoretic vacuum in an external background. This deter-

mines the induced charge density and therefore the charge. [The induced

current approach is available only for problems without energy reflection

symmetry — the charge in the symmetric case can be obtained in the

limit of vanishing asymmetric effects.5] Alternatively one can show that the

charge density is related to the spectral asymmetry in the soliton sector,6

ρ (r) = −1

2

∞∫

−∞

dE (signE) Ψ∗
E(r)ΨE(r) − 1

2
Ψ∗

0 (r)Ψ0 (r). (8)

The calculated vacuum charge in the absence of energy reflection can

become an irrational quantity, approaching − 1
2 when the strength ǫ of the

term violating energy reflection vanishes. (But later I shall describe a more

involved scenario.) Note that the spectral asymmetry expression (8) im-

mediately yields Q = −1/2 when energy reflection symmetry is present,

because in that case the integral vanishes.

All these are fascinating quantum effects, but it remains a challenge to

find them in the functional integral.
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Fig. 1. The equally spaced configuration of carbon atoms in polyacetylene (O) possesses
a left-right symmetry, which however is energetically unstable. Rather in the ground
states the carbon atoms shift a distance µ to the left or right, breaking the symmetry
and producing two degenerate vacua (A, B). A soliton (S) is a defect in the alteration
pattern; it provides a domain wall between configurations (A) and (B).

Next I shall turn away from elaborate formalism, and give a simple

counting argument that establishes the fractionalization effect in one di-

mension, in the linear polymer of polyacetylene.

To begin a description of polyacetylene, we imagine a rigid array of car-

bon atoms, about 1Å apart, exhibiting a left-right symmetry. One might

expect that thermal and quantal fluctuations lead to oscillations about the

equidistant equilibrium positions. But in fact something more dramatic hap-

pens. The energetics of the system force the atoms to shift by about 0.04

Å to the left or to the right — both are allowed due to the left-right sym-

metry. This is a consequence of an instability of the rigid lattice, identified

by Peierls. Therefore the polyacetylene chain presents two equivalent vacua

A and B (see Fig. 1). The potential energy of the distortion field (phonon)

shows a familiar double well shape: the left-right symmetric point at the ori-

gin is unstable; stable configurations at the two minima break the left-right

symmetry (see Fig. 2).

By now it is well known that a double well potential, like in Fig. 2,

supports also a kink configuration that interpolates between the two vacua.

Physically this represents a defect in the bonding pattern. These profiles

are shown in Fig. 3.

Let us now consider a sample of the A configuration, with two solitons

— two defects — inserted. Let us count the kinks in the A configuration
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Fig. 2. Energy density V (φ), as a function of a constant phonon field φ. The symmetric
stationary point, φ = 0, is unstable. Stable vacua are at φ = + |φ0|, (A) and φ = −|φ0|,
(B).

Fig. 3. The two constant fields, ± | φ0 |, correspond to the two vacua (A and B). The
two kink fields, ±φs, interpolate between the vacua and represent domain walls.

without and with two solitons. These numbers need be considered only in

the region between the solitons, because elsewhere the patterns are identical

(see Fig. 4).

One observes that in presence of the two solitons, there is one fewer

kink. Imagine now separating the solitons to great distance, so that each

acts independently. We conclude that the 1-kink deficit must be equally

divided, producing a fermion state with number − 1
2 .

In fact this has been indirectly observed. However, the theory has to be

elaborated before it confronts experiment. Our argument has ignored spin.

Since electrons have spin ± 1
2 and two fit in each level, all our results are

doubled. The charge defect in the presence of a soliton is −1, but there is

no net spin since all other electrons are pairwise aligned. Inserting one elec-
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A

2S

SS

A + 2S

A

Fig. 4. Two soliton state carries one fewer link relative to the no-soliton vacuum A.

tron erases the defect, but produces a spin 1
2 excitation with zero charge.

This charge-spin separation, which has been observed experimentally, gives

a physical realization to the phenomenon of charge fractionalization in poly-

acetylene.7

The Dirac Hamiltonian matrix, relevant to this 1-dimensional problem,

is a 2 × 2 matrix acting on a 2-component “spinor”, thereby producing a

matrix equation in one spatial dimension:H(ϕ) = αp+βϕ. The kinetic term

αp (α ≡ σ3, p ≡ −i ∂x) comes from linearizing a quadratic dispersion law

around the two points, called “Dirac points,” where it intersects the Fermi

surface, thereby giving rise to a 2-component structure. The interaction

with the phonon field βϕ (β ≡ σ2) produces a gap with homogenous ϕ

and a zero mode with a kink profile for ϕ. The σ1 matrix anti-commutes

with H(ϕ) and acts as the R matrix that implements the energy reflection

symmetry, which is lost when ǫσ1 is added to the Hamiltonian, thereby

producing an irrational charge.

More recently there appeared a 2-dimensional material, for which a sim-

ilar analysis has been performed. This is graphene, which is described by a

hexagonal lattice of carbon atoms that is presented as a superposition of two

triangular sublattices, see Fig. 5. Each sublattice supports two Dirac points,

hence a 4-dimensional matrix equation on the two dimensional plane be-

comes relevant. The background field is taken to be a combination of scalar

ϕ and vector A.8 The Hamiltonian governing electron motion reads

H(ϕ,A) = α · [p − γ5A] + β[ϕr − i γ5 ϕ
i].

Here α =

(
σ 0

0 −σ

)
, σ = (σ1, σ2), γ5 =

(
I 0

0 −I

)
,

β =

(
0 I

I 0

)
, p = 1

i (∂x, ∂y),
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Fig. 5. The hexagonal graphene lattice, taken as a superposition of two triangular
sublattices.

where ϕr, ϕi form the real and imaginary parts of a complex scalar field ϕ =

ϕr + iϕi. The matrix that effects energy reflection is R = α3 =

(
σ3 0

0 −σ3

)
.

The topologically trivial background consist of constant ϕ and vanishing

A. This gives rise to a gap in the energy spectrum. For the topologically

non-trivial background we take for ϕ and A a vortex profile. A zero mode

ensues, and charge becomes − 1
2 (with a single vortex). The mid-gap state

is bound with just a vortex configuration for ϕ and vanishing A. A is not

needed for binding the zero energy state. Its presence does affect the profile

of the zero-energy wave function, but not the vanishing of the eigenvalue.

However, a vector potential is needed to give the vortex finite energy: the

scalar field and vector field vortex configurations separately carry infinite

energy, which is rendered finite in the combination. In other words a pure ϕ

vortex cannot “move” because it is infinitely heavy. Evidently this infinity

is screened away by the contribution from A.

When εR = εα3 is appended to H , the energy reflection symmetry is

lost, and the induced charge structure becomes interestingly complicated.

For a pure ϕ vortex, without a vector potential, the charge becomes irra-

tional — as expected and as it happens in the 1-dimensional case. However,

including a vector potential in its vortex configuration changes the charge

back to − 1
2 — its value in the energy reflection symmetric case. Just as

for energy, the vector potential screens away a contribution from the scalar

field.
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The above 2-dimensional story is very interesting in its elegant intri-

cacies. But it must be stated that its validity as a theoretical description

of actually realized physical graphene remains to be established. Also as

yet there is no experimental verification of the charge fractionalization phe-

nomenon in graphene. Nevertheless it would be most interesting to develop

a functional integral analysis of this phenomenon.

This work was supported in part by funds provided by the U.S. De-

partment of Energy under cooperative research agreement #DE-FG02-

05ER41360.
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Changes of field variables may lead to multivalued fields which do not
satisfy the Schwarz integrability conditions. Their quantum field theory needs
special care as is illustrated here in applications to superfluid and supercon-
ducting phase transitions. Extending the notions that first qantization governs
fluctuating orbits while second quantization deals with fluctuating field, the
theory of multivalued fields may be considered as a theory of third quantiza-
tion. The lecture is an introduction to my new book on this subject.
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1. Coordinate Transformations in Path Integrals

Changes of coordinates or field variables must not change the physical con-

tent of a theory. This trivial requirement is automatically guaranteed in

quantum field theories. As a simple example consider the path integral of

a harmonic oscillator

Zω =

∫
Dx e−Aω [x] = exp

[
−D

2
Tr log(−∂2 + ω2)

]
≡ e−βFω (1)

with an action

Aω[x] =
1

2

∫ β

0

dτ
[
ẋ2(τ) + ω2x2(τ)

]
(2)

and a free energy F = β−1 ln [2 sinh(ωβ/2)]. Let us subject this path inte-

gral to a simple coordinate transformation such as

x = xη(q) = q − ηq3/3, (3)

where η is some expansion parameter. The tranformed path integral

Z =

∫
Dq(τ) e−Aω [q]−Aint[q]−AJ [q] ≡ e−βF (4)
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has an interaction Aint[q] = Aah[q] + AJ [q], consisting of the anharmonic

part of the transformed action

Aah[q] =

∫ β

0

dτ

{
−η
[
q2(τ)q̇2(τ) +

ω2

3
q4(τ)

]

+ η2

[
1

2
q4(τ)q̇2(τ) +

ω2

18
q6(τ)

]
+ O(η3)

}
, (5)

and an anharmonic part due to the Jacobian

Dx/Dq = exp[δ(0) log ∂x(q)/∂q]:

AJ [q] = −δ(0)

∫
dτ log

∂xη(q)

∂q

= −δ(0)

∫ β

0

dτ

[
−ηq2(τ) − η2

2
q4(τ) + · · · + O(η3)

]
. (6)

The transformed path integral (4) can no longer be solved exactly but only

perturbatively as an expansion in powers of the parameter η:

βF = βFω + 〈Aint〉c −
1

2!

〈
A2

int

〉
c
+ . . . = βFω + β

∞∑

n=1

ηn Fn. (7)

In order to guarantee coordinate invariance, all coefficients Fn have to van-

ish.

The Feynman diagrams contributing to Fn consist of vertices and three

kinds of lines representing the one-dimensional versions of the correlation

functions

G(2)
µν (τ, τ ′) ≡ 〈qµ(τ)qν (τ ′)〉 = , (8)

∂τG
(2)
µν (τ, τ ′) ≡ 〈q̇µ(τ)qν (τ ′)〉 = , (9)

∂τ ′G(2)
µν (τ, τ ′) ≡ 〈qµ(τ)q̇ν (τ ′)〉 = , (10)

∂τ∂τ ′G(2)
µν (τ, τ ′) ≡ 〈q̇µ(τ)q̇ν (τ ′)〉 = . (11)

These contain distributions Θ(τ − τ ′) and δ(τ − τ ′) (see Fig. 1), so that the

Feynman integrals run over products of distributions which in the standard

theory of generalized functions are undefined. Recently, however, it has been

shown that there is a way of defining products of distributions in such a

way that all Fn vanish, i.e., that coordinate invariance can be maintained.1
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Fig. 1. Green functions for perturbation expansions in curvilinear coordinates in natural
units with ω = 1. The second contains a Heaviside function Θ(τ), the third a Dirac δ-
function at the origin.

2. Multivalued Fields

The situation becomes much more involved if the transformed coordinates

q(τ) are multivalued fields in D dimensions. This happens, for instance, if

a complex field ψ(x) in a functional integral is replaced by its radial and

azimuthal parts of ρ(x) ≡ |ψ(x)| and θ(x) ≡ arctan[Imψ(x)/Reψ(x)]. A

good example is the Landau-Pitaevski energy density of superfluid helium

near the critical point:

HHe(ψ,∇ψ)=
1

2

{
|∇ψ|2+τ |ψ|2 +

g

2
|ψ|4

}
. (12)

The parameter τ ≡ T/TMF
c − 1 is a reduced temperature measuring the

distance from the characteristic temperature TMF
c at which the |ψ|2-term

changes sign. Under a field transformation ψ(x) → ρ(x)eiθ(x), the energy

density cannot be simply replaced by

H1 =
ρ2

2
(∇θ)2+

1

2
(∇ρ)2+

τ

2
ρ2 +

g

4
ρ4, (13)

as we might be tempted to do following the naive Leibniz rule

Dψ = (iρ∇θ + ∇ρ)eiθ. (14)

This rule is no longer valid. Since θ(x) and θ(x) + 2π correspond to the

same complex field ψ(x), the corrected Leibniz rule reads

Dψ = [iρ(∇θ − 2π�v) + ∇ρ]eiθ. (15)

The cyclic nature of the scalar field θ(x) requires the presence of a vector

field �v(x) called vortex gauge field . This field is a sum of δ-functions on

Volterra surfaces across which θ(x) has jumps by 2π. The boundary lines

of the surfaces are vortex lines. They are found from the vortex gauge field�v(x) by forming the curl

∇ × �v(x) = jv(x), (16)
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where jv(x) is the vortex density, a sum over δ-functions Æ(L;x) ≡∫
L
dx̄ δ(x − x̄) along the vortex lines L.

Vortex gauge transformations correspond to deformations of the surfaces

at fixed boundary lines which add to �v(x) pure gradients of the form

∇δ(V ;x), where δ(V ;x) ≡
∫
V
d3x̄ δ(x − x̄) are δ-functions on the volumes

V over which the surfaces have swept. The theory of these fields has been

developed in the textbook2 and the Cambridge lectures.3 Being a gauge

field, �v(x) may be modified by a further gradient of a smooth function to

make it purely transverse, ∇ · �vT (x) = 0, as indicated by the subscript T .

Since the vortex gauge field is not a gradient, it cannot be absorbed into

the vector potential by a gauge transformation. Hence it survives in the last

term in Eq. (13), and the correct partition function is

ZHe≈
∫
D�vT∫ Dρρ exp

[
−ρ

2

2
(∇θ)2 − 1

2
(∇ρ)2 − τ

2
ρ2 − g

4
ρ4 − 4π2ρ2

2
�vT 2

]
.

(17)

The symbol
∫
D�vT does not denote an ordinary functional integral. It is

defined as a sum over any number and all shapes of Volterra surfaces S in�vT (x), across which the phase jumps by 2π.3

The important observation is now that due to the fluctuations of the vor-

tex gauge field �vT (x), the partition function (17) possesses a second-order

phase transition, the famous λ-transition observed in superfluid helium at

2.18K. The critical exponents of this transition are in the same universality

class as those of the so-called XY model, which describes only interacting

phase angles θ(x) ∈ (0, 2π) on a lattice.

At the mean-field level, the λ-transition of (17) takes place if τ drops

below zero where the pair field ψ(x) acquires the nonzero expectation

value 〈ψ(x)〉 = ρ0 =
√
−τ/g, the order parameter of the system. The

ρ-fluctuations around this value have a coherence length ξ = 1/
√
−2τ .

3. Apparent First Order of Superconducting Transition

For a long time it has been a debate whether this transition persists if a

fluctuating vector potential A(x) is coupled minimally to the field ψ(x)

in (12), which then becomes the Ginzburg-Landau Hamiltonian density of

superconductivity,

Hsc(ψ,∇ψ,A,∇A)=
1

2

{
[(∇ − iqA)ψ]

2
+τ |ψ|2 +

g

2
|ψ|4

}
+

1

2
(∇ × A)

2
.

(18)
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Now ψ(x) is the field describing Cooper pairs of charge q = 2e. The theory

needs gauge fixing, which may be done by absorbing the gradient of the

phase θ(x) of the field ψ(x) in the vector potential, so that we can replace

ψ(x) → ρ(x). The transverse vortex gauge field �vT (x), however, cannot be

absorbed and it interacts with the vector potential A(x). This has a partial

partition function

ZA[ρ]≡
∫
D�vTDA exp

{
−1

2

∫
d3x(∇ × A)2 − 1

2

∫
d3xρ2(eA − 2π�vT )2

}
.

(19)

Without the vortex gauge field �vT (x), the partition function (19) describes

free bosons of space-dependent mass ρ2(x). If we ignore �vT (x) and A(x),

the total partition function has the same form as in (17) and describes a

second-order phase transition.

Let us now admit the vector partition function (19), but still ignore

vortices by setting �vT (x) ≡ 0, and ignoring the space dependence of ρ(x).

Then the second term in (19) in the condensed phase with ρ0 6= 0 generates

a Meissner-Higgs mass term. This gives rise to a finite penetration depth of

the magnetic field λ = 1/mA = 1/ρ0q. The ratio of the two length scales

κ ≡ λ/
√

2ξ (which for historic reasons carries a factor
√

2) is the Ginzburg

parameter whose mean field value is κMF ≡
√
g/q2. Type I superconductors

have small values of κ, type-II superconductors have large values. At the

mean-field level, the dividing line lies at κ = 1/
√

2.

Let us now allow for A(x)-fluctuations while still ignoring the vortex

gauge field �vT (x). At very smooth ρ(x), they can be integrated out in (19)

which becomes

Z0
A[ρ] = exp

[∫
d3x

e3ρ3

6π

]
. (20)

This adds to the energy density (13) a cubic term −e3ρ3/6π. Such a term

makes the transition first order. The free energy has now a minimum at

ρ̃0 =
c

2g

(
1 +

√
1 − 4τg

c2

)
. (21)

If τ decreases below

τ1 = 2c2/9g, (22)

the new minimum lies lower than the one at the origin (see Fig. 2), so that

the order parameter jumps from zero to

ρ1 = 2c/3g (23)
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Fig. 2. Potential for the order parameter ρ with cubic term. At τ1, the order parameter
jumps from ρ = 0 to ρ1, corresponding to a phase transition of first order.

in a phase transition. At this point, the coherence length of the ρ-

fluctuations ξ = 1/
√
τ + 3gρ2 − 2cρ has the finite value

ξ1 =
3

c

√
g

2
, (24)

this being the same as at ρ = 0. The jump from ρ = 0 to ρ1 implies a phase

transition of first order.7

4. Second-Order Transition

However, this result is reliable only under the assumption of a smooth ρ(x).

It is applicable only in the type-I regime where vortex loops are strongly

suppressed. In the type-II regime, such lines can more easily be excited

thermally and we can no longer ignore the vortex gauge field �vT (x). This

invalidates the above conclusion and gives rise to a second-order transition

(of the same XY universality class as in the superfluid) if the Ginzburg

parameter κ is sufficiently large. In fact, if we now integrating out the A-

field, we obtain

ZA[ρ] = exp

[∫
d3x

e3ρ3

6π

]

×
∫

D�vT exp

[
4π2ρ2

2

∫
d3x

(
1

2
�vT 2 − �vT ρ2q2

−∇2 + ρ2q2
�vT)] , (25)

rather than (20). The second integral can be simplified to

4π2ρ2

2

∫
d3x

(�vT −∇2

−∇2 + ρ2q2
�vT) . (26)
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Integrating this by parts, and replacing ∇i�vT ∇i�vT by (∇ × �vT )2 = jv 2,

since ∇ · �vT = 0, the partition function (25) takes the form

ZA[ρ]=exp

[∫
d3x

e3ρ3

6π

]∫
D�vT exp

[
−4π2ρ2

2

∫
d3x

(
jv

1

−∇2+ρ2q2
jv
)]

.

This is the partition function of a grand-canonical ensemble of closed fluc-

tuating vortex lines L described by the δ-functions over lines in jv(x). The

interaction between them has a finite range equal to the penetration depth

λ = 1/ρq. It is well-known how to compute pair and magnetic fields of

the Ginzburg-Landau theory for a single straight vortex line from the ex-

trema of the energy density (18). In an external magnetic field, there exist

triangular and various other regular arrays of vortex lattices and various

phase transitions. In the core of each vortex line, the pair field ρ goes to

zero over a distance ξ. If we want to sum over grand-canonical ensemble

of fluctuating vortex lines of any shape in the partition function (17), the

space dependence of ρ causes complications. These can be avoided by an

approximation, in which the system is placed on a simple-cubic lattice of

spacing a = α ξ, with α of the order of unity, and replacing the variable ρ(x)

by a fixed ρ = ρ̃0 given by Eq. (21). Thus we replace the partial partition

function (27) approximately by

Z2[ρ̃0]=
∑

{l;∇·l=0}
exp

[
−4π2ρ̃2

0a

2

∑

x

l(x)vρ̃0e(x − x′)l(x′)

]
. (27)

The sum runs over the discrete versions of the vortex density in (16).

These are integer-valued vectors l(x) = (l1(x), l2(x), l3(x)) which satisfy

∇ ·l(x) = 0, where ∇ denotes the lattice derivative. This condition restricts

the sum over all l(x)-configurations in (27) to all non-self-backtracking

integer-valued closed loops. The function

vm(x)=

3∏

i=1

∫
d3(aki)

(2π)3
ei(k1x1+k2x2+k3x3)

2
∑3
i=1(1 − cos aki) + a2m2

=

∫ ∞

0

dse−(6+m2)sIx1(2s)Ix2(2s)Ix3(2s) (28)

is the lattice Yukawa potential.4

The lattice partition function (27) is known to have a second-oder phase

transition in the universality class of the XY model. This can be seen by

a comparison with the Villain approximation5 to the XY model, whose
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partition function is a lattice version of

ZV [ρ] =

∫
Dθ
∫

D�vT exp

[
− b

2

∫
d3x (∇θ − �vT )2

]
. (29)

After integrating out θ(x), this becomes

ZV [ρ] = Det−1/2(−∇2)

∫
D�vT exp

(
− b

2

∫
d3x �vT 2

)
, (30)

and we can replace �v 2
T by (∇ × �vT )(−∇2)−1(∇ × �vT ) = jv(−∇2)−1jv.

By taking this expression to a simple-cubic lattice we obtain the partition

function (27), but with ρ̃2
0a replaced by βV ≡ ba, and the Yukawa potential

vρ̃0e(x) replaced by the Coulomb potential v0(x).

The partition function (27) has the same transition at roughly the same

place as its local approximation

Z2[ρ̃0] ≈
∑

{l;∇·l=0}
exp

[
−4π2ρ̃2

0a

2
vρ̃0e(0)

∑

x

l2(x)

]
. (31)

A similar approximation holds for the Villain model with v0(x) instead of

vρ̃0e(x), and ρ̃2
0a replaced by βV ≡ ba.

The Villain model is known to undergo a second-order phase transi-

tion of the XY model type at βV = r/3 with r ≈ 1, where the vortex

lines become infinitely long.5,8 Thus we conclude that also the partition

function (31) has a second-order phase transition of the XY model type

at ρ̃2vρ̃0e(0)a ≈ v0(0)/3. The potential (28) at the origin has the hopping

expansion9

vm(0) =
∑

n=0,2,4

Hn

(a2m2 + 6)n+1
, H0 = 1, H2 = 6, . . . . (32)

To lowest order, this yields the ratio vm(0)/v0(0) ≡ 1/(m2/6 + 1). A more

accurate numerical fit to the ratio vm(0)/v0(0) which is good up tom2 ≈ 10

(thus comprising all interesting κ-values since m2 is of the order of 3/κ2)

is 1/(σm2/6 + 1) with σ ≈ 1.38. Hence the transition takes place at

ρ̃2
0a

(σ a2ρ̃2
0q

2/6 + 1)
≈ r

3
or ρ̃0 ≈ 1√

3a

√
r

1 − σraq2/18
. (33)

The important point is now that this transition can occur only until ρ̃0

reaches the value ρ1 = 2c/3g of Eq. (23). From there on, the transition

will no longer be of the XY model type but occur discontinuously as a

first-order transition.
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Replacing in (33) a by αξ1 of Eq. (24), and ρ̃0 by ρ1, we find the equation

for the mean-field Ginzburg parameter κMF =
√
g/q2:

κ3
MF + α2σ

κMF

3
−

√
2α

πr
= 0. (34)

Inserting σ ≈ 1.38 and choosing α ≈ r ≈ 1, the solution of this equation

yields the tricritical value

κtric
MF ≈ 0.81/

√
2. (35)

In spite of the roughness of the approximations, this result is very close

to the value 0.8/
√

2 derived from the dual disorder field theory.6 The ap-

proximation has three uncertainties. First, the identification of the effective

lattice spacing a = αξ with α ≈ 1; second the associated neglect of the

x-dependence of ρ and its fluctuations, and third the localization of the

critical point of the XY model type transition in Eq. (33).

Our goal has been achieved: We have shown the existence of a tricritical

point in a superconductor directly within the fluctuating Ginzburg-Landau

theory, by taking the vortex fluctuations into account. This became possible

after correcting the covariant derivative (14) of ψ = ρeiθ to (15). For κ >

0.81/
√

2, vortex fluctuations give rise to an XY model type second-order

transition before the cubic term becomes relevant. This happens for κ <

0.81/
√

2 where the cubic term causes a discontinuous transition.

5. Crystal Defects and the Melting Transition

These examples show that the subtleties of functional integration over mul-

tivalued fields are crucial for understanding important physical phenomena

such as phase transitions. Similar considerations are necessary in the con-

text of elasticity theory where the energy is usually expressed in terms of

the strain uij = ∂iuj(x) of the displacement field ui(x) of the atoms from

their rest position. Such a description is also false since the displacement

field ui(x) is a multivalued field. It is defined only up to multiples of the

lattice vectors. This multivaluedness must be taken into account with the

help of a defect gauge field similar to �v(x), one for each lattice direction.

Its fluctuations give rise to the melting transition, as has been shown in the

textbook.10

6. Crystal Defects and Geometry

The defects in a crystal form a Riemann-Cartan space with curvature and

torsion, and it is possible to rederive all properties of the Riemann-Cartan
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geometry by starting from a multivalued crystal world and converting the

variables to metric and affine connection. For more details see the text-

book.11
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A method named the Gaussian equivalent representation and developed to
calculate path integrals over a Gaussian measure, is presented. As an example
partition functions for simple liquids and proton plasma are calculated by this
method. Free energy and a pair correlation function in the lowest and next
approximations are obtained.

Keywords: Gaussian equivalent representation; Gaussian measure; Screening;
Coulomb potential; Plasma.

1. Introduction

At present solutions of many problems from quite different branches of

modern physics (quantum mechanics and quantum field theory, statistics,

plasma and polymer physics and so on) can be represented in the form of

functional or path integrals over a Gaussian measure. However, the methods

of calculating these integrals is not developed in a suitable form. Particu-

larly, it also concerns the complex path integrals. In this talk I want to

formulate a method, called the Gaussian equivalent representation to calcu-

late path integrals over a Gaussian measure. For demonstration of efficiency

of the proposed method the screened Coulomb or Debye-Hückel potential

in plasma and the next corrections to it will be calculated directly from the

canonical partition function.

We shall consider the path integrals of the type:

I(g) =

∫
Dφ

CA
e−

1
2 (φA−1φ)+gW [φ], I(0) = 1, x ∈ Γ ⊂ Rd. (1)

The kernel of the Gaussian measure and its Green function satisfying ap-
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propriate boundary conditions are defined as

A−1 = K (∂x) δ(x − x′),
∫

Γ

dy A−1(x, y)A(y, x′) = δ(x− x′) .

The interaction functionals are supposed to be represented in the form of

the Fourier integrals so that the perturbation expansion over the coupling

constant g does exist. In particular,
∫
Dφ

CA
e−

1
2 (φA−1φ)gW [φ] = g

∫
dµηe

− 1
2 (ηAη) .

If in Eq. (1) the measure is positive and the interaction functional is real

one can use variational calculations based on the Jensen inequality. We can

introduce a new kernel B

I(g) =

∫
Dφ

CA
e−

1
2 (φA−1φ) · egW [φ]

=
CB
CA

∫
Dφ

CB
e−

1
2 (φB−1φ) · e− 1

2 (φ[A−1−B−1]φ)+gW [φ] .

The variational estimation looks like

I(g) ≥ CB
CA

e
R Dφ
CB

e−
1
2
(φB−1φ)[− 1

2 (φ[A−1−B−1]φ)+gW [φ]] = eE(g) ,

E(g) = max
B

[
1

2
ln

(
det(B)

det(A)

)
− 1

2
([A−1 −B−1]B) + g

∫
dµηe

−(ηBη)

]
.

We formulate two problems:

• Is it possible to calculate the next corrections to the variational esti-

mation?

• Is it possible to extend this technique to complex functional?

Our answer – YES.

2. Gaussian Equivalent Representation

Our idea comes from quantum field theory (QFT) in which vacuum loops,

so-called tadpoles, give the main contributions to value of Eq. (1). These

contributions in QFT are divergent and can be removed by going to the nor-

mal product of field operators. Thus we should find an appropriate represen-

tation of the functional integral (1) in which these contributions would be

taken into account automatically, so that the lowest approximation would

coincide with the variational estimation. We proceed in the following way.
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We introduce the conception normal form with respect to a given Gaus-

sian measure with a given kernel A. The normal form ei(bφ) with respect to

a given Gaussian measure with the kernel A is called the product

...ei(bφ)
...A ≡ ei(bφ)+ 1

2 (bAb).

According to this definition, we have
∫
dσφ,A

...ei(bφ)
...A =

∫
Dφ

CA
e−

1
2 (φA−1φ) · ei(bφ)+ 1

2 (bAb) ≡ 1 .

The following formula is important for consequent calculations

...ei(bφ)
...A = e

1
2 (b[A−B]b)

...ei(bφ)
...B .

The interaction functional can be written in the normal form

W [φ] =

∫
dµηe

iηφ) =

∫
dµη e

− 1
2 (bAb) ·

...ei(bφ)
...A

= W0 + i(W1φ) − 1

2

...(φW2φ)
...A +

...WI [φ]
...A,

W0 =

∫
dµη e

− 1
2 (ηAη),

i(W1φ) =

∫
dµη e

− 1
2 (ηAη)i(ηφ) = O(φ),

1

2

...(φW2φ)
...A =

1

2

∫
dµη e

− 1
2 (ηAη) ·

(
...(ηφ)(ηφ)

...A

)
= O(

...φ2
...A),

...WI [φ]
...A =

∫
dµηe

− 1
2 (ηAη) ·

...e
i(ηφ)
2

...A = O(
...φ3

...A),

ez2 ≡ ez − 1 − z − z2

2
.

Now we can formulate the Gaussian equivalent representation. We have

the integral

I(g) =

∫
Dφ

CA
e−

1
2 (φA−1φ) · egW [φ] =

∫
dσφ,Ae

gW [φ] .

Let us produce the displacement of the field φ and introduce a new kernel

B−1:

(1) φ(x) −→ φ(x) + ξ(x), (2) A−1 −→ B−1.

The interaction functional in the integrand should be rewritten in the nor-

mal form with respect to the Gaussian measure with the kernel B. We
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get

I(g) =
CB
CA

∫
dσφ,B · eF [φ],

F [φ] = −1

2
(ξA−1ξ) − 1

2
([A−1 −B−1]B)

+

{
−(φA−1ξ) − 1

2

...(φ[A−1 −B−1]φ)
...B

}

+gW0 +

{
ig(W1φ) − g

2

...(φW2φ)
...B

}
+ g

...WI [φ]
...B.

We consider the main contribution coming from the Gaussian measure with

the kernel B−1 so that the terms with boldface φ inside curly brackets

should cancel each other. This requirement leads to the equations:
{−(φA−1ξ) + ig(W1φ) = 0,

− 1
2

...(φ[A−1 −B−1]φ)
...B − g

2

...(φW2φ)
...B = 0.

Solution of these equations gives B and ξ.

Finally we get the Gaussian equivalent representation:

I(g) =

∫
dσφ,Ae

gW [φ] = eE0

∫
dσφ,Be

g
...WI [φ]

...B , (2)

where

E0 =
1

2
ln

(
CB
CA

)
− 1

2
([A−1 −B−1]B) − 1

2
(ξA−1ξ) + g

∫
dµη e

i(ηξ)− 1
2 (ηAη)

and the interaction functional is

...WI [φ]
...B =

∫
dµη e

i(ηξ)− 1
2 (ηBη) ·

...e
i(ηφ)
2

...B = O(
...φ3

...B) .

The value of E0 is nothing else but the variational estimation of the initial

integral (1).

The representation (2) permits us to find the next corrections to E0 by

standard perturbation calculations. One can get

I(g) = eE0

∫
dσφ,Be

g
...WI [φ]

...B = eE0+g
2W2+....

The accuracy of the zeroth approximation can be evaluated by

δ =
g2|W2|
g|W0|

=? . (3)
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3. Screening of the Coulomb Potential in Plasma

It is known (see, for example, Ref. 4) that the effective electrostatic potential

between two charged particles in the plasma differs from the Coulomb one

owing to collective electrostatic interaction with other particles. The famous

Debye-Hückel approach supposes that the pair distribution function n2(r)

defines the charge density of particles in the plasma and is defined by an

effective potential

n2(r) = n e−βVeff (r) .

The effective electrostatic potential satisfies the Poisson equation

−∇2Veff(r) = 4πρ(r) = 4πe2n
[
e−βVeff (r) − 1

]
⇒ −4πe2βVeff(r),

[
−∇2 + 4πβe2n

]
Veff(r) = 0. (4)

The solution of the last equation represents the screened Debye-Hückel

potential:

Veff(r) =
e2

r
e−κDr, κD =

√
4πβe2n,

where λD = 1/κD is the Debye radius. All modifications and improvements

of the Debye-Hückel approach are reduced to changing the equation (4)

(see, for example, Ref. 3).

Our approach permits us to calculate the screened Coulomb potential

directly from the canonical ensemble describing plasma. The canonical par-

tition function looks like

ZΛ =

∫

Λ

dx1

|Λ| ...
∫

Λ

dxN
|Λ| e

−β P
i<j

e2

|xi−xj | ⇒ e−|Λ|F , n =
N

|Λ| .

The pair radial distribution function is defined as

n2(x1 − x2) =
1

ZΛ

∫

Λ

dx3

|Λ| ...
∫

Λ

dxN
|Λ| e

− P
1≤i<j≤N

βe2

|xi−xj |
=⇒ e−βVeff (x1−x2) .

Using the path integral representation one can get

ZΛ =
1

|Λ|N
∫

Dφ√
det V

e−
1
2 (φV −1φ)



∫

Λ

dx
...ei

√
βφ(x)

...V



N

=
N !

|Λ|N
1

2πi

∮
dz

z1+N

∫
dσφ,V e

z
R
Λ

dx
...ei

√
βφ(x)

...V .
(5)
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The kernel of the Gaussian measure

V −1(x− y) = − 1

4πe2
△δ(x− y)

contains the so-called zeroth mode, so that in the path integral we should

integrate over functions satisfying the condition
∫
dx φ(x) = 0. Let us

write down the Gaussian equivalent representation for the path integral in

Eq. (5). In this case, it is sufficient to introduce a new kernel

V −1(x− y) =⇒ D−1(x − y).

We get

∫
dσφ,V e

z
R
Λ

dx
...ei

√
βφ(x)

...V
= e|Λ|F (z) ·

∫
dσφ,D · eWI [φ],

|Λ|F (z) =
1

2
ln

detD

detV
− 1

2
(D[V −1 −D−1]) + |Λ|ze β2 [V (0)−D(0)] .

The interaction functional acquires the form

WI [φ] = c

∫

Λ

dx
...e
i
√
βφ(x)

2

...D, c = zβe
β
2 [V (0)−D(0)] .

The kernel D is defined by the equation

−1

2

...(φ[V −1 −D−1]φ)
...D − c

∫

Λ

dx
...φ2(x)

...D = 0 ,

so that

D̃(k) =
Ṽ (k)

1 + cṼ (k)
=

4πe2

k2 + c 4πe2
.

The next step is to calculate by the saddle-point method the complex con-

tour integral over dz for |Λ| → ∞. The saddle point is realized for z = nβ

and

I =
1

2πi

∮
dz

z1+N
e|Λ|F (c(z)) =⇒ e|Λ|[−n lnn+F (nβ)].

Finally we get

ZΛ = e|Λ|F0(n,β) ·
∫
dσφ,De

WI [φ],

WI [φ] = n

∫

Λ

dx
...e
i
√
βφ(x)

2

...D,
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Fig. 1. LHS plot: Debye-Hückel potential (solid line), Debye-Hückel potential plus the
first correction (stars). RHS plot is for the potential multiplied by r.

βD(x) =
βe2

r
e−rβe

2

=
A

κr
e−κr .

Here κ = 1/λD =
√

4πnβe2 is the Debye parameter and

A =
1

4π

κ3

n
∼
(
ℓmean

λD

)3

is the plasma parameter where λmean = n−1/3 is an average distance be-

tween particles in plasma.

Let us calculate the next corrections to free energy and pair distribution

function, and evaluate the accuracy of our approach. Free energy looks like

F (n, β) ≈ F0(n, β) + F2(n, β)

= −n
3




A− 3

2


1 − A

4
− 1

A

∞∫

0

ds s2
[
1 − e−

A
s e

−s
]






 .

Accuracy of the Gaussian equivalent representation can be evaluated by the

ratio

δ(A) =
|F2(A)|
|F0(A)| ≈

3

8

A

(1 +A
3
4 )

4
3

<
3

8
, ∀A > 0 .

One can see that the accuracy is acceptable practically for all A. The stan-

dard point of view is that the Debey-Hückel approach is valid for a small

plasma parameter A≪ 1.
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Now let us calculate the screened Coulomb potential. The pair distribu-

tion function is defined as

n2(x − x′) =
1

Z ·
∫

Dφ√
detD

e−
1
2 (φD−1φ)

...ei
√
βφ(x)

...D
...ei

√
βφ(x′)...De

WI [φ]

= e−βVeff (r), r = |x − x′|.
The effective screened potential in the lowest and next approximation is

β Veff(r) ≈ βe2

r
e−κr + βV2(r),

βV2(r) = n

∫
dy
{
β2D(r − y)D(y) −

(
1 − e−βD(y)

)(
1 − e−βD(r−y)

)}
.

These equations lead to the screened Coulomb potential for proton plasma

at the center of our Sun shown in Fig. 1. For the calculation we used kT⊙ =

1.3 · 103 eV, ρ⊙ = 100
g

cm3 . The resulting Debye and plasma parameters

are

κ⊙ =
√

4πn⊙β⊙e2 = 1.02 · 109 cm−1, λ⊙ = 0.98 · 10−9 cm,

A⊙ =
1

4π

κ3
⊙
n⊙

= 1.42.

The accuracy according to (3) is

δ(A⊙) =
|F2(A⊙)|
|F0(A⊙)| = 0.2.

One can see that the Debye-Hückel approximation is indeed a very good

approximation for a true effective potential.

In summery one can conclude that

• The Gaussian equivalent representation is an effective method of ap-

proximate calculation of path integrals over a Gaussian measure.

• In the case of plasma, the corrections to the Debye-Hückel potential are

small for any plasma parameter A.
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1. Introduction

Gauge invariance is one of the most essential ingredients of modern field

theory. It is a common wisdom that the scattering matrix of the Yang-Mills

theory does not depend on gauge fixing. However this statement in fact

makes no sense as in the Yang-Mills theory a scattering matrix connecting

the free asymptotic states, which include massless particles, does not exist.

Some gauge invariant infrared regularization allowing to make sense of for-

mal manipulations with the S-matrix generating functional certainly would

be welcome. Moreover in nondiagonal gauges even the Green functions are

plagued with infrared divergences which may lead to certain problems in

studying Slavnov-Taylor identities in such theories.

In this talk I discuss an infrared regularization for the Yang-Mills the-

ory, which may be described by a local gauge invariant Lagrangian. This

Lagrangian contains higher derivatives and hence the regularized theory

includes nonpositive norm states. However, in the limit when the regular-

ization is removed the nonphysical states decouple.

In the next section a path-integral formulation of such a regularization

will be presented. The third section deals with the field theoretical realiza-

tion of this construction.
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2. A Path-Integral Regularization

To illustrate the main idea I present a heuristic derivation of the regular-

ized action for the SU(2) gauge theory. Generalization to other groups is

straightforward.

The following formal equality obviously holds:
∫

exp{i
∫

[LYM +m2ϕ∗ϕ]dx}dµ =

∫
exp{i

∫
[LYM +m−2(D2ϕ′)∗(D2ϕ′) − d∗D2b− b∗D2d]dx}dµ′. (1)

Here LYM is the usual Yang-Mills Lagrangian

LYM = −1

4
F jµνF

j
µν (2)

and the complex scalar fields ϕ form the SU(2) doublet, which may be

conveniently written as follows:

ϕ1 =
iB1 +B2

√
2

; ϕ2 =
B0 + iB3

√
2

. (3)

Anticommuting complex scalar fields b, d form the similar doublets. The

measure dµ includes differentials of all fields as well as gauge fixing factors.

The measure dµ′ differs by the presence of the differentials of the fields

b, b∗, d, d∗. The operator D2 denotes the sum
∑
µDµDµ, where Dµ is the

covariant derivative

Dµϕ = (∂µ +
igτ j

2
Ajµ)ϕ. (4)

Equation (1) is formal, as neither l.h.s. nor r.h.s. exist because of infrared

divergences. We define the infrared regularized theory in the following way.

Let us add to the action in the r.h.s. the gauge invariant term
∫
{α(Dµϕ

′)∗(Dµϕ
′) − αm2(d∗b+ b∗d)}dx. (5)

The integral on the r.h.s. of Eq. (1) is still infrared divergent. However if

we make the shift

ϕ′ → ϕ′ + â, â1 = 0, â2 = a, (6)

the regularized action acquires a form

AR =

∫
{−1

4
F jµνF

j
µν −m−2(D2ϕ)∗(D2ϕ) − (Dµd)

∗Dµb− (Dµb)
∗Dµd

−a
2g2

4m2
(∂µAµ)

2 +
ag√
2m2

∂2Bj∂µA
j
µ + α(Dµϕ)∗(Dµϕ)
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+
αg2a2

4
A2
µ − αga

2
√

2
Bj∂µA

j
µ − αm2(d∗b+ b∗d) + . . . (7)

Here . . . denote the interaction terms which arise due to shift (6).

One sees that in complete analogy with the Higgs model the shift (6)

generates the mass term for the vector field, the term (∂µAµ)
2, the mixing

of Bj with ∂µA
j
µ and additional interaction terms. For simplicity in the

following we choose g2a2 = 2m2. Then the mass of the Yang-Mills field is√
αm.

The theory described by the action (7) is free of infrared singularities.

At the same time the action is local and invariant with respect to the

gauge transformations. This invariance allows to use in the corresponding

path integral any admissible gauge condition. Particularly convenient is the

Lorentz gauge ∂µAµ = 0. In this gauge the mixing between Ajµ and Bj is

absent and renormalizability is manifest.

One has to understand that the transformation (6) is not a simple change

of variables. It changes the boundary conditions in the path integral. Rather

it is a definition of the infrared regularized Yang-Mills theory. More precisely
∫

exp{i
∫
LYMdx}dµ|reg =

∫
exp{iAR}dµ′. (8)

Equation (8) gives a definition of the infrared regularized scattering matrix

for the Yang-Mills theory as a path integral of the exponent of a local gauge

invariant action. It also allows to give a sensible definition of the correlation

functions as in the regularized theory one can perform the Wick rotation

in all Feynman integrals making the transition α→ 0 legitimate.

In the next section we shall show that this path-integral regularization

admits an elegant field theoretical realization, similar to the BRST quanti-

zation of gauge invariant models.

3. Canonical Quantization and Unitarity of Regularized

Theory

It was shown in our papers1,2 that a change of variables in a path integral

which introduces higher derivatives may be interpreted as a transition to a

field theory model including unphysical ghost fields. This theory possesses

a (super)symmetry which leads via Noether theorem to existence of a con-

served nilpotent charge Q. Existence of such a charge allows to separate

the physical states by imposing the condition

Q|ψ〉phys = 0. (9)
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These states have nonnegative norms and the scattering matrix is unitary

in the subspace (9).

Below we shall show that a similar construction may be done in the

present model. A peculiar feature of our model is related to the fact that

contrary to the cases considered before the conserved charge Q is not nilpo-

tent. Nilpotency is recovered only in the limit α→ 0, and this limit, when

it exists, determines the Yang-Mills theory. The limit α→ 0 for the on-shell

S-matrix does not exist due to infrared divergences, but the formal expres-

sion for the matrix elements in the limit when the regularization is removed

coincides with the S-matrix elements of the original Yang-Mills theory.

Our starting point is the regularized action

AR =

∫
{−1

4
F jµνF

j
µν −m−2(D2(ϕ+ â))∗D2(ϕ+ â) + (Dµd)

∗Dµb

+(Dµb)
∗Dµd+ α[(Dµ(ϕ+ â))∗Dµ(ϕ+ â) −m2(d∗b+ b∗d)]}dx. (10)

This action is invariant with respect to the gauge transformations and the

supersymmetry transformations

δϕ = εb,

δd = m−2D2(ϕ+ â)ε, (11)

where ε is an anti-Hermitean parameter anticommuting with b, d. Note that

these transformations are not nilpotent: δ2d 6= 0. The nilpotency is restored

only in the limit α = 0.

The action (10) is invariant both with respect to the gauge transforma-

tions and the transformations (11). The supersymmetry transformations do

not change the fields Aµ, so it is convenient to choose for quantization a

manifestly supersymmetric and renormalizable gauge ∂µAµ = 0.

In this gauge the Lagrangian may be written in terms of the components

Ba, B0, and the similar components for the fields b, d,

b1 =
ib1 + b2√

2
, b2 =

b0 + ib3√
2

,

d1 =
d1 − id2

√
2

, d2 =
−id0 + d3

√
2

, (12)

as follows

LR = −m
−2

2
∂2Bρ∂2Bρ − i∂µb

ρ∂µd
ρ − 1

4
(∂µA

a
ν − ∂νA

a
µ)

2

+α[∂µB
ρ∂µB

ρ − im2bρdρ] + . . . (13)

where ρ = 0, 1, 2, 3 and . . . denote the interaction terms.
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The quantization of the Yang-Mills fields Ajµ is performed in a standard

way and requires the introduction of the Faddeev-Popov ghosts c̄, c. The

scalar fields b, d also make no problems.

The fields Bρ are described by the higher derivative Lagrangian and for

their quantization we use the Ostrogradsky canonical formalism.1–3

Introducing the creation and annihilation operators for the excitations

corresponding to the B-fields one can write the free Hamiltonian in the

form

H0 =

∫
[ω1(k)q

ρ+
1 (k)qρ−1 (k) − ω2(k)q

ρ+
2 (k)qρ−2 (k)]dk. (14)

In these equations ω1 =
√
k2, ω2 =

√
k2 + αm2, and the operators qρ±1,2

satisfy the commutation relations

[qρ−1 (k), qσ+
1 (k′)] = δρσδ(k−k′), [qρ−2 (k), qσ+

2 (k′)] = −δρσδ(k−k′). (15)

One sees that the operators qρ+2 create negative norm states.

The creation and annihilation operators for the supersymmetry ghosts

may be introduced in a standard way. They are given by the equations:

dρ± =
dρω2 ± pρb√

2ω2
, bρ± =

bρω2 ∓ pρd√
2ω2

. (16)

They satisfy the anticommutation relations

[bρ−(k), dσ+(k′)]+ = −iδρσδ(k − k′), [dρ−(k), bσ+(k′)]+ = iδρσδ(k − k′).
(17)

The space of states includes many unphysical excitations, like the super-

symmetry ghost states, states corresponding to the fields Bρ, unphysical

components of Aµ and Faddeev-Popov ghosts. The real physical states in-

cluding only transversal components of the Yang-Mills field may be sepa-

rated by imposing on the asymptotic states the conditions

Q0|ψ〉phys = 0, (18)

QBRST
0 |ψ〉phys = 0, (19)

and taking the limit α→ 0. Here Q0 is the free charge associated with the

supersymmetry transformations (11), and QBRST
0 is the free BRST charge.

The invariance of the action (10) with respect to the supersymmetry

transformations (11) generates via Noether’s theorem the conserved cur-

rent, and the corresponding conserved asymptotic charge may be written

as follows

Q0 =
1√
2ω2

∫
{bρ+(P ρ1 + iω2P

ρ
2 − αXρ

2 ) + (P ρ1 − iω2P
ρ
2 − αXρ

2 )bρ−}dk
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∼
∫
{bρ+(k)

qρ−1 (k) + qρ−2 (k)

2
+
qρ+1 (k) + qρ+2 (k)

2
bρ−(k)}dk +O(α). (20)

One sees that although for a finite α the charge Q0 is not nilpotent, in

the limit α → 0 the nilpotency is recovered as the operators bρ+, bρ− and

qρ±+ = qρ±1 + qρ±2 are mutually (anti)commuting.

Any vector annihilated by Q0 may be presented in the form

|ϕ〉 = |ϕ〉A +Q0|χ〉 + O(α). (21)

Here |ϕ〉A is a vector which does not include the excitations, corresponding

to the ghost fields qρ1,2 and bρ, cρ. This vector depends only on the Yang-

Mills field excitations and the Faddeev–Popov ghosts. Imposing on it the

condition (19), which is compatible with the condition (18), we conclude

that the vectors |ψ〉phys have a form

|ψ〉phys = |ψ〉tr + |N〉 +O(α) (22)

where |ψ〉tr depends only on transversal polarizations of the Yang-Mills

field, and |N〉 is a zero norm vector. Hence in the limit α → 0 we recover

the usual Yang-Mills theory. It completes the proof.
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1. Response of the Harmonic Oscillator

We assume that the reader is familiar with standard facts from the theory

of the driven harmonic oscillator.1 We shall use without definition or proof

the concepts of normal ordering, time ordering, double-time ordering on the

Schwinger-Perel-Keldysh C-contour, and the related Wick’s theorems.2–4

For omitted technical details see the extended version of these notes in the

Annals of Physics.5,6

We consider a driven quantum harmonic oscillator, with the Hamilto-

nian in the Schrödinger picture

ĤS = Ĥ0S − j(t)q̂, Ĥ0S =
p̂2

2m
+
mω2

0 q̂
2

2
= ~ω0

(
â†â+

1

2

)
, (1)

where q̂ and p̂ are the position and momentum operators, [q̂, p̂] = i~, and

â†, â are the creation and annihilation operators,
[
â, â†

]
= 1. The Heisen-
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berg position operator associated with ĤS reads,

q̂j(t) = q̂(t) + qj(t), (2)

q̂(t) =
√

~/2mω0

(
âe−iω0t + â†eiω0t

)
, (3)

qj(t) =

∫
dt′DR(t− t′)j(t′), (4)

where q̂(t) is the “interaction-picture” operator, and qj(t) is the c-number

amplitude created by the c-number source j(t). All integrals in these notes

are from minus to plus infinity. In (4), DR is the retarded Green’s function

of the classical oscillator,

D̈R(t) + ω2
0DR(t) =

δ(t)

m
, DR(t) = θ(t)

sinω0t

mω0
. (5)

With future extension to arbitrary interacting nonlinear nonequilib-

rium quantum-statistical systems in mind, we describe the oscillator within

Schwinger’s closed-time-loop formalism.3,4 We construct the generating

functional of Keldysh-style Green’s functions,

Φ(η−, η+; j) =

〈
T− exp

[
− i

∫
dt η−(t)q̂j(t)

]
T+ exp

[
i

∫
dt η+(t)q̂j(t)

]〉
,

(6)

where the functional arguments η±(t) are arbitrary smooth c-number func-

tions, and the quantum averaging is with respect to the initial (Heisenberg)

state of the oscillator, 〈· · · 〉 = Trρ0(· · · ). A systematic introduction to func-

tional techniques may be found in Ref. 7.

Applying, firstly, Eq. (2), and, secondly, Wick’s theorem for the double-

time ordering on the C-contour, we split Φ(η−, η+; j) in three factors,

Φ(η−, η+; j) = Φcl(η; j)Φin(η)Φvac(η−, η+), (7)

describing contributions of the external source, initial state and vacuum

fluctuations, respectively:

η(t) = −i [η+(t) − η−(t)] , (8)

Φcl(η; j) = exp

∫
dt η(t)qj(t), (9)

Φin(η) =

〈
: exp

∫
dt η(t)q̂(t):

〉
, (10)

Φvac(η−, η+) = exp

{
i~

∫
dtdt′

[
1

2
η+(t)η+(t′)DF (t− t′)

− 1

2
η−(t)η−(t′)D∗

F (t− t′) − η−(t)η+(t′)D(t− t′)

]}
.

(11)
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The functional Φvac is “supplied” by Wick’s theorem and is expressed by

contractions,

−i~DF (t− t′) = 〈0 |T+q̂(t)q̂(t
′)| 0〉 , (12)

i~D∗
F (t− t′) = 〈0 |T−q̂(t)q̂(t′)| 0〉 , (13)

−i~D(t− t′) = 〈0 |q̂(t)q̂(t′)| 0〉 . (14)

Its interpretation as “vacuum fluctuations” follows from the fact that it

coincides with Φ(η−, η+; j) for j = 0 and ρ0 = |0〉 〈0|.
Of the three factors in Eq. (7), Φcl affords a fully classical interpretation,

Φin may be regarded classical or quantum depending on whether the oscil-

lator is in a classical or quantum state, while, it would seem, the quantum

nature of Φvac is beyond doubt, because replacing â, â† by c-number ampli-

tudes turns it into unity. However, belief in the “fully quantum” nature of

Φvac is shuttered if we note that by a mere change of functional variables

we express it by the “fully classical” Φvac:

Φvac(η−, η+) = Φcl(η;σ), (15)

η(t) = −i
[
η+(t) − η−(t)

]
, σ(t) = ~

[
η
(+)
+ (t) + η

(−)
− (t)

]
, (16)

η+(t) = iη(−)(t) +
1

~
σ(t), η−(t) = −iη(+)(t) +

1

~
σ(t). (17)

The change of variables η−, η+ ↔ η, σ employs separating of the frequency-

positive and negative parts,

g(±)(t) =

∫
dω

2π
e−iωtθ(±ω)gω, gω =

∫
dt eiωtg(t). (18)

Equation (15) is a consequence of the relations

D(t) = D
(+)
R (t) −D

(−)
R (−t), DF(t) = D

(+)
R (t) +D

(+)
R (−t). (19)

For the oscillator, they can be verified directly.

Equation (15) shows that, for the harmonic oscillator, “vacuum fluctu-

ations” are a (rather tangled) way of expressing response properties of the

system. This is also the case for an arbitrary free bosonic field, see Ref. 5.

2. Response of Interacting Bosons

Here we consider the generic case of a nonlinear quantum oscillator inter-

acting with an environment. For the general case of an interacting bosonic

field see Ref. 6. Formally, we generalise the treatment of the harmonic os-

cillator by assuming that H0S in Eq. (1) is arbitrary. The Heisenberg op-

erator of coordinate associated with HS is denoted as Q̂j(t). The system is
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characterised by the Keldysh-style Green’s functions of Q̂j(t) through their

generating functional Φ(η−, η+; j), given by Eq. (6) with q̂j(t) → Q̂j(t).

Applying the substitution (16) defines a new functional ΦR(η; j),

Φ(η−, η+; j) = ΦR(η; j + σ). (20)

The critical feature is that the functional variable σ(t) and the external

source j(t) enter in Eq. (20) as a sum. This is a general property of an

arbitrary interacting bosonic field, see Ref. 6.

Interpretation of ΦR(η; j) follows the analogy with the harmonic oscil-

lator. For the latter, using Eqs. (7) and (15) we find

ΦR(η; j) =

〈
: exp

∫
dt η(t)q̂j(t):

〉
= exp

∫
dtdt′η(t)DR(t− t′)j(t′). (21)

For interacting bosons, we postulate that, regarded as a functonal of η(t),

ΦR(η; j) generates the time-normal averages1,8 of Q̂j(t),

ΦR(η; j) =

〈
T : exp

∫
dt η(t)Q̂j(t):

〉
. (22)

As a functional of both η(t) and j(t), ΦR(η; j) generates quantum-statistical

response functions ,

D(m;n)
R (t1, · · · , tm; t′1, · · · , t′n) =

δn
〈
T :Q̂j(t1) · · · Q̂j(tm):

〉

δj(t′1) · · · δj(t′n)
∣∣∣
j=0

=
δm+nΦR(η; j)

δη(t1) · · · δη(tm)δj(t′1) · · · δj(t′n)
∣∣∣
η=j=0

.

(23)

Implications of Eqs. (22) and (23) are discussed in detail in Ref. 6. Here we

only mention, without a proof, the most important points.

• Glauber-Kelley-Kleiner’s definition of the time-normal ordering8 is re-

covered from (22) in the approximation of slowly varying amplitudes.

• Equation (23) for m = n = 1 produces Kubo’s famous formula for the

linear response function,9

D(1;1)
R (t; t′) =

i

~
θ(t− t′)

〈[
Q̂j(t), Q̂j(t

′)
]〉
.

• Explicit causality we see in Kubo’s formula is a general property of the

response functions, namely,

D(m;n)
R (t1, · · · , tm; t′1, · · · , t′n) = 0, max{t} < max{t′},

D(0;n)
R (; t′1, · · · , t′n) = 0.
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• The functional ΦR(η;σ) emerges if applying the substitution (17) to

Φ(η−, η+) = Φ(η−, η+; j)|j=0. This means that full information about

response properties of the system is contained in the field operator

Q̂(t) = Q̂j(t)|j=0. This fact has profound consequences for the quantum

measurement theory.

• A close inspection of explicit formulae for the response functions reveals

a fundamental connection between response and noncommutativity of

operators. In particular, neglecting formally noncommutativity of the

field operators does not make the system classical, as could be expected,

but turns it into an“external quantum source.”Hence the classical limit

of quantum mechanics can only be taken by analysing physics, and not

by formal means like setting ~ to zero or disregarding noncommutativ-

ity.
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1. Introduction

The purpose of this note is to illustrate through Nelson’s and the Pauli-

Fierz models how functional integration can be applied in a rigorous way

to solve problems of quantum field theory. The mathematical approach

has specific benefits. Although for technical reasons particular proofs may

involve restrictions on the reach of statements, the conclusions are reliable

against a clear background of hypotheses. Secondly, this approach does

allow to derive genuinely new results or understanding. Finally, the concepts

and tools of modern stochastic analysis have a far reaching potential of

cross-fertilizing the methods developed by physicists. For the details and

proofs of the summary presentation below we refer to the (severely selected)

bibliography.

2. Functional Integration for Nelson’s Model

The Nelson model describes an electrically charged spinless quantum par-

ticle coupled to a scalar boson field. The Hamiltonian is given by

HN = Hp +Hf +Hi on L2(Rd, dx) ⊗F
with free particle Hamiltonian Hp = (−(1/2)∆ + V (x)) ⊗ 1, free field

Hamiltonian Hf = 1 ⊗
∫

Rd
ω(k)a∗(k)a(k)dk, and interaction Hi =
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∫
Rd

(2ω(k))−1/2 (̺̂(k)eik·x ⊗ a(k) + h.c.
)
. Here F stands for Fock space, a

and a∗ are the boson field operators, ω is the dispersion relation (equal to

|k| in the interesting case of massless bosons), and ̺ is the charge distribu-

tion function (whose Fourier transform appears in the formula), imposing

a UV cutoff. The external potential V acting on the particle is assumed

to be Kato-decomposable, see Ref. 1; this class is reasonably large to ac-

commodate semibounded potentials having local singularities, for instance,

Coulomb potential.

Under the mild conditions |̺̂|ω−1/2, |̺̂|ω−1 ∈ L2 Nelson’s Hamiltonian

is self-adjoint on D(Hp)∩D(Hf ), the joint domain of the free Hamiltonians.

Moreover, HN has a unique, strictly positive ground state Ψ ∈ L2 ⊗ F as

soon as |̺̂|ω−3/2 ∈ L2.2 The latter condition is interpreted to be an IR

cutoff.

Traditional physics offers as an alternative a path-integrals framework

for studying the features of quantum mechanical models. A similar refor-

mulation can be made for the Nelson model as well. By writing down the

Euclidean actions Sp, Sf , Si associated with the three operators above, and

denoting by Xt and ξt the particle resp. field processes (see more below),

the path measure is formally written as
∏

t∈R

dXte
−Sp({Xt})

∏

(t,x)∈Rd+1

dξt(x) e
−Sf({ξt}) e−Si({Xt,ξt}).

This is a mathematically unappealing almost surely 0 × ∞ situation, but

happily we can prove that cancellations do occur and can make sense of a

path measure for the full time line R through a limiting procedure.

A joint use of the so called ground state transform and Wiener-Itô

transform allows mapping the space L2(Rd, dx) ⊗ F into a suitable func-

tion space. Through this procedure it is found that e−tHp gives rise to

a P (φ)1-process R ∋ t 7→ Xt ∈ Rd whose path measure can be writ-

ten as dN 0
T (X) = e−

R T
−T V (Xt)dtdWT (X) by using the Feynman-Kac for-

mula for Schrödinger operators. Here WT denotes Wiener measure for Rd-

valued Brownian motion running in the time interval [−T, T ] ⊂ R. The

boson field is mapped into the space of tempered distributions S′(Rd) over

Schwartz space, and e−tHf gives rise to the Ornstein-Uhlenbeck process

R ∋ t 7→ ξt ∈ S′(Rd) with Gaussian path measure G characterized by

EG [ξt(f)] = 0 and EG [ξt(f)ξs(g)] =
∫

Rd
f̂(k)ĝ(k)(2ω(k))−1e−ω(k)|t−s|dk. To

operate with continuous paths of the Ornstein-Uhlenbeck process we prefer

to replace S′(Rd) with a full-measure subset B which we do not give here

explicitly. Under the joint map the interaction Hamiltonian Hi turns into
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the multiplication operator (ξt ∗̺)(x) (where the star denotes convolution).

The Euclidean Hamiltonian H̃N can then be identified as the sum of the

images of all the three above Hamiltonians apart, which at the same time

are the generators of the stochastic processes we have just discussed.

The path measure for bounded intervals [−T, T ] is then given by a suit-

able extension of the Feynman-Kac formula.

Theorem 2.1 (Nelson). For square integrable F,G we have

(F, e−2TH̃NG)L2 =

∫
F (X−T , ξ−T )G(XT , ξT )dPT

where

dPT =
1

ZT
e−

R
T
−T (ξt∗̺)(Xt)dtdP0

T

is the path measure describing the interacting system, and P0
T = N 0

T ×G is

that of the non-interacting system serving here for reference measure.

As the field variables ξt appear linearly in the exponent, the Gaussian

integrals can be made explicitly. Hence for sets E and F in the Borel

σ-fields (algebras of events) of C(R,Rd) resp. C(R,B), by the identity

PT (E × F ) =
∫
E
PT (F |X = Y )dNT (Y ) we get

dNT (X) =
1

ZT
e−

R
T
−T

R
T
−T W (Xs−Xt,s−t)dsdtdN 0

T (X),

W (x, t) = −1

2

∫

Rd

̺̂(k)
2ω(k)

cos(k · x)e−ω(k)|t|dk,

ZT =

∫
e−

R
T
−T (ξt∗̺)(Xt)dtd(N 0

T × G) =

∫
e−

R
T
−T

R
T
−T W (Xs−Xt,s−t)dsdtdN 0

T .

It can be checked that NT is a Gibbs measure (i.e., satisfies the Dobrushin-

Lanford-Ruelle consistency conditions) on path space C(R,Rd) with respect

to the infinite range pair interaction potentialW and reference measure N 0
T .

The last formula above gives the partition function (normalizing constant)

for NT turning it, and thus the full path measure PT , into a probability

measure, for all T > 0. In lack of space here we can only briefly discuss what

results can be derived by using the path measure PT , and more closely, the

Gibbs measure NT .

Infinite time limit and ground state: Provided that a weak limit of PT exists

as T → ∞, it can be shown that the ground state Φ of H̃N (by the above

constructions unitary equivalent with Ψ) can be written as

Φ2 =
dP

dP0
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whenever P is absolutely continuous with respect to P
0, where P is the sta-

tionary distribution of the T → ∞ limit of PT , and P
0 is that of the limit of

P0
T . On the other hand, since it can be shown that the conditional proba-

bility PT (F |X = Y ) appearing in the identity quoted above is Gaussian, as

this presents no particular difficulty the key to getting the weak limit of the

path measure PT lies in controlling NT . In Ref. 3 we constructed weak lim-

its of Gibbs measures including NT by using a cluster expansion and have

furthermore obtained results on uniqueness of this limit, and properties of

the limit measure such as mixing, typical path behaviour, and more.

Ground state properties: By using the formula above we are able to express

ground state expectations (for operators A on the original Hilbert space)

in terms of Gibbs averages (for associated functions fA on its image space),

which turn out to be easier to calculate or at least meaningfully to estimate

than directly the scalar products. In particular, we can derive superexpo-

nential decay of boson sectors (a long standing open question), establish

Coulomb’s law for the average field and derive the field fluctuations, and

show exponential localization of the particle in space.4

Infrared behaviour: Having the path measure at hand, we can define an

independent way of quantization. As seen thus far, Fock space quantiza-

tion is performed by taking the Hilbert space H0 = L2(Rd × B, dP0) with

Hamiltonian HN unitary equivalent with H̃N. In Euclidean quantization

we can take H = L2(Rd × B, dP) instead. Then a semigroup Tt associated

with the time reversible Markov stochastic process (Xt, ξt) can be defined

through (F, TtG)H = EP[F (X0, ξ0)G(Xt, ξt)], ∀t > 0. Since this is symmet-

ric and contractive, there is a self-adjoint semibounded operator Heuc such

that Tt = e−tHeuc . We will view this by definition as the Euclidean Hamil-

tonian. The function 1 ∈ H is the unique ground state of Heuc. In Ref. 5

we prove that in 3D there is a genuine IR divergence problem: if the IR

cutoff is not applied, H̃N has no ground state in H0 (and hence HN in Fock

space). In particular, HN and Heuc are not unitary equivalent, disproving

the existing belief that Fock and Euclidean quantizations are equivalent

schemes. In higher dimensions the problem disappears; both Hamiltonians

and Hilbert spaces are unitary equivalent. 3D infrared divergence occurs

due to infinitely many soft bosons in the ground state which cannot be

accommodated in Fock space; this is ultimately due to too slow decay of

Coulomb potential in this case. Even then, however, a physical ground state

can be identified, which just fails to be a Fock space vector. By using the

path measure we can make an IR-renormalization in 3D, i.e., compute a

Hamiltonian that is unitary equivalent with Heuc.
6
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Ultraviolet behaviour: Nelson has shown that, roughly speaking, by sub-

tracting from HN a constant logarithmically divergent in the point charge

limit (i.e., when ̺ → δ), the so obtained UV renormalized Hamiltonian is

well defined as a self-adjoint operator. In Ref. 7 we have shown that UV

renormalization can be done on the level of the Gibbs measure and Nelson’s

energy renormalization scheme is a simple consequence of the Itô formula.

We are able to show that the so obtained Hamiltonian is unitary equiva-

lent with Nelson’s and, going beyond his results, that furthermore it has a

ground state.

3. Functional Integration for the Pauli-Fierz Model

The Pauli-Fierz model describes a charged particle coupled to a quantized

Maxwell field. With similar notations as before, the Hamiltonian in 3D is

HPF =
1

2
(σ · (−i∇⊗ 1 − eA))2 + V ⊗ 1 + 1 ⊗Hf

with coupling constant e =
∫
̺(x)dx, vector potential

Aµ(x) =
1√
2

∑

j=±1

∫
eµ(k, j)

(
̺̂(k)√
ω(k)

eik·x ⊗ a(k, j) + h.c.

)
dk,

polarization vectors satisfying
∑
j=±1 eµ(k, j)eν(k, j) = δµν − (1/|k|2)kµkν ,

and Pauli matrices σ1, σ2, σ3 accounting for spin. The bottom of the spec-

trum of the Pauli-Fierz Hamiltonian is contained in the absolutely contin-

uous spectrum, no matter how weak the coupling is. Nonetheless, a ground

state exists in Fock space for arbitrary e 6= 0, with no infrared cutoff.8,9

By a procedure in its essentials similar to the one described above, we

can derive a path measure to the Pauli-Fierz model. In case spin is disre-

garded, on integrating out the boson field we arrive at the same effective

pair potential as above, however, the Gibbs measure formally becomes

dNT (X) =
1

ZT
e−

R T
−T

R T
−T W (Xs−Xt,s−t)dXsdXtdN 0

T (X),

i.e., the double Riemann integrals in the exponential densities turn into

double stochastic integrals. To make sense of Gibbs measures in this case

we have introduced the novel framework of Brownian currents combining

rough paths analysis and cluster expansion.10 When the spin is applied, we

have a more complicated Feynman-Kac-type formula.11 A corollary to this

is the energy comparison inequality

max
π∈Π3

E
(
0, 0,

√
B2
π(1) +B2

π(2), 0, Bπ(3)

)
≤ E(P,A,B1, B2, B3),
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where E(P,A,B1, B2, B3) is the ground state energy at fixed momentum

P , (B1, B2, B3) = ∇ × A, and Π3 is the permutation group of order 3.

Moreover, in the spinless case we also prove for the ground state Φ that

provided the external potential is sufficiently confining, there is a b∗ > 0

such that Φ ∈ D(ebN ) for all b < b∗, where N is the boson number operator,

i.e., the boson sectors decay exponentially fast.12 We also refer to the book

(Ref. 13) covering these methods and results in great detail.
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5. J. Lőrinczi, R. A. Minlos, and H. Spohn, The infrared behaviour in Nelson’s
model of a quantum particle coupled to a massless scalar field , Ann. Henri
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1. Introduction

The investigation of field-theoretical models with extended string-like so-

lutions opens possibilities for considering nonperturbative phenomena in

quantum field theory, condensed matter physics (e.g. high-temperature su-

perconductivity) and cosmology (the “cosmic strings” hypothesis). Such

studies should include two main steps: (i) analytical or numerical search for

and investigation of extended stable 2-dimensional solutions in physically

motivated and aesthetically appealing models and (ii) their quantization

using known methods based on the notion of the path integral.

2. 2D Stable Solitons in the A3M Model

In the present contribution we focus on string-like localised solutions in

a gauge-invariant S2 sigma-model in (D+1)-dimensional (D = 2) space-
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time. We discuss properties of two-dimensional (2D) stationary topolog-

ical solitons in the A3M model,1 which describes minimal interaction of

the scalar Heisenberg 3-component unit isovector field sa(x), sasa = 1,

a = 1, 2, 3, with the Maxwell field.

The Lagrangian of the A3M model is:

L = η2
(
D̄µs−Dµs+ + ∂µs3∂

µs3
)
− V (sa) −

1

4
F 2
µν ,

D̄µ = ∂µ + igAµ, Dµ = ∂µ − igAµ, Fµν = ∂µAν − ∂νAµ, (1)

s+ = s1 + is2, s− = s1 − is2, V (sa) = β2(1 − s23).

where β2, η2 are constants,
[
η2
]

= L(1−D),
[
β2
]

= L−(1+D), g is a cou-

pling constant, [g2] = L(D−3), µ, ν = 0, 1, ..., D, and summation over re-

peated indices µ, ν is meant. The A3M model is a gauge-invariant exten-

sion of the classical Heisenberg antiferromagnet model with the “easy-axis”

anisotropy;2 it possesses global Z(2) and local U(1) symmetries; note that

Z(2) symmetry is spontaneously broken both on vacuum and soliton solu-

tions.

The Euler-Lagrange equations of the model in dimensionless form

are obtained by rescaling xµ → g−1η−1xµ, Aµ → η−1Aµ, (we denote

p = β2g−2η−4) and take the simplest form if the Lorentz gauge, ∂µA
µ = 0,

∂µ∂
µsi + [∂µsa∂

µsa + 2Aµj
µ + p(s23 − δi3)

+AµA
µ(s21 + s22 − δ1i − δ2i)]si − 2Aµ(δ2i∂

µs1 − δ1i∂
µs2) = 0, (2)

jµ = s2∂µs1 − s1∂µs2, ∂µ∂
µAν + 2jν + 2(s21 + s22)Aν = 0,

µ, ν = 0, 1, ..., D, i = 1, 2, 3.

In angular variables, s1 = sin θ cosφ, s2 = sin θ sinφ, s3 = cos θ, the

Lagrangian density reads:

g−2η−4L = ∂µθ∂
µθ + sin2 θ [∂µφ∂

µφ− 2Aµ∂
µφ+AµA

µ − p] − 1

4
F 2
µν (3)

and the Euler-Lagrange equations become:

∂µ∂
µθ +

1

2
sin 2θ [p− ∂µφ∂

µφ+ 2Aµ∂
µφ−AµA

µ] = 0,

∂µ
[
sin2 θ(∂µφ−Aµ)

]
= 0, (4)

∂µ∂
µAν + 2jν + 2Aν sin2 θ = 0, jν = − sin2 θ∂νφ.

Time-independent soliton solutions φ(x) = φ(x), A0 = 0, Ak(x) =

Ak(x), θ(x) = θ(x), k = 1, ..., D, obey equations:

∂2
kθ −

1

2
sin 2θ

[
p+ (∂kφ−Ak)

2
]

= 0,
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∂k
[
sin2 θ(∂kφ−Ak)

]
= 0, (5)

∂2
kAm + 2 sin2 θ(∂mφ−Am) = 0.

(k,m = 1, ..., D, summation over repeated k is meant). To find D = 2

soliton solutions we use the “hedgehog” ansatz for the unit isovector field

si(x), i = 1, 2, 3,

s1 = cosmχ sin θ(r), s2 = sinmχ sin θ(r), s3 = cos θ(r),

sinχ =
y

r
, cosχ =

x

r
, r2 = x2 + y2, (6)

where m is an integer number, and the“vortex”ansatz for the Maxwell field

Aµ(x),

A0 = 0, A1 = Ax = −mα(r)
y

r2
, A2 = Ay = mα(r)

x

r2
. (7)

As a result we obtain equations for θ(r) and α(r),

d2θ

dr2
+

1

r

dθ

dr
− sin θ cos θ

[
m2(α − 1)2

r2
+ p

]
= 0, (8)

d2α

dr2
− 1

r

dα

dr
+ 2(1 − α)sin2θ = 0 (9)

with boundary conditions

θ(0) = π, θ(∞) = 0, (10)

α(0) = 0,
dα

dr
(∞) = 0. (11)

Localised field configurations si(x) given by Eqs. (6), (10) correspond

to maps from R2
comp to S2 with integer homotopic indices (“winding num-

bers”),2,3 and we shall refer to solutions of the problem (8)–(11) as topo-

logical solitons with the “topological charges”Qt = m.

Detailed numerical and analytical investigation shows1,5–7 that for pos-

itive p values, 0 < p < pcr there exists a unique solution to the problem

(8)–(11). Note that the asymptotic value α∞ = α(∞) decreases monotoni-

cally as p is increased, with α∞ → 1 when p→ 0.

The dependence of the soliton energy E = 2π
∫
H(r)rdr on p, where

H(r) =

(
dθ

dr

)2

+ sin2θ

[
p+

m2(α− 1)2

r2

]
+
m2

2

(
1

r

dα

dr

)2

, (12)

is depicted in Fig. 1. It is important to note that E(p) < 8π for p < pcr ≈
0.4088 (recall that 8π is the energy value of the Belavin-Polyakov localized

solutions in the 2D isotropic Heisenberg ferromagnet4). It means that for

0 < p < pcr the string-like solutions (8)–(11) of the A3M model describe
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Fig. 1. Soliton energy versus p (solid line), dashed line represents EBP = 8π.

spatially localized bound states of the spin and Maxwell fields, and hence it

is natural to conjecture these 2D solitons to be stable for p < pcr. Stability

of these solitons for 0 < p < pcr has been confirmed by computer simulation.
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We summarize recent results for the Gribov-Zwanziger Lagrangian which in-
cludes the effect of restricting the path integral to the first Gribov region. These
include the two loop MS and one loop MOM gap equations for the Gribov mass.
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1. Introduction

The generalization of quantum electrodynamics to include non-abelian

gauge fields produces the asymptotically free gauge theory called quan-

tum chromodynamics (QCD) which describes the strong interactions. The

natural forum to construct the properly gauge fixed (renormalizable) La-

grangian with which to perform calculations, is provided by the path in-

tegral machinery. For instance in the Landau gauge, which we concentrate

on here, the Faddeev-Popov ghosts naturally emerge as a consequence of

the non-gauge invariance of the path integral measure. Whilst the result-

ing Lagrangian more than adequately describes the ultraviolet structure of

asymptotically free quarks and gluons, the infrared behaviour has not been

fully established. For instance, it is evident that, as a result of confinement,

gluons and quarks cannot have propagators of a fundamental type. Over

the last few years there has been intense activity into measuring gluon and

ghost form factors using lattice methods and the Dyson Schwinger formal-

ism. Denoting these respectively by DA(p2) and Dc(p
2) a general picture

emerges in that there is gluon suppression with DA(0) = 0 and ghost en-

hancement where Dc(p
2) ∼ 1/(p2)λ as p2 → 0 with λ > 0. Such behaviour

is not inconsistent with general considerations from confinement criteria.1–9

Ideally given that these properties are now accepted, it is important that
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they can be explained from general field theory considerations. This was the

approach of Zwanziger4,5,7,8 in treating the Gribov problem from the path

integral point of view. Therefore we will briefly review the construction of

the Gribov-Zwanziger Lagrangian before giving a summary of recent results

of using it in the Landau gauge.

2. Gribov-Zwanziger Lagrangian

Gribov pointed out1 that in non-abelian gauge theories it is not possible to

uniquely fix the gauge globally due to the existence of copies of the gauge

field. To handle this the path integral was restricted to the first Gribov re-

gion, Ω, where ∂Ω is defined by the place where the Faddeev-Popov operator

M = − ∂µDµ first vanishes. Within the first Gribov region M is always

positive and in the Landau gauge it is hermitian. Moreover Ω is convex

and bounded3 and all gauge copies transit3 Ω. Any copy in the subsequent

regions defined by the other zeroes of M can be mapped into Ω. Whilst

the path integral is constrained to Ω, within Ω there is a region, Λ, known

as the fundamental modular region where there are no gauge copies and

the gauge is properly fixed. Although Λ is difficult to define, for practical

purposes expectation values over Λ or Ω give the same values.10 Conse-

quently the gluon form factor is modified to DA(p2) = (p2)2/[(p2)2 +CAγ
4]

where γ is the Gribov mass, whence suppression emerges.1 The parameter

γ is not independent and satisfies a gap equation. The theory can only be

interpreted as a gauge theory when γ takes the value defined in the gap

equation. Thence computing the one loop ghost propagator, it is enhanced

precisely when the gap equation is satisfied.1

Gribov’s revolutionary analysis was based on a semi-classical approach

and then Zwanziger4,5 extended it to a path integral construction by mod-

ifying the measure to restrict the integration region to Ω via the defining

criterion known as the horizon condition,

∫
Aaµ(x)

1

∂νDν
Aa µ(x) =

dNA
CAg2

, (1)

where d is the dimension of spacetime and NA is the adjoint representation

dimension.5 For the Landau gauge the convexity and ellipsoidal properties

of Ω allow one to modify the usual Yang-Mills Lagrangian to include the

horizon condition, (1), producing the non-local Yang-Mills Lagrangian4,5

Lγ = − 1

4
GaµνG

a µν +
CAγ

4

2
Aaµ

1

∂νDν
Aa µ − dNAγ

4

2g2
. (2)
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Again (2) only has meaning when γ satisfies (1) which is equivalent to

the Gribov gap equation. Finally the non-locality can be handled by using

localizing fields to produce the Gribov-Zwanziger Lagrangian5

LZ = LQCD + φ̄ab µ∂ν (Dνφµ)
ab − ω̄ab µ∂ν (Dνωµ)

ab

− gfabc∂νω̄aeµ (Dνc)
b
φec µ

+
γ2

√
2

(
fabcAa µφbcµ + fabcAa µφ̄bcµ

)
− dNAγ

4

2g2
, (3)

where φabµ and ωabµ are localizing ghost fields with the latter anti-commuting.

This Lagrangian is renormalizable7,11,12 and reproduces Gribov’s one loop

gap equation and ghost enhancement.8 For (3) the horizon condition

equates to

fabc〈Aa µ(x)φbcµ (x)〉 =
dNAγ

2

√
2g2

. (4)

3. Calculations

As the Zwanziger construction has produced a renormalizable Lagrangian

with extra fields incorporating infrared features without upsetting ultra-

violet properties, such as asymptotic freedom, it is possible to extend the

earlier one loop analysis.1,8 For instance in MS the two loop gap equation

results from (4) after computing 17 vacuum bubble graphs, giving,13

1 = CA

[
5

8
− 3

8
ln

(
CAγ

4

µ4

)]
a

+

[
C2
A

(
2017

768
− 11097

2048
s2 +

95

256
ζ(2) − 65

48
ln

(
CAγ

4

µ4

)

+
35

128

(
ln

(
CAγ

4

µ4

))2

+
1137

2560

√
5ζ(2) − 205π2

512

)

+ CATFNf

(
− 25

24
− ζ(2) +

7

12
ln

(
CAγ

4

µ4

)

− 1

8

(
ln

(
CAγ

4

µ4

))2

+
π2

8

)]
a2 + O(a3) , (5)

where s2 = (2
√

3/9)Cl2(2π/3) with Cl2(x) the Clausen function, ζ(n) is

the Riemann zeta function, and a = αS/(4π). To appreciate the non-

perturbative nature of γ one can formally solve for it with the ansatz

CAγ
4

µ4
= c0[1 + c1CAαS ] exp

[
− b0
CAαS

]
(6)
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giving

b0 =
32π

[
3CA −

√
79C2

A − 32CATFNf

]

[35CA − 16TFNf ]
, (7)

c0 = exp

[
1

[105CA − 48TFNf ]

[
260CA − 112TFNf −

[255CA − 96TFNf ]CA√
79C2

A − 32CATFNf

]]

(8)

and

c1 =
[
8940981420

√
5C4

Aζ(2) − 11330632512
√

5C3
ANfTF ζ(2)

+ 4778237952
√

5C2
AN

2
f T

2
F ζ(2) − 670629888

√
5CAN

3
f T

3
F ζ(2)

− 8060251500π2C4
A − 109078793775s2C

4
A

+ 7470477000C4
Aζ(2) + 19529637400C4

A

+ 12730881600π2C3
ANfTF + 138232221840s2C

3
ANfTF

− 29598076800C3
ANfTF ζ(2) − 32025280640C3

ANfTF

− 7496478720π2C2
AN

2
f T

2
F − 58293872640s2C

2
AN

2
f T

2
F

+ 29503733760C2
AN

2
f T

2
F ζ(2) + 19655024640C2

AN
2
f T

2
F

+ 1949368320π2CAN
3
f T

3
F + 8181596160s2CAN

3
f T

3
F

− 11318722560CAN
3
f T

3
F ζ(2) − 5351014400CAN

3
f T

3
F

− 188743680π2N4
f T

4
F + 1509949440N4

f T
4
F ζ(2) + 545259520N4

f T
4
F

]

× 1

46080π[79CA− 32TFNf ]5/2[35CA − 16TFNf ]
√
CA

. (9)

So, in principle, one could now compute with a gluon propagator which

includes renormalon type singularities. Further, with (5) there is two loop

ghost enhancement with the Kugo-Ojima confinement criterion9 precisely

fulfilled at this order consistent with Zwanziger’s all orders proof.7 Also

at one loop it has been shown14 that DA(0) = 0. The final quantity

of interest is the renormalization group invariant effective coupling con-

stant αeff
S (p2) = αS(µ)DA(p2)

(
Dc(p

2)
)2

which is believed to freeze at

zero momentum. From the MS one loop form factors it was shown14 that

αeff
S (0) = 50/3πCA.

Whilst the previous expressions have all been in the MS scheme it is

worth considering other renormalization schemes such as MOM. Given that

one loop calculations14 produced exact form factors, the derivation of the
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one loop MOM gap equation is straightforward, giving

1 =

[
5

8
+

3

8
ln

(
CAγ

4

[CAγ4 + µ4]

)
− CAγ

4

8µ4
ln

(
CAγ

4

[CAγ4 + µ4]

)
− 3π

√
CAγ

2

8µ2

+

[
3
√
CAγ

2

4µ2
− µ2

4
√
CAγ2

]
tan−1

[√
CAγ

2

µ2

]]
CAa+O(a2) . (10)

For later we formally define this as 1 = gap(γ, µ,MOM)CAa + O(a2). Cen-

tral to deriving this was the preservation of the Slavnov-Taylor identities

in MOM. For instance defining ZA and Zc from the respective gluon and

ghost 2-point functions in MOM, then the coupling constant and γ renor-

malization constants are already fixed and these must be used in computing

the horizon function. Given (10) we have reproduced the one loop ghost

enhancement in MOM and the same freezing value for αeff
S (0). Since the

numerical structure is different from the MS calculation we record that the

analogous14 computation is

αeff
S (0) = lim

p2→0



αS(µ)

[
1 − CA

(
gap(γ, µ,MOM) + 5

8 − 265
384

)
a
]
(p2)2

CAγ4
[
1 − CA

(
gap(γ, µ,MOM) − πp2

8
√
CAγ2

)
a
]2


 ,

(11)

whence αeff
S (0) = 50/3πCA.

4. Discussion

To conclude we note that we have reviewed the path integral construction

of Zwanziger’s localised renormalizable Lagrangian for the Landau gauge

which incorporates the restriction of gauge configurations to the first Gri-

bov region. A picture emerges of the infrared structure which is consistent

with the gluon being confined. Crucial to the analysis was the geometry

of the Gribov region. This can be appreciated from another point of view

given recent work in trying to extend the path integral construction to other

gauges.15–17 For linear covariant gauges other than Landau the Faddeev-

Popov operator is not hermitian15 and convexity of the Gribov region is only

valid when the covariant gauge fixing parameter is small.15 Moreover, given

that the Faddeev-Popov operator in this instance would involve the trans-

verse part of the gauge field, then the non-local operator of (2) would itself

contain a non-locality in the covariant derivative.15 Another example is the

construction of a Gribov-Zwanziger type Lagrangian for SU(2) Yang-Mills

fixed in the maximal abelian gauge.16,17 Whilst a localised renormalizable
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Lagrangian analogous to (3) can be constructed, the algebraic renormaliza-

tion analysis demonstrates that there is an additional free parameter which

has no analogue in the Landau gauge.17 Given these recent considerations

it would seem therefore that in the Gribov context the Landau gauge is

peculiarly special.
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It is shown that the conventional mesons and the lowest glueball state can
be reasonably described within a simple relativistic quantum-field model of
interacting quarks and gluons under the analytic confinement by using a path-
integral approach. The ladder Bethe-Salpeter equation is solved for the meson
(q̄q′) and glueball (gg) spectra. A minimal set of parameters (the quark masses
mf , the coupling constant αs and the confinement scale Λ) is used to fit the
latest experimental data. In spite of the simplicity, the model provides a rea-
sonable framework to estimate the decay constants fπ and fK as well as the
non-exotic meson and glueball masses in a wide range of energy up to 10 GeV.
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1. Introduction

The color confinement of the QCD is achieved by taking into account non-

perturbative and nonlinear gluon interaction. In the hadron distance the

coupling becomes stronger and the correct summation of the higher-order

contributions becomes a problem. The structure of the QCD vacuum and

the explicit quark and gluon propagator at the confinement scale is not

well established yet. However one may suppose that the confinement is not

obligatory connected with the strong-coupling regime in QCD. There exists

a conception of the analytic confinement based on the assumption that the

QCD vacuum is realized by a nontrivial homogeneous vacuum gluon field1

which is the classical solution of the Yang-Mills equation. The quark and

gluon propagators in the gluon background B̆µ(x) with constant strength Λ

have been calculated2 and found entire analytic functions on the complex

p2-plan. However, a direct use of these propagators to the hadron ampli-

tudes is not convenient and leads to long, cumbersome, and complicated
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formulae. In our earlier investigations3 we used simple Gaussian exponents

for the propagators and obtained the mass spectrum of the two-particle

bound states in a self-consistent form. Particularly, qualitative Regge be-

haviors of the excitations4 were obtained.

Below we extend the consideration by taking into account the spin, color,

and flavor degrees of freedom and develop a simple relativistic quantum field

model of interacting quarks and gluons.

2. The Model

Assume that the analytic confinement takes place and the quark and gluon

propagators S and D are entire analytic functions. The effective QCD La-

grangian may be written as follows:5

L=
(
q̄S−1q

)
+

1

2

(
AD−1A

)
+g
(
q̄aα
[
ΓCµ
]αβ
ab
qbβAC

µ

)
+
g

2
fABC

(
AA
αAB

β F
C
αβ

)
,

where g is the coupling strength, q and A are the quark and gluon fields,[
ΓCµ
]αβ
ab

= iγαβµ tCab, F
C
µν = ∂µAC

ν − ∂νAC
µ . Consider the path integral repre-

sentation for the generating functional

Z =

∫
δqδq̄

∫
δA exp{−L}. (1)

Within the ladder approximation the following terms correspond to the

two-quark and two-gluon bound states:

LM =
g2

2

∫
δA e−

1
2 (AD−1A) (q̄ΓqDq̄Γq) ,

LG =
g2

8

∫
δA e−

1
2 (AD−1A) (AAFf)

2
.

The matrix elements of hadron processes at large distance are integrated

characteristics of the quark and gluon propagators and the solution of the

Bethe-Salpeter equation in a variational approach5,6 should not be too sen-

sitive on the details of propagators. Taking into account the correct global

symmetry properties and their breaking by introducing additional physical

parameters may be more important than the working out in detail (e.g.,

Ref. 7). We consider the effective quark and gluon propagators:

S̃abαβ(p̂) = δab
{ip̂+mf [1 + γ5ω(mf )]}αβ

m2
f

exp

{
−p

2 +m2

2Λ2

}
,

D̃AB
αβ (p) = δαβδ

AB 1

Λ2
exp

{
− p2

Λ2

}
, (2)
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where ω(mf ) = 1/(1+m2
f/4). These entire analytic functions in Euclidean

metric extend our earlier investigations3,4 and represent reasonable approx-

imations to the explicit propagators.2 In doing so, we use a minimal set of

physical parameters, the effective coupling constant αs = g2/4π, the scale

of confinement Λ, and the quark masses {mud,ms,mc,mb}.

3. Meson Spectrum

We consider the meson ground states, the pseudoscalar (P : 0−+) and vec-

tor (V : 1−−) mesons. In the following we describe shortly the important

steps of our approach.3,6 First, we allocate one-gluon exchange between

quark currents and go to the relative co-ordinates in the center of mass sys-

tem. Then, perform Fierz transformations to obtain colorless bilocal quark

currents and diagonalize LM on ortonormalized basis functions {UQ(x)}.
Introduce a Gaussian path-integral representation for the quark currents (in

exponentials) by using auxiliary meson fields BN and rewrite the generating

function in a new variables:

ZN =

∫
DBN exp

{
−1

2
(BN [1 + g2Tr(VNSVNS)]BN ) +WI [BN ]

}
, (3)

where VN = ΓJ
∫
dy U(y)

√
D(y) exp{yµf

↔
∂ } is a vertex function and

µf = mf/(m1 + m2) is the relative mass of the f -flavor of quark. The

residue interaction between mesons is described by WI [BN ] = O[B3
N ]. Ap-

ply the Hadronization Ansatz to identify BN (x) with meson fields, where

N = {J,Q, f1, f2} and J-the spin, Q = n, l, µ,-the radial, orbital, magnetic

quantum numbers.

The diagonalization of the quadratic form in LM on {UQ} is nothing

else but the solution of the Bethe-Salpeter equation:

1 + λN (−p2) =

∫∫
dxdy UQ(x)

{
1 + g2

√
D(x)

∫
d4k

(2π)4
e−ik(x−y)

·Tr
[
ΓJ S̃

(
k̂ + µ1p̂

)
ΓJ S̃

(
k̂ − µ2p̂

)]√
D(y)

}
UQ(y) , (4)

where ΓP = iγ5 and ΓV = iγµ. The meson mass is derived from

1 + λN (M2
N ) = 0 . (5)

Our estimates for the pseudoscalar and vector meson masses compared with

experimental data (see Fig. 1) show that the relative error does not exceed

1 ÷ 3 percent. The optimal values of model parameters read:

αs = 0.0764 , Λ = 464 MeV , mud = 124 MeV ,
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Fig. 1. The estimated meson masses (dots) compared with experimental data from
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ms = 156 MeV , mc = 1007 MeV , mb = 4500 MeV . (6)

4. Lowest Glueball State

Due to the self-interaction of gluons the QCD predicts the existence of

glueballs. The lightest glueball is expected to be a scalar particle with mass

around 1.2÷ 1.8 GeV.8–11 The experimental basis for the glueball param-

eters is still rather weak and there are predictions expecting the lightest

glueball in the mass range ∼ 1.5 ÷ 1.8 MeV.12,13

The Gaussian character of the gluon propagator (2) allows us to calcu-

late explicitly the equation for the lowest glueball mass:

e−
M2
G

2Λ2 =
αs
96π

max
0<b<1

[
b (4 − 3b)

2 − b

]2(
19

8
+
b

2
+

3b2

32
+

7 − b

16

M2
G

Λ2
+

1

64

M4
G

Λ4

)
. (7)

Evolution of the lowest-state glueball scaled mass MG/Λ with αs is

plotted in Fig. 2. Note, the glueball mass (7) depends on αs in a nonper-

turbative way. Particularly, for the parameters αs = 0.0764, Λ = 464 MeV

we estimate MG = 1592 MeV.
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Fig. 2. Evolution of the MG (scaled to Λ) with the coupling constant αs.

5. Light Meson Decay Constants

An important quantity in the meson physics is the decay constant fP de-

fined as follows

ifP pµ = 〈0|Jµ(0)|UR(p)〉 , (8)

where Jµ is the axial vector part of the weak current and UR(p) is the

normalized state vector. Particularly, the decay constant fπ+ for π+-meson

is determined from the combined rate for π+ → µ+νµ + µ+νµγ. With

the recent experimental data one obtains:14 fπ = 130.7 ± 0.5MeV and

fK = 159.8 ± 1.9MeV. We estimate the decay constants by using a path-

integral form of (8) as follows:

ifP pµ =
g

6

√
−λ̇P (M2

P )

∫
dk

(2π)4

∫
dx e−ikx UP (x)

√
D(x)

·Tr
{
iγ5S̃

(
k̂ + µ1p̂

)
iγ5γµS̃

(
k̂ − µ2p̂

)}
. (9)

The evolution of the pseudoscalar meson decay constants with Λ is given

in Fig. 3. Particularly, for values of {mu,ms, αs} defined in (6) and for

Λ = 460 ÷ 470 MeV we obtain

fπ = 105 ÷ 142 MeV , fK = 155 ÷ 225 MeV .

Comparing these estimates with the latest data from Refs. 14,15 we see

that our results are in satisfactorily agreement with the experiment despite

the simplicity of our model.
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Fig. 3. The light meson decay constants fπ and fK versus the confinement scale Λ.

In conclusion, we have considered a relativistic quantum field model

of interacting quarks and gluons under the analytic confinement and esti-

mated the meson ground state spectrum as well as the lowest glueball mass.

The merit of our approach is that we describe simultaneously two different

sectors of hadron physics by using a minimal set of physical parameters.
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1. Introduction

Path integrals have been very successful in all branches of quantum theory.

It is therefore natural to apply them also to quantum gravity. Such a theory

aims at a consistent accommodation of the gravitational interaction into

the quantum framework. It does not yet exist as a complete theory, but

many promising approaches exist.1 The simplest is the direct quantization

of Einstein’s theory of general relativity, with which I shall mainly deal with.

Since there the central quantity is the four-dimensional metric, a path-

integral quantization would entail a functional integral over the allowed

class (to be specified) of four-metrics. In addition, one would envisage a

sum over all four-dimensional topologies.

To my knowledge, the first paper on the quantum-gravitational path

integral was written by Charles Misner, who was then a PhD student of

John Wheeler in Princeton. At the end of his paper he writes:2

Above all, we thank Professor J. A. Wheeler. He originally sug-

gested the problem of formulating the Feynman quantization of

general relativity. We regret that our approach to this problem has

not the conciseness of his solution to it, which was simply to write
∫

exp {(i/~)(Einstein action)} d(field histories)
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As he already alludes to here, it is not a simple task to specify how the exact

sum has to be taken, that is, how the measure has to be chosen and how

the path integral actually has to be evaluated. In my contribution to these

Proceedings, I shall give a brief introduction into quantum gravitational

path integrals and a brief overview of some recent developments; for more

details I refer to Ref. 1 and the references therein.

2. Euclidean versus Lorentzian Path Integrals

Euclidean path integrals are widely applied in quantum field theory. The

reason is that the convergence properties are much better and that there

exist mathematical theorems which guarantee the equivalence of the results

(the correlation functions) with the results from the original Lorentzian

path integral.

In the quantization of general relativity, the Euclidean path integral has

the form

Z[hab,Φ,Σ] =
∑

M
ν(M)

∫

M
DgDΦ e−SE[gµν ,Φ] , (1)

where g is a short-hand for the four-metric, Φ stands for all non-

gravitational fields, and the additional sum indicates a sum over all four-

manifolds M with an unspecified weight ν(M); SE is the Euclidean

Einstein–Hilbert action. The sum over all topologies can at best be con-

sidered formal because four-manifolds are not classifiable.

Euclidean path integrals in quantum gravity have first been studied ex-

tensively in order to study black-hole thermodynamics in which the topo-

logical properties of the Euclidean Schwarzschild solution seem to play a

crucial role. As Stephen Hawking put it in his Cargèse lectures:3

I am going to describe an approach to quantum gravity using path

integrals in the Euclidean regime. The motivation for this is the

belief that the topological properties of the gravitational fields play

an essential role in quantum theory.

Twenty-five years later, in his contribution in honour of Hawking’s sixti-

eth birthday, Gary Gibbons remarked the following on Euclidean quantum

gravity:4

. . . from today’s standpoint, Euclidean quantum gravity should not

be (and never should have been) viewed as a ‘fundamental theory

of physics’ but rather an efficient and elegant means of extracting

non-perturbative information about quantum gravity.
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This is perhaps the prevailing viewpoint about Euclidean quantum grav-

ity: one can extract from it much useful information, but one should not

interpret it as the fundamental theory of quantum gravity.

Among the useful information are results about the thermodynamic

behaviour of black holes. One calculates the partition sum via a Euclidean

path integral with the Euclidean Einstein–Hilbert action

SE = − 1

16πG

∫
d4x

√
gR +

1

8πG

∫
d3x

√
h(K −K0) , (2)

in which the second term refers to a three-dimensional boundary of the

four-dimensional spacetime region under consideration; h denotes the de-

terminant of the three-metric, K the trace of the second fundamental form,

and K0 the trace of the second fundamental form for a corresponding three-

hypersurface in Minkowski spacetime, which has to be subtracted for rea-

sons of regularization. The speed of light has been set equal to one.

The full path integral cannot be calculated exactly with such a compli-

cated action. One thus resorts to a semiclassical approximation. The path

integral is then evaluated by finding the appropriate saddle point, that is,

the dominating classical solution. For the Euclidean Schwarzschild solution

one finds for the partition sum with β~ as ‘Euclidean time’:3,5

Z =

∫

M
Dg exp (−SE/~) ≈ exp

(
−Scl

E/~
)

= exp

(
− β2~

16πG

)
. (3)

Since the Ricci tensor vanishes for the Schwarzschild solution (because it is

a vacuum solution), only the boundary term contributes. Once the partition

function Z ≡ exp(−βF ) is known, one can derive from it the thermody-

namical quantities of interest:

• E = −∂ lnZ
∂β = ~β

8πG = M : energy;

• TBH = 1
8πkBGM

≈ 6.17 × 10−8
(
M⊙
M

)
K: Hawking temperature;

• SBH = −∂F
∂T = ~β2

16πG = kBA
4G~

: Bekenstein–Hawking entropy.

The Euclidean path integral in gravity has various novel features. The main

reason is the background independence of general relativity: whereas in non-

gravitational situations one has a fixed non-dynamical background space-

time, in general relativity spacetime itself becomes dynamical and there

is no fixed background. For this reason one cannot just ‘Wick rotate’ the

various metrics because Wick rotation is not a diffeomorphism-invariant

procedure; a real Lorentzian metric does not, in general, possess a real Eu-

clidean version. This is, however, not considered a problem. The idea is to
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take the path integral (1) as the starting point and to integrate over all

Euclidean metrics per se. The result is then interpreted as the relevant par-

tition function or wave function. Moreover, in many applications one even

envisages an integration over all complex four-metrics in order to improve

the convergence properties of the path integral. In this sense, the difference

between the Lorentzian and the Euclidean approach becomes fuzzy.

A more serious obstacle is given by the ‘conformal-factor problem’: in

general relativity, the Euclidean action can be made arbitrarily negative.

Starting from (2), a conformal transformation gµν → g̃µν = Ω2gµν leads to

the action

SE[g̃] = − 1

16πG

∫

M
d4x

√
g(Ω2R+ 6Ω;µΩ;νg

µν − 2ΛΩ4)

− 1

8πG

∫

∂M
d3x

√
hΩ2K , (4)

in which we have also considered the cosmological constant, Λ. Upon choos-

ing a highly varying factor Ω one can make the action arbitrarily negative;

since such action functions contribute to the path integral (1), its conver-

gence is far from obvious.

How can this problem be dealt with? A possible solution may be found

through a careful investigation of the integration measure in the path inte-

gral. As in ordinary gauge theories, the measure can be determined by the

Faddeev–Popov procedure and contains gauge-fixing terms as well as the

Faddeev–Popov determinant; a description can be found, for example, in

Ref. 1. The detailed discussion presented in Ref. 6 has exhibited, at least on

the formal level, that the divergence from the conformal modes of the metric

is cancelled non-perturbatively by the Faddeev–Popov determinant in the

measure. (This has confirmed an earlier result derived on the perturbative

level.7)

Due to the complexity of the path integral, it is not surprising that

much effort has been spent into attempts for a numerical evaluation. In

particular, one distinguishes between1

(1) Regge calculus: this is an application to the Euclidean path integral;

the central idea is to decompose four-dimensional space into a set of

simplices and treat the edge lengths as dynamical entities.

(2) Dynamical triangulation: this is an application to the Lorentzian path

integral; in contrast to Regge calculus, all edge lengths are kept fixed,

and the sum in the path integral is instead taken over all possible

manifold-gluings of equilateral simplices. The evaluation is thus reduced



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Path integrals in quantum gravity: general concepts and recent developments 185

to a combinatorical problem.

Some recent results are obtained in the framework of dynamical trian-

gulation:8

• The resulting space possesses a Hausdorff dimension H = 3.10 ± 0.15,

which is compatible with the expected three-dimensionality of space;

• spacetime appears to be two-dimensional on smallest scales (a similar

result is found in the asymptotic-safety approach, see below);

• a positive cosmological constant is needed, although its precise value

remains unspecified;

• in a cosmological situation, an effective action for the scale factor of the

universe can be found by integrating out in the full quantum theory all

other degrees of freedom;

• the question of the continuum limit remains, however, open.

More details can also be found in the contribution of Jan Ambjørn to these

Proceedings.

3. Perturbation Theory and Asymptotic Safety

The quantum-gravitational path integral is also a useful tool for the de-

velopment of perturbation theory. In the ‘background-field method’,9 the

starting point is the expansion of the four-metric around a classical back-

ground ḡµν ,

gµν = ḡµν +
√

32πGfµν , (5)

where fµν is the perturbation to be quantized. After the application of the

Faddeev–Popov procedure, the path integral assumes the form

Z =

∫
DfDηαDη∗α eiStot[f,η,ḡ]/~ , (6)

where the action can be written as a sum of the original gravitational action,

a gauge-fixing and a ghost contribution,1

Stot[f, η, ḡ] = S[f, ḡ] − 1

4ξ

∫
d4x Gα[f, ḡ]Gα[f, ḡ]

+

∫
d4x η∗α(x)Aαβ [f, ḡ](x)ηβ(x) ≡

∫
d4x (Lg + Lgf + Lghost) . (7)

This is the starting point for the derivation of Feynman rules. A ma-

jor difference from the Standard Model of particle physics is the non-

renormalizability of the quantum-gravitational perturbation theory. In spite
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of this problem, one can calculate unambiguous predictions at low energy

from the path integral (6); this is similar to chiral perturbation theory in

quantum chromodynamics (limit of small pion mass). One can, for example,

calculate the quantum gravitational correction to the Newtonian potential

between two masses m1 and m2.
10 The result is

V (r) = −Gm1m2

r


1 + 3

G(m1 +m2)

rc2︸ ︷︷ ︸
GR−correction

+
41

10π

G~

r2c3︸ ︷︷ ︸
QG−correction


 . (8)

While the first correction term is a known correction term from general

relativity, the second term is a genuine quantum-gravity prediction (I have

re-inserted here c for illustration). Albeit unmeasurably small in the labo-

ratory, the second term is nevertheless a concrete prediction from quantum

gravity.

Other recent results using path-integral methods have been found in

the context of asymptotic safety. A theory is called asymptotically safe if

all essential coupling parameters gi of the theory approach a non-trivial

fixed point for momentum k → ∞.11 Explicit and detailed discussions of

the corresponding renormalization-group equations lead to the following

preliminary results, see Ref. 12 and the references therein:

• The effective (scale-dependent) gravitational constant vanishes for k →
∞, leading to an asymptotically free theory;

• the effective gravitational constant increases with distance and could

thus simulate the existence of dark matter;

• a small positive cosmological constant emerges as an infrared effect and

could thus simulate dark energy;

• spacetime appears two-dimensional on smallest scales, similar to the

dynamical-triangulation approach.

Although preliminary, it seems that one could understand from this rather

straightforward approach both dark matter and dark energy as two aspects

of the same theory of quantum gravity.

4. Path Integrals and Canonical Quantum Gravity

The quantization of general relativity can also be described in the canonical

formalism.1,13 In this section I want to describe briefly the connection with

the path integral.
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Starting point for canonical gravity is the foliation of spacetime into

three-dimensional hypersurfaces; a necessary assumption for this to work

is that spacetime be globally hyperbolic. The canonical variables are then

the three-dimensional metric, hab, of a hypersurface and the momenta, πab,

which are a linear combination of the extrinsic curvature. Alternatively, one

can choose variables that have the interpretation of holonomies and fluxes,

which leads to the framework of loop quantum gravity; for definiteness, I

restrict myself to the original geometrodynamical formulation. Spacetime

can then be interpreted as a ‘trajectory of spaces’.

The Einstein equations then fall into two classes: six evolution equations

for hab and πab, and four constraints. The constraints read

H [h, π] = 16πGGab cdπ
abπcd − (16πG)−1

√
h((3)R− 2Λ) ≈ 0 , (9)

Da[h, π] = −2∇bπ
ab ≈ 0 , (10)

with

Gab cd = 1
2
√
h
(hachbd + hadhbc − habhcd)

as the ‘DeWitt-metric’, which plays the role of a metric on the configura-

tion space of all three-metrics. Furthermore, h is the determinant of the

three-metric, and (3)R the three-dimensional Ricci scalar. For simplicity,

restriction is here made to the vacuum case. The constraint (9) is called

Hamiltonian constraint, the constraints (10) are called diffeomorphism (or

momentum) constraints.

In the quantum theory, the three-metric and the momenta obey non-

trivial commutation rules. Therefore, spacetime is absent in quantum grav-

ity because the three-metric and the extrinsic curvature cannot be speci-

fied simultaneously; this is analogous to the disappearance of trajectories

in quantum mechanics. Consequently, only the constraints remain. If one

quantizes them in the sense of Dirac, they become restriction on physically

allowed wave functionals Ψ[hab]. One gets1

ĤΨ ≡
(
−16πG~

2Gabcd
δ2

δhabδhcd
− (16πG)−1

√
h
(

(3)R− 2Λ
))

Ψ = 0

(11)

from (9) and

D̂aΨ ≡ −2∇b
~

i

δΨ

δhab
= 0 (12)

from (10). The first equation is referred to as the Wheeler–DeWitt equation

and the second as the quantum diffeomorphism (momentum) constraints.
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We do not discuss here the many subtleties which are connected with these

equations.1

What, then, is the connection with the path-integral approach? As

for the quantum-mechanical path integral, one knows that it obeys the

Schrödinger equation. Similarly, one would expect that the quantum-

gravitational path integral obeys the quantum constraints (11) and (12).

On a formal level, it is rather straightforward to check that this is indeed

the case, see, for example, Ref. 1. With some effort, one can explicitly check

that the quantum-gravitational path integral satisfies the constraints in the

one-loop approximation.14

Path integrals are used in quantum cosmology in connection with bound-

ary conditions. By restricting the class of geometries to be summed over

in the path integral, one can arrive at a restricted class of solutions to the

Wheeler–DeWitt equation and thus to a selected class of ‘wave functions

of the universe’. The most popular proposal is the no-boundary condition

of Hartle and Hawking.15 The idea there is to take the Euclidean path in-

tegral (1) as the starting point and to sum only over four-geometries with

no initial boundary. The original idea was to find in this way a unique so-

lution for the wave function. As it turned out, this is not the case, but the

no-boundary proposal may still serve as a heuristic guide to find solutions

of the Wheeler–DeWitt equation.1 Its main application is in the semiclas-

sical approximation where the path integral can be evaluated through the

selection of extrema for the classical action.

In quantum cosmology, restriction is usually being made to homoge-

neous metrics. Then, the path integral can be written as an ordinary path

integral plus the integration over the time separation, cf. Ref. 16,
∫

dT 〈q′′, T |q′, 0〉 ≡ G(q′′, q′;E)|E=0 , (13)

where

G(q′′, q′;E) =

∫
dT eiET/~〈q′′, T |q′, 0〉

is an ‘energy Green function’. The quantum-gravitational path integral thus

resembles more an energy Green function with energy zero than a propa-

gator. The reason is, of course, the absence of an external time parameter

t in quantum gravity. Consequently, there is also no composition law with

respect to time.

In simple models, the path integrals can even be evaluated exactly. For

a Friedmann universe with a conformally-coupled scalar field, the Wheeler–

DeWitt equation can be written as the equation for an ‘indefinite harmonic
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oscillator’,

Ĥψ(a, χ) ≡
(
∂2

∂a2
− ∂2

∂χ2
− a2 + χ2

)
ψ = 0 . (14)

Normalizable solutions to this equation, which describe the evolution of

wave packets, have been constructed in Ref. 17. Unfortunately, none of these

solutions can be found from the quantum-gravitational path integral.16 This

includes the solutions from the no-boundary proposal, which are all non-

normalizable. Therefore, either one has to embark on a new interpretation

of the wave functions obtained from the path integral, or these solutions

have to be rejected as unphysical.

5. Conclusion

In order to summarize the above discussion one can state that

• the properties of the quantum-gravitational path integral are under-

stood on the formal level;

• they are useful for perturbation theory and effective field theory and

allow even the calculation of effects;

• numerical methods such as dynamical triangulation may shed light on

the spacetime structure at smallest scales;

• these path integrals find widespread applications to black holes and

quantum cosmology, although the interpretation of the quantum-

cosmological wave functions found in this way remains unclear.

Path integrals are also an important tool in string theory;18 I have omitted

a discussion here for lack of space. It is thus expected that path integrals

will play an important role in the final formulation of quantum gravity.
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1. Introduction

The theory of four-dimensional quantum gravity called Lorentzian simpli-

cial quantum gravity is based on the concept of causal dynamical trian-

gulations (CDT). While we refer to Refs. 1–3 for details, stated shortly it

defines in a non-perturbative way the summation over four geometries by

constructing the four-geometries from“building blocks”glued together such

that only causal space-time histories are included. In order to perform the

actual summation over space-time histories one rotates to space-times of

Euclidean signature. The “building blocks”, four-simplices, are character-

ized by a cut-off a, the side length of the simplices. The continuum limit of

the regularized path integral should correspond to the limit a→ 0, possibly
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accompanied by a readjustment of the bare coupling constants such that

the physics stays invariant.

The challenge in a theory of quantum gravity is to find a theory which

behaves in this way. The challenge is three-fold: 1) to find a suitable ten-

tative non-perturbative formulation of such a theory, 2) to find observables

which can be used to test the physics of the model and 3) to actually show

that one can adjust the coupling constants of the theory such that the

physics stays invariant when the lattice spacing is changed. Here we focus

on 1).

As mentioned above we have proposed a non-perturbative formulation

of four-dimensional quantum gravity. How do we judge if it should be taken

seriously as a quantum field theory of gravity? From“observations”we know

that the following picture should emerge: a background geometry around

which we have small quantum fluctuations. The challenge is to obtain such

a picture from a background independent formalism where no background

geometry is put in by hand. We have in earlier articles provided indirect

evidence for such a scenario4,5 based on computer simulations. We here

discuss new simulations which confirm the above mentioned picture in a

much more direct way.

2. The Macroscopic S4 Universe

By construction we have a foliation in proper time t (here taken Euclidean

by the analytic continuation mentioned above). Each geometry is con-

structed by gluing together four-simplices in a way respecting this foliation.

All spatial slices have the same topology which we take to be that of S3. We

take the time direction to be periodic of some fixed length. This length is

so large that the periodicity is of no importance, just a convenience from a

simulation point of view. The action used in the Monte Carlo simulations is

the Einstein-Hilbert action in the form of the so-called Regge action which

is a geometric realization of the Einstein-Hilbert action on piecewise linear

geometries.

The simulations are for computer technical reasons performed for a (al-

most) fixed four volume. For a certain range of bare coupling constants we

observe a four-dimensional universe of well defined time and well defined

space extension.4 As discussed elsewhere1 this is actually a non-trivial re-

sult and there are choices of bare coupling constants where this is not the

case.

A Monte-Carlo simulation of the universe will generate a sequence of

four-dimensional geometries, space-time histories represented by triangu-
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lations. We have by construction a time foliation, but nothing except the

Regge version of the Einstein-Hilbert action as an input. A plot of the

output, represented as a plot of V3(t), leads to a “blob” of time extension

T ∼ V
1/4
4 . This blob is a configuration in the path integral and thus not

“physical”, in the same way as a path in the path integral of the particle is

not an observable and not physical. We obtain the average trajectory of the

particle by taking the average of the paths in the path integral (with the

weight dictated by the classical action) and this trajectory agrees with the

classical trajectory of the particle up to corrections of order ~. In the pro-

cess of performing an average, for instance by Monte Carlo simulations, one

obtains not only information about the average trajectory but also about

the size of the quantum fluctuations. These will also in general be of order

~.

We want to do the same in the case of our universe: we have the quantum

universe. It is fluctuating. Each configuration we “observe” in the computer

is different. By taking the average we produce the background geometry

around which the quantum universe fluctuates. We have chosen a total

time Ttot much larger than the observed time extension T of our “blob”.

The center of mass of the “blob” (the universe) will perform a random walk

along the time axis. In order to compare different universes we fix this

center of mass and in this way we can obtain an “average” universe. The

results of the measurements of the average spatial size of the “universe” at

various times t are shown in Fig. 1 and can be summarized in the following

formula:

N cl
3 (i) =

3

4

N4

s0N
1/4
4

cos3

(
i

s0N
1/4
4

)
, s0 = 0.72. (1)

HereN3(i) denotes the number of three-simplices making up the spatial slice

at discretized time i and N4 the total number of four-simplices making up

the total universe.

We have verified (1) for N4 ranging from 20.000 to 160.000. The collapse

of the various curves to one, parameterized as in Eq. (1), is a beautiful

example of finite size scaling. Eq. (1) shows that the spatial volume increases

as N
3/4
4 and the time extension of the universe as N

1/4
4 as one would indeed

expect for a genuine four-dimensional object. It is natural to write Eq. (1)

in continuum notation:

V cl3 (t) = V4
3

4B
cos3

(
t

B

)
, (2)
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Fig. 1. The background geometry from measurement and the best fit, see Eq. (1). One
cannot distinguish the two curves. In addition we have shown the average error bars for
an individual configuration, i.e. the typical size of fluctuations.

where we have made the identifications:

V4 ∝ a4N4, V3 ∝ a3N3, ti ∝ ai, (3)

a denoting the lattice spacing and ti being proportional to proper time. If

we write V4 = 8π2R4/3, Eq. (2) can be viewed as a parameterization of S4

by the time t related to proper time τ by τ = t R/B.

The background geometry of S4 in the parameterization (2) is the clas-

sical solution of the following action (which is just the Einstein action if

one assumes spatial homogeneity and isotropy):

S =
1

G

∫
dt




(
V̇3(t)

)2

V3(t)
+ k2V

1/3
3 − λV3(t)


 , (4)

where k2 = 9(3π2R4/B4)2/3 and λ in (4) is a Lagrange multiplier which

is fixed by the requirement that the total four-volume is fixed to V4:∫
dt V3(t) = V4.

Let us note for future use that if we start out with a discretized, dimen-

sionless version of (4) and take the continuum limit using the identifications
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(3), we obtain:

Sdiscrete = k1

∑

i

(
(N3(i+ 1) −N3(i))

2

N3(i)
+ k2N

1/3
3

)
(5)

→ k1

a2

∫
dt

(
V̇ 2

3 (t)

V3(t)
+ k2V

1/3
3

)
. (6)

Thus the naive continuum limit of Sdiscrete corresponds to a “gravitational”

coupling constant:

G ∼ a22

k1
∼ 1

k1

√
V4

N4
. (7)

If k1 is a constant, we conclude that the discretized action Sdiscrete cor-

responds to a “gravitational” coupling constant G of order a2, a being the

lattice spacing, or stated differently: the lattice spacing is the Planck scale.

While the classical solution (2) will not provide any information about

the constant G in front of (4), the study of the fluctuations will. A simple

saddle point calculation shows that the fluctuations around V cl3 will be of

the order:

〈(δV3)
2〉 ∼ GV4. (8)

We now turn to the study of these fluctuations.

3. Fluctuations Around the Four-Sphere

The measurement of the average three-volumes V cl3 (t) = 〈V3(t)〉 shows that

a background geometry compatible with S4 is formed dynamically from

the background independent CDT approach. Having established this, we

can now measure the fluctuations around the background geometry. The

fluctuations are defined by the correlator

C(t, t′) = 〈(V3(t) − V cl3 (t))(V3(t
′) − V cl3 (t′))〉. (9)

While the effective action (4) gives a perfect description of the measured

V cl3 (t), it is not clear to which extent it also describes the fluctuations. We

will show that it does, and we will, as mentioned above, obtain information

about the coupling constant G (recall that G is not put in by hand but

is an effective coupling constant obtained after integrating out all modes

except the scale factor).

The first observation is that the discretized version of (9) scales as fol-

lows with the total four-volume:

CN4(i, i
′) = 〈(N3(i)−N cl

3 (i))(N3(i)−N cl
3 (i′))〉 = N4 F

( i

N
1/4
4

,
i′

N
1/4
4

)
, (10)
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Fig. 2. The plot of the scaling function
p

F (t/B, t/B) from (10) forN4 = 20 000, 40 000,
80 000, and 160 000.

where F (i, j) is of order one. This is shown in Fig. 2 for the diagonal ele-

ments of CN4 . The square roots of the diagonal elements,
√
CN4(i, i), are

precisely the fluctuations shown in Fig. 1.

It is easy to show that if the fluctuations arise from the discretized action

(5) they have the scaling (10) only if k1 in (5) is independent of N4, i.e. if

we have the scenario where the lattice spacing is of Planck length. On the

other hand, with this interpretation of G we have from (7) and (10) that

the continuum version of (10) reads:

C(t, t′) ∼ a6
sN4 F (t/B, t′/B) ∼ GV4 F (t/B, t′/B), (11)

in agreement with the estimate (8). We will now check to which degree

F (t, t′) is actually described by the effective action (4).

Let us expand the action (4) around the classical solution: V3(t) =

V cl3 (t) + x(t). The quadratic fluctuations around this solution are given by:

〈x(t)x(t′)〉 ∼
∫

Dx(s) x(t)x(t′) e−
R R

dsds′x(s)M(s,s′)x(s′) ∼M−1(t, t′),

(12)

where the quadratic form M(t, t′) is determined by expanding the effective

action S to second order in the fluctuation x(t):

S(V3) = S(V cl3 ) +
4Bk1

3V4

∫
dt x(t)Ĥx(t) + ξ

(∫
dt x(t)

)2

. (13)
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Fig. 3. The lowest eigenvector as calculated from the data, i.e. from C(t, t′) (grey curve),
and from M−1(t, t′) (black curve).

Ĥ denotes the Hermitian operator

Ĥ = − d

dt

1

cos3(t/B)

d

dt
− 4

B2 cos5(t/B)
(14)

and the last term in (13) is added to enforce the constraint
∫

dt x(t) = 0.

It is understood that we have to take ξ → ∞ in Eq. (13) to enforce this.

We ask to which extent M−1(t, t′) agrees with C(t, t′). Since time in

the computer simulations is discrete and typically has a range r ∼ 2N1/4,

the matrix C(t, t′) will be a r × r matrix. In order to compare C(t, t′) and

M−1(t, t′) we discretize the integro-differential like operator M(t, t′) such

that it also becomes an r×r matrix, of which we can readily find eigenvalues

and eigenvectors. Fig. 3 shows the lowest eigenfunction calculated from the

data, i.e. from the matrix C(t, t′) and calculated from the effective action,

i.e. from the matrix M(t, t′). The agreement is very good, in particular

taking into account that no parameter is adjusted in the action (we simply

take the constant B in (2) and (13) to be s0N
1/4
4 , i.e. 14.37 for N4 =

160.000).

A full analysis of the data will be published elsewhere,6 here it can

be summarized by saying that within the accuracy of the measurements

the fluctuations of the spatial volume are described by the mini-superspace

action (4).
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4. Discussion

The CDT model of quantum gravity is extremely simple, but still we ob-

tain the emergence of a classical background geometry around which there

are small quantum fluctuations, which is precisely the goal of a theory of

quantum gravity.

Since the relation G ∼ a2 we know that the spatial and temporal exten-

sions of our computer generated universes are around N
1/4
4 Planck lengths,

i.e. for the largest universes we have simulated so far around 20 Planck

lengths. It is interesting that even for universes so small at least some as-

pects of the universes behave semiclassically.

Is it possible to penetrate beyond the Planck scale using CDT? It re-

quires that we can adjust the bare coupling constants which enter in the

model in such a way that k1 can go to zero. In that case we can change N4

and k1 simultaneously such that V4 = N4a
4 and G = a2/k1 stay constant

while the lattice spacing a goes to zero. If such an adjustment was possi-

ble one would be able to address sub-Planckian physics. This possibility is

presently under investigation.
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A sketch of a recent approach to quantum gravity is presented which involves
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matical variables; (2) Affine coherent states; (3) Projection operator approach
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representation without/with constraints; and (5) Hard core picture of non-
renormalizability. Emphasis is given to the functional integral expressions.
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1. Introduction

This paper offers an introduction to the program of Affine Quantum Gravity

(AQG) and its use of functional integrals. It is important at the outset

to remark that this program is not string theory nor is it loop quantum

gravity, the two most commonly studied approaches to quantum gravity

at the present time. Although many aspects of this approach are still to

be developed, AQG seems to the author to be more natural than most

traditional views, and, moreover, it lies closer to classical (Einstein) gravity

as well. Some general references for this paper are Refs. 1–3.

2. Affine Kinematical Variables

Metric positivity

A fundamental requirement of AQG is the strict positivity of the spatial

metric. For the classical metric, this property means that for any nonva-

nishing set {ua} of real numbers and any nonvanishing, nonnegative test
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function, f(x) ≥ 0, that
∫
f(x)uagab(x)u

bd3x > 0 , (1)

where 1 ≤ a, b ≤ 3. We also insist that this inequality holds when the

classical metric field gab(x) is replaced with the 3 × 3 operator metric field

ĝab(x).

Affine commutation relations

Since the canonical commutation relations are in conflict with the require-

ment of metric positivity, our initial step involves replacing the classical

Arnowitt-Deser-Misner (ADM) canonical momentum πab(x) with the clas-

sical mixed-index momentum πab (x) ≡ πac(x)gcb(x). We refer to πab (x) as

the “momentric” tensor being a combination of the canonical momentum

and the canonical metric. Besides the metric being promoted to an opera-

tor ĝab(x), we also promote the classical momentric tensor to an operator

field π̂ab (x); this pair of operators form the basic kinematical affine operator

fields, and all operators of interest are given as functions of this fundamen-

tal pair. The basic kinematical operators are chosen so that they satisfy the

following set of affine commutation relations (in units where ~ = 1, which

are normally used throughout):

[π̂ab (x), π̂
c
d(y)] = 1

2 i[δ
c
b π̂
a
d(x) − δad π̂

c
b(x)] δ(x, y) ,

[ĝab(x), π̂
c
d(y)] = 1

2 i[δ
c
aĝbd(x) + δcb ĝad(x)] δ(x, y) , (2)

[ĝab(x), ĝcd(y)] = 0 .

These commutation relations arise as the transcription into operators of

equivalent Poisson brackets for the corresponding classical fields, namely,

the spatial metric gab(x) and the momentric field πcd(x) ≡ πcb(x)gbd(x),

along with the usual Poisson brackets between the canonical metric field

gab(x) and the canonical momentum field πcd(x).

The virtue of the affine variables and their associated commutation re-

lations is evident in the relation

ei
∫
γab (y)π̂ba(y) d

3y ĝcd(x) e
−i
∫
γab (y)π̂ba(y) d

3y = {eγ(x)/2}ec ĝef (x) {eγ(x)/2}fd . (3)

This algebraic relation confirms that suitable transformations by the mo-

mentric field preserve metric positivity.

3. Affine Coherent States

It is noteworthy that the algebra generated by ĝab and π̂ab closes. These

operators form the generators of the affine group whose elements may be
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defined by

U [π, γ] ≡ ei
∫
πab(y)ĝab(y) d

3y e−i
∫
γab (y)π̂ba(y) d

3y , (4)

e.g., for all real, smooth c-number functions πab and γab of compact sup-

port. Since we assume that the smeared ĝab and π̂ab fields are self-adjoint

operators, it follows that U [π, γ] are unitary operators for all π and γ, and

moreover, these unitary operators are strongly continuous in the label fields

π and γ.

To define a representation of the basic operators it suffices to choose a

fiducial vector and thereby to introduce a set of affine coherent states, i.e.,

coherent states formed with the help of the affine group. We choose |η〉 as a

normalized fiducial vector in the original Hilbert space H, and we consider

a set of unit vectors each of which is given by

|π, γ〉 ≡ ei
∫
πab(x) ĝab(x) d

3x e−i
∫
γdc (x) π̂cd(x) d

3x |η〉 . (5)

As π and γ range over the space of smooth functions of compact support,

such vectors form the desired set of coherent states. The specific represen-

tation of the kinematical operators is fixed once the vector |η〉 has been

chosen. As minimum requirements on |η〉 we impose

〈η|π̂ab (x)|η〉 = 0 , (6)

〈η|ĝab(x)|η〉 = g̃ab(x) , (7)

where g̃ab(x) is a metric that determines the topology of the underlying

space-like surface. As algebraic consequences of these conditions, it follows

that

〈π, γ|ĝab(x)|π, γ〉 = {eγ(x)/2}ca g̃cd(x) {eγ(x)/2}db ≡ gab(x) , (8)

〈π, γ|π̂ac (x)|π, γ〉 = πab(x)gbc(x) ≡ πac (x) . (9)

These expectations are not gauge invariant since they are taken in the

original Hilbert space where the constraints are not fulfilled.

By definition, the coherent states span the original, or kinematical,

Hilbert space H, and thus we can characterize the coherent states them-

selves by giving their overlap with an arbitrary coherent state. In so doing,

we choose the fiducial vector |η〉 so that the overlap is given by

〈π′′, γ′′|π′, γ′〉 = exp

[
− 2

∫
b(x) d3x

× ln

(
det{ 1

2 [g′′ab(x) + g′ab(x)] + 1
2 ib(x)

−1[π′′ab(x) − π′ab(x)]}
{det[g′′ab(x)] det[g′ab(x)]}1/2

)]
(10)
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where b(x), 0 < b(x) <∞, is a scalar density which is discussed below.

Additionally, we observe that γ′′ and γ′ do not appear in the explicit

functional form given in (10). In particular, the smooth matrix γ has been

replaced by the smooth matrix g which is defined at every point by

g(x) ≡ eγ(x)/2 g̃(x) eγ(x)T /2 ≡ {gab(x)} , (11)

where T denotes transpose, and the matrix g̃(x) ≡ {g̃ab(x)} is given by

(7). The map γ → g is clearly many-to-one since γ has nine independent

variables at each point while g, which is symmetric, has only six. In view

of this functional dependence we may denote the given functional in (10)

by 〈π′′, g′′|π′, g′〉, and henceforth we adopt this notation. In particular, we

note that (8) and (9) become

〈π, g|ĝab(x)|π, g〉 ≡ gab(x) , (12)

〈π, g|π̂ac (x)|π, g〉 = πab(x)gbc(x) ≡ πac (x) , (13)

which show that the meaning of the labels π and g is that of mean values

rather than sharp eigenvalues.

In addition, we observe that the coherent state overlap function (10) is a

continuous function that can serve as a reproducing kernel for a reproducing

kernel Hilbert space which provides a representation of the original Hilbert

space H by continuous functions of π and g. For details of such spaces, see

Ref. 4.

4. Projection Operator Approach for Quantum Constraints

Classically, constraints are either: (i) first class, for which the Lagrange

multipliers are undetermined and must be chosen to find a solution; or (ii)

second class, for which the Lagrange multipliers are fixed by the equations

of motion.

The Dirac approach to the quantization of constraints requires quantiza-

tion before reduction. Thus the constraints are first promoted to self-adjoint

operators,

φα(p, q) → Φα(P,Q) , (14)

for all α, and then the physical Hilbert space Hphys is defined by those

vectors |ψ〉phys for which

Φα(P,Q)|ψ〉phys = 0 (15)

for all α. This procedure works for a limited set of classical first-class con-

straint systems, but it does not work in general and especially not for

second-class constraints.
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The projection operator approach to quantum constraints involves a

slight relaxation of the Dirac procedure. Instead of insisting that (15) holds

exactly, we introduce a projection operator IE defined by

IE = IE(ΣαΦ2
α ≤ δ(~)2) , (16)

where δ(~) is a positive regularization parameter and we have assumed

that ΣαΦ2
α is self adjoint. This relation means that IE projects onto the

spectral range of the self-adjoint operator ΣαΦ2
α in the interval [0, δ(~)2],

and then Hphys = IEH. As a final step, the parameter δ(~) is reduced as

much as required, and, in particular, when some second-class constraints are

involved, δ(~) ultimately remains strictly positive. This general procedure

treats all constraints simultaneously and treats them all on an equal basis;

for details see Ref. 5.

A few examples illustrate how the projection operator method works. If

ΣαΦ2
α = J2

1 +J2
2 +J2

3 , the Casimir operator of su(2), then 0 ≤ δ(~)2 < 3~2/4

works for this first-class example. If ΣαΦ2
α = P 2 + Q2, where [Q,P ] =

i~11, then ~ ≤ δ(~)2 < 3~ covers this second-class example. If the single

constraint Φ = Q, an operator whose zero lies in the continuous spectrum,

then it is convenient to take an appropriate form limit of the projection

operator as δ → 0; see Ref. 5. The projection operator scheme can also deal

with irregular constraints such as Φ = Q3, and even mixed examples with

regular and irregular constraints such as Φ = Q3(1 −Q), etc.; see Ref. 6.

It is also of interest that the desired projection operator has a general,

time-ordered integral representation (see Ref. 7) given by

IE = IE((ΣαΦ2
α ≤ δ(~)2)) =

∫
Te−i

∫
λα(t)Φα dtDR(λ) . (17)

The weak measure R depends on the number of Lagrange multipliers, the

time interval, and the regularization parameter δ(~)2. The measure R does

not depend on the constraint operators, and thus this relation is an op-

erator identity, holding for any set of operators {Φα}. The time-ordered

integral representation for IE given in (17) can be used in path-integral

representations as will become clear below.

5. Continuous-Time Regularized Functional Integral

Representation without/with Constraints

It is pedagogically useful to reexpress the coherent-state overlap function

by means of a functional integral. This process can be aided by the fact that

the expression (10) is analytic in the variable g′′ab(x) + ib(x)−1π′′ab(x) up
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to a factor. As a consequence, the coherent-state overlap function satisfies

a complex polarization condition, which leads to a second-order differential

operator that annihilates it. This fact can be used to generate a functional

integral representation of the form

〈π′′, g′′|π′, g′〉 = exp

[
− 2

∫
b(x) d3x

× ln

(
det{ 1

2 [g′′ab(x) + g′ab(x)] + 1
2 ib(x)

−1[π′′ab(x) − π′ab(x)]}
{det[g′′ab(x)] det[g′ab(x)]}1/2

)]

= lim
ν→∞

N ν

∫
exp[−i

∫
gabπ̇

ab d3xdt]

× exp{−(1/2ν)
∫
[b(x)−1gabgcdπ̇

bcπ̇da + b(x)gabgcdġbcġda] d
3xdt}

×[Πx,tΠa≤b dπ
ab(x, t) dgab(x, t)] . (18)

Because of the way the new independent variable t appears in the right-

hand term of this equation, it is natural to interpret t, 0 ≤ t ≤ T , T > 0,

as coordinate “time”. The fields on the right-hand side all depend on space

and time, i.e., gab = gab(x, t), ġab = ∂gab(x, t)/∂t, etc., and, importantly,

the integration domain of the formal measure is strictly limited to the do-

main where {gab(x, t)} is a positive-definite matrix for all x and t. For the

boundary conditions, we have π′ab(x) ≡ πab(x, 0), g′ab(x) ≡ gab(x, 0), as

well as π′′ab(x) ≡ πab(x, T ), g′′ab(x) ≡ gab(x, T ) for all x. Observe that the

right-hand term holds for any T , 0 < T < ∞, while the left-hand and

middle terms are independent of T altogether.

In like manner, we can incorporate the constraints into a functional

integral by using an appropriate form of the integral representation (17).

The resultant expression has a functional integral representation given by

〈π′′, g′′|IE|π′, g′〉 =

∫
〈π′′, g′′|T e−i

∫
[NaHa+NH] d3x dt|π′, g′〉DR(Na, N)

= lim
ν→∞

N ν

∫
e−i
∫

[gabπ̇
ab+NaHa+NH] d3xdt

× exp{−(1/2ν)
∫
[b(x)−1gabgcdπ̇

bcπ̇da + b(x)gabgcdġbcġda] d
3xdt}

×[Πx,tΠa≤b dπ
ab(x, t) dgab(x, t)]DR(Na, N) . (19)

Despite the general appearance of (19), we emphasize once again that this

representation has been based on the affine commutation relations and not

on any canonical commutation relations.

The expression 〈π′′, g′′|IE|π′, g′〉 denotes the coherent-state matrix ele-

ments of the projection operator IE which projects onto a subspace of the

original Hilbert space on which the quantum constraints are fulfilled in a
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regularized fashion. Furthermore, the expression 〈π′′, g′′|IE|π′, g′〉 is another

continuous functional that can be used as a reproducing kernel and thus

used directly to generate the reproducing kernel physical Hilbert space on

which the quantum constraints are fulfilled in a regularized manner. Ob-

serve that Na and N denote Lagrange multiplier fields (classically inter-

preted as the shift and lapse), while Ha and H denote phase-space symbols

(since ~ 6= 0) associated with the quantum diffeomorphism and Hamilto-

nian constraint field operators, respectively. Up to a surface term, therefore,

the phase factor in the functional integral represents the canonical action

for general relativity.

6. Hard-Core Picture of Nonrenormalizability

Nonrenormalizable quantum field theories involve an infinite number of

distinct counterterms when approached by a regularized, renormalized per-

turbation analysis. Focusing on scalar field theories, a qualitative Euclidean

functional integral formulation is given by

Sλ(h) = Nλ

∫
e
∫
hφ dnx−Wo(φ)−λV (φ) Dφ , (20)

where Wo(φ) ≥ 0 denotes the free action and V (φ) ≥ 0 the interaction

term. If λ = 0, the support of the integral is determined by Wo(φ); when

λ > 0, the support is determined by Wo(φ) + λV (φ). Formally, as λ → 0,

Sλ(h) → S0(h), the functional integral for the free theory. However, it may

happen that

lim
λ→0

Sλ(h) = S′
0(h) 6= S0(h) , (21)

where S′
0(h) defines a so-called pseudofree theory. Such behavior arises for-

mally if V (φ) acts partially as a hard core, projecting out certain fields that

are not restored to the support of the free theory as λ→ 0.8

It is noteworthy that there exist highly idealized nonrenormalizable

model quantum field theories with exactly the behavior described; see

Ref. 9. Such examples involve counterterms not suggested by a renormal-

ized perturbation analysis. It is our belief that these soluble models strongly

suggest that nonrenormalizable ϕ4
n, n ≥ 5, models can be understood by

the same mechanism, and that they too can be properly formulated by

the incorporation of a limited number of counterterms distinct from those

suggested by a perturbation treatment. Although technically more compli-

cated, we see no fundamental obstacle in dealing with quantum gravity on

the basis of an analogous hard-core interpretation.
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The role of the Thomas-Fermi approach in Neutron Star matter cores is pre-
sented and discussed with special attention to solutions which are globally
neutral and do not fulfil the traditional condition of local charge neutrality. A
new stable and energetically favorable configuration is found. This new solution
can be of relevance in understanding unsolved issues of gravitational collapse
processes and their energetics.

Keywords: Degenerate Fermi gases; Neutron stars; Thomas-Fermi model.

1. Introduction

We first recall how certainly one of the greatest successes in human un-

derstanding of the Universe has been the research activity started in 1054

by Chinese, Korean, and Japanese astronomers by the observations of a

“Guest Star”(see e.g. Shklovsky1 ), followed by the discovery of the Pulsar

NPO532 in the Crab Nebula in 1967, (see e.g. Manchester and Taylor2),

still presenting challenges in the yet not identified physical process origi-

nating the expulsion of the remnant in the Supernova explosion (see e.g.

Mezzacappa and Fuller3 and Fig. 1(a)). We are currently exploring the neu-

tron star equilibrium configuration for a missing process which may lead to

the solution of the above mentioned astrophysical puzzle.

We also recall an additional astrophysical observation which is cur-

rently capturing the attention of Astrophysicists worldwide: the Gamma

ray Bursts or for short GRBs. Their discovery was accidental and triggered

by a very unconventional idea proposed by Yacov Borisovich Zel’dovich (see

e.g. Ref. 4). It is likely that this idea served as an additional motivation

for the United States of America to put a set of four Vela Satellites into
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(a) (b)

Fig. 1. (a) The expanding shell of the remnant of the Crab Nebulae as observed by the
Hubble Space Telescope. Reproduced from Hubble Telescope web site with their kind
permission (News Release Number: STScl-2005-37). (b) On the upper left the Vela 5A
and 5B satellites and a typical event as recorded by three of the Vela satellites; on the
upper right the Compton satellite and the first evidence of the isotropy of distribution of
GRB in the sky; on the center left the Beppo Sax satellite and the discovery of the after
glow; on the center right a GRB from Integral satellite; in the lower part the Socorro
very large array radiotelescope, the Hubble, the Chandra, and the XMM telescopes, as
well as the VLT of Chile and KECK observatory in Hawaii. All these instruments are
operating for the observations of GRBs.6

orbit, 150 000 miles above the Earth. They were top-secret omnidirectional

detectors using atomic clocks to precisely record the arrival times of both

X-rays and γ-rays (see Fig. 1(b)). When they were made operational they

immediately produced results (see Fig. 1(b)). It was thought at first that

the signals originated from nuclear bomb explosions on the earth but they

were much too frequent, one per day! A systematic analysis showed that

they had not originated on the earth, nor even in the solar system. These

Vela satellites had discovered GRBs! The first public announcement of this

came at the AAAS meeting in San Francisco in a special session on neutron

stars, black holes, and binary X-ray sources, organized by Herb Gursky

and myself.5 A few months later, Thibault Damour and myself published a

theoretical framework for GRBs based on the vacuum polarization process

in the field of a Kerr–Newman black hole.7 We showed how the pair cre-

ation predicted by the Heisenberg–Euler–Schwinger theory8,9 would lead

to a transformation of the black hole, asymptotically close to reversibility.

The electron–positron pairs created by this process were generated by what

we now call the blackholic energy.4 In that paper we concluded that this

“naturally leads to a very simple model for the explanation of the recently

discovered GRBs”. Our theory had two very clear signatures. It could only

operate for black holes with mass MBH in the range of 3.2 106 M⊙ and the
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energy released had a characteristic value of

E = 1.8 × 1054MBH/M⊙ ergs . (1)

Since nothing was then known about the location and the energetics of

these sources we stopped working in the field, waiting for a clarification of

the astrophysical scenario.

The situation changed drastically with the discovery of the “afterglow”

of GRBs10 by the joint Italian-Dutch satellite BeppoSAX (see Fig. 1(b)).

This X-ray emission lasted for months after the “prompt” emission of a few

seconds duration and allowed the GRB sources to be identified much more

accurately. This then led to the optical identification of the GRBs by the

largest telescopes in the world, including the Hubble Space Telescope, the

KECK telescope in Hawaii, and the VLT in Chile (see Fig. 1(b)). Also,

the very large array in Socorro made the radio identification of GRBs pos-

sible. The optical identification of GRBs made the determination of their

distances possible. The first distance measurement for a GRB was made in

1997 for GRB970228 and the truly enormous of isotropical energy of this

was determined to be 1054 ergs per burst. This proved the existence of a

single astrophysical system emitting as much energy during its short life-

time as that emitted in the same time by all other stars of all galaxies in

the Universe!a It is interesting that this “quantum”of astrophysical energy

coincided with the one Thibault Damour and I had already predicted, see

Eq. (1). Much more has been learned on GRBs in recent years confirming

this basic result (see e.g. Ref. 11). The critical new important step now is

to understand the physical process leading to the critical fields needed for

the pair creation process during the gravitational collapse process from a

Neutron Star to a Black Hole.

As third example, we recall the galactic ’X-ray bursters’ as well as some

observed X-ray emission precursor of supernovae events.12 It is our opinion

that the solution of: a) the problem of explaining the energetics of the

emission of the remnant during the collapse to a Neutron Star, b) the

problem of formation of the supercritical fields during the collapse to a Black

Hole, c) the less energetics of galactic ’X-ray bursters’ and of the precursor

of the supernovae explosion event, will find their natural explanation from

a yet unexplored field: the electrodynamical structure of a neutron star.

We will outline a few crucial ideas of how a Thomas-Fermi approach to a

aLuminosity of average star = 1033 erg/s, Stars per galaxy = 1012, Number of galaxies
= 109. Finally, 33 + 12 + 9 = 54!
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neutron star can, indeed, represent an important step in identifying this

crucial new feature.

2. Thomas-Fermi Model

We first recall the basic Thomas-Fermi non relativistic Equations (see e.g.

Landau and Lifshitz13). They describe a degenerate Fermi gas of Nel elec-

trons in the field of a point-like nucleus of chargeZe. The Coulomb potential

V (r) satisfies the Poisson equation

∇2V (r) = 4πen, (2)

where the electron number density n(r) is related to the Fermi momentum

pF by n = p3
F /(3π

2~3). The equilibrium condition for an electron of mass

m inside the atom is expressed by
p2F
2m − eV = EF . To put Eq. (2) in

dimensionless form, we introduce a function φ, related to Coulomb potential

by φ(r) = V (r) + EF
e = Zeχ(r)

r . Assuming r = bx with b = (3π)3/2

27/3
1

Z1/3
~
2

me2 ,

we then have the universal equation14,15

d2χ(x)

dx2
=
χ(x)3/2

x1/2
. (3)

The first boundary condition for this equation follows from the request that

approaching the nucleus one gets the ordinary Coulomb potential, therefore

we have χ(0) = 1. The second boundary condition comes from the fact that

the number of electrons Nel is 1 − Nel
Z = χ(x0) − x0χ

′(x0).

3. White Dwarfs and Neutron Stars as Thomas-Fermi

Systems

It was at the 1972 Les Houches organized by Bryce and Cecille de Witt sum-

mer School (see Fig. 2(a) and Ref. 16) that, generalizing a splendid paper by

Landau,17 I introduced a Thomas-Fermi description of both White Dwarfs

and Neutron Stars within a Newtonian gravitational theory and describing

the microphysical quantities by a relativistic treatment. The equilibrium

condition for a self-gravitating system of fermions in relativistic regime is

c
√
p2
F +m2

nc
2−mnc

2−mnV = −mnV0, where pF is the Fermi momentum

of a particle of mass mn, related to the particle density n by n = 1
3π2~3 p

3
F .

Here V (r) is the gravitational potential at a point at distance r from the

center of the configuration and V0 is the value of the potential at the bound-

ary Rc of the configuration V0 = GNmn
Rc

. N is the total number of particles.

The Poisson equation is ∇2V = −4πGmnn. Assuming V −V0 = GNmn
χ(r)
r
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(a)
(b)

Fig. 2. (a) Lunch at Les Houches summer school on ’Black Holes’. In front, face to face,
Igor Novikov and the author; in the right the title of the book in English and in French.
It is interesting that in that occasion Cecile de Witt founded the French translation of
the word ’Back Hole’ in ’Trou Noir’ objectionable and she introduced instead the even
more objectionable term ’Astres Occlus’. The French nevertheless happily adopted in the
following years the literally translated word ’Trou Noir’ for the astrophysical concept I
introduced in 1971 with J. A. Wheeler.18 (b) The number of electrons contained within
a distance x of the origin, as a function of the total number Z for a neutral atom. The
lowest curve is that given by the solution of the non-relativistic Thomas-Fermi equation.

and r = bx with b = (3π)2/3

27/3
1

N1/3

(
~

mnc

)(
mPlanck
mn

)2

we obtain the gravita-

tional Thomas-Fermi equation

d2χ

dx2
= −χ

3/2

√
x

[
1 +

(
N

N∗

)4/3
χ

x

]3/2

, (4)

where N∗ =
(

3π
4

)1/2 (mPlanck
mn

)3

. Equation (4) has to be integrated with

the boundary conditions χ(0) = 0 and −xb
(
dχ
dx

)

x=xb
= 1. Equation (4)

can be applied as well to the case of white dwarfs. It is sufficient to

assume b = (3π)2/3

27/3
1

N1/3

(
~

mec

)(
mPlanck
µmn

)2

, N∗ =
(

3π
4

)1/2 (mPlanck
µmn

)3

,

M =
∫ Rc
0

4πr2ne(r)µmndr. For the equilibrium condition we have

c
√
p2
F +m2c2−mc2−µmnV = −µmnV0, in order to obtain for the critical

mass the value Mcrit ≈ 5.7Msunµ
−2
e ≈ 1.5Msun.

4. Relativistic Thomas-Fermi Equation

In the intervening years my attention was dedicated to an apparently

academic problem: the solution of a relativistic Thomas-Fermi Equation

and extrapolating the Thomas-Fermi solution to large atomic numbers of
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Z ≈ 104 − 106. Three new features were outlined: a) the necessity of intro-

ducing a physical size for the nucleus, b) the penetration of the electrons in

the nucleus, c) the definition of an effective nuclear charge.19,20 The elec-

trostatic potential is given by ∇2V (r) = 4πen, where the number density

of electrons is related to the Fermi momentum pF by n =
p3F

3π2~3 . In order

to have equilibrium we have c
√
p2
F +m2c2 −mc2 − eV (r) = EF . Assum-

ing φ(r) = V (r) + EF
e = Zeχ(r)

r , Zc =
(

3π
4

)1/2 (~c
e2

)3/2
, and r = bx with

b = (3π)3/2

27/3
1

Z1/3
~
2

me2 , Eq. (3) becomes

d2χ(x)

dx2
=
χ(x)3/2

x1/2

[
1 +

(
Z

Zc

)4/3
χ(x)

x

]3/2

. (5)

5. Essential Role of Non-Pointlike Nucleus

The point-like assumption for the nucleus leads, in the relativistic case,

to a non-integrable expression for the electron density near the origin. We

assumed a uniformly charged nucleus with a radius rnuc and a mass number

A given by the following semi-empirical formulae

rnuc = r0A
1/3, r0 ≈ 1.5 × 10−13 cm, Z ≃

[
2

A
+

3

200

1

A1/3

]−1

, (6)

Equation (5) then becomes

d2χ(x)

dx2
=
χ(x)3/2

x1/2

[
1 +

(
Z

Zc

)4/3
χ(x)

x

]3/2

− 3x

x3
nuc

θ(xnuc − x), (7)

where θ = 1 for r < rnuc, θ = 0 for r > rnuc, χ(0) = 0, χ(∞) = 0.

Equation (7) has been integrated numerically for selected values of Z (see

Fig. 2(b) and Refs. 19,20). Similar results had been obtained by Greiner

and his school and by Popov and his school with special emphasis on the

existence of a critical electric field at the surface of heavy nuclei. Their work

was mainly interested in the study of the possibility of having processes of

vacuum polarization at the surface of heavy nuclei to be possibly achieved

by heavy nuclei collisions (see for a review Ref. 21). Paradoxically at the

time we were not interested in this very important aspect and we did not

compute the strength of the field in our relativistic Thomas-Fermi model

which is, indeed, of the order of the critical field Ec = m2c3/e~ .
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(a) (b)

Fig. 3. (a) Vladimir Popov discussing with the author and Professors She Sheng Xue
and Gregory Vereshchagin (Roma 2007). Also quoted the classical contributions of Popov
and his school. (b) Walter Greiner and the citation of classical papers by him and his
school.

6. Nuclear Matter in Bulk: A ≈ 300 or A ≈ (mPlanck/mn)3

The situation clearly changed with the discovery of GRBs and the un-

derstanding that the process of vacuum polarization unsuccessfully sought

in earthbound experiments could, indeed, be observed in the process of

formation of a Black Hole from the gravitational collapse of a neutron

star.21 The concept of a Dyadosphere22,23 was introduced around an al-

ready formed Black Hole and it became clear that this concept was of

paramount importance in understanding the energy source for GRBs. It

soon became clear that the initial conditions for such a process had to be

found in the electrodynamical properties of neutron stars. Similarly man-

ifest came the crucial factor which had hampered the analysis of the true

electrodynamical properties of a neutron star; the unjustified imposition of

local charge neutrality as opposed to the global charge neutrality of the

system. We have therefore proceeded to make a model of a nuclear matter

core of A ≈ (mPlanck/mn)
3 nucleons.24 We generalized to this more general

case the concept introduced in their important work by W. Greiner and V.

Popov (see Fig. 3(a) and Fig. 3(b)) as follows. I have assumed that proton’s

number-density is constant inside core r ≤ Rc and vanishes outside the core

r > Rc: np = 1
3π2~3 (PFp )3 =

3Np
4πR3

c
θ(Rc − r), Rc = ∆ ~

mπc
N

1/3
p , where PFp

is the Fermi momentum of protons, θ(Rc − r) is the step-function, and ∆

is a parameter. The proton Fermi energy is

Ep(PFp ) = [(PFp c)
2 +m2

pc
4]1/2 −mpc

2 + eV, (8)

where e is the proton charge and V is the Coulomb potential. Based on the

Gauss law, V (r) obeys the Poisson equation ∇2V (r) = −4πe [np(r) − ne(r)]
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and the boundary conditions V (∞) = 0, V (0) = finite, where the electron

number density ne(r) is given by

ne(r) =
1

3π2~3
(PFe )3 (9)

with PFe being the electron Fermi momentum. The electron Fermi energy

is

Ee(PFe ) = [(PFe c)
2 +m2c4]1/2 −mc2 − eV. (10)

The energetic equation for an electrodynamic equilibrium of electrons

in the Coulomb potential V (r) is Ee(PFe ) = 0, hence the Fermi mo-

mentum and the electron number density can be written as ne(r) =
1

3π2~3c3

[
e2V 2(r) + 2mc2eV (r)

]3/2
. Introducing the new variable x =

r/(~/mπc), where the radial coordinate is given in units of pion Comp-

ton length (~/mπc), with xc = x(r = Rc) I have obtained the following

relativistic Thomas-Fermi equation:25,26

1

3x

d2χ(x)

dx2
= −α

{
1

∆3
θ(xc − x) − 4

9π

[
χ2(x)

x2
+ 2

m

mπ

χ

x

]3/2}
, (11)

where χ is a dimensionless function defined by χ
r = eV

c~ and α is the fine

structure constant α = e2/(~c). The boundary conditions of the function

χ(x) are χ(0) = 0, χ(∞) = 0, and Ne =
∫∞
0 4πr2drne(r). Instead of using

the phenomenological relation between Z and A, given by Eq. (6), we deter-

mine directly the relation between A and Z by requiring the β-equilibrium

En = Ep + Ee . (12)

The number-density of degenerate neutrons is given by nn(r) =
1

3π2~3 (PFn )3, where PFn is the Fermi momentum of neutrons. The Fermi

energy of degenerate neutrons is

En(PFn ) = [(PFn c)
2 +m2

nc
4]1/2 −mnc

2, (13)

where mn is the neutron mass. Substituting Eqs. (8), (10), (13) into Eq.

(12), we obtain [(PFn c)
2 +m2

nc
4]1/2 −mnc

2 = [(PFp c)
2 +m2

pc
4]1/2 −mpc

2 +

eV. These equations and boundary conditions form a closed set of non-

linear boundary value problem with a unique solution for Coulomb potential

V (r) and electron distribution (9) as functions of the parameter ∆, i.e., the

proton number-density np. The solution is given in Fig. 4(a). A relevant

quantity for exploring the physical significance of the solution is given by the

number of electrons within a given radius r, Ne(r) =
∫ r
0 4π(r′)2ne(r′)dr′.

This allows to determine, for selected values of the A = Np+Nn parameter,
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Fig. 4. (a) The solution χ of the relativistic Thomas-Fermi equation for A = 1057 and
core radius Rc = 10 km, is plotted as a function of radial coordinate. The left solid line
corresponds to the internal solution and it is plotted as a function of radial coordinate
in unit of Rc in logarithmic scale. The right dotted line corresponds to the solution
external to the core and is plotted as function of the distance ∆r from the surface in the
logarithmic scale in centimeter. (b) The electron number in the unit of the total proton
number Np, for selected values of A, is given as a function of radial distance in the unit
of the core radius Rc, again in logarithmic scale. It is clear how, by increasing the value
of A, the penetration of electrons inside the core increases.
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Fig. 5. The electric field in the unit of the critical field Ec is plotted around the core
radius Rc. The left (right) solid (dotted) diagram refers to the region just inside (outside)
the core radius plotted logarithmically. By increasing the density of the star the field
approaches the critical field.

the distribution of the electrons within and outside the core and follow the

progressive penetration of the electrons in the core at increasing values of A

(see Fig. 4(b)). We can then evaluate, generalizing the results in Refs. 19,20,

the net charge inside the core Nnet = Np−Ne(Rc) < Np, and consequently

determine of the electric field at the core surface, as well as within and

outside the core (see Fig. 5).

7. Energetically Favorable Configurations

Introducing the new function φ defined by φ = ∆
[

4
9π

]1/3 χ
x , and putting

x̂ = ∆−1√α (12/π)
1/6

x, ξ = x̂ − x̂c the ultra-relativistic Thomas-Fermi
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equation can be written as

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3, (14)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as

ξ → −x̂c ≪ 0 (at massive core center) and φ̂(ξ) → 0 as ξ → ∞. We must

also have the continuity of the function φ̂ and the continuity of its first

derivative φ̂′ at the surface of massive core ξ = 0.

Equation (14) admits an exact solution

φ̂(ξ) =

{
1 − 3

[
1 + 2−1/2 sinh(a−

√
3ξ)
]−1

, ξ < 0,√
2

(ξ+b) , ξ > 0,
(15)

where integration constants a and b are: sinh a = 11
√

2, a = 3.439; b =

(4/3)
√

2.

We then have for the Coulomb potential energy, in terms of the variable ξ,

eV (ξ) =
(

1
∆3

9π
4

)1/3
mπc

2φ̂(ξ), and at the center of massive core eV (0) =

~c(3π2np)
1/3 =

(
1

∆3
9π
4

)1/3
mπc

2, which plays a fundamental role in order

to determine the stability of the configuration.

It is possible to compare energetic properties of different configurations

satisfying the different neutrality conditions ne = np and Ne = Np, with

the same core radius Rc and total nucleon number A. The total energy in

the case ne = np is E loc
tot =

∑
i=e,p,n E iloc, where

E iloc = 2

∫
d3rd3p

(2π~)3
ǫiloc(p) ==

cVc
8π2~3

{
P̄Fi [2(P̄Fi )2 + (mic)

2]

×[(P̄Fi )2 + (mic)
2]1/2 − (mic)

4Arsh

(
P̄Fi
mic

)}
. (16)

The total energy in the case Ne = Np is Eglob
tot = Eelec + Ebinding +∑

i=e,p,n E iglob, where

Eelec =

∫
E2

8π
d3r ≈ 33/2π1/2

4

N
2/3
p√
α∆c

mπ

∫ +∞

−κRc
dx [φ′(x)]

2
, (17)

Ebinding = −2

∫
d3rd3p

(2πh̄)3
eV (r) ≈ − Vc

3π2~3
(PFe )3eV (0) , (18)

E iglob = 2

∫
d3rd3p

(2πh̄)3
ǫiglob(p) =

cVc
8π2~3

{
PFi [2(PFi )2 + (mic)

2]

×[(PFi )2 + (mic)
2]1/2 − (mic)

4Arsh

(
PFi
mic

)}
. (19)
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We have indicated with P̄Fi (i = n, e, p) the Fermi momentum in the case

of local charge neutrality (V = 0) and with PFi (i = n, e, p) the Fermi

momentum in the case of global charge neutrality (V 6= 0). The energetic

difference between local neutrality and global neutrality configurations is

positive, ∆E = E loctot −Eglob
tot > 0, so configurations which obey to the condi-

tion of global charge neutrality are energetically favorable with respect to

one which obey to the condition of local charge neutrality.25,27 For a core

of 10 km the difference in binding energy reaches 1049 ergs which gives an

upper limit to the energy emittable by a neutron star, reaching its electro-

dynamical ground state.

The current work is three fold: a) generalize our results considering the

heavy nuclei as special limiting cases of macroscopic nuclear matter cores,26

b) describe a macroscopic nuclear matter core within the realm of General

Relativity fulfilling the generalized Tolman, Oppenheimer, Volkoff equa-

tion,28 c) generalyze the concept of a Dyadosphere to a Kerr-Newman Ge-

ometry.29

8. Conclusions

It is clear that any neutron star has two very different components: the

core with pressure dominated by a baryonic component and the outer crust

with pressure dominated by a leptonic component and density dominated

by the nuclear species. The considerations that we have presented above

apply to the first component where the baryonic pressure dominates. It is

clear that when the density increases and baryons become ultra-relativistic

is this baryonic component which undergoes the process of gravitational

collapse and its dynamics is completely dominated by the electrodynamical

process which we have presented in this talk.
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We discuss how to extract information about the cosmological constant from
the Wheeler-DeWitt equation, considered as an eigenvalue of a Sturm-Liouville
problem. A generalization to a f (R) theory is taken under examination. The
equation is approximated to one loop with the help of a variational approach
with Gaussian trial wave functionals. We use a zeta function regularization to
handle with divergences. A renormalization procedure is introduced to remove
the infinities together with a renormalization group equation.

Keywords: Quantum cosmology; Cosmological constant; Renormalization;
Modified gravity.

1. Introduction

It is well known that there exists a huge discrepancy between the observed1

and the computed value of the cosmological constant. It amounts approx-

imately to a factor of 120 orders of magnitude: this is the cosmological

constant problem. One possible approach to such a problem is given by the

Wheeler-DeWitt equation (WDW).2 The WDW equation can be extracted

from the Einstein’s field equations with and without matter fields in a very

simple way. If we introduce a time-like unit vector uµ such that u · u = −1,

then after a little rearrangement, we get3

H = (2κ)Gijklπ
ijπkl −

√
g

2κ

(
3R− 2Λc

)
= 0. (1)

Here 3R is the scalar curvature in three dimensions. This is the time-time

component of the Einstein Field Equations in vacuum. It represents a con-

straint at the classical level and the invariance under time reparametriza-
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tion. Its quantum counterpart HΨ = 0 is the WDW equation. This one can

be cast into the form of an eigenvalue equation

Λ̂ΣΨ [gij ] = Λ (x)Ψ [gij ] , (2)

where

Λ̂Σ = (2κ)Gijklπ
ijπkl −

√
g

2κ
3R , Λ (x) = −√

g
Λc
κ
. (3)

If we multiply Eq. (2) by Ψ∗ [gij ] and we functionally integrate over the

three spatial metric gij , we get
∫

D [gij ] Ψ
∗ [gij ] Λ̂ΣΨ [gij ] =

∫
D [gij ] Λ (x)Ψ∗ [gij ] Ψ [gij ] . (4)

After having integrated over the hypersurface Σ, one can formally re-write

the modified WDW equation as

1

V

∫
D [gij ] Ψ

∗ [gij ]
∫
Σ
d3xΛ̂ΣΨ [gij ]∫

D [gij ]Ψ∗ [gij ] Ψ [gij ]
=

1

V

〈
Ψ
∣∣∣
∫
Σ d

3xΛ̂Σ

∣∣∣Ψ
〉

〈Ψ|Ψ〉 = −Λc
κ
, (5)

where the explicit expression of Λ (x) has been used and where we have

defined the volume of the hypersurface Σ as V =
∫
Σ
d3x

√
g. We can gain

more information considering a separation of the spatial part of the metric

into a background term ḡij and a quantum fluctuation hij so that gij = ḡij+

hij . Equation (5) represents the Sturm-Liouville problem associated with

the cosmological constant. The related boundary conditions are dictated

by the choice of the trial wavefunctionals which, in our case, are of the

Gaussian type. Different types of wavefunctionals correspond to different

boundary conditions. Extracting the TT tensor contribution from Eq. (5)

approximated to second order in perturbation of the spatial part of the

metric into a background term ḡij and a perturbation hij we get

Λ̂⊥
Σ =

1

4V

∫

Σ

d3x
√
ḡGijkl

[
(2κ)K−1⊥ (x, x)ijkl +

1

(2κ)
(△2)

a
j K

⊥ (x, x)iakl

]
.

(6)

Here Gijkl represents the inverse DeWitt metric and all indices run from

one to three. The propagator K⊥ (x, x)iakl can be represented as

K⊥ (−→x ,−→y )iakl :=
∑

τ

h
(τ)⊥
ia (−→x )h

(τ)⊥
kl (−→y )

2λ (τ)
, (7)

where h
(τ)⊥
ia (−→x ) are the eigenfunctions of △2, whose explicit expression for

the massive case will be shown in the next section. Furthermore, τ denotes

a complete set of indices and λ (τ) are a set of variational parameters to be
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determined by the minimization of Eq. (6). The expectation value of Λ̂⊥
Σ

is easily obtained by inserting the form of the propagator into Eq. (6) and

minimizing with respect to the variational function λ (τ). Thus the total

one loop energy density for TT tensors becomes

Λ

8πG
= −1

4

∑

τ

[√
ω2

1 (τ) +
√
ω2

2 (τ)

]
. (8)

The above expression makes sense only for ω2
i (τ) > 0, where ωi are the

eigenvalues of △2.

2. One Loop Energy Regularization and Renormalization

for a f (R) = R Theory

The Spin-two operator for the Schwarzschild metric in the Regge and

Wheeler representation,4 leads to the following system of equations

(r ≡ r (x))
[
− d2

dx2
+
l (l+ 1)

r2
+m2

i (r)

]
fi (x) = ω2

i,lfi (x) i = 1, 2. (9)

In Eq. (9), reduced fields have been used and the proper geodesic distance

from the throat of the bridge has been considered. Close to the throat, the

effective masses are m2
1 (r) ≃ −m2

0 (M) and m2
2 (r) ≃ m2

0 (M), where we

have defined a parameter r0 > 2MG and m2
0 (M) = 3MG/r30. The main

reason for introducing a new parameter resides in the fluctuation of the

horizon that forbids any kind of approach. It is now possible to explicitly

evaluate Eq. (8) in terms of the effective mass. To further proceed we use

the W.K.B. method used by ‘t Hooft in the brick wall problem5 and we

count the number of modes with frequency less than ωi, i = 1, 2. Thus the

one loop total energy for TT tensors becomes

Λ

8πG
= ρ1 + ρ2 = − 1

16π2

2∑

i=1

∫ +∞
√
m2
i (r)

ω2
i

√
ω2
i −m2

i (r)dωi, (10)

where we have included an additional 4π coming from the angular integra-

tion. Here, we use the zeta function regularization method to compute the

energy densities ρ1 and ρ2. Note that this procedure is completely equiva-

lent to the subtraction procedure of the Casimir energy computation where

the zero point energy (ZPE) in different backgrounds with the same asymp-

totic properties is involved. To this purpose, we introduce the additional

mass parameter µ in order to restore the correct dimension for the regular-

ized quantities. Such an arbitrary mass scale emerges unavoidably in any
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regularization scheme. One gets

ρi (ε) =
m4
i (r)

256π2

[
1

ε
+ ln

(
µ2

m2
i (r)

)
+ 2 ln 2 − 1

2

]
(11)

for i = 1, 2. The renormalization is performed via the absorption of the

divergent part into the re-definition of the bare classical constant Λ =

Λ0 +Λdiv. The remaining finite value for the cosmological constant depends

on the arbitrary mass scale µ. It is appropriate to use the renormalization

group equation to eliminate such a dependence. To this aim, we impose6

1

8πG
µ
∂ΛTT0 (µ)

∂µ
= µ

d

dµ
ρTTeff (µ, r) . (12)

Solving it we find that the renormalized constant Λ0 should be treated as a

running one in the sense that it varies provided that the scale µ is changing

Λ0 (µ, r) = Λ0 (µ0, r) +
G

16π

(
m4

1 (r) +m4
2 (r)

)
ln

µ

µ0
. (13)

Finally, we find that

Λ0 (µ0,M)

8πG
= − 1

128π2

{
m4

0 (M)

[
ln

(
m2

0 (M)

4µ2
0

)
+

1

2

]}
. (14)

Eq. (14) has a maximum whena

1

e
=
m2

0 (M)

4µ2
0

=⇒ Λ0 (µ0, x̄) =
Gm4

0 (M)

32π
=
Gµ4

0

2πe2
. (15)

Nothing prevents us to consider a more general situation where the scalar

curvature R is replaced by a generic function of R. Therefore, we will con-

sider the Sturm-Liouville problem of Eq. (5) in the context of a f (R) the-

oryb.

3. One Loop Energy Regularization and Renormalization

for a Generic f (R) Theory in Hamiltonian Formulation

In this section, we would like to connect a f (R) theory with the Sturm-

Liouville problem of Eq. (5).9 Let us consider now the Lagrangian density

aNote that in any case, the maximum of Λ corresponds to the minimum of the energy
density.
bA recent review on the problem of f (R) theories can be found in Ref. 7. A more
general discussion on modified gravities of the type f (R) , f (G) and f (R,G) where G
is the Gauss-Bonnet invariant, can be found in Ref. 8.
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describing a generic f(R) theory of gravity

L =
√−g (f (R) − 2Λ) with f ′′ 6= 0, (16)

where f (R) is an arbitrary smooth function of the scalar curvature and

primes denote differentiation with respect to the scalar curvature. A cos-

mological term is added also in this case for the sake of generality. Obviously

f ′′ = 0 corresponds to GR. Equation (5) can be generalized to give10

1

V

〈
Ψ
∣∣∣
∫
Σ
d3x

[
Λ̂

(2)
Σ,f(R)

]∣∣∣Ψ
〉

〈Ψ|Ψ〉 +
κ

V

(f ′ (R) − 1)

f ′ (R)

〈
Ψ
∣∣∫

Σ d
3x
[
π2
]∣∣Ψ

〉

〈Ψ|Ψ〉

+
1

V

〈
Ψ
∣∣∫

Σ d
3xV (P)/ (2κf ′ (R))

∣∣Ψ
〉

〈Ψ|Ψ〉 = −Λc
κ
, (17)

where

V (P) =
√
g [Rf ′ (R) − f (R)] . (18)

When f (R) = R, V (P) = 0 as it should be. In Eq. (17), we have defined a

“modified” Λ̂
(2)
Σ operator which includes f ′ (R) in the following way

Λ̂
(2)
Σ,f(R) = (2κ)h (R)Gijklπ

ijπkl −
√
g

2κ
3Rlin, (19)

with

h (R) = 1 +
2 [f ′ (R) − 1]

f ′ (R)
(20)

and where 3Rlin is the linearized scalar curvature. Note that when f (R) =

R, consistently it is h (R) = 1. From Eq. (17), we redefine Λc

Λ′
c = Λc +

1

2V

〈
Ψ
∣∣∣
∫
Σ d

3x V (P)
f ′(R)

∣∣∣Ψ
〉

〈Ψ|Ψ〉 = Λc +
1

2V

∫

Σ

d3x
√
g
Rf ′ (R) − f (R)

f ′ (R)
,

(21)

where we have explicitly used the definition of V (P). Thus, in Eq. (14) we

have to replace Λ0 (µ0, r) with Λ′
0 (µ0, r). Adopting the same procedure of

the f (R) = R case, we find a maximum for Λ′
0 (µ0, x) which is related to

Λ0 (µ0, x̄) by the following relation

1√
h (R)

[
Λ0 (µ0, x̄) +

1

2V

∫

Σ

d3x
√
g
Rf ′ (R) − f (R)

f ′ (R)

]
=
Gµ4

0

2πe2
. (22)

Isolating Λ0 (µ0, x̄), we get

Λ0 (µ0, x̄) =
√
h (R)

Gµ4
0

2πe2
− 1

2V

∫

Σ

d3x
√
g
Rf ′ (R) − f (R)

f ′ (R)
. (23)
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Note that Λ0 (µ0, x̄) can be set to zero when

√
h (R)

Gµ4
0

2πe2
=

1

2V

∫

Σ

d3x
√
g
Rf ′ (R) − f (R)

f ′ (R)
. (24)

Let us see what happens when f (R) = exp (−αR). This choice is simply

suggested by the regularity of the function at every scale. In this case,

Eq. (24)becomes
√

3α exp (−αR) + 2

α exp (−αR)

Gµ4
0

πe2
=

1

αV

∫

Σ

d3x
√
g (1 + αR) . (25)

For Schwarzschild, it is R = 0, then by setting α = G, we have the relation

µ4
0 =

πe2

G

√
1

(3G+ 2)G
. (26)
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It is shown that the problem of the cosmological constant is connected with the
problem of emergence of quantum mechanics. Both of them are principal as-
pects of physics at the Planck scale. Probability amplitudes describe evolution
of the harmonic oscillator non-equilibrium distributions in a thermal bath. The
Planck constant ~, the Fock space and the Schrödinger equation appear in the
natural way. For massless fields it leads, in particular, to appearance of masses,
and, consequently, of the cosmological constant in the gravitational equations.
The path integral for the relativistic particle propagator is presented.
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Among the hot spots of the modern physics problems of dark mat-

ter1–3 and dark energy4,5 are the most actual. It is clear that their solution

presumes understanding physics at the Planck scale. Solution of another

fundamental problem — the emergence of quantum mechanics (description

of dynamical systems by probability amplitudes) evidently, is also rooted

at the Planck scale. It is remarkable that there is simple classical model

(set of harmonic oscillators in a thermal bath) where the probability am-

plitudes appear together with the cosmological constant. Wave functions

describe evolution of non-equilibrium states of the system, and the latter

are specified by some relaxation time tr. As a result, all the massless fields

become massive. In the gravitation theory it leads to the appearance of the

cosmological constant Λ = α2/2, α−1 = tr. In particular, it gives correct

recipe for resolving the singularities in the retarded and causal propaga-

tors. It also agrees with the path integral presentation of propagators for a

relativistic particle.

The Hibbs distribution for a harmonic oscillator with the Hamiltonian

H =
ω

2
(p2 + q2) =

ω

2
(z̄z + zz̄), z =

q + ip√
2
, (1)
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defines the following measure in the phase space

dµ(z̄, z) =
dz̄ ∧ dz
2πi~

e−βωz̄z, β =
1

kBT
, ~ =

1

βω
, (2)

where T is the temperature, and kB — the Boltzmann constant; h = 2π~

has the dimension of action and will be identified with the Planck con-

stant,
∫
dµ(z̄, z) = 1. Any other distribution dµp(z̄, z) = p(z̄, z)dµ(z̄, z)

with p(z̄, z) ≥ 0 describes a non-equilibrium state.6 The complex canonical

variables z̄, z with the Poisson bracket

{f, g} = i
∂(f, g)

∂(z̄, z)
= i

(
∂f

∂z̄

∂g

∂z
− ∂f

∂z

∂g

∂z̄

)
(3)

play the principal role in the present approach. In this case one can use

only the first of two Hamiltonian equations ż = {f,H} = −iωz, while the

second one can be obtained from it by complex conjugation.

The non-equilibrium distribution appears after deformation of the Hibbs

distribution (2) via z → z + c:

dµf (z̄, z) = |fc(z)|2dµ(z̄, z), fc(z) = e−c̄z/~e−c̄c/2~,

∫
dµf = 1. (4)

Suppose that the relaxation time of this state is large, tr ≫ ω−1. Then its

evolution with time for t≪ tr can be described by only one equation

ḟc = −iωz dfc
dz
. (5)

This construction in fact defines the Fock space of analytic functions f(z)

of order ρ ≤ 2 with the scalar product7

(g, f) =

∫
dµ(z̄, z)ḡ(z)f(z). (6)

Thus, it allows to introduce operators: ẑf(z) = zf(z), ˆ̄zf(z) = ~df(z)/dz.

They can be identified with the standard creation and annihilation opera-

tors â+, â, [â, â+] = ~ (it can be proved using integration by parts in (7)).

Then the Hamiltonian (1) should be taken in the form

Ĥ =
ω

2
(ˆ̄zẑ + ẑ ˆ̄z) = ~ω(z

d

dz
+

1

2
). (7)

Multiplying the classical Eq. (6) by i~ one obtains in fact the Schrödinger

equation, though without the “vacuum energy” E0 = ~ω/2. Taking into

consideration the commutation relation of ˆ̄z, ẑ one obtains the correct ex-

pression (8) for Ĥ and correct Schrödinger’s equation

i~ḟ = ~ω(z
d

dz
+

1

2
)f, (8)
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if we identify ~ in (2) with the Planck constant.

One has to take into consideration the damping of oscillations. To do it

one may modify the Poisson bracket8

{f, g} = ωijf,ig,j → {f, g}α = {f, g} + {f, g}+, ωij = −ωji. (9)

We denoted f,i = ∂f/∂xi, H =
∑
hijxixj/2, hij = ωδij and

x(q1, ..., qn, pn+1, ..., p2n). We define

{f, g}+ = −αhijf,ig,j, hij =
1

ω
δij , α > 1. (10)

The new bracket (10) modifies the Hamiltonian equations: ḟ = {f,H}α, i.e.,

for a single oscillator (n = 1) one has q̇ = ωp−αq, ṗ = −ωq−αp, or Dtq =

ωp, Dtp = −ωq, Dt = ∂t + α. Thus, D2
t q = −ω2q, and q̈ + 2αq̇+ (ω2 +

α2)q = 0, q(t) = e−αt(c1 sinωt+ c2 cosωt). In the Lagrangian formalism

the terms ∼ α2 may seem inessential. But the Hamiltonian mechanics is

superior (in transformation of the first-order equations into the second-

order ones one we lose some information), and the parameter α enters there

linearly.

The importance of change ∂t → Dt lies in the fact that all the fields are

ordered sets of harmonic oscillators. Then, this substitution modifies the

equations of motion, e.g.

(� −m2)ϕ = 0 → [� − 2α∂t − (m2 + α2)]ϕα ≡ [�α −m2]ϕα = 0, (11)

where � = −∂2
t +∆ and ϕα = e−αtϕ. Thus, massless fields acquire masses,

and the cosmological term appears in the gravitational equations.8

It solves the problem of dark energy. The Newton potential en-

ergy V (r) = −Gm1m2/r now becomes the Yukawa one Vα(r) =

−e−αrGm1m2/r, so at large distances (r > α−1) the attraction becomes

negligible, and it imitates “acceleration” of the Universe. The astrophysical

data9 gives α−1 ∼ 8 · 109 yr.

According to quantum field theory the matter in the Universe is noth-

ing but excitation of fields. However, as we have seen all the excitations

should disappear with time. So, matter disappears, and according to the

present model instead of thermal death of XIX century we should expect

the “quantum death” of the Universe.

It turns out that all this leads to correct prescriptions for resolving

the retarded and causal propagator singularities. The scalar field causal

propagator is defined by the sum of two vacuum expectations Gc(x − x′, t−
t′) = θ(t− t′)〈ϕ̂(x)ϕ̂(x′)〉0 + θ(t′ − t)〈ϕ̂(x′)ϕ̂(x)〉0. All the fields acquire the
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factor e−αt, so we should replace Gc → e−α(t−t′)Gc ≡ Gαc. As a result one

finds the following representation for Gαc

Gαc(x, x
′) = (12)

∫
d4p

(2π)4i2Ep
e−i(p0−iα)∆t+ip∆x

(
1

−p0 + Ep − iǫ
+

1

p0 + Ep − iǫ

)
,

where E2
p = p2 +m2. Moving the p0 integration contour up in the complex

plane (p0 → p′0, Im p′0 = iα) and taking into account the pole at p0 =

−Ep + iǫ in the second term of the sum in (14) (α > ǫ) one obtains

Gαc(x−x′) =

∫
d4p

(2π)4
ie−ip(x−x

′)

p2 −m2 + 2ip0α− α2
+e−α(t−t′)

∫
d3p

(2π)32Ep
e−ipx,

(13)

and Gαc(x − x′) → Gc(x − x′) in the limit α → 0, while the first term in

Eq. (15) gives Gret(x − x′). The modified propagator Gαc(x − x′) satisfies

the equation (�α −m2)Gαc(x) = iδ(4)(x).

The path-integral representation of the relativistic particle propagator

meets considerable difficulties. First, the classical Lagrangian contains the

square root: L = −m
√
ẋ2, x2 = x2

0 − x2. Second, the corresponding Hamil-

tonian is zero:10 H = ẋ0(p0 + sgn ẋ0Ep) = 0 with ẋ = dx/dτ , where τ

is some invariant parameter (“time”). Consider the kernel of the evolution

operator

Uω(x, x′) = 〈x|e−iω′Ĥ |x′〉 =

∫
d4p

(2π)4
ei[p∆x−ω(p0+Ep)], ω → 0 (14)

(H is given by (16); we demand ẋ0 > 0, define ω = ω′ẋ0 > 0, ∆x = x− x′

and use the formula 〈x|p〉 = (2π)−2 exp(ipx)). Integrating in (17) over p0,

one obtains

Uω(x, x′) =

∫
d3p

(2π)3
ei(p∆x−ωEp)δ(x0 − x′0 − ω)

=

∫
d3p

(2π)3
ei(p∆x−∆x0Ep)δ(∆x0 − ω). (15)

Substituting the kernel (18) into the formula ψ̃(x, τ + ω) =∫
d4x′Uω(x, x′)ψ̃(x, τ) and integrating in it over x′0 one gets

ψ(x0,x) =

∫
d3pd3x′

(2π)3
ei(pi∆x

i−∆x0Ep)ψ(x0 − ωτ,x′), ∆x0 = x0 − x′0 = ω

(16)

(we define ψ(x0,x) = ψ̃(x0,x, τ), i.e. omit τ because according to (19)

∆τ = ∆x0). In the relativistic quantum mechanics the scalar product of
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state vectors is defined as

(ψ1, ψ2) = i

∫
d3xψ∗

1

↔
∂ 0 ψ2 = i

∫
d3x(ψ∗

1∂tψ2 − ∂tψ
∗
1ψ2),

so we have to take it into consideration in writing the path integral, for

example, in the product Ûω...Ûω. To this end we introduce the unity

(2Ep)
−12Ep under the integral and substitute 2Ep → i

↔
∂ 0. Then the oper-

ator Ûω acts like

ψ(x0 + ω,x) = Ûωψ(x0,x) = i

∫
d3xUω(x,x′)

↔
∂ 0 ψ(x0,x′), ∂t = ∂x0 ,

(17)

where

Uω(x,x′) =

∫
d3p

(2π)32Ep
e−i(Epω−p∆x′). (18)

Thus, we obtain the following path integral for the kernel Ut−t′ :

Ut−t′(x,x
′) =

∫ t∏

τ=t′

d3p(τ)d3x(τ)

(2π)3
1

2Ep(t′)
e
i
tR

t′
dτ [pẋ−Ep(τ)]

δ(x(t′) − x′).

(19)

Integrating in (22) first over x(τ) and then over p(τ), one obtains

Ut−t′(x,x′) = 〈ϕ̂(x)ϕ̂(x′)〉0,

Ut−t′(x,x
′) =

∫
d3p

(2π)32Ep
e−ip(x−x

′) = ∆+(x− x′), (20)

and in the limit α→ 0, Eqs. (14), (22), and (23) give the path integral for

the causal propagator.
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1. Introduction

There are well-known difficulties concerning a description of gravity in quan-

tum theory. Some of these difficulties can be resolved only in a complete

theory of matter and gravity. Nevertheless, there are some interesting phe-

nomena appearing when gravity is treated as a classical background (pseu-

doRiemannian) metric. One could study such problems either in the frame-

work of quantum mechanics with the wave function representing a vector

in a state space or in the framework of quantum field theory (QFT) on

a classical gravitational background. In the latter case the conventional

quantization procedure relying on classical solutions of wave equations is

not unique. In this paper we impose a requirement that the pseudoRieman-

nian manifold is one of the real sections of a complex manifold.1 Another

real section is the Riemannian manifold. The Riemannian manifold which

can be continued to the pseudoRiemannian one is distinguished by a re-

flection symmetry.2 The analytic continuation is to be performed across a

reflection invariant curve.

We apply the Euclidean version to massless scalar QFT on a manifold

with a bifurcate Killing horizon.3 We show that, if a surface defining the

bifurcate Killing horizon is compact, then at large distances such a field

theory can be approximated by the two dimensional conformal invariant

Euclidean field theory defined on R2.



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Dimensional reduction near the horizon 231

2. Reflection Positivity and Euclidean Functional

Integration

We consider a D-dimensional Riemannian manifold N with a reflection

symmetry θ such that

N = N+ ∪ N− ∪ N0 ,

where for x ∈ N+ we have θx ∈ N−, whereas if x ∈ N0 then θx = x.

Let G be a two-point function on N × N . We say that G is reflection

positive if
∫
dxdx′f(x)G(θx, x′)f(x′) ≥ 0 (1)

for any f with its support in N+. As an example, let N = R ×M, where

M is a D − 1 dimensional manifold, and G = (−∂2
0 +H2)−1, where H is a

positive operator defined on M, then

G(x0, y;x
′
0, y

′) =
( 1

2H
exp(−|x0 − x′0|H)

)
(y, y′) .

In such a case if θx0 = −x0, x0 ≥ 0 and x′0 ≥ 0 then

G(θx, x′) = exp(−x0H)(2H)−1 exp(−x′0H) (2)

(in the sense of the composition of kernels). The reflection positivity is a

simple consequence of the positive definiteness of H−1 and the formula (2).

If G is a non-negative function and a non-negative bilinear form then we

can define Euclidean free fields φ by means of their expectation values (for

this purpose it is sufficient that H2 in Eq. (2) is a second order differential

operator)
∫
dµ(φ)φ(x)φ(x′) = G(x, x′) . (3)

Equation (3) defines the Gaussian measure µ of the free field φ. A local

interaction splits as
∫

N

V (φ) =

∫

N+

V (φ) +

∫

N−

V (φ) .

Hence, if we define Θφ(x) = φ(θx) then for F being a function of φ(f),

where f have their supports in N+, we have
∫
dµ(φ)ΘFF exp(−

∫
V ) ≥ 0 . (4)

The formula (4) defines the reflection positivity for Euclidean field theory

with an interaction V . It can be applied to define the physical Hilbert
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space. For stationary Riemannian metrics it also allows to define an analytic

continuation of Euclidean Green functions to Wightman functions.2

3. An Approximation at the Horizon

We consider a D dimensional pseudoRiemannian manifold N with bifurcate

Killing horizon.3 This means that there is a Killing vector ξA orthogonal to

a (past oriented)D−1 dimensional hypersurface HA and a (future oriented)

hypersurface HB and ξAξA = 0 on an intersection of HA and HB defining

a D − 2 dimensional surface M . The metric splits into a block form

ds2 =
∑

a,b=0,1

gabdx
adxb +

∑

jk>1

gjkdx
jdxk .

In the adapted coordinates such that ξA = ∂0 we have g10 = 0 and

g00(y = 0,x) = 0. The Taylor expansion of g00 starts with y2. Hence,

in the Euclidean version we have

ds2 ≡ gABdx
AdxB = y2dx2

0 + dy2 + ds2D−2 . (5)

This means that N = R2 × M, where R2 is the two-dimensional Rindler

space.

Example: the four dimensional Schwarzschild black hole is approximated

by N ≃ R2 × S2.

We consider the Laplace-Beltrami operator on N

△N =
1√
g
∂Ag

AB√g∂B . (6)

The massless Green function is defined as a solution of the equation

−△NGN =
1√
g
δ . (7)

The Green function can be expressed by the fundamental solution of the

diffusion equation

∂τP =
1

2
△NP .

Then we obtain

G =
1

2

∫ ∞

0

dτPτ . (8)

Now we have the decomposition

△N = y−2∂2
0 + y−1∂yy∂y + △M ,
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where

△M =
1√
gM

∂jg
jk√gM∂k

with gM = det(gjk) being the Laplace-Beltrami operator on M.

In the coordinates

y = b expu (9)

Eq. (7) reads
[
− ∂2

0 − ∂2
u − b2 exp(2u)△M

]
G = g

− 1
2

M δ(x0 − x′0)δ(u− u′)δ(x − x′) .

(10)

4. Green Functions Near the Horizon

We define

Ĝ = (yy′)−
D−1

2 G
and

△̂N = y∂yy∂y − (D−2)2

4 + y2△M . (11)

Let P̂ be the fundamental solution of the heat equation

∂τ P̂τ =
1

2
△̂N P̂τ . (12)

Then, the Green function can be expressed by the heat kernel

ĜN (y,x; y′,x′) =

∫ ∞

0

dτ(2πτ)−
1
2 exp

[
− 1

2τ
(x0 − x′0)

2

+
τ

8
(D − 2)2

]
P̂τ (y,x; y′,x′) . (13)

We have estimated4 the heat kernel and the Green functions in Eq. (13)

with the conclusion that there is no dimensional reduction if the spectrum

of the Laplace-Beltrami operator on M is continuous. We show that the

behaviour of the Green function is different if the spectrum of the Laplace-

Beltrami operator is discrete.

If M is a compact manifold without a boundary then the spectrum of

the Laplace-Beltrami operator △M is discrete:

−△Muk = ǫkuk . (14)

A constant is an eigenfunction with the lowest eigenvalue 0 as

△M1 = 0 .
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We expand the Green function into the Kaluza-Klein modes uk

GN (x0, x1,x;x′0, x
′
1,x

′) =
∑

k gk(x0, x1;x
′
0, x

′
1)uk(x)uk(x

′) . (15)

Then, gk can be expanded in a complete basis of eigenfunctions

φEk = exp(ip0x0)φ
p1
k (x1) , (16)

where

(−∂2
1 + b2ǫk exp(2x1))φ

p1
k = p2

1φ
p1
k . (17)

In terms of φE we obtain

gk(x0, x1;x
′
0, x

′
1) =

∫
dp0dp1(p

2
0 + p2

1)
−1φ

E

k (x0, x1)φ
E
k (x′0, x

′
1) . (18)

The solution, which behaves like a plane wave with momentum p1 for

x1 → −∞ and decays exponentially for x1 → +∞, reads

φp1k = Np1Kip1(b
√
ǫk exp(x1)) , (19)

where Kν is the modified Bessel function of the third kind.

GN contains the zero mode u0 = 1. When we subtract the zero mode

part G of GN , then we obtain

GN (x0, x1,x;x′0, x
′
1,x

′) −G(x0, x1;x
′
0, x

′
1)

= 4
π2

∫∞
0 dp1 sinh(πp1) exp(−p1|x0 − x′0|)∑

k 6=0Kip1(b
√
ǫk exp(x1))Kip1(b

√
ǫk exp(x′1))uk(x)uk(x

′) ,
(20)

where

G(x0, x1;x
′
0, x

′
1) = − 1

4π
ln
(
(x0 − x′0)

2 + (x1 − x′1)
2
)

(21)

is the Green function for the two-dimensional free field on the plane.

Each term on the rhs of Eq. (20) is decaying exponentially. We wish

to estimate the series. We estimate the rhs of Eq. (20) for large x1 and x′1
by means of a simplified argument applicable when x = x′ and x1 = x′1.
Let the lowest non-zero eigenvalue satisfy ǫ1 ≥ δ . We apply the Weyl

approximation for large eigenvalues in order to bound the rhs of Eq. (20)

as follows:

|GN (x0, x1,x;x′0, x1,x) −G(x0, x1;x
′
0, x1)| (22)

≤ C2 4

π2

∫ ∞

0

dp1 sinh(πp1) exp(−p1|x0 − x′0|)
∑

δ≤ǫk≤n
|Kip1(b

√
ǫk exp(x1))|2
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+R

∫ ∞

0

dp1 sinh(πp1) exp(−p1|x0 − x′0|)
∫

|k|≥√
n

dk|Kip1 (b|k| exp(x1))|2 .

The finite sum as well as the integral on the rhs are decaying exponentially.

5. Euclidean Free Fields Near the Horizon

We introduce a free Euclidean field as a random field with the correlation

function equal to the Green function

Φ(x0, x1,x) =
∫
dp0dp1

∑
k ak(p0, p1)φ

p1
k (x1)uk(x) exp(ip0x0)

= Φ0(x0, x1) +
∑
k>0 Φk(x0, x1,x) ,

(23)

where

〈ak(p0, p1)ak′(p
′
0, p

′
1)〉 = δkk′δ(p0 − p′0)δ(p1 − p′1)(p

2
0 + p2

1)
−1 . (24)

Here Φ0 is a two-dimensional conformal invariant free field with the corre-

lation function

〈Φ0(x0, x1)Φ0(x
′
0, x

′
1)〉 = G(x0, x1;x

′
0, x

′
1)

= − 1
4π ln

(
(x0 − x′0)

2 + (x1 − x′1)
2
)
.

(25)

The correlation functions of Φk are decaying exponentially.

The analytic continuation of free Euclidean fields x0 → ix0 follows from

the reflection positivity. The quantum free fields can be represented in the

Fock space according to

Φ(x0, x1,x) =
∫
dp1

∑
k ak(p1)φ

p1
k (x1)uk(x) exp(−i|p1|x0)

+
∫
dp1

∑
k a

+
k (p1)φ

p1
k (x1)uk(x) exp(i|p1|x0) ,

(26)

where a and a+ are annihilation and creation operators satisfying the com-

mutation relations

[ak(p1), a
+
l (p′1)] = δklδ(p1 − p′1) . (27)
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The semi-classical approximation to black hole partition functions is not well-
defined, because the classical action is unbounded and the first variation of the
uncorrected action does not vanish for all variations preserving the boundary
conditions. Both problems can be solved by adding a Hamilton-Jacobi counter-
term. I show that the same problem and solution arises in quantum mechanics
for half-binding potentials.
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1. Introduction and Statement of the Problem

Path integrals have illuminated many aspects of quantum mechanics and

quantum field theory,1 but there remain some challenges to path integral

formulations of quantum theories.2 In this proceedings contribution I de-

scribe a problem arising for quantum mechanical potentials that are ‘half-

binding’ (the definition of this term will be given below). I shall demonstrate

that the naive semi-classical approximation to the path integral breaks

down for two reasons: the leading contribution to the partition function

is singular and the first variation of the action does not vanish for all vari-

ations preserving the boundary conditions. I discuss how both issues can

be resolved by adding an appropriate (Hamilton-Jacobi) counterterm as

boundary term to the action. Moreover, I shall point out formal similari-

ties to black hole (BH) partition functions, so in that sense these quantum

mechanical systems may serve as toy models to elucidate certain aspects of

BH physics. For sake of clarity I focus on a specific Hamiltonian,3

H(q, p) =
p2

2
+ V (q) , V (q) =

1

q2
, (1)
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where q is restricted to positive values. If q is small the Hamiltonian rises

without bound, like for a binding potential. If q is large the potential is

negligible, and the asymptotic dynamics is dominated by free propagation.

I refer to a potential with these properties as ‘half-binding’. [The conformal

properties3 of (1) will not play any role in this discussion.]

Consistency of the variational principle based on the Lagrangian action,

I[q] =

tf∫

ti

dt
( q̇2

2
− 1

q2

)
, (2)

requires to fix the initial and final value of q at ti and tf , respectively. I am

interested here mostly in the limit tf → ∞, which implies that q|tf = ∞ is

the appropriate asymptotic boundary condition. The initial time is set to

zero, ti = 0, without loss of generality. The Lagrangian path integral,

Z =

∫
Dq exp

(
− 1

~
I[q]
)
, (3)

consists of a coherent sum over all field configurations consistent with the

boundary data. Even though (2) is exactly soluble, it is illustrative to con-

sider the semi-classical expansion of the action,

I[qcl + δq] = I[qcl] + δI
∣∣
EOM

+ O(δq2) , (4)

and of the partition function

Z = exp
(
− 1

~
I[qcl]

) ∫
Dδq exp

(
− 1

~
O(δq2)

)
. (5)

The semi-classical approximation (5) is well-defined only if the on-shell

action is bounded, |I[qcl]| <∞, and only if the first variation of the action

vanishes on-shell, δI|EOM = 0, for all field configurations preserving the

boundary conditions. I demonstrate now that neither is the case for the

example (2).

The on-shell action diverges because asymptotically the propagation

is essentially free, and because of the assumption tf → ∞. This is an

idealization of situations where boundary conditions are imposed at late

times, tf ∼ 1/ǫ, with ǫ≪ 1. In that case also qf ∼ 1/ǫ classically. However,

the path integral does not only take into account classical contributions,

but also samples nearby field configurations whose asymptotic behavior is

q ∼ qf [1 + ǫ∆q + O(ǫ2)], where ∆q is finite. Therefore, the first variation

of the action, evaluated on-shell, is given by the boundary term

q̇ δq|tf − q̇ δq|ti=0 = q̇ δq|tf ∼ lim
ǫ→0

[q̇∆q + O(ǫ)]
∣∣tf 6= 0 . (6)
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The inequality emerges, because arbitrary finite variations δq|tf certainly

preserve the boundary condition q|tf = ∞. The two problems described

here spoil the semi-classical approximation (5) to the partition function.

2. Hamilton-Jacobi Counterterm for Half-Binding

Potentials

Both problems can be solved by considering an improved actiona

Γ[q] =

tf∫

0

dt
( q̇2

2
− 1

q2

)
− S(q, t)

∣∣∣
tf

0
, (7)

which differs from (2) by a boundary counterterm depending solely on quan-

tities that are kept fixed at the boundary. The variation of (7),

δΓ|EOM =
(
q̇ − ∂S

∂q

)
δq
∣∣∣
tf

0
=
(
q̇ − ∂S

∂q

)
δq
∣∣∣
tf
, (8)

does not necessarily suffer from the second problem if ∂S/∂q asymptotically

behaves like q̇, i.e., like the momentum p.

The method8,9 that I am going to review does not involve the subtrac-

tion of the action evaluated on a specific field configuration, but rather is

intrinsic. Moreover, the amount of guesswork is minimal: Hamilton’s prin-

cipal function is a well-known function of the boundary data with the prop-

erty ∂S/∂q = p. Therefore it is natural to postulate that S in (7) solves the

Hamilton-Jacobi equation,

H
(
q,
∂S

∂q

)
+
∂S

∂t
= 0 . (9)

The complete integral10

S(q, t) = c0 − Et+
√

2(Eq2 − 1) +
√

2 arctan
1√

Eq2 − 1
(10)

allows to construct the enveloping solution

S(q, t) =
q2

2t

(√
4∆+ − 8t2/q4 − ∆+

)
+
√

2 arctan
1√

q4∆+/(2t2) − 1
,

(11)

aThere exists a variety of subtraction methods in quantum mechanics,4 in General Rel-
ativity (and generalizations thereof)5 and in holographic renormalization within the
context of AdS/CFT.6 Many of them have ad-hoc elements and require the subtraction

of the action evaluated on a specific field configuration (like the ground state solution);
in some cases there are several “natural” candidates, in others there is none, and in at
least one example the “natural” guess even turned out to be wrong.7
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where ∆+ := 1
2 (1+

√
1 − 8t2/q4).b The asymptotic expansion S = q2/(2t)+

O(t/q2) is consistent with the intuitive idea that the asymptotically free

propagation is the source of all subtleties. But the expression (11) con-

tains a great deal of additional (non-asymptotic) information, which can be

physically relevant, as mentioned in the next section.

Let me now come back to the two problems. Since asymptotically

q̇|EOM = v = const., the on-shell action

Γ
∣∣
EOM

=
v2

2

tf∫

0

dt− v2

2
tf + O(1) = O(1) (12)

evidently is finite. The terms of order of unity entail the information about

the potential V (q). The first variation

δΓ
∣∣
EOM

=
(
q̇ − q

t︸ ︷︷ ︸
O(1/t)

+O(1/t2)
)
δq
∣∣∣
tf

= O(1/t) δq︸︷︷︸
finite

∣∣∣
tf

= 0 (13)

vanishes for all variations preserving the boundary conditions. The two

problems mentioned in the previous section indeed are resolved by the im-

proved action (7) with (11).

The considerations above apply in the same way to the Hamiltonian

(1) with a more general class of half-binding potentials V (q). In particular,

the (manifestly positive) potential V (q) is required to be monotonically

decreasing, and to vanish faster than 1/q for large q. Going through the

same steps as above is straightforward. Other generalizations, e.g. to non-

monotonic potentials or potentials with Coulomb-like behavior, may involve

technical refinements, but the general procedure is always the same: one has

to solve the Hamilton-Jacobi equation (9) to obtain the correct counterterm

S in (7).

3. Comparison with Black Hole Partition Functions

The same issues as in the previous section arise when evaluating BH par-

tition functions. Probably the simplest non-trivial model is 2-dimensional

dilaton gravity (cf., e.g., Ref. 11 for recent reviews),

b One is forced to take the enveloping solution, since S is part of the definition of the
improved action and therefore cannot depend on constants of motion. The energy E is

eliminated from (10) by solving ∂S/∂E = 0 for E. The other constant, c0, is set to zero
by hand, but other choices are possible. Such an ambiguity always remains in this (and
any other) approach. It reflects the freedom to shift the free energy of the ground state.
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I[g,X ] = − 1

16πG2

∫

M
d 2x

√
g
(
X R− U(X) (∇X)

2 − 2V (X)
)

− 1

8πG2

∫

∂M
dx

√
γ X K . (14)

An explanation of the notation can be found in.9 The boundary term in

(14) is the dilaton gravity analog of the Gibbons-Hawking-York boundary

term. The latter arises in quantum mechanics if one converts the action

I =
∫
dt[−qṗ − H(q, p)] into standard form, but it is not related to the

Hamilton-Jacobi counterterm. It was shown first (second) in the second9

(first12) order formulation that the improved action is given by

Γ[g,X ] = I[g,X ] +
1

8πG2

∫

∂M
dx

√
γ S(X) , (15)

with the solution of the Hamilton-Jacobi equation (V (X) ≤ 0)

S(X) =
(
− 2e−

R
Xdy U(y)

∫ X

dy V (y) e
R
ydz U(z)

)1/2

. (16)

The lower integration constant in the integrals over the function U is al-

ways the same and therefore cancels; the lower integration constant in the

remaining integral represents the ambiguity mentioned in footnote b.

The BH partition function based upon the improved action (15),

Z =

∫
DgDX exp

(
− 1

~
Γ[ g,X ]

)
≈ exp

(
− 1

~
Γ[ gcl, Xcl]

)
, (17)

by standard methods establishes the BH free energy. The asymptotic part of

the counterterm (16) leads to the correct asymptotic charges for BHs with

(essentially) arbitrary asymptotic behavior, and to consistency with the

first law of thermodynamics (which is non-trivial7). The finite part of the

counterterm (16) allows a quasi-local description of BH thermodynamics.9

Perhaps one might exploit the formal analogy between BH partition

functions and quantum mechanical partition functions described in this

work to construct interesting condensed matter analogs13 mimicking ther-

modynamical aspects of BHs.
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Partielle Differentialgleichungen Erster Ordnung für eine gesuchte Funktion
(Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1965).

11. D. Grumiller, W. Kummer, and D. V. Vassilevich, Phys. Rep. 369, 327 (2002);
D. Grumiller and R. Meyer, Turk. J. Phys. 30, 349 (2006).

12. L. Bergamin, D. Grumiller, R. McNees, and R. Meyer, arXiv:0710.4140.
13. M. Novello, M. Visser, and G. Volovik (Editors), Artificial Black Holes (World

Scientific, River Edge, 2002); C. Barcelo, S. Liberati, and M. Visser, Living
Rev. Rel. 8, 12 (2005), and references therein.



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

242

EFFECTIVE LAGRANGIANS FOR NONCOMMUTATIVE

MECHANICS

C. S. ACATRINEI

Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, 30-059, Cracow, Poland

and
National Institute for Nuclear Physics and Engineering,

Bucharest, MG-077125, Romania
E-mail: acatrine@th.if.uj.edu.pl

By using path integral methods we obtain effective Lagrangians for noncom-
mutative Quantum Mechanics. The starting point is a relatively simple mod-
ification of standard phase-space path integrals, which leads in configuration
space to Lagrangians depending also on the accelerations. We comment on the
subtleties involved.
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1. Introduction

Phase-space path integrals usually take the form1

∫
D~qD~pei

R
T
0
dt[~p·~̇q−H(~p,~q)], (1)

with boundary conditions enforced by the type of quantum mechanical am-

plitude to be evaluated. Such integrals (or their Lagrangian counterparts)

suffice for most of physical applications, provided the symplectic structure

is canonical, i.e. ω0 =
∑
i dpi ∧ dqi.

We would like to discuss here the following modified path integral
∫
D~qD~pei

R
T
0
dt[~p·~̇q−H(~p,~q)+θ/2(p1ṗ2−p2ṗ1)], (2)

where θ is a constant of dimension length-squared. For simplicity we work in

two space dimensions and with all indices down, ~q = (q1, q2), ~p = (p1, p2).

Standard notation is employed for velocity vi = q̇i ≡ dqi
dt , acceleration

ai = q̈i ≡ d2qi
dt2 and mass (m). The Planck constant is set to one throughout.
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The apparently innocuous modification (2) actually amounts to a change

in the symplectic structure, ω0 → ω =
∑2

i=1(dpi ∧ dqi + θ
2dpi ∧ dpj) and

has important consequences discussed below.

In fact, the path integral with modified symplectic structure (2) de-

scribes transition amplitudes in noncommutative quantum mechanics, a

subject first introduced in Ref. 2 and intensively studied in the last decade,

see Refs. 3–9. More precisely (2) describes quantum mechanics with an ad-

ditional nonvanishing commutator between coordinates, [q1, q2] = iθ. This

theory admits a first principles path integral formulation only in phase

space, as detailed in Ref. 8. At the classical level, the extended symplectic

structure features an additional nonzero Poisson bracket, {q1, q2} = θ 6= 0,

and the resulting equations of motion do not admit a standard Lagrangian

formulation.9

Nevertheless one can enforce an effective Lagrangian formulation in con-

figuration space10 by integrating over the momenta in the path integral (2).

We describe this process, and conclude with a discussion of the result.

2. Path Integral

We path-integrate over the momenta in (2), to obtain the effective La-

grangian. Starting from the partition function
∫
Dq1Dq2Dp1Dp2e

iS (3)

with action

S =

∫ T

0

dt

[
p1q̇1 + p2q̇2 +

θ

2
(p1ṗ2 − p2ṗ1) −

p2
1

2m
− p2

2

2m
− V (q)

]
, (4)

we wish to integrate over the momenta p1, p2. The potential part V (q)

depends only on q1 and q2 and plays no role in what follows (the method

is valid for any V (q), more precisely for any Hamiltonian with separate

quadratic dependence upon momenta). We divide the time interval T in

n subintervals ǫ = T
n (n → ∞ achieves the continuum limit), and choose

for simplicity the discrete derivative v(k) ≡ ẋ(k) ≡ x(k+1)−x(k)

ǫ ; no issues

requiring symmetric operations of any kind appear in the following. The

relevant part of the discretized action (excluding V (q) for now) becomes

S̃ =
n∑

k=0

[
ǫp

(k)
1 v

(k)
1 + ǫp

(k)
2 v

(k)
2 +

θ

2

(
p
(k)
1 p

(k+1)
2 − p

(k)
2 p

(k+1)
1

)

−ǫ (p
(k)
1 )2 + (p

(k)
2 )2

2m

]
. (5)
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The clearest way to proceed with the coupled Gaussian integrals is to in-

troduce matrix notation. Define the column vectors

V ≡ ǫ(v
(0)
1 , v

(1)
1 , . . . , v

(n)
1 . . . , v

(0)
2 , v

(1)
2 , . . . , v

(n)
2 . . . )T (6)

P ≡ (p
(0)
1 , p

(1)
1 , . . . , p

(n)
1 . . . , p

(0)
2 , p

(1)
2 , . . . , p

(n)
2 . . . )T (7)

and the matrix

J = −a




1 0 0 · · 0 b 0 · ·
0 1 0 · · 0 0 b · ·
· · · · · · · ·
0 −b 0 · · 1 0 0 · ·
0 0 −b · · 0 1 0 · ·
· · · · · · · ·




.

where a = ǫ
2m , b = mθ

ǫ . Its inverse J−1 has the same form as above, but

with different entries a′, b′, namely a′ = 1/a and b′ = −b (the off diagonal

part changes sign and the overall factor is reversed). In matrix notation the

discrete action becomes

S̃ = PTV + PTJP. (8)

The coordinate transformation

P̄ ≡ P +
1

2
J−1V (9)

does not change the path integral measure (DP̄ = DP ), and leads to

S̃ = P̄TJP̄ − 1

4
V TJ−1V. (10)

The first term is now integrated out - and no more dependency upon mo-

menta appears, whereas the second term leads to an exponent of the form

(modulo a factor of i)

−1

4
V TJ−1V =

n∑

k=0

[ǫ
m

2
(v

(k)
1 )2 + ǫ

m

2
(v

(k)
2 )2 − θm2

2
(v

(k)
1 v

(k+1)
2 − v(k)

2 v
(k+1)
1 )].

(11)

Upon taking the continuum limit ǫ→ 0 our main result follows:
∫
Dq1Dq2Dp1Dp2e

iS = N

∫
Dq1Dq2e

i
R
T
0
dtLeff (qi,vi,ai) (12)

with

Leff =
m

2
(q̇21 + q̇22) − θm2

2
(q̇1q̈2 − q̇2q̈1) − V (q1, q2) (13)
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and N is a constant not depending on the q’s. We have reintroduced the

potential term, which passed unscathed through Eqs. (4) – (13). The sec-

ond term in (13) is the correction due to noncommutativity; it depends

on velocities and accelerations, and has an universal character. Its relative

simplicity is striking and somehow unexpected. One is reconforted to find

that the Lagrangian (13) was studied by Lukierski et al.4 and shown to

engender a noncommutative structure. A more detailed discussion follows.

3. Discussion

As already mentioned, see Refs. 8,9, the resulting effective Lagrangian could

not be a standard one, depending only on coordinates and velocities. Given

the complications introduced by noncommutativity, one may have expected

a priori an involved function, perhaps nonlocal or potential-dependent. Re-

markably, the effective Lagrangian turned out to be the usual one, plus an

universal correction depending also on the particle accelerations,

∆L = −1

2
θm2(v1a2 − v2a1), (14)

θ denoting the noncommutative scale, m, vi, ai the mass, velocity, respec-

tively acceleration along the i-axis, of a given particle

Exactly the term (14) was previously studied in detail in Ref. 4, although

its appearance can be traced back to earlier developments (see Refs. 5–7).

Lukierski et al.4 started from considerations of Galilean invariance in (2+1)-

dimensions, and added (14) to a free Lagrangian m
2 ~v

2, to provide a dynam-

ical realization for a free particle Galilean algebra with one extra central

charge. Upon constrained quantization of this higher order action (which

thus circumvents the no-go theorem of Ref. 9) noncommutative dynamics

was shown to emerge for appropriate choices of canonical variables. Two

negative-energy ”internal modes”were proved harmless since they decoupled

from the four relevant degrees of freedom. Interactions were subsequently

introduced in a constrained way in order to keep the ghosts harmless, and

were described by potentials depending on noncommutative coordinates.

We briefly review the derivation in Ref. 4 from our perspective, putting

more emphasis on the Faddeev-Jackiw approach.11 Let us start from

LLSZ =
m

2
(q̇21 + q̇22) −

θm2

2
(q̇1q̈2 − q̇2q̈1) − v(q1, q2, q̇1, q̇2), (15)

with q1, q2 commuting, and a more general potential considered (Lukierski

et al. took initially v = 0). We pass to the Hamiltonian form using the
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Ostrogradski formalism

yi ≡ q̇i, p̃i ≡
∂L

∂q̈i
= kǫijyj, k ≡ θm2

2
, (16)

xi ≡ qi, pi ≡
∂L

∂q̇i
− d

dt

∂L

∂q̈i
= myi − 2kǫij ẏj, (17)

L− piẋi + p̃iẏi = H(x, y, p, p̃) = p̃i
ǫij
k
pj −

mp̃2
i

2k2
. (18)

The action
∫
dtL is already in Faddeev-Jackiw form, except for the con-

straint kyi + ǫij p̃j = 0, which is easily solved

∫
dtL =

∫
(pidxi − p̃i

ǫij
k
dp̃j) −

∫
dt

(
p̃i
ǫij
k
dpj −

mp̃2
i

2k2

)
. (19)

The commutation relations are read out from the (inverse of) the symplectic

form, and read {xi, pj} = δij , {p̃1, p̃2} = k/2.

We must now identify the ’true’ coordinatesXi of the system. A Noether

symmetry analysis immediately unveils that in the v = 0 case4 the Galilean

boosts are given byGi = pit−mxi+2p̃i ≡ pit−Ki. We have Ġi = 0; K̇i = pi.

Since no time appears inXi, only theKi part ofGi matters for the definition

of Xi, Xi ≡ Ki
m = xi − 2p̃i/m. Momenta keep the same form, Pi ≡ pi, and

the extraneous pair of them is required to commute with Xi, Pi, leading to

P̃i ≡ kpi/m+ ǫij p̃j .

The Hamiltonian reads in the new variables Xi, Pi, P̃i, i = 1, 2,

H =
P 2
i

2m
− mP̃ 2

i

2k2
+ v

(
qi = Xi +

2ǫij
m

(
kpj
m

− P̃j), q̇i =
kpi/m− P̃i

k

)
(20)

whereas the commutators are

{X1, X2} =
2k

m2
= θ, {Xi, Pj} = δij , {P̃1, P̃2} = k/2. (21)

The last two equations define a noncommutative theory. The second term

in the Hamiltonian is however negative. To keep it decoupled from the X,P

variables one has to impose that no P̃i appear in v. Thus v must depend

on the linear combination qi− 2kǫij
m q̇i of its variables, which results exactly

in the noncommuting coordinates Xi.

No obvious reciprocal of the canonical analysis of Ref. 4 is known to

us at present; actually a classical canonical approach leads to second (not

third!) order equations of motion.9



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Effective Lagrangian for noncommutative mechanics 247

We provided in Ref. 10 for the first time a univoque path integral

description. Interestingly enough, it reconstructed the constrained higher-

order Lagrangian of Ref. 4 up to coefficients. The correction (14) turned out

to be the only possibility available for noncommutative systems of Heisen-

berg type and Hamiltonians of the form H = 1
2m (p2

1 + p2
2) + V (q1, q2).
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I shall briefly review what I consider as some of the important physics results
in which the use of path or field integrals has played an essential role. This is
by now a long history.1,2

Keywords: Variational principle; Relativistic quantum field theory; Non-
Abelian gauge theories; Non-linear σ-model; Statistical physics; Critical phe-
nomena; Non-perturbative methods.

1. The Mystery of the Classical Variational Principle

1.1. Euler–Lagrange equations

Around 1750, Euler and Lagrange develop the variational calculus. La-

grange (1788) then shows that the equations of motion of Newtonian me-

chanics can be derived from a variational principle. He constructs a math-

ematical quantity, the action integral of a Lagrangian,

A(q) =

∫ t′′

t′
dtL

(
q(t), q̇(t); t

)
,

and recovers the equation of the classical motion by expressing the station-

arity of the action with respect to variations of the trajectory q(t):

δA = 0 ⇒ d

dt

∂L
∂q̇i

=
∂L
∂qi

,

a form called Euler–Lagrange equations.
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The property extends to the Hamiltonian formalism, the action defined

on phase space variables (q, p) then takes the form

A(p, q) =

∫
dt
[
p(t) · q(t) −H

(
p(t),q(t); t

)]
.

1.2. The particle in a magnetic field

The equation of motion of a particle in a magnetic field B takes the form

mq̈ = eB(q) × q̇ where ∇ · B(q) = 0 .

Quite remarkably, it can also be derived from an action principle, provided

an additional mathematical quantity is introduced, the vector potential:

B(q) = ∇× A(q).

The Lagrangian can be written as

L(q, q̇) = 1
2mq̇2 − eA(q) · q̇ .

The vector potential is not considered physical since it is defined only up

to a gradient term. Equivalent vector potentials are related by a gauge

transformation:

A(q) 7→ A(q) + ∇Ω(q).

1.3. Electromagnetism and Maxwell’s equations

Maxwell’s equations (in the vacuum) can be written as

∇ ·E = ρ , ∇× B − ∂E

∂t
= J ,

∇ ·B = 0 , ∇× E +
∂B

∂t
= 0 ,

where E and B are the electric and magnetic fields, resp., ρ and J the

charge and current densities, resp..

In quadri-covariant notation where (i, j = 1, 2, 3)

t ≡ x0 , Fi0 = Ei , Fij =
∑

k

ǫijkBk , J0 = ρ ,

they can be written as

∂µFµν = Jν ⇒ ∂νJν = 0 and ∂µFνρ + ∂ρFµν + ∂νFρµ = 0 .

The second equation implies that the tensor Fµν can be expressed in terms

of a vector potential, or gauge field, Aµ(x) under the form

Fµν = ∂µAν − ∂νAµ .
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The gauge field is defined only up to an Abelian gauge transformation

Aµ(x) 7→ Aµ(x) + ∂µΩ(x).

Then again, remarkably enough, with the introduction of this mathematical

quantity, Maxwell’s equations can be derived from an action principle. The

gauge invariant action,

A =

∫
d4xL(A, Ȧ),

is the integral of the Lagrangian density

L(A, Ȧ) = −1

4
FµνFµν − JµAµ .

1.4. General relativity

In Einstein’s relativistic theory of gravitation (or General Relativity), the

equations of motion can also be derived from an action principle. For ex-

ample, in the absence of matter, in terms of the metric tensor gij(x) they

read

Rij
(
g(x)

)
− 1

2R
(
g(x)

)
gij = 0 ,

where R is the scalar curvature and Rij the Ricci tensor.

These equations can be derived from Einstein–Hilbert’s action,

A(g) =

∫
d4x

(
−g(x)

)1/2
R
(
g(x)

)
,

where g(x) is the determinant of the metric tensor. This property generalizes

to a cosmological term (as seems to be required by recent observations). A

question then arises: why can all classical fundamental dynamical equations

be derived from the stationarity of a local action?

1.5. Path integral in quantum mechanics: the stationary

phase method

At first sight, quantum mechanics in its Hamiltonian formulation does not

provide a direct answer to this question. It should thus be considered as a

first major success of quantum mechanics in the path integral formulation,

quantum field theory in the field integral formulation, that it provides a

very simple explanation to this property. Quantum evolution is given by an

integral of the form

〈q′′|U(t′′, t′) |q′〉 =

∫ q(t′′)=q′′

q(t′)=q′
[dq(t)] eiA(q)/~,
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where A(q) is the classical action. In the classical limit, for ~ → 0, the

path integral can be calculated by the stationary phase method and thus

is dominated by paths that leave the action stationary: the classical paths.

This property generalizes to relativistic quantum field theory.

2. Covariance of the Relativistic Quantum Field Theory

The standard Hamiltonian formulation of relativistic quantum field theory

is not explicitly covariant. By contrast as first noticed by Dirac, the ma-

trix elements of the evolution operator for infinitesimal times involve the

Lagrangian, which is explicitly covariant.

The path integral formulation allows to generalize this property to finite

times. Indeed, quite generally the evolution operator is given by an integral

over phase space variables p and q,

〈q′′ |U(t′′, t′)| q′〉 =

∫
[dp(t)dq(t)] exp

(
i

~
A(p, q)

)
,

where A(p, q) is the classical action in the Hamiltonian formalism:

A(p, q) =

∫
dt
[
p(t)q̇(t) −H

(
p(t), q(t); t

)]
.

When H is a quadratic form in p, like p2/2m+ V (q), the integral over p is

Gaussian and can be performed explicitly. This amounts to replacing p by

the solution of the classical equation and thus generates the Lagrangian.

3. Quantization of Non-Abelian Gauge Theories

Unlike QED, non-Abelian gauge theories, even without matter fields, cannot

be quantized covariantly by using simple heuristic arguments.

3.1. Non-Abelian gauge theories

The gauge field Aµ(x) is associated to the Lie algebra of a group G and

transforms under the adjoint representation. In a gauge transformation with

space-dependent group elements g(x), it transforms like

Aµ(x) 7→ g(x)Aµ(x)g−1(x) + g(x)∂µg
−1(x).

For matter fields, in a globally G invariant theory, gauge invariance is

enforced by replacing derivatives by covariant derivatives: 1 ∂µ 7→ Dµ =

1 ∂µ + Aµ.
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The curvature associated to the gauge field,

Fµν(x) = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ,Aν ] ,

is a tensor for gauge transformations:

Fµν(x) 7→ g(x)Fµν(x)g
−1(x).

The local gauge action

A(A) =
1

4g2

∫
d4x trFµν(x)F

µν(x),

thus is gauge-invariant.

However, due to gauge invariance, not all components of the gauge field

are dynamical and a simple canonical quantization is impossible. Ideas that

worked for QED, like the direct elimination of the auxiliary components in

the Coulomb gauge fail. All concepts required to quantize covariantly non-

Abelian gauge theories, like the so-called Faddeev–Popov trick and ghosts ,

are based on field integrals. BRS symmetry has emerged from this formal-

ism.

3.2. Faddeev–Popov trick

The goal is to factorize the integration over gauge transformations. One

starts from a non-gauge invariant equation for the space-dependent group

element g(x), for example,

F (Ag
µ) ≡ ∂µA

g
µ(x) − ν(x) = 0 ,

where Ag
µ is the gauge transform of Aµ by g and ν(x) an arbitrary field.

The variation of the equation with respect to g: δg(x) = ω(x)g(x), ω(x)

belonging to the Lie algebra, has the form

δF (Ag
µ) = [M(Ag

µ)ω](x), M = ∂µDµ .

One then introduces spinless fermions C̄ and C, the Faddeev–Popov

‘ghosts’, and an auxiliary boson field λ all transforming under the adjoint

representation.

One verifies the identity

1 =

∫
[dg dC̄ dC dλ] exp

[
−Sgauge(A

g
µ, C̄,C, λ, ν)

]

with

Sgauge =

∫
ddx tr

{
λ(x) [F (Aµ)(x) − ν(x)] + C(x)M(A)C̄(x)

}
.
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This requires the introduction of integration over Grassmann fields.

Introducing the identity in the formal representation of the partition

function, one obtains (in now Euclidean notation)

Z =

∫
[dg dC̄ dC dλdAµ]

× exp

[
1

4g2

∫
ddx trF2

µν(x) − Sgauge(A
g
µ, C̄,C, λ, ν)

]
.

After the change of variables Ag
µ 7→ Aµ, the integration over g(x) factorizes

and yields an infinite multiplicative constant.

After a few additional simple manipulations and a Gaussian average

over ν(x), one obtains the quantized partition function

Z =

∫ [
dAµ dC̄ dC dλ

]
exp

[
−S(Aµ, C̄,C, λ)

]
,

where S is the local action:

S(Aµ, C̄,C, λ)

=

∫
ddx tr

[
− 1

4e2
F2
µν +

ξe2

2
λ2(x) + λ(x)∂µAµ(x) + C(x)∂µDµC̄(x)

]
.

It was later noticed that this quantized action has a fermion-like symmetry,

the BRS symmetry. Its generalization is supersymmetry.

4. Quantization of the Non-Linear σ-Model

The non-linear σ-model is a model with a global O(N) symmetry acting on

an N -component scalar field φ(x) that lives on the sphere SN−1:

φ2(x) = 1 .

In terms of φ, the action takes the form of a free field action,

S(φ) =
1

2g

∫
ddx [∂µφ(x)]

2
,

but the constraint generates interactions. Within an expansion in powers

of the coupling g, the O(N) symmetry is realized in the phase of sponta-

neous symmetry breaking and the dynamical fields correspond to Goldstone

(massless) modes. First leading order calculations seemed to indicate that

the O(N) symmetry was explicitly broken by perturbative corrections, the

fields becoming massive. Within the canonical formulation, a complicated

calculation showed that the breaking term actually cancelled.
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By contrast, the field integral representation gave directly both the cor-

rect quantized form to all orders and the geometric explanation of the prob-

lem as due to omitting the O(N) invariant measure (Meetz and Honerkamp)

Z =

∫
[dφ]

∏

x

δ(φ2(x) − 1) exp [−S(φ)] .

Moreover, to give a meaning to the model beyond perturbation theory, one

can introduce a lattice regularization and this yields an O(N) lattice spin

model. In this way, one can establish a connection between the non-linear

σ-model and the (φ2)2 statistical field theory.

5. Critical Phenomena

Following Wilson, it was realized that universal critical properties of a large

class of statistical models could be described by an Euclidean quantum or

statistical field theory. The main ingredient is the appearance of a divergent

correlation length that allows passing to the continuum limit.

For example, the critical properties of the Ising model

Z =
∑

Si=±1

exp

[
J
∑

n.n.

SiSj

]

are described by the φ4 field theory,

Z =

∫
[dφ] exp [−S(φ)] with S(φ) =

∫
ddx

[
1
2 (∂µφ)

2
+ 1

2φ
2 +

1

4!
gφ4

]
.

This generalizes to spin models with O(N) symmetry. In addition path

integral techniques allow proving directly that the N = 0 limit describes

the statistical properties of polymers (or self-avoiding walk).

6. Classical and Quantum Statistical Physics

For a scalar field φ in d space dimensions, the quantum partition function

reads

Z =

∫
[dφ] exp

[
−
∫ β

0

dt

∫
ddxS(φ)

]

with (t is the Euclidean or imaginary time)

φ(0, x) = φ(β, x).

This field integral representation immediately shows that the same partition

function has also the interpretation of a classical partition function in (d+1)
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space dimensions with periodic boundary conditions in the direction of finite

size β.

This remark plays an important role in the theory of continuous phase

transitions, relating classical transitions in (d+1) dimensions and quantum

transitions at zero temperature in d dimensions.

6.1. Finite temperature QFT, finite-size effects and

dimensional reduction

The relation between classical and quantum statistical physics maps finite

temperature quantum effects onto finite-size effects in the classical theory.

This is most useful from the renormalization group viewpoint. Also, in

this framework, high temperature is associated to dimensional reduction.

Technically, one expands the periodic field over Fourier (Matsubara) modes

φ(t, x) =
∑

ν∈Z

ei2πνt/β φν(x),

integrates perturbatively over non-zero modes, generating an effective ac-

tion for the zero mode,

Z =

∫
[dφ0] e

−Seff (φ) with e−Seff.(φ) =

∫ ∏

ν 6=0

[dφν ] e
−S(φ) .

As an example, the technique has been applied to the dilute (thus weakly

interacting) Bose gas. The initial field integral over complex fields ψ∗, ψ
periodic in Euclidean time reads

Z =

∫
[dψ(t, x)dψ∗(t, x)] e−S(ψ∗,ψ)/~ .

When one is interested only in long wavelength phenomena, the effective

Euclidean action of the system may be written as (µ is the chemical poten-

tial)

S(ψ∗, ψ) = −
∫ β

0

dt

∫
d3x

[
ψ∗(t, x)

(
~
∂

∂t
+

~2

2m
∇2
x + µ

)
ψ(t, x)

+
2π~2a

m

(
ψ∗(t, x)ψ(t, x)

)2
]
.

The reduced partition function, at leading order (which means setting φν =

0 for ν 6= 0) , takes the form of the field integral

Z =

∫
[dφ(x)] exp [−S(φ)]
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with

S(φ) =

∫
ddx

{
1

2
[∂µφ(x)]

2
+

1

2
rφ2(x) +

u

4!

[
φ2(x)

]2
}
,

where (ψ, ψ∗) 7→ (φ1, φ2), r = −2mTµ and, for d = 3, u = 96π2a/λ2.

The Euclidean action reduces to the ordinaryO(2) symmetric (φ2)2 field

theory, which also describes the universal critical properties of the superfluid

Helium transition.

6.2. Numerical simulations in quantum field theory

The relation between classical and quantum partition function has led to the

application of statistical methods to the non-perturbative study of quantum

field theories, most notably QCD. The idea is to replace the continuum

field integral by a lattice regularized form. It leads to a non-perturbative

definition of field theory. Moreover, non-perturbative numerical techniques

then become available, like strong coupling expansions or Monte Carlo type

simulations. For pure QCD, they are based on Wilson’s plaquette partition

function (i, j, k, l are lattice sites):

Z =

∫ ∏

links (i,j)

dUij e−βpS(U), S(U) = −
∑

plaquettes

trUijUjkUklUli ,

where Uij is a unitary matrix, group element associated to the link (i, j)

and S the plaquette action.

7. Non-Perturbative Methods

7.1. Large-N techniques

In quantum field theories with O(N) or U(N) symmetries and fields in the

vector representation, physical quantities can be calculated in the large-

N limit, leading to non-perturbative results. At leading order, the same

results can be obtained by summing Feynman diagrams, but field integral

techniques are much simpler and can be extended to arbitrary orders in

1/N . Applications include the study of the (φ2)2 theory (and the calculation

of critical exponents), the Gross–Neveu model, . . . .

The basic idea is to introduce into the φ-field integral the identity

1 =

∫
[dλdρ] exp

{
i

∫
ddxλ(x)

[
ρ(x) − φ2(x)

]}
.

For a recent review see Ref. 3.
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7.2. Instantons, vacuum instability and large-order

behaviour in quantum field theory

In simple quantum mechanics, barrier penetration effects can be evaluated

in the semi-classical limit by WKB methods. Alternatively, they can be

determined in the path-integral framework by looking for finite action solu-

tions of Euclidean (imaginary time) equations of motion (instantons). How-

ever, the latter method generalizes simply to quantum field theory, unlike

methods based on the Schrödinger equation. Important physics phenomena,

like the periodic structure of QCD vacuum and the strong CP problem, the

solution of the U(1) problem are related to instantons.

Also, instantons lead to a determination of the behaviour of the pertur-

bative expansion at large orders. An important application is the summation

of the perturbative expansion, which has provided precise and reliable de-

termination of critical exponents4 as well as of the Ising scaling equation of

state.

7.3. Instantons and the problem of non-Borel summability

In the case of potentials with degenerate classical minima, instanton calculus

applied to the large order behaviour indicates that the perturbative expan-

sion is non-Borel summable, that is, does not determine unique functions.

In simple quantum mechanics with analytic potentials, the problem can be

studied systematically and it can be shown that all multi-instanton config-

urations must be taken into account and a generalized summation procedure

introduced.5,6
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We study the finite-size critical behavior of the anisotropic ϕ4 lattice model
with periodic boundary conditions in a d-dimensional hypercubic geometry
above, at, and below Tc. Our perturbation approach at fixed d = 3 yields ex-
cellent agreement with the Monte Carlo (MC) data for the finite-size amplitude
of the free energy of the three-dimensional Ising model at Tc by Mon [Phys.
Rev. Lett. 54, 2671 (1985)]. Below Tc a minimum of the scaling function of the
excess free energy is found. We predict a measurable dependence of this mini-
mum on the anisotropy parameters. Our theory agrees quantitatively with the
non-monotonic dependence of the Binder cumulant on the ferromagnetic next-
nearest neighbor (NNN) coupling of the two-dimensional Ising model found
by MC simulations of Selke and Shchur [J. Phys. A 38, L739 (2005)]. Our
theory also predicts a non-monotonic dependence for small values of the anti-
ferromagnetic NNN coupling and the existence of a Lifshitz point at a larger
value of this coupling. The tails of the large-L behavior at T 6= Tc violate both
finite-size scaling and universality even for isotropic systems as they depend
on the bare four-point coupling of the ϕ4 theory, on the cutoff procedure, and
on subleading long-range interactions.

Keywords: Anisotropy; Excess free energy; Binder cumulant; Finite-size scaling;
Universality; Monte Carlo simulation; Ising model.

1. Introduction

A major achievement of the renormalization-group (RG) theory is the proof

that the bulk critical behavior of thermodynamic quantities has the property

of scaling and two-scale factor universality.1 This is summarized by the

asymptotic (small reduced temperature t = (T − Tc)/Tc, small ordering

field h) scaling form of the singular part of the bulk free energy density

fs,b(t, h) = A1|t|dν W±(A2h|t|−βδ) (1)

with universal critical exponents ν, β, δ and the universal scaling function

W±(z) above (+) and below (−) Tc. Equation (1) is valid for both isotropic
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and anisotropic systems below d = 4 dimensions. For confined systems with

a characteristic length L, two-scale factor universality is no longer valid

if the system is spatially anisotropic as described by a d × d anisotropy

matrix A.2,3 This is summarized by the asymptotic (large L, small t, small

h) finite-size scaling form4 of the singular part of the free energy density

fs(t, h, L) = L−d F(C′
1tL

′1/ν , C′
2h

′L′βδ/ν ; Ā) , (2)

with the finite-size scaling function F where L′ = L(detA)−1/(2d), h′ =

h(detA)1/4, and with the reduced anisotropy matrix Ā = A/(detA)1/d,

detA > 0. In the isotropic case, A = c01 and Ā = 1. In addition to the two

nonuniversal amplitudes C′
1, C

′
2, the matrix Ā contains up to d(d+1)/2−1

nonuniversal anisotropy parameters. As a consequence of (2), the critical

amplitude F(0, 0; Ā), the critical Binder cumulant1,5

U(Ā) =
1

3

[ ∂4F(0, y; Ā)/∂y4

(∂2F(0, y; Ā)/∂y2)2

]

y=0
, (3)

and the critical amplitude of the thermodynamic Casimir force are nonuni-

versal as well. In this contribution we report very recent results4 on

F(x̃, 0; Ā) and U(Ā) based on RG finite-size perturbation theory at fixed

d = 3 . We shall also mention briefly nonuniversal effects on the bulk order-

parameter correlation function and nonuniversal finite-size effects due to

subleading long-range (van der Waals type) interactions in isotropic sys-

tems. This diversity of asymptotic critical behavior4 suggests to distinguish

subclasses of interactions within a universality class (see Fig. 1).

2. Anisotropic ϕ4 Lattice Model

We consider the O(n) symmetric ϕ4 lattice Hamiltonian

H = ãd

[
N∑

i=1

(r0
2
ϕ2
i + u0(ϕ

2
i )

2 − hϕi

)
+

N∑

i,j=1

Ki,j

2
(ϕi − ϕj)

2

]
(4)

on a simple-cubic lattice with lattice constant ã in a hypercubic geometry

with volume V = Ld and with periodic boundary conditions. For simplicity

we assume n = 1. A variety of anisotropies may arise through the couplings

Ki,j . They manifest themselves on macroscopic length scales via the d× d

anisotropy matrix A = (Aαβ) as given by the second moments3

Aαβ = Aβα = N−1
N∑

i,j=1

(xiα − xjα)(xiβ − xjβ)Ki,j , (5)

where xiα are the components of the lattice points xi.
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��

anisotropic

finite range 

subleading 

isotropic

finite range 

long range

Fig. 1. Schematic representation of subclasses of systems with different types of in-
teractions within a universality class. The subclasses have the same critical exponents
and the same thermodynamic bulk scaling functions but, for given geometry and bound-
ary conditions, different finite-size scaling functions, different bulk correlation functions,
different bulk amplitude relations,3 and a different number of nonuniversal parameters
entering the asymptotic critical behavior.

As an example we consider isotropic NN couplings K > 0 and an

anisotropic NNN coupling J 6= 0 in the x − y planes, and an additional

NN coupling K0 > 0 in the z direction (see Fig. 2 (b)). The corresponding

anisotropy matrix is

A = 2ã2




K + J J 0

J K + J 0

0 0 K0



 . (6)

The matrix A enters the long-wavelength form of

δK̂(k) = 2[K̂(k) − K̂(0)] =

d∑

α,β=1

Aαβ kαkβ + O(k4) (7)

where K̂(k) is the Fourier transform of the interaction Ki,j

K̂(k) = N−1
∑

i,j

e−ik·(xi−xj)K(xi − xj) . (8)

In perturbation theory, r0 + δK̂(k) plays the role of an inverse propagator.

A characteristic feature of spatial anisotropy with non-cubic symmetry

is the fact that there exists no unique bulk (second-moment) correlation

length ξ± above and below Tc but rather d different correlation lengths ξ
(α)
±

in the directions α = 1, ..., d of the d principal axes. Such systems still have

a single correlation-length exponent ν provided that detA > 0.
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(a)

(b)

x K

JK

y

x

y

z

K
K

J

K0

Fig. 2. Lattice points of (a) a square lattice, (b) a simple-cubic lattice, with isotropic
NN couplings Kx = Ky = K (solid lines), with an anisotropic NNN coupling J in the
x− y planes (dashed lines), and a NN coupling K0 in the z-direction (dotted lines). The
corresponding anisotropic matrix A is given by Eq. (6).

3. Perturbation Approach

There exist three different types of finite-size critical behavior of fs: (a)

an exponential L dependence for large L/ξ
(α)
+ ≫ 1 at fixed tempera-

ture T > Tc, (b) the power-law behavior ∼ L−d for large L at fixed

L/ξ
(α)
± , 0 ≤ L/ξ

(α)
± . O(1), above, at and below Tc, (c) an exponential

L dependence for large L/ξ
(α)
− ≫ 1 at fixed temperature T < Tc. For the

cases (a) and (c), ordinary perturbation theory with respect to u0 is suffi-

cient. For the case (b), a separation of the lowest mode and a perturbation

treatment of the higher modes is necessary.7–11 The case (b) corresponds

to the central finite-size region above the dashed lines in Fig. 3. The cases

(a) and (c) correspond to the regions below the dashed line. The latter

regions are further divided4 into a scaling region and a non-scaling region.

The existence of the non-scaling region (shaded region in Fig. 3) has the

following consequence. Unlike the bulk scaling function W±(z), (1), that

is valid in the entire range −∞ ≤ z ≤ ∞ of the scaling argument z, the

finite-size scaling functions such as F(x, y; Ā) are valid only in a limited
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approach

perturbation

nonscalingnonscaling

approach

perturbation

ordinaryordinary

perturbation  approach  

lowest − mode  separation  

s c a l i n g

nonuniversal 

0(−t)ν tν

1/L

Āα,β

Fig. 3. Asymptotic part of the L−1 − |t|ν plane at h = 0 for the anisotropic ϕ4 theory
in a cubic geometry with periodic boundary conditions. In the central finite-size region
(above the dashed lines), the lowest mode must be separated whereas outside this region
ordinary perturbation theory is applicable. Above the shaded region, finite-size scaling is
valid but with scaling functions that depend on the anisotropy parameters Āαβ . In the
large - L regime at t 6= 0 (shaded region) finite-size scaling and universality are violated
for both short-range and subleading long-range interactions and for both isotropic and
anisotropic systems. A similar plot is valid for the L−1 − h plane at T = Tc.

range of x and y, above the shaded region in Fig. 3. In the shaded region,

nonuniversal nonscaling effects become nonnegligible and even dominant for

sufficiently large |x| and |y| for both short-range and subleading long-range

interactions. In this region not only the correlation lengths are relevant but

also nonuniversal length scales such as the lattice spacing ã,14 the inverse

cutoff Λ−1 of ϕ4 field theory,15 the length scale u
−1/ε
0 set by the four-point

coupling,4 and the van-der-Waals interaction-length b1/(σ−2) (see Section

4.3 below).16,17 Furthermore the anisotropy parameters Āαβ are relevant

in all regions. This diversity can be traced back4,14 to a similar diversity

of the large-distance (r ≫ ã) behavior of bulk correlation functions in the

r−1 − |t|ν plane corresponding to the L−1 − |t|ν plane of Fig. 3.

It is appropriate to first transform H to a Hamiltonian H ′ such that

the O(kαkβ) terms of δK̂(k) attain an isotropic form. This transformation

consists of a rotation and rescaling of lengths in the direction of the prin-

cipal axes.3 This rescaling is equivalent to a shear transformation which

distorts the geometry, the lattice structure, and the boundary conditions

in a nonuniversal way. The advantage of the transformed system is that its

bulk renormalizations are well known from the standard isotropic ϕ4 field

theory. Thus, in order to derive the scaling function F , it is most appro-
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Monte Carlo

φ4 
 theory
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Fig. 4. Finite-size amplitude F(0, 0; 1) of the free energy density of isotropic systems
in a cubic geometry at Tc in three dimensions. Theoretical prediction4 at d = 3 (open
circle), and at ε = 1 (star) of the ε expansion. MC data for the d = 3 Ising model on sc
and bcc lattices.12,13

priate to develop perturbation theory within the transformed system with

the Hamiltonian H ′ for which a unique second-moment correlation length

ξ′± is well defined.

4. Results

4.1. Isotropic case

For the purpose of calculating the finite-size free energy within the minimal

renormalization scheme in three dimensions6 we have further improved4 the

earlier finite-size perturbation approach7–11 for the case of a one-component

order parameter.

In order to test the reliability of our finite-size theory we first consider

the isotropic case K0 = K, J = 0, Ā = 1 where accurate MC data by

Mon12,13 for the d = 3 Ising model are available. Our theoretical result for

the finite-size amplitude at h = 0 and T = Tc

F(0, 0;1)d=3 = − 0.6315 (9)

in excellent agreement with the MC results (see Fig. 4). The ε = 4 − d

expansion result −0.7520 is in less good agreement.

We have also calculated the scaling function Fex(x̃, 0;1) of the excess

free energy density fexs (t, 0, L) = fs(t, 0, L) − fs(t, 0,∞) for the isotropic

case. The scaling argument is x̃ = t(L/ξ0+)1/ν where ξ0+ is the asymptotic

amplitude of the second-moment bulk correlation length above Tc. The
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asymptotic exponential
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Fig. 5. Theoretical prediction of the scaling function Fex(x̃, 0;1) of the excess free
energy density of isotropic systems for d = 3 (thick solid line). MC result (full circle) for
the Ising model on a sc lattice at t = 0.13 No scaling function exists in the large - |x̃|
regions above and below Tc which are sensitive to all nonuniversal details of the model.

result is shown in Fig. 5 (thick solid line). The thin lines are the result of

ordinary one-loop perturbation theory that breaks down at Tc.

4.2. Anisotropic case

Highly precise numerical information on the nonuniversal anisotropy effect

on the critical Binder cumulant U of the anisotropic two-dimensional Ising

model, see Fig.2 (a), has been provided recently by MC simulations of Selke

and Shchur.18 In order to mimic the two-dimensional anisotropy within our

three-dimensional ϕ4 lattice model we choose K0 = K + J . To exhibit the

deviations from isotropy and for the purpose of a comparison with the MC

data18 for the anisotropic two-dimensional Ising model we have plotted in

Fig. 6 our theoretical result for the difference U(Ā) − U(1) as a function

of J/K together with the corresponding difference of the MC data.18,19 We

see that for positive J/K there is remarkable agreement.

The non-monotonicity for small negative values of J/K and the max-

imum at J/K = −0.316 predicted by our theory was not detected in the

preliminary MC simulations by Selke and Shchur18 who found a monotonic

decrease of U when taking a weak antiferromagnetic coupling J .20 We also

predict the existence of a Lifshitz point near J/K . −1/2 with a wave vec-

tor instability in the (1, 1, 0) direction. Very recently MC simulations have



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

268 V. Dohm

0 1 2 3 4
J / K

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

d=3    φ4
 theory

Kamieniarz  and Bloete  1993
Selke and Shchur  2005

Fig. 6. Difference U(Ā) − U(1) of the Binder cumulant plotted as a function of J/K
together with the corresponding difference of the MC data18,19 for the two-dimensional
Ising model of Fig. 2(a).
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x-y anisotropic s=0.45, -0.45
x-y anisotropic s=0.80, -0.80
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Mon 1989

Fig. 7. Scaling function Fex(x̃, 0; Ā) of the excess free energy density of the anisotropic
model with the anisotropy matrix (6) with K0 = K + J in a cubic geometry in three
dimensions as a function of the scaling variable x̃ = t(L′/ξ′0+)1/ν for several values of the

anisotropy parameter s = (1 +K/J)−1 with s = 0.45,−0.45 (solid line), s = 0.80,−0.80
(dot-dashed line), s = 0 (dotted line, isotropic case). MC result (full circle) for the
three-dimensional Ising model on a sc lattice.13

been started by Selke21 in order to test these predictions in the regime of

J/K < 0.
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We have also calculated the nonuniversal anisotropy effect on the finite-

size scaling function of Fex for the anisotropy matrix (6) with K0 = K + J

near the minimum below Tc as shown in Fig. 7 for several values of

s = (1 +K/J)−1. (10)

Our theory predicts the finite-size effects to depend on s2 rather than s.

It would be interesting to test this symmetry property by MC simulations.

As shown in Fig. 7, the anisotropy effect for s = ±0.80 corresponding to

J/K = 4 and J/K = −4/9 is far outside the error bars of the MC data

by Mon13 for the isotropic case and may be be detectable in future MC

simulations.

4.3. Subleading long-range interactions

Finally we discuss the case of an isotropic subleading long-range interaction

of the van der Waals type as defined by the long-wavelength form16,17,22,23

δK̂(k) = k2 − b |k|σ + O(k4) (11)

with 2 < σ < 4, b > 0. It was pointed out by Dantchev and Rudnick23 that

it affects the finite-size susceptibility in the regime L/ξ+ ≫ 1, similar to

the effect caused by a sharp cutoff.15 The effect of the interaction (11) on

the excess free energy fexs and on the critical Casimir force in the case of

film geometry was first studied in Ref. 16,17. The asymptotic structure for

L/ξ+ ≫ 1 in one-loop order above Tc at h = 0 is16,17

fexs (t, 0, L) = L−d
[
Fex(L/ξ+) + bL2−σΨ(L/ξ+)

]
. (12)

We have verified that, for n = 1, the same structure is valid also for cubic

geometry with periodic boundary conditions above and below Tc where the

function Ψcube has an algebraic large-L behavior ∼ (L/ξ±)−2. The latter is

dominant compared to the exponentially decaying scaling part Fex,± in the

shaded region of Fig. 3. This implies that, in this region, two nonuniversal

length scales b1/(σ−2) and ξ± at h = 0 govern the leading singular part of

the excess free energy density

fex,±s (t, 0, L) ∼ L−d
[b1/(σ−2)

L

]σ−2 [ξ±
L

]2
, (13)

even arbitrarily close to criticality. In addition, there is a nonuniversal u0

dependent exponential tail4 of Fex,±. In (13), both the amplitude ∼ b

and the power −d − σ of the L dependence are nonuniversal. Thus, for

isotropic systems with subleading long-range interactions, there exists no
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universal finite-size scaling form with only one reference length scale in

the region L/ξ± ≫ 1 of the L−1 − |t|ν plane although such systems are

members of the same universality class as, e.g., Ising models with isotropic

short-range interactions. The structure of (12) and (13) was confirmed and

further studied by several authors.24–26
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20. We have been informed by W. Selke that the preliminary simulations18 for

J < 0 were performed at J/K = −0.5 and −0.75.
21. W. Selke, private communication.
22. B. Widom, J. Chem. Phys. 41, 74 (1964); R. F. Kayser and H. J. Raveché,
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An overview is given of recent results concerning systems described by a set of
at least two slow dynamical variables. The simplest model contains a relaxing
order parameter coupled to the energy density (model C). The effects induced
by randomness in such a model are discussed. At the superconducting transition
the gauge dependence of the critical dynamics is considered for a model of two
coupled relaxation equations.
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1. Introduction

Near a phase transition one observes the phenomenon of critical slowing

down for the order parameter (OP) dynamics. The time scale for reaching

the equilibrium state increases when the critical point is approached. Thus

the dynamics separates into slow and fast dynamic variables. A correct de-

scription of the critical dynamics has to take into account all slow variables

besides the OP. These are the densities of conserved quantities (CD). The

dynamic universality classes therefore depend on the structure of the sys-

tem of these variables, namely on the number of CDs and the type of the

coupling to the OP. These dynamic unversality classes have been reviewed

by Hohenberg and Halperin.1

In principle each of the dynamics variables, which have to be taken into

account has its own time scale but near the critical point in many cases it

was observed that the time scales of all variables behave in the same way and

this was the basis for the dynamic scaling hypothesis which characterized

the critical dynamics by one dynamical critical exponent z defined by the

dispersion ωc(k) = Akz of the OP characteristic frequency at the critical

temperature Tc, where k is the wave vector modulus and A a non universal
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amplitude setting a time scale. Later on it was recognized that there are

cases where the critical dynamics cannot be described by only one critical

time scale but the time scales of the OP and the CDs might be different.

We shall review here some examples where this is the case.

2. Time Scale Ratio in a Simple Dynamic Model

The simplest example where time scale ratios (TSRs) can be studied is

a system whose critical dynamics is defined by a nonconserved OP ~φ0,

described by a relaxation equation, coupled to one CD m0, described by a

diffusive equation.2 The coupling of the OP and the CD is accomplished

by a term in the static functional H , which enters the restoring force. This

model was named1 model C and reads explicitly

∂~φ0

∂t
= −

o

Γ
δH

δ~φ0

+ ~θφ
∂m0

∂t
=

o

λ∇2 δH

δm0
+ θm . (1)

The stochastic forces fulfill Einstein relations which assure an approach of

an equilibrium described by the static functional

H =

∫
ddx

{
1

2

o
τ (~φ0 · ~φ0) +

1

2

n∑

i=1

~∇φi0 · ~∇φi0 +

o
ũ

4!
(~φ0 · ~φ0)

2

+
1

2
amm

2
0 +

1

2

o
γ m0(~φ0 · ~φ0)−

o

hm m0

}
. (2)

The usual φ4 theory has been extended by a Gaussian part for the CD

and the asymmetric coupling
o
γ between the CD and the OP squared. The

important dynamical parameter is the TSR
o
w=

o

Γ /
o

λ
We applied the field-theoretic formalism3 to this model and calculated

the fixed point (FP) value of the TSR as function of space dimension d

(ǫ = 4 − d) and number of components n of the OP (the so called ’phase

diagram’) in two loop order.5,6 It turns out that the FP value of the TSR

might be (i) nonzero and finite, (ii) zero or (iii) infinite. Case (i) is the so

called strong scaling FP, case (ii) the weak scaling FP and (iii) a FP with

unclear scaling properties.2,4 In the region of the (ǫ, n)-space, where the

specific heat does not diverge, the FP value of the asymmetric coupling
o
γ

is zero and the two equations decouple. Then the system belongs to the

universality class of a simple relaxational model (model A). The CD then

may be characterized by a dynamic exponent zCD = 2. On the basis of

the correct two loop field theoretic functions5,6 one concludes that the FP
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Fig. 1. (a) ’Phase diagram of model C’. (b) Time scale ratio of model C (ρ⋆ = w⋆/(1+
w⋆)).

of case (iii) does not exist (see Fig. 1 (a)). An infinite FP value of the

TSR w (quantities without a super or subscript zero are renormalized) is

suppressed by a logarithmic term lnw in the ζ-function for the relaxation

rate Γ, however such a term leads to a nonanalytic dependence of the TSR

in the limit where ǫ goes to zero (d→ 4).

3. Randomness and Time Scale Ratio

One may ask how defects and randomness influence the dynamic critical

behavior of model C. Randomness can be induced by several effects, e.g.

(i) bond disorder, (ii) site disorder, or (iii) anisoropic axis disorder. This is

shown in the following spin-Hamiltonian

H = −1

2

∑

R,R′

J(|R − R′|)cRcR′ ~SR
~SR′ −D0

∑

R

(x̂R
~SR)2,

where the disorder is defined in case (i) by a distribution of the spin

couplings J like p(J) = exp
(
−J2/∆

)
, in case (ii) by probability p(c)

of occupation c = 1 or vacancy c = 0, and in case (iii) by a non-

isotropic distribution of the directions of the anisotropy axis x̂ p(x̂) =
1

2m

∑m
i=1

[
δ(m)(x̂− k̂i) + δ(m)(x̂+ k̂i)

]
.

From static considerations formulated in the so called Harris criterion7

one may argue in the following: If the pure system’s specific heat is diverging

then the critical exponents may be changed by disorder (this is the case for

the examples given). The disordered system is then characterized by a non-

diverging specific heat. Otherwise disorder remains in the universality class

of the pure system. If the specific heat is not diverging the coupling γ of a
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Fig. 2. Effective dynamical critical exponents in model C for a Heisenberg magnet with
random anisotropy (from Ref. 11) (a) for the OP (b) for the CD.

CD to the OP goes to zero and model A applies (see Fig. 1(a) left to the

dashed line). Therefore the coupling of a conserved density is in any case

irrelevant. However this is only an argument which holds in the asymptotics.

From statics one knows8,9 that the static critical behavior observed might

be an effective one, therefore one may consider also effective dynamical

critical behavior.10,11 Therefore effective dynamical critical exponents are

defined by the field-theoretic function ζΓ of the kinetic coefficient Γ of the

OP and ζm of the CD m

zeff = 2 + ζΓ({ui(ℓ)}, γ(ℓ), w(ℓ)), zeff
m = 2 + ζm({ui(ℓ)}, γ2(ℓ)) . (3)

They depend on the solution of the flow equations of the static model pa-

rameters ui(ℓ), γ(ℓ), and the TSR w(ℓ). It turns out that including a CD

leads to a new small dynamic transient exponent.12 Thus nonasymptotic ef-

fects might be observable. In such a case the effective scaling of the OP and

CD are in general different as shown in Fig. 2. Quite recently the asymptotic

critical dynamics of model A for the Ising model has been studied by com-

puter simulations13 and it has been demonstrated that, as one expected,

the dynamics of case (i) and (ii) belong to the same universality class.

4. Gauge Dependence of Time Scale Ratio

The static critical behavior of a superconductor is described by a complex

OP ~ψ (generalized to n/2 components) and the gauge field ~A coupled to

the OP by the minimal coupling. The corresponding static functional reads

H =

∫
ddx
{1

2
r̊|~ψ0|2 +

1

2

n/2∑

i=1

|(∇ − i̊eA0)ψ0,i|2
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+
ů

4!
(|~ψ0|2)2 +

1

2
(∇ ×A0)

2 +
1

2ς̊
(∇ ·A0)

}
.

This coupling is due to the charge of the electrons building the conden-

sating Cooper pairs. Renormalization group theory calculated a ’charged’

FP describing the critical behavior of superconductors of the second kind.

Experimental verification has been found by measuring the behavior of the

penetration depth.14 Moreover, RG theory predicts that nonmeasurable

quantities may show a dependence on the gauge chosen in the calculation,

whereas measurable quantities have to be gauge independent. Thus some

of the static critical exponents like γ (OP susceptibility) or η (decay at Tc
of the OP correlations) are gauge dependent whereas exponents like ν or

α are gauge independent. The usual scaling laws are completely consistent

with this behavior.15

Recently a dynamical model has been suggested for the critical dy-

namics of superconductors of the second kind16 consisting of two coupled

relaxational equations for the OP and the vector potential as follows

∂ψ0,i

∂t
= −2Γ̊ψ

δH
δψ+

0,i

+ θi ,
∂A0,α

∂t
= −Γ̊A

δH
δA0,α

+ θα.

The TSR is now defined as w = Γ/ΓA. At the weak scaling FP (here

w⋆ = ∞) different time scales for the characteristic frequencies are obtained

ωψ ∼ kzψgψ(kξ) ωA ∼ kzAgA(kξ) . (4)

Here zA is found to be gauge independent as it must be since it can

be measured via the frequency dependent conductivity17 σ(k = 0, ω) =

ξzA−2+ηAG(ωξzA) ∼ ξzA+2−d in the limit ξ → ∞ with the exact result for

the static exponent ηA = 4 − d and a finite value of the scaling function

G(∞). But this FP is dynamically unstable. At the stable strong scaling

FP (w⋆ finite and gauge dependent) z = zψ = zA = 2+ 18
n ε− ς 6

n
ε

1+w⋆ thus

zA turns out to be gauge dependent.18 In consequence the strong scaling

FP of this model cannot describe the critical dynamics. Either the model

does not apply or the stability of the FPs is changed in higher loop order.

5. Outlook

Two other longstanding problems (i) the dynamical critical behavior at the

tricritical point in 3He-4He mixtures21 and (ii) the dynamical critical scat-

tering above the Neel temperature TN of the three-dimensional Heisenberg

antiferromagnet22 are related to the FP value of the TSR w. In both cases

the critical dynamics is described by a model more complicated than model
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C, containing mode coupling terms in the dynamic equations. In (i) the

FP value of one of the TSRs turned out to be infinite in a one loop cal-

culation.19 In two loop order this FP is absent and the mass diffusion is

diverging contrary to measurement.20,21 In the second case the FP value

of the TSR between the kinetic coefficients of the staggered magnetization

and the magnetization changes in two loop order22 from roughly w⋆ = 3 to

w⋆ = 1, which changes the dynamic shape function. This has to be taken

into account in the comparison with experiment23 since it changes the size

of the additional elastic component observed in the critical scattering.24
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The phase-ordering kinetics of the ferromagnetic two-dimensional Ising model
with uniform disorder is characterised by a dynamical exponent z = 2 + ε/T
which depends continuously on the disorder and on temperature. This allows
for a detailed test of local scale-invariance for several distinct values of z.

Keywords: Ageing phenomena; Local scaling; Disordered Ising model.

A ferromagnetic system quenched from an initially disordered state into

its coexistence phase with at least two equivalent equilibrium states un-

dergoes phase-ordering kinetics, driven by the surface tension between the

ordered domains whose linear size grows as L = L(t) ∼ t1/z where z is the

dynamical exponent. For a non-conserved order-parameter it is well-known

that z = 2.1 Phase-ordering is one of the instances where physical ageing oc-

curs, which may be defined by the properties: (i) slow (i.e. non-exponential)

dynamics, (ii) breaking of time-translation invariance, and (iii) dynamical

scaling. In the ageing regime t, s ≫ tmicro and t − s ≫ tmicro one expects

the scaling behaviour of the two-time correlation and response functions

C(t, s; r):=〈φ(t, r)φ(s,0)〉=s−bfC

(
t

s
,

r

(t− s)1/z

)
,

R(t, s; r):=
δ〈φ(t, r)〉
δh(s,0)

∣∣∣∣
h=0

= s−1−afR

(
t

s
,

r

(t− s)1/z

)
, (1)

where φ(t, r) is the space-time-dependent order-parameter, and h(s, r) is

the conjugate magnetic field.1–6 Asymptotically, for y → ∞, one expects

fC,R(y;0) ∼ y−λC,R/z.



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

278 M. Henkel

Recently, the question has been raised7,8 whether standard dynamical

scaling could be extended to a local form of dynamical scaling, in some

sense analogous to conformal invariance in equilibrium critical phenomena.

Such an extension appears to be possible for any given dynamical exponent

z and leads, among others, to the following testable predictions8,9 for the

integrated response function MTRM(t, s; r) := h
∫ s
0
Dτ R(t, τ ; r),

MTRM(t, s; r) = r0Mage

(
t

s
,
r

s1/z

)
+ r1t

−λR/zF (α,β)
( r

t1/z

)
, (2)

where F (α,β) (u) =
∫

Rd
Dk

(2π)d |k|β exp (iu · k − α|k|z), β = λC − λR and

r0, r1, α are free parameters. The scaling function reads

Mage

(
t

s
,
r

s1/z

)
= s−afM

(
t

s
,
r

s1/z

)
, (3)

fM (y,w) =

∫ 1

0

Dv (1 − v)−1−a
(

y

1 − v

)1+a′−λR/z

×
(

y

1 − v
− 1

)−1−a′

F (α,β)
(
w (y − 1 + v)−1/z

)
. (4)

On the other hand, the autocorrelator is predicted to read,8,9 for T < Tc

fC(y,0) = c2y
(2β+d−λC)/z

∫

Rd

Dk
(2π)d

|k|2β exp

(
−α|k|z(y − 1) − k2

4ν

)
. (5)

Here one takes into account that the correct ‘initial’ correlation function is

not delta-correlated, as one might näıvely suppose since simulations start

from a fully disordered state, but rather should be identified with the cor-

relator at those late stages10 where ageing sets in, where the most simple

expectation is a Gaussian form11 C(s + τ, s; r) ∼ exp(−ν r2/s2/z) which

will be sufficient if z > 2. The parameters c2, ν must be found empirically.

The meaning of a test of these specific scaling functions can be under-

stood as follows. Local scale-invariance (LSI)7,8 is built on the assumption

that there is a single relevant time-dependent length scale L(t) ∼ t1/z which

then implies the scaling forms (1). Next, one assumes that the response

functions transform co-variantly under a coordinate change t 7→ t/(γt+ δ),

r 7→ r(t) which can be shown to fix the autoresponse MTRM(t, s;0).

Furthermore, one requires that the deterministic part of the associated

Langevin equation is invariant under a ‘Galilei-transformation’ generalised

to z 6= 2. From this, extensions of the Bargman superselection rules follow

from which one can prove, using the Janssen-de Dominicis functional, that

the response functions actually found in concrete models are identical to
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the response functions calculated from the symmetries of the pure deter-

ministic part. In addition, one has the concrete predictions (2)-(4). Finally,

for z 6= 2, iterated Galilei-transformations lead to the conservation of higher

powers of the momenta of the in- and outgoing particles in a 2n-point re-

sponse function. It is known from factorisable relativistic scattering that

this implies a factorisable S-matrix.12 A consequence of this factorisation

is the explicit form (5) of the autocorrelator.

We present a test of the predictions (2)-(5) in a model for which the asso-

ciated Langevin equation cannot be reduced to a linear equation. Consider

a two-dimensional (2D) ferromagnetic Ising model with quenched disorder.

The nearest-neighbour hamiltonian is given by13

H = −
∑

(i,j)

Jijσiσj , σi = ±1 . (6)

The random variables Jij are uniformly distributed over [1 − ε/2, 1 + ε/2]

where 0 ≤ ε ≤ 2. There is a second-order phase transition at a critical

temperature Tc(ε) > 0 between a paramagnetic and a ferromagnetic state.

Using heat-bath dynamics with a non-conserved order-parameter and start-

ing from a fully disordered initial state, phase-ordering occurs where the

dynamical exponent is given by

z = z(T, ǫ) = 2 + ǫ/T . (7)

This follows from phenomenological scaling arguments which assume that

the disorder is creating defects with logarithmically distributed barrier

heights parametrised by the constant ǫ.13 The T -dependence is confirmed

in field-theoretical studies in the Cardy-Ostlund model.14 Simulations of

the linear domain size13 L(t) ∼ t1/z and of the scaling of the autoresponse

function15 R(t, s;0) in the disordered Ising model also confirm Eq. (7) and

furthermore suggest the empirical identification ǫ = ε.

Therefore, since z depends continuously on control parameters, the dis-

ordered 2D Ising model offers a nice possibility to test universality and

especially to test local scale-invariance for several values of z. Previously,

tests of all three aspects of local scale-invariance as mentioned above have

been performed for the (non-linear) pure systems (z = 2) in the 2D/3D

Ising model16,17 and the 2D q-states Potts model18 with q = 2, 3, 8.

Numerical data were obtained9 on a 3002 lattice using the standard

heat-bath algorithm. From an uncorrelated initial state, the system’s tem-

perature was lowered at time t = 0 to the final temperature T , in the

presence of a spatially random binary field h = ±0.05. For the autocor-

relation function a lattice of size 6002 was used. In the interpretation of
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Fig. 1. The autocorrelation9 as a function of t/s for (a) ε = 0.5 and T = 1, yielding
z = 2.5, and (b) ε = 2 and T = 1, yielding z = 4. Whereas in case (a) we find the scaling
behaviour of simple ageing, strong corrections to scaling behaviour are seen in case (b).
Subtracting off the correction term, the scaling behaviour of simple ageing is recovered,
as shown in panel (c). In (d) we show the equal-time space-dependent correlator C(t, t; r)
for ε = 0.5 and T = 1.0 for the times t = [200, 300, 500, 1000, 2000] from bottom to top.
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Fig. 2. Scaling behaviour of the ageing part of the integrated spatio-temporal response9

MTRM(t, s;r), for several waiting times s and the values (a) ε = 2.0, T = 1.0, (b) ε = 1.0,
T = 1.0, (c) ε = 0.5, T = 0.5 and (d) ε = 0.5, T = 1.0, as a function of rz/s, where z
is given by (7) and for two fixed values of y = t/s. The full lines are the predictions of

LSI, with parameters given in Table 1.

the raw data, it was already established for pure systems that finite-time

corrections in MTRM(t, s; r) must be subtracted carefully, see (2). Since in

disordered magnets z may become considerably larger than in pure systems,

see (7), the domain size L(t) ∼ t1/z should grow slower and the observables

should become more sensitive to finite-time corrections to scaling. Figure 1a

shows that a good dynamical scaling is found for ε = 0.5 and T = 1, hence

z = 2.5, while for ε = 2 and T = 1, yielding the large value z = 4, the

expected simple scaling (1) does not seem to hold, see Fig. 1b. Taking the

leading corrections to scaling of the form C(t, s) = fC(t/s) − s−b
′
gC(t/s)

with b′ = 0.075 into account, a good scaling is found, see Fig. 1c.
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Fig. 3. Scaling behaviour of the autocorrelator C(t, s),9 for the values (a) ε = 2.0,
T = 1.0, (b) ε = 1.0, T = 1.0, (c) ε = 0.5, T = 0.5 and (d) ε = 0.5, T = 1.0, as a
function of y = t/s and for several waiting times s. The full lines give the LSI prediction
(5). The parameter values used are given in Table 2. In panels (b,c,d), C(t, s) = fC(t/s).

Table 1. Critical exponents and parameters of LSI for the different values of ε and T
for the integrated space-time response function.9

ε T a = a′ λR/z α β = λC − λR r0 r1
0.5 1.0 0.40(3) 0.61(1) 0.24(2) −0.10(5) 0.0064(1) 0.0025(2)

0.5 0.5 0.33(5) 0.51(1) 0.20(2) −0.06(7) 0.0049(1) 0.005(2)
1.0 1.0 0.33(5) 0.51(1) 0.20(1) −0.06(7) 0.00575(2) −0.02(1)
2.0 1.0 0.25(2) 0.33(1) 0.15(2) −0.04(10) 0.0365(1) −0.035(2)

In Figs. 2 and 3 we show the scaling functions for the ageing part of

the spatial thermoremanent magnetisation Mage(t, s; r) and the autocorre-

lation function C(t, s) for several combinations of T and ε. These extend

and confirm our earlier results6,15 of the scaling of the integrated autore-

sponse function MTRM(t, s;0), notably on the value of z, see Eq. (7) and

further strengthen the conclusions of a simple power-law scaling in the

disordered Ising model reached earlier.6,13,15 The suggestion of a ‘superage-

ing’ behaviour,19 motivated by the deviation from simple scaling as seen in

Fig. 1b and by similar data in the site-disordered Ising model,19 does not

appear to be required (recall that at least one type of ‘superageing’ has been

shown to be incompatible with basic constraints from probability20). The

numerical data actually suggest a stronger universality in that the entire

scaling functions appear to depend only on the ratio ε/T .9

Finally, we see that the data for both MTRM(t, s; r) as well as for C(t, s)

are fully compatible with the predictions of local scale-invariance Eqs. (2)

and (5), respectively. The parameter values are collected in Tables 1 and 2.

In the latter case, we point out that the time-evolved ‘initial’ correlator11

has to be used, see also Fig. 1d which illustrates the Gaussian behaviour of
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Table 2. Critical exponents and parameters of LSI
for the different values of ε and T for the autocor-
relation function.9

ε T z λC/z ν c2
0.5 1.0 2.5 0.570(5) 0.31(2) 1.72(1)
0.5 0.5 3.0 0.490(5) 0.35(2) 1.30(1)
1.0 1.0 3.0 0.490(5) 0.36(2) 1.30(1)
2.0 1.0 4.0 0.320(5) 0.48(2) 1.12(1)

C(t, t; r). Remarkably, a single symmetry principle appears to reproduce the

shapes of the scaling functions for values of the dynamical exponents which

vary considerably. This is strong evidence that local scale-invariance should

capture the essence of the dynamical scaling behaviour of the integrated

linear auto- and space-time responses, as well as for the autocorrelator.
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Finite-size effects are investigated in the mean spherical model in film geome-
try with nonperiodic boundary conditions above and below bulk Tc. We have
obtained exact results for the excess free energy and the Casimir force for an-
tiperiodic, Neumann, Dirichlet, and Neumann-Dirichlet mixed boundary con-
ditions in 2 < d ≤ 3 dimensions. Analytic results are presented in 2 < d < 3
dimensions for Dirichlet boundary conditions and for d = 3 for Neumann-
Dirichlet boundary conditions. We find an unexpected leading size dependence
∝ C±t/L2 of the Casimir force, with different amplitudes C+ and C− above
and below Tc for large L at fixed t ≡ (T − Tc)/Tc 6= 0 for other than periodic
boundary conditions.

Keywords: Mean spherical model; Exact solution; Free energy; Critical Casimir
force; Finite-size scaling; Scaling function.

1. Introduction

Little is known about finite-size effects of critical systems below the bulk

transition temperature Tc for realistic boundary conditions, such as Dirich-

let or Neumann boundary conditions. Even for the exactly solvable mean

spherical model1,2 no finite-size investigation has been performed so far be-

low Tc for nonperiodic boundary conditions. Previous studies of this model

for the case of Dirichlet (or free) boundary conditions for T ≥ Tc have

shown that finite-size scaling is violated in d = 3 dimensions1,2 whereas

finite-size scaling holds in 2 < d < 3 dimensions.2 Here we present exact

results of the free energy and the Casimir force of this model above and

below bulk Tc in film geometry with various nonperiodic boundary condi-

tions in 2 < d ≤ 3 dimensions. The validity of finite-size scaling below three
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dimensions is confirmed and the Casimir force finite-size scaling functions

for nonperiodic boundary conditions in d = 2.5 dimensions are graphically

displayed. As unexpected results we find the validity of finite-size scaling

in d = 3 dimensions for mixed Neumann-Dirichlet boundary conditions

and a leading size dependence ∝ C±t/L2 of the Casimir force, with dif-

ferent amplitudes C+ and C− above and below Tc, for large L at fixed

t ≡ (T − Tc)/Tc 6= 0 for other than periodic boundary conditions.

2. Model

Consider a d-dimensional simple cubic lattice with lattice spacing a, N ≡
Ñd−1 ×N sites and volume V = L̃d−1L, where L̃ ≡ Ña and L ≡ Na. The

Hamiltonian of the mean spherical model on this lattice is

H = ad



 J

2a2

∑

〈x,x′〉
(Sx − Sx′)2 +

µ

2

∑

x

S2
x



 , (1)

with J > 0 and where
∑

〈x,x′〉 denotes a double sum over both primed an

unprimed coordinates, where only nearest neighbors (|x − x′| = a) con-

tribute. The fluctuations of the scalar spin variables Sx are subject to the

constraint

ad−2
∑

x

〈S2
x〉 = N , (2)

implying that the “spherical field” µ is not an independent quantity but is

a function of β = 1/(kBT ) and of the geometry of the system.

As we are only interested in the film limit Ñ → ∞, we only need to

specify the boundary conditions in the dth direction. After adding two

fictitious sites x0 and xN+1 in the negative and positive dth direction for

each value of the remaining d − 1 coordinates (which we omit from the

notation now), the various boundary conditions considered here are defined

by

p : periodic, SxN+1 = Sx1 , (3a)

a : antiperiodic, SxN+1 = −Sx1, (3b)

NN : Neumann-Neumann, Sx0 = Sx1 , SxN+1 = SxN , (3c)

ND : Neumann-Dirichlet, Sx0 = Sx1 , SxN+1 = 0, (3d)

DD : Dirichlet-Dirichlet, Sx0 = 0, SxN+1 = 0, (3e)

the terminology being in analogy to the corresponding continuum model.
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The dimensionless partition function Z and thermodynamic potential

Φ are defined by

Z(T, µ, L, L̃) = exp[−βΦ(T, µ, L, L̃)] =
∏

x

∫ +∞

−∞

dSx

a(2−d)/2 exp(−βH). (4)

The appropriate (Legendre transformed) reduced free-energy density is

f(t, L) = lim
L̃→∞

β

L̃d−1L

[
Φ − µ

(
φΦ

φµ

)

T,L,L̃

]
, (5)

with µ(t, L) determined by the constraint (2) for Ñ → ∞. For 2 < d ≤ 3

dimensions there is no phase transition at finite temperature for finite L,

but there is a transition at a finite Tc in the bulk limit L→ ∞.

The excess free-energy density is f ex(t, L) = f(t, L) − f(t,∞). We are

interested in the thermodynamic Casimir force per unit area3

F (t, L) = −∂[Lf ex(t, L)]

∂L
. (6)

It is expected3,4 that f ex(t, L) and F (t, L) can be decomposed into singular

and regular parts, f ex = f ex
sing + f ex

reg and F = Fsing + Freg. If finite-size

scaling holds, the singular parts have the asymptotic (large L, small |t|)
scaling structure3,4

f ex
sing(t, L) = L−dF(s), Fsing(t, L) = L−dX(s), (7)

with the scaling variable s = t(L/ξ0)
1/ν , ν = 1/(d − 2). The nonuniversal

reference length ξ0 can be chosen as the asymptotic amplitude of the second-

moment bulk correlation length ξ = ξ0t
−ν above Tc. In the presence of

surface contributions it is appropriate to further decompose, for |t| 6= 0,

f ex
sing(t, L) = fasurf,sing(t)L

−1 + f bsurf,sing(t)L
−1 + L−dG(s), (8)

where a and b denote the two surfaces of the film. The scaling function

X(s) is determined by F(s) and G(s) according to

X(s) = (d− 1)F(s) − (d− 2)sF ′(s)

= (d− 1)G(s) − (d− 2)sG′(s). (9)

3. Results

As a cross check, we have successfully compared our expressions for the

free energy for periodic boundary conditions with Ref. 5 for d = 3 and with

Ref. 6 for 2 < d < 3. As an example with nonperiodic boundary conditions,
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we provide here the exact result for X(s) for Dirichlet-Dirichlet boundary

conditions for 2 < d < 3,

X(s) = − Γ(2−d
2 )

2(4π)d/2
[
y2
L − π2 − y2

∞
]
s− (d− 1)Γ(−d2 )

2(4π)d/2
[
ydL − yd∞

]

− Γ(3−d
2 )

2(4π)(d−1)/2
yd−1
L − π2(d− 1)Γ(2−d

2 )

2(4π)d/2
yd−2
L

− d− 1

2d+1π

∫ ∞

0

dz
(π
z

)(d+1)/2

e−zy
2
L/π

2

{
ez[K(z)−1]−

√
π

z
+1−√

πz

}
,

(10)

with y∞(s) defined by

y∞ ≡
{
s1/(d−2) s > 0,

0 s ≤ 0,
(11)

and with yL(s) determined by the constraint, which now reads

Γ(2−d
2 )(yd−2

L − s) =
√
πΓ(3−d

2 )yd−3
L − 2(4π)d/2Ed(yL), (12)

where

Ed(yL) ≡ 1

2d+1π2

∫ ∞

0

dz
(π
z

)(d−1)/2

e−zy
2
L/π

2

{
ez[K(z)−1]−

√
π

z
+1

}
,

(13)

and K(z) ≡∑∞
n=−∞ e−n

2z . Similar expressions result for the other bound-

ary conditions of Eq. (3). The d = 2.5 results are displayed in Figs. 1(a)-(e)

for all these boundary conditions.

For d = 3, both the reduced free-energy density and the Casimir force

exhibit scaling violations for Neumann-Neumann and Dirichlet-Dirichlet

boundary conditions, for example in the form of a logarithmic dependence

on L/a at bulk Tc, as will be detailed elsewhere. We find, however, that

scaling holds not only for periodic and antiperiodic, but also for mixed

Neumann-Dirichlet boundary conditions in three dimensions. The reason

for this unexpected behavior will be discussed elsewhere. The Casimir force

scaling function for Neumann-Dirichlet boundary conditions reads

X3(s) = −1

4
E3ȳ

2
L +

1

8π

(
ȳ2
L − y2

∞
)
s− 1

6π

(
ȳ3
L − y3

∞
)

− 1

8π

[
Li3(−e−2ȳL) + 2ȳLLi2(−e−2ȳL)

]
, (14)

where Li2 and Li3 are polylogarithms, with

E3 ≡
∫ ∞

0

dyB(y)2
[
e−2y −B(y)

]
≈ −0.237167, (15)
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Fig. 1. (a)-(e): Scaling function X(s) of the Casimir force for periodic (a), antiperiodic
(b), Neumann-Neumann, (c), Neumann-Dirichlet (d), and Dirichlet-Dirichlet (e) bound-
ary conditions for d = 2.5. The grey lines specify the asymptotic (s → ±∞) behavior.

(f): X3(s) for Neumann-Dirichlet boundary conditions for d = 3.

y∞(s) from (11) and ȳL(s) given by the constraint

ȳL ≡
√
y2
L − π2

4 = arcosh
(

1
2e
s−πE3

)
(16)

for yL ≥ π/2 and appropriate analytic continuations to 0 < yL < π/2.

X3(s) is shown in Fig. 1(f). X3(s) exhibits a linear asymptotic behavior

not only for large negative s [as for d = 2.5, see Fig. 1(d)], but also for large

positive s.

For other than periodic boundary conditions we find at fixed |t| 6= 0

for sufficiently large L that the Casimir force has the leading behavior

F ∼ C±t/L2 with different amplitudes C+ and C− above and below Tc,

respectively. In Eqs. (10) and (14) we have included these terms in the

singular part Fsing which then implies the linear asymptotic behavior of the

scaling functions shown in Fig. 1(b)-(f) for large positive and/or negative

s for the various nonperiodic boundary conditions. We note here, however,

that this unexpected behavior cannot uniquely be attributed to the scaling

functions because of an ambiguity in defining the regular part of the Casimir

force, as will be discussed elsewhere.

Finally, a reservation must be made with regard to the exponential tails

of the L-dependence of the Casimir force. As pointed out elsewhere,6,7 these

tails violate finite-size scaling and universality. They are not contained in

Eqs. (10) and (14).
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The theory presented is based on a simple Hamiltonian for a vortex lattice in
a weak impurity background which includes linear elasticity and plasticity, the
latter in the form of integer valued fields accounting for defects. By using the
variational approach of Mézard and Parisi established for random manifolds, we
obtain the phase diagram including glass transition lines for superconductors
with a melting line near Hc2 like YBCO and also for superconductors with a
melting line in the deep Hc2 region like BSCCO.

Keywords: Phase diagram; Vortex lattice; Superconductors.

1. Introduction

We consider the phase diagram of high-Tc superconductors in the magnetic

field vs temperatureH−T -plane whereH is the external magnetic field and

T is the temperature. It is dominated by the interplay of thermal fluctua-

tions and disorder.1 At low magnetic fields near Tc the vortex solid melts

into a vortex liquid (VL) via a first-order melting transition. Prominent

examples of high-Tc superconductors exhibiting a solid-liquid melting are

the anisotropic compound YBa2Cu3O7−δ (YBCO), and the strongly lay-

ered compound Bi2Sr2CaCu2O8 (BSCCO). The main difference between

these two superconductors comes from the fact that for YBCO the vortex

cores are almost non-overlapping but for BSCCO we have large overlapping

cores making the elasticity constants of both lattices different.2

When including weak pinning, the solid phase becomes a quasi-long-

range ordered Bragg glass (BG).1 At higher magnetic fields, the quasi-long-

range order is destroyed and there exists also a vortex glass (VG) phase.

The first-order melting line separates the BG phase from the VL phase

at high temperatures and from the VG phase at lower temperatures. In
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the following, we will discuss the phase diagram for YBCO (square vortex

lattice) explicitly where a more lengthy discussion can be found in Ref. 3.

We will summarize our results for BSCCO (triangular lattice) only briefly

at the end.

2. Model

The partition function used here for the vortex lattice without disorder

was proposed in Ref. 4. It is motivated by similar melting models for two-

dimensional square5 crystals. The partition function of the disordered flux

line lattice can be written in the canonical form as a functional integral

Zfl=

∫
D[ui, σim, ni]e

−(H0[ui,σim,ni]+Hdis[ui])/kBT , (1)

where

H0[ui, σim, ni]

kBT
=
∑

x

1

2β

[
∑

i<j

σ2
ij +

1

2

∑

i

σ2
ii

−
(∑

i

∇i

∇i
σii

) c11 − 2c66
4(c11 − c66)

(∑

i

∇i

∇i
σii

)
+
∑

i

σi3
c66
c44

σi3

]

− 2πi
∑

x



∑

i,m

σim∇mui +
∑

i≤j
σijNij


 (2)

is the canonical representation of elastic and plastic energies summed over

the lattice sites x of a three-dimensional lattice, and σij with σ21 ≡ σ12 are

stress fields which are canonically conjugate to the distortion fields.5 The

subscripts i, j have the values 1, 2, and l,m, n run from 1 to 3. The param-

eter β is proportional to the inverse temperature, β ≡ a2a3c66/kBT (2π)2,

where a is the transverse distance of neighboring vortex lines, and a3 is

the persistence length along the dislocation lines introduced in Ref. 4. Note

that a3 is assumed to be independent on the disorder potential on the

average. Its value is given by4 a3 ≈ 4a
√

2λab/λc
√
π(1 − B/Hc2)

1/2. The

volume of the fundamental cell v is equal to a2a3 for the square lattice.

The matrix Nij(x) in Eq. (2) is a discrete-valued local defect matrix com-

posed of integer-valued defect gauge fields n1, n2. It depends on the lattice

symmetry. For a square vortex lattice it is given by

Nij=

(
n1 n2

n2 −n1

)
. (3)
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The lattice derivatives ∇m and their conjugate counterparts ∇m are the

lattice differences for a cubic three-dimensional crystal. We have suppressed

the spatial arguments of the elasticity parameters, which are functional

matrices cij(x,x
′) ≡ cij(x−x′). Their precise forms were first calculated by

Brandt2 and generalized in Ref. 4 by taking into account thermal softening

relevant for BSCCO. The second term in the exponent of (1)

Hdis[ui] =
∑

x

V (x + u), (4)

accounts for disorder. The measure of the functional integral is

∫
D[ui, σim, ni]=det

[
c66

4(c11−c66)

]1/2
det

[
1

2πβ

]5/2

×




∏

x

[
∏

i≤m

∫ ∞

−∞
dσim

][
∏

j

∞∑

nj(x)=−∞

][∫ ∞

−∞

du

a

]
 . (5)

The disorder potential V (x) due to pinning is assumed to possess the Gaus-

sian short-scale correlation function

V (x)V (x′) = d(T ) a3
φ4

0 ξ
3
ab

λ̃4
ab

K(xi − x′i) δx3,x′
3
, (6)

where K(xi − x′i) ≈ 1/(ξ′)2 for |x − x′| < ξ′, and is zero elsewhere. φ0 is

the magnetic flux quantum φ0 = hc/2e. The parameter ξ′ is the correlation

length of the impurity potential which is similar to the coherence length

ξab in the xy-plane. Furthermore, λ̃ab = λab/(1 − B/Hc2) is the screened

penetration depth in the xy-plane.

The temperature dependence of the parameter d(T ) is mainly due to the

temperature dependence of the correlation length and the pinning mecha-

nism where we discuss here in the following only the δl-pinning mechanism1

having its origin in fluctuations in the mean free path coming from fluctua-

tions in the impurity density given by d(T ) = d0(1−T/Tc)3/2. Furthermore,

we carry out the explicit calculations with an effective disorder correlation

function with the Fourier transform

K̂(q) = 2π exp(−ξ′2q2i /2) (7)

leading also to an exponentially vanishing of the disorder correlation func-

tion in real space. The parameter ξ′ in (7) is an effective correlation length

which can also include for example screening effects of the impurities in the

δl-pinning case.



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

292 J. Dietel and H. Kleinert

3. Methods

The model has two mutual representations. One can be evaluated efficiently

in the low-temperature phase, the other in the high-temperature phase.

The lowest approximation to the former contains only elastic fluctuations

of the vortex lattice without defects. The dual representation sums over

all integer-valued stress configurations, which to lowest approximation are

completely frozen out. The transverse part of the vortex fluctuations in

the high-temperature approximation corresponds to non-interacting three-

dimensional elastic strings where the length in z-direction is discretized

with the persistence length as the lattice spacing.4

We will calculate the free energy in both temperature regimes non-

perturbatively by using once the replica-trick6 and furthermore the varia-

tional approach set up by Mézard and Parisi7 for random manifolds and

spin-glasses. It is based on replacing the non-quadratic part of the replicated

Hamiltonian by a quadratic one, with possible mixing of replica fields. A

transition line from a liquid to a glass consists within the Mézard-Parisi ap-

proach on a boundary in thermodynamical space from a replica symmetric

quadratic Hamiltonian to a Hamiltonian which breaks the symmetry in the

replica fields. This is the situation we found for the high-temperature liquid

phase where the replica symmetric quadratic Hamiltonian corresponds to

the VL phase and the replica symmetry broken Hamiltonian to the VG

phase. The best quadratic Hamiltonian in the low-temperature solid phase

is full replica symmetry broken corresponding to the BG phase. We will cal-

culate the first-order melting line separating the BG from the VL and VG

phases by intersecting the free energies of the low-temperature Hamiltonian

and the high-temperature Hamiltonian.

4. Results

By using the methods outlined in the last section, we obtain the following

disorder terms3 for the free energies of the BG and the VG,VL phases

∆fT→0
var ≈ kBT

2
D(0)

[
1 − 3

20
D4(0)(D(0)A)−3

]
BG phase , (8)

∆fT→∞
var ≈ kBT

2
D(0)

[
1 − (D(0)A)−1/3

]3
Θ[D(0)A− 1] VG − VLphase

with the disorder constant D defined by

D(2〈u2〉) = d(T )
a3

(kBT )2
φ4

0 ξ
3
ab

λ̃4
ab

∫
d2q

(2π)2
K̂(q) e−

q2

2 〈u2〉, (9)
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Fig. 1. Phase diagram for YBCO. Solid lines represent the theoretically deter-
mined phase transition lines between the various phases calculated for δl-pinning with
2πd0 ξ2ab/ξ

′2 = 1.32 · 10−6 and ξab/ξ
′ = 1.49. The solid (black) curve separating the BG

phase from the VG and VL phases represents the first-order melting line given by (12).
The (black) solid glass transition line between the VG and the VL phase was calculated
from (11). Square (blue) points represent the experimentally determined phase diagram
of Bouquet et al.8

and the parameter

A =
4

kBT

c44a
2 ξ′2

a3
. (10)

We obtain from (8) a third-order glass transition line at

D(0)A = 1 (11)

separating the VL and the VG phase. Intersecting the free energies of the

low and high-temperature phase we obtain the first-order transition line

Bm separating the BG with the VL and VG phases (melting line)

Bm ≈ φ5
0 (1 −Bm/Hc2)

3

(kBT )2λ2
abλ

2
c

3.9 · 10−5

π4
e−(2/kBT )(fT→0

var −fT→∞
var ) . (12)

We show in Fig. 1 the calculated phase diagram for YBCO with typical

parameters specified in Ref. 3. We compare in the figure our theoretical

results with experimental ones (square dots) of Bouquet et al.8

We now briefly summarize our results for BSCCO. Instead of the third-

order line separating the VG and the VL phases, we find a second-order glass
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transition line separating both phases. This curve does not stop at the point

GP shown in Fig. 1 on the first-order melting line. Instead it goes further

dividing the BG phase in two regions. This behaviour is in accordance to

the experimentally determined glass transition lines of Beidenkopf et. al.9 In

the liquid phase VL, we obtain additionally an almost vertical third-order

glass transition line starting near the critical temperature. The position of

this line is in accordance to a magnetic anomaly found by Fuchs et al.10 by

measuring the vortex penetration through surface barriers.
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We study the critical behavior of the classical ϕ4-model approaching criticality
from the broken symmetry phase using the functional renormalization group
(RG). We derive and solve RG flow equations for the flowing order parame-
ter and the coupling constant. We also calculate the scaling function for the
momentum dependent self-energy at the critical temperature Tc.

Keywords: Field theory; Renormalization group; Critical phenomena.

The functional renormalization group (FRG) is a powerful tool for studying

critical phenomena.1,2 In this work we apply the general FRG formalism

for systems in the broken symmetry phase developed in Ref. 3 to the Ising

universality class at criticality.4 We start with the action of the classical

ϕ4-model in D dimensions,

S[ϕ] =

∫
dDr

[
1

2
(▽ϕ)2 +

rΛ0

2
ϕ2 +

uΛ0

4!
ϕ4

]
, (1)

where Λ0 is an UV cutoff. In the broken symmetry phase, the Fourier trans-

formed fields ϕk have non-vanishing vacuum expectation values

ϕk = δϕk + ϕ0
k,Λ, 〈δϕk〉 = 0, ϕ0

k,Λ = (2π)Dδ(k)MΛ. (2)

Following the strategy explained in Ref. 3, we derive flow equations for the

running magnetisation MΛ and for the irreducible self-energy ΣΛ(k),

(∂ΛMΛ)ΣΛ(0) = −1

2

∫

k

ĠΛ(k)Γ
(3)
Λ (k,−k, 0), (3)
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∂ΛΣΛ (k) = (∂ΛMΛ) Γ
(3)
Λ (k,−k, 0) − 1

2

∫

k′
ĠΛ(k′)Γ(4)

Λ (k′,−k′;k,−k)

+

∫

k′
ĠΛ (k′)GΛ (k′ + k) Γ

(3)
Λ (k,−k − k′,k′)Γ(3)

Λ (−k′,k + k′,−k), (4)

where the cutoff dependent full propagator is defined via

G−1
Λ (k) = k2 + ΣΛ(k) +RΛ(k), (5)

and the single-scale propagator is ĠΛ(k) = −∂ΛRΛ(k)G2
Λ(k). We use here

an additive IR regulator5

RΛ(k) = (1 − δk,0)Z
−1
l

(
Λ2 − k2

)
Θ
(
Λ2 − k2

)
, (6)

where Z−1
l = 1 + ∂ΣΛ(k)

∂k2

∣∣∣
k2=0

is the wave function renormalization factor

and l = − ln(Λ/Λ0) is the logarithmic scale factor. Our aim is to calculate

the true momentum dependent self-energy Σ(k) = limΛ→0 ΣΛ(k).6,7

Our truncation procedure consists of replacing the three- and four-point

vertex functions on the right-hand sides of Eqs. (3) and (4) by momentum

independent constants, which we relate to the momentum independent part

of the two-point function as in the local potential approximation (LPA)1

ΓΛ [ϕ] ≈ uΛ

4!

∫
dDr

(
ϕ2(r) −M2

Λ

)2
. (7)

However, in contrast to the LPA, we retain the momentum dependence

of the self energy in the full propagator of Eq. (5). Expressed in terms of

dimensionless couplings ul and M2
l , Eqs. (3) and (4) yield,

∂lM
2
l = (D − 2 + ηl)M

2
l − slG

2
l (0), (8)

∂lul = (4 −D − 2ηl)ul − slu
2
lG

3
l (0), (9)

∂lγl (q) = (2 − ηl − q · ▽q) γl (q) + γ̇l (q) , (10)

where γl (q) is a momentum dependent part of the rescaled self energy,

γ̇l (q) is the rescaled right-hand side of Eq. (4), G−1
l (0) = 1 + ulM

2
l /3,

sl = 6 (D + 2 − ηl) / (D (2 +D)), and ηl = −∂l lnZl is the anomalous di-

mension. In our approximation ηl = u2
lM

2
l G

4
l (0)/D.

There are two fixed points: the Gaussian fixed point corresponding to

the non-interacting system, and the Wilson-Fisher fixed point at finite in-

teraction. In our approximation the Wilson-Fisher fixed point in D = 3

is at u∗ = 0.942 and M2
∗ = 1.022. To find the flow along the critical sur-

face, we need to fine tune the initial values u0 and M2
0 . A typical critical

flow of the coupling constants M2
l and ul is shown in the Fig. 1. The scale

lc where the perturbative behavior crosses over into the critical one can
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Fig. 1. The critical flow of the coupling constants ul and M2
l .

be determined from Eq. (9) assuming Gl(0) ≈ 0 and ηl ≈ 0; we obtain

lc ≈ (4−D)−1 ln (u∗/u0). The corresponding momentum scale kc = Λ0e
−lc

measures the size of the Ginzburg critical region. From the linearised flow

around the Wilson-Fisher fixed point we obtain in D = 3 the critical expo-

nents ν ≈ 0.553 and η ≈ 0.099. The comparison of our results to the estab-

lished values1,7 shows the limitation of our simple approximation. However,

the accuracy of critical exponents can be improved easily by taking higher

orders of LPA into account.8

While in general the self-energy exhibits dependence on several charac-

teristic length scales, at criticality its momentum dependent part can be

parametrised in terms of a one-parameter scaling function6

∆Σ (k) = Σ (k) − Σ (0) = k2
c∆σ (k/kc) , (11)

where

∆σ (x) = x2

∫ ∞

xe−lc
dq q−3Z−1

lc+ln (q/x)γ̇lc+ln(q/x)(q). (12)

For k ≪ kc we can replace the lower limit in Eq. (12) by zero and all

flowing quantities by their fixed point values. It is then straightforward

to show that ∆σ∗(x) ∼ x2−η. In the opposite limit k ≫ kc our approach

reproduces correctly leading order perturbative theory. In Fig. 2 we show

the momentum dependent effective anomalous dimension

ηeff(k) = 2 − ∂ ln ∆σ (k/kc)

∂ ln k
, (13)

which reveals very clearly the crossover region between two regimes.
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Fig. 2. The effective anomalous dimension.

It is interesting to calculate the quantity

c1 = − α

uΛ0

∫
d3k

(2π)3
∆Σ (k)

k2 (k2 + ∆Σ (k))
. (14)

For two-component fields a similar expression is related to the interaction

induced shift in the critical temperature of a weakly interacting Bose gas.9

Here α = −256π3ζ(3/2)−4/3 ≈ −2206.19. Within our simple truncation we

obtain c1 ≈ 0.705, which is comparable with the field-theoretical result c1 ≈
1.07 (see Ref. 10) and FRG calculation with more sophisticated truncation

yielding c1 ≈ 1.11 (see Ref. 7).
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Higher-order perturbative calculations in Quantum (Field) Theory suffer from
the factorial increase of the number of individual diagrams. Here I describe an
approach which evaluates the total contribution numerically for finite temper-
ature from the cumulant expansion of the corresponding observable followed
by an extrapolation to zero temperature. This method (originally proposed by
Bogolyubov and Plechko) is applied to the calculation of higher-order terms
for the ground-state energy of the polaron. Using state-of-the-art multidimen-
sional integration routines two new coefficients are obtained corresponding to
a 4- and 5-loop calculation.

Keywords: High-order perturbative calculations; Cumulant expansion; Monte
Carlo integration.

1. Introduction

Highly accurate measurements require precise theoretical calculations which

perturbation theory can yield if the coupling constant is small. However,

in Quantum Field Theory (QFT) the number of diagrams grows factorially

with the order of perturbation theory and they become more and more com-

plicated. The prime example is the anomalous magnetic moment of the elec-

tron where new experiments1 need high-order quantum-electrodynamical

calculations but the number of diagrams for them “explodes” as shown by

the generating function2

Γ(α) = 1 + α+ 7α2 + 72α3 + 891α4 + 12672α5 + 202770α6 + . . . . (1)

There are ongoing efforts3 to calculate all 12672 diagrams in O(α5) – a

huge, heroic effort considering the complexity of individual diagrams and

the large cancellations among them.

Obviously new and more efficient methods would be most welcome for

a cross-check or further progress.
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2. A New Method (Applied to the Polaron Ground-State

Energy)

Here I present a “new” method which – as I learned during the conference

– was already proposed 20 years by Bogolyubov (Jr.) and Plechko (BP)

(Ref. 4). However, to my knowledge it has been never applied numerically

which turned out to be quite a challenging task.

The BP method is formulated for the polaron problem, a non-relativistic

(but non-trivial) field theory describing an electron slowly moving through

a polarizable crystal. Due to medium effects its energy is changed and it

acquires an effective mass: Ep = E0+p2/(2m⋆)+. . .. The aim is to calculate

the power-series expansion for the ground-state (g.s.) energy

E0(α) = :
∑

n=1

en α
n (2)

as function of the dimensionless electron-phonon coupling constant α. The

lowest-order coefficients are well-known5 (e1 = −1 , e2 = −0.01591962 ),

but since Smondyrev’s calculation6 in 1986

e3 = −0.00080607 (3)

there has been no progress towards higher-order terms.

This will be remedied by the first numerical application of the BP

method. For this purpose the path-integral formulation of the polaron prob-

lem will be used where the phonons have been integrated out exactly.7 For

large Euclidean times β this gives the following effective action

Seff [x]=

∫ β

0

dt
1

2
ẋ2 − α√

2

∫ β

0

dt

∫ t

0

dt′ e−(t−t′)
∫
d3k

2π2

exp [ik · (x(t) − x(t′))]

k2
,

(4)

which will be split into a free part S0 and an interaction term S1. The g.s.

energy may be obtained from the partition function

Z(β) =

∮
D3x e−Seff [x] β→∞−→ e−βE0 (5)

at asymptotic values of β, i.e. zero temperature. The central idea is to use

the cumulant expansion of the partition function

Z(β) = Z0 exp

[
∑

n=1

(−)n

n!
λn(β)

]
(6)

where the λn(β)’s are the cumulants w.r.t. S1. These are obtained from the

moments

mn : = N
∮

D3x (S1[x] )
n e−S0[x] , m0 = 1 (7)



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Perturbative results without diagrams 301

by the recursion relation (see, e.g. Eq. (51) in Ref. 8)

λn+1 = mn+1 −
n−1∑

k=0

(
n

k

)
λk+1mn−k . (8)

Explicitly the first cumulants read

λ1 = m1 , λ2 = m2 −m2
1 , λ3 = m3 − 3m2m1 + 2m3

1,

λ4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1, (9)

λ5 = m5− 5m4m1− 10m3m2 + 20m3m
2
1 + 30m2

2m1− 60m2m
3
1 + 24m5

1.

By construction mn ∝ αn and Eq. (8) shows that the cumulants share this

property. Thus we immediately obtain

en = lim
β→∞

1

β

(−)n+1

αn n!
λn(β) . (10)

The functional integral for the moments can be done since it is Gaussian.

The integrals over the phonon momenta km , m = 1 . . . n, can also be per-

formed if the mth propagator is written as

1

k2
m

=
1

2

∫ ∞

0

dum exp

[
−1

2
k2
m um

]
. (11)

Then one obtains

mn =
(−)nαn

(4π)n/2

n∏

m=1

(∫ β

0

dtm

∫ tm

0

dt′m

∫ ∞

0

dum

)
exp

[
−

n∑

m=1

(tm − t′m)

]

· [ detA (t1 . . . tn, t
′
1 . . . t

′
n;u1 . . . un) ]

−3/2
. (12)

Here the (n× n)-matrix A,

Aij =
1

2

[
−|ti − tj | + |ti − t′j | + |t′i − tj | − |t′i − t′j |

]
+ ui δij , (13)

is non-analytic in the times ti, t
′
i, but analytic in the auxiliary variables ui.

3. Numerical Procedures and Results

The task is now to perform the (3n)-dimensional integral over ti, t
′
i, ui for

large enough β in the expression for the cumulants/moments. It is clear

that any reduction in the dimensionality of the integral will greatly help

in obtaining reliable numerical results in affordable CPU time. A closer

inspection of the structure of the integrand reveals that two integrations

over the auxiliary variables (say un, un−1) can always be done analytically.
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Fig. 1. Monte Carlo results for the derivative of the 3rd cumulant as function of the
Euclidean time β. The total number of function calls is denoted by ntot and the full
(open) circles are the points used (not used) in the fit.

Furthermore, we do not use Eq. (10) to extract the energy coefficient en
but

en =
(−)n+1

αnn!
lim
β→∞

∂λn(β)

∂β
= : lim

β→∞
en(β) . (14)

This “kills two birds with one stone”: first the derivative w.r.t. β takes away

one further integration over a time (see Eq. (12) where β appears as upper

limit) requiring that only a (3n − 3)-dimensional integral has to be done

numerically. Second, it vastly improves the convergence to en ≡ en(β = ∞)

because now

en(β)
β→∞−→ ∂

∂β

[
β · en+const− an√

β
e−β+. . .

]
= en+

an√
β
e−β+. . . . (15)

In other words: we obtain an exponential convergence to the value en
whereas previously the approach would be very slow, like const/β. This

exponential convergence of the derivative version has been demonstrated

analytically for n = 1, 2 and numerically for n = 3 (see below). In the

following we will assume that it holds for all n. After mapping to the hy-

percube [0, 1] the remaining (3n− 3)-dimensional integral can be evaluated

by Monte Carlo techniques utilizing the classic VEGAS program9 or the

more modern programs from the CUBA library.10

We first have tested this approach by comparing with the analytical

result given in Eq. (3). Figure 1 shows e3(β) and the best fit to the data

assuming the β-dependence (15). Since the asymptotic behaviour is not
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(a) (b)

Fig. 2. (a) Same as Fig. 1 but for the 4th cumulant. (b) Data for the derivative of the
5th cumulant. Open triangles denote results (not used in the fit) which have a χ2 > 1.5
indicating that successive Monte Carlo iterations are not consistent with each other.

valid for low values of β we have eliminated small-β points successively until

the resulting χ2/dof of the fit reaches a minimum. Excellent agreement with

Smondyrev’s result (3) is found. If one allows for a different power of β in

the prefactor of Eq. (15) then the fit gives an exponent −0.55(3) instead

of −0.5 assumed before.

However, when extending these calculations to the case n = 4, a very

slow convergence of the numerical result with the number of function calls

ntot is observed at fixed β. Fortunately, a solution was found by perform-

ing the remaining (n − 2)ui-integrations not by stochastic (Monte Carlo)

methods but by deterministic quadrature rules. This is possible since the

ui-dependence of the integrand is analytic (see Eq. (13)). We have used the

very efficient “tanhsinh-integration” method11 but Gaussian quadrature is

nearly as good. A dramatic improvement in stability results together with

a reduction of ntot needed for the much smaller values of |en| , n > 3. This

allows a reliable evaluation of e4 (see Fig. 2(a)) and also makes the deter-

mination of e5 feasible as shown in Fig. 2(b).

The best fit values for e4 and e5 displayed in Figs. 2(a), (b) are still pre-

liminary as a more detailed error analysis has to be made. Also for the

n = 5 case the Monte Carlo statistics should be improved. Note that each

high-statistic point in Fig. 2(b) took about 30 days runtime on a Xeon 3.0

GHz machine.
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4. Summary and Outlook

• Two additional perturbative coefficients e4, e5 for the polaron g.s. en-

ergy have been determined by the method of Bogolyubov and Plechkov

(rediscovered independently). This amounts to performing a 4-loop and

5-loop calculation in Quantum Field Theory.

• The method is based on a combination of Monte Carlo integration

techniques and deterministic quadrature rules for finite β (temperature)

and on a judicious extrapolation to β → ∞ (zero temperature). As a

check the value of e3 calculated analytically by Smondyrev has been

reproduced with high accuracy.

• The cancellation in nth order is not among many individual diagrams

but among the much fewer terms in the integrand of the (3n − 3)-

dimensional integral (see Eq. (9)).

• The method can be simply extended to the calculation of higher-order

terms in the small-coupling expansion of the effective mass m⋆(α) for

a moving polaron.

• Generalizing this approach to relativistic QFT in the worldline rep-

resentation12 and calculation of higher-order terms for the anomalous

magnetic moment of the electron is under investigation. New challenges

arise from the divergences which now occur and the need for renormal-

ization.
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Status Solidi (b) 25, 311 (1968).
6. M. A. Smondyrev, Theor. Math. Phys. 68, 653 (1986); O. V. Selyugin and

M. A. Smondyrev, Phys. Status Solidi (b) 155, 155 (1989).
7. R. P. Feynman, Phys. Rev. 97, 660 (1955).
8. R. Rosenfelder, Ann. Phys. 128, 188 (1980).
9. G. P. Lepage, J. Comp. Phys. 27, 192 (1978).

10. T. Hahn, Comp. Phys. Comm. 168, 78 (2005).
11. J. Borwein, D. Bailey, and R. Girgensohn, Experimentation in Mathemathics:

Computational Paths to Discovery (AK Peters, Natick, Massachusetts, 2004),
ch. 7.4.3.

12. C. Alexandrou et al., Phys. Rev. A 59, 1762 (1999).



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

PART VI

Monte Carlo Techniques



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

307

PATH INTEGRALS AND SUPERSOLIDS
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Recent experiments by Kim and Chan on solid 4He have been interpreted as
discovery of a supersolid phase of matter. Arguments based on wavefunctions
have shown that such a phase exists, but do not necessarily apply to solid
4He. Imaginary time path integrals, implemented using Monte Carlo methods,
provide a definitive answer; a clean system of solid 4He should be a normal
quantum solid, not one with superfluid properties. The Kim-Chan phenomena
must be due to defects introduced when the solid is formed.

Keywords: Monte Carlo simulation; Superfluids; Supersolids.

1. Introduction

Around the year 1970, there were several papers suggesting that a quan-

tum solid, such as 4He could show superfluidity and Bose condensation.

First, Andreev and Lifshitz1 introduced the vacancy model. Assuming that

a quantum solid contains a non-zero fraction of mobile vacancies, it is in-

evitable that at sufficiently low temperature they will Bose condense. The

resulting system will have superfluid properties. Chester2 arrived at the

same conclusion using a Jastrow (or pair product) wavefunction. Solids de-

scribed by such a wavefunction must have vacancies (assuming the Jastrow

wavefunction is short ranged), and a non-zero condensate fraction at zero

temperature. We can then ask what type of interaction will have a Jastrow

wavefunction as its ground state: the interaction will have a very strong

three-body component; stronger than the pair interaction and very differ-

ent from the interaction between helium atoms. The unanswered questions

are then a) are there enough vacancies in 4He at low temperature, b) is

a Jastrow wavefunction adequate to describe a quantum solid, and c) are

there any other mechanisms that can cause a quantum solid to be super-

fluid?
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In 2004 Kim and Chan3 reported superfluid-like responses in their tor-

sional oscillator (TO) experiments. In these experiments, the moment of

rotational inertia of a small cylinder containing the solid helium sample is

measured by monitoring its period. They found that below approximately

0.15K, a small fraction (up to 2%) of the helium no longer oscillates with

the cylinder, but is presumably at rest. This would be understood within

the vacancy model as vacancies being at rest.

For a recent review of the experimental situation, please consult Balibar

and Caupin4 and for the theory, Prokofev.5 This article does not present

new results, nor is it an extensive review. In the context of this path integral

conference proceedings, we sketch how path integrals lead to a deeper and

unique understanding of the problem of supersolid 4He, an analysis not

available with other methods.

2. Path-Integral Methods

Imaginary time path integrals (ITPI) were introduced by Feynman6 to

understand superfluidity of 4He, leading to the ring exchange model. IT-

PIs are an exact mapping of equilibrium statistical mechanics of quantum

bosons onto the classical statistical mechanics of a peculiar “ring polymer”

model. Let R(t) ≡ {r1(t), r2(t), . . . rN (t)} be the 3N coordinates of N he-

lium atoms at imaginary time t. Then a path consists of a trajectory R(t)

where 0 ≤ t ≤ β and β = 1/kBT with T the temperature, and, for com-

putational reasons, we work with discrete time; imaginary time is in steps

of τ so that t = kτ and M = β/τ . The probability of a path is given by

exp(−∑M
k=1 S(R((k − 1)τ), R(kτ))) where S(R,R′) is the link-action. In

the so-called primitive approximation, this is simply the kinetic and poten-

tial action, while in actual implementation more accurate forms are used.

See the review article9 for a detailed discussion of numerical methods.

What remains is to set the initial and final boundary conditions for

the path. For calculations of scalar properties of bosons, one uses periodic

boundary conditions in time, but allowing for exchange so that R(0) =

P̂R(β) where P is a specific permutation of particle labels, all N ! permu-

tations being allowed. Then, as shown by Feynman,6 the lambda transition

in liquid 4He occurs because the contributing permutations change from

small exchange cycles above Tλ, to macroscopic exchanges below Tλ. There

are two other important connections between quantum collective behav-

ior and the ring polymer model, namely, the superfluid density and Bose

condensation.

The superfluid density is defined in terms of the free energy needed to
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place a sample in rotation, for an infinitesimally small angular velocity.

(Note that this is steady state rotation, not oscillation as in the TO exper-

iment.) It is possible to show that the superfluid density fraction can be

calculated within ITPI as7

ρs
ρ

=
〈(2mAz)2〉
β~2I

=
m〈W 2

z 〉
β~2N

(1)

where Az is the path area projected on the xy plane, I is the classical

moment of inertia and m the mass. For periodic boundary conditions, we

use the second formula which contains the “winding number” of the path

Wz in the z direction. In either case, in the thermodynamic limit, non-

zero superfluid fraction can only come from path involving a macroscopic

number of atoms forming a long exchange cycle.

The second property is the condensate fraction. Again, it can be shown8

that the fraction of atoms with precisely zero momentum, n0, is given by the

large distance limit of the single particle density matrix, n(r), and can by

calculated in ITPI by the probability that the ends of a cut “polymer” (i.e.

one not constrained to be periodic in IT) are separated from each other by

a large distance. Both of these properties have been demonstrated to work9

for liquid helium using the same potential as solid helium, but at a lower

density.

Now turning to quantum crystals, the path picture of a quantum crystal

is that of a “polymer” crystal; a set of N such polymers in a periodic box

that spontaneously order spatially. Experimentally, and in computer sim-

ulations, we define the solid phase by the presence of a Bragg peak in the

structure factor, S(k), that scales with the number of atoms. If the particles

are bosons, then they are allowed to cross-link (form ring exchanges), how-

ever, they may choose not to. At low enough temperature, one will always

find a few isolated local ring exchanges, e. g. a neighboring pair of atoms

exchanging. Note that this exchange does not contribute to either the su-

perfluid density or to the condensate fraction. It is not a winding exchange

because it is local. As in superfluid helium, we need a winding exchange

to signal supersolidity, which necessarily involves a macroscopic number of

atoms.

Concerning the question of whether the ground state has vacancies, one

is faced with a problem of how to define a vacancy in a quantum crystal.

Because of quantum fluctuations, many lattice sites may be temporarily

vacant, but if the there is a nearby interstitial atom, these are not really

vacancies but rather vacancy-interstitial pairs (VIPs). The number of true

vacancies equals the number of lattice sites minus the number of atoms;
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both can be experimentally measured. For calculations in the canonical en-

semble, one adds or subtracts an atom from a perfect crystal, while changing

the box size to keep the density the same,10 while in the grand canonical

ensemble one looks at the slope of the single particle Green’s function.11

Both approaches lead to a consistent value of the excitation energy of a

vacancy of about 14K and of an interstitial of 23K, for the lowest, most

favorable density of solid 4He. Since the energy for these point defects, is

non-zero and large, we do not expect them to be present in solid 4He at

low temperatures, thus making the vacancy mechanism for supersolidity in-

valid. Questions have been raised13 whether there could be finite size effects

that invalidates this conclusion.

ITPI uniquely put the questions of supersolidity in a clear light. Methods

based on wavefunctions, such as the Chester proof of BEC,2 are only as valid

as long as the wavefunction is correct. It is difficult to make the connection

between the wavefunction and the Hamiltonian. Typically a wavefunction

is justified on the basis of how well other properties, such as the ground

state energy, compare to experiment. However, the important properties we

have just mentioned, the condensate fraction and the superfluid density, are

far off-diagonal properties of the density matrix, and very different from a

local property such as the energy, so that such methods of establishing the

accuracy of a wavefunction are not reliable. Let us discuss two qualitative

arguments based on ITPI.

Suppose a quantum crystal is superfluid; then it must have a macro-

scopic winding exchange. One possibility is that all the atoms simply slide

along a row in the crystal, however, this process has a very low probability

because all the atoms would have to move simultaneously. A simple way

for such a process to proceed is for a VIP to form, for the vacancy and

interstitial to separate and then diffuse independently; if one or other of

the defects winds around the boundary before recombining (as required by

the periodicity in time), then the system is a supersolid. However, during

this diffusion, it is clear that there must be isolated vacancies and inter-

stitials, and if this process is frequent, then there is no reason that either

vacancies or interstitials would not be stable by themselves. So Prokof’ev

and Svistunov14 conclude that stable point defects are both necessary and

sufficient for a supersolid. The weak point of the argument is the possible

existence of more complicated mechanisms leading to winding exchanges.

We searched22 for the most probable mechanism for winding exchanges,

and found that they occur in a “plasma” state of VIPs, however, such a

state is not stable.
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A second ITPI argument18 shows that there does exist a normal phase

for quantum crystals. On the contrary, it has been suggested that any Bose

system at low enough temperature will Bose condense. Take a system heav-

ier than helium that forms a good crystal, e.g. solid 132Xe. Because of its

heavy mass, the atoms sit at the absolute minimum of the potential energy.

If we imagine a winding path, needed to have a non-zero superfluid density,

the winding path must necessarily have a higher potential energy. So in the

limit of low temperature, this will have an action above the ground state

action by an amount at least proportional to a macroscopic length, N1/3.

Thus in the β → ∞ limit the extra action will scale to ∞ and such winding

paths will not contribute to the partition function. Hence the ground state

of 132Xe has ρs = 0. Solid helium is unusual in that at zero temperature,

the lattice constant is larger than required to sit at the minimum of the

potential, so this argument does not apply; it could lower its energy by

exchanging.

3. Path-Integral Results

The above discussion was meant to be general. The real utility of ITPI is

to apply them on the actual Hamiltonian of many-body helium, since as

we have seen there exist Hamiltonians that have a supersolid ground state,

and those that have a normal solid ground state. Does solid 4He fall into

either of those categories? Now helium is unique in that a helium atom is

well-represented as an elementary particle interacting in a pairwise fashion

(in a restricted range of temperatures and densities) because the electronic

gap is more than 2 × 105K. Semi-empirical potentials such as Aziz et al.19

are correct to about 0.1%; the errors concern the three- and higher body

terms. Numerous comparisons with experiment bear out this point of view.

For example, the Debye-Waller factors20 of solid helium (both isotopes) are

in very good agreement (in some cases better than 1%) with experiment for

a wide range of density and pressure. We already discussed the results of

the vacancy energy. PIMC is in agreement with some of the vacancy data,

but the experimental results vary widely.

Two independent ITPIMC calculations11,15 for the single particle den-

sity matrix have been made. Both show the function decays exponentially

fast (but with oscillations caused by the lattice), reaching a value of roughly

10−6 at the edge of the box 15 Å distant. If it stabilized at this value it

would be an incredibly small condensate fraction. We note that this result

is different than computed using the shadow wave function technique,21

which gives stable condensate fraction of 5 × 10−6. It seems clear that the
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Fig. 1. The single particle density matrix15 as a function of distance (in Å), estimated
with PIMC, in hcp 4He at a density 286nm−3 and a temperature of 0.5K. The solid
curve is the spherically averaged n(r) while the dot-dashed curve is n(x). The upper

double-dot dashed curve is a variational MC calculation using the shadow wave function
Ref. 13. The dashed straight line has a slope determined from the exchange calculations
of Ref. 16.

finite value comes because the SWF has inherited the properties of the Jas-

trow wave function, and recent calculations on 2D solid helium confirm this

view.21

The PIMC results also do not show any winding exchanges and hence

no superfluid. In order to understand the situation, we did a detailed anal-

ysis of the probability of a given ring exchange; it is these ring exchange

frequencies17 that give rise to the magnetic ordering in solid 3He. At low

temperatures, there are infrequent local exchanges, but the probability of

long exchanges drops exponentially fast, thus solid 4He is predicted to be

a normal ( insulating) quantum solid, not a supersolid. In conclusion, well-

controlled numerical calculations predict that solid 4He should not be a

supersolid.

4. Conclusion and Prospectives

Because of the excitement over the Kim-Chan experiments, there have been

numerous new experiments in the last few years. Several groups have re-

produced the TO experiments. There have been several experiments that
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directly address the issue of phase transition. Lin et al.23 have performed a

high precision heat capacity measurement, and did not see any direct evi-

dence of the lambda transition expected for the vacancy mechanism. At low

temperature they did see a linear term, possibly due to the heat capacity

of lower dimensional structures such as grain boundaries or dislocations. In

scattering experiments,24 it was found that the Bragg peak persisted to low

temperature, evidence that the one-body density was not changed signifi-

cantly. In other experiments there was no evidence of Bose condensation in

the momentum distribution.25

Day and Beamish26 found that there was no static superflow as a result

of pressure implying that the phase, if it exists, is different from a normal

superfluid; e. g. a dynamical phenomena. It is also found that there is a

strong dependence of the phenomena27 on 3He concentration even at the

concentration of parts per billion. Parts per million of 3He increase the

superfluid response, but have smaller effect on the transition temperature.

This dependence is understandable if the 3He goes to lower dimensional

structures such as dislocations or grain boundaries.

Rittner and Reppy28 have studied how the superfluid density depends

on the sample geometry and sample preparation. By making thin samples,

they report NCRI up to 20% much larger than could conceivably generated

in even a disordered solid. We believe this shows that the fundamental inter-

pretation of the TO experiments is incorrect. A TO experiment measures

the angular momentum response, which in a torus is given by mass flow

times velocity. Various estimates imply that the fraction of the mass that

could flow is quite small. However, it seems that the flow velocity could be

very much greater than imposed on the sample. Critical velocities of super-

fluid helium in channels4 are of order of 1m/sec. Hence, a simple model is

of a coordinated melting-freezing oscillation, with mass being transported

by superfluid through a grain boundary. This oscillation could be tuned to

be in resonance with the TO frequency by the motion of 3He impurities and

is controlled by the strain fields in the crystal produced by the oscillations.

PIMC has been used to look at crystal grain boundaries,29 but it is not

obvious if such calculations which assume equilibrium, are relevant to the

experimental situation.
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The diffusion quantum Monte Carlo method is extended to solve the old the-
oretical physics problem of many-electron atoms and ions in intense magnetic
fields. The feature of our approach is the use of adiabatic approximation wave
functions augmented by a Jastrow factor as guiding functions to initialize the
quantum Monte Carlo prodecure. We calculate the ground state energies of
atoms and ions with nuclear charges from Z = 2, 3, 4, . . . , 26 for magnetic field
strengths relevant for neutron stars.

Keywords: Quantum Monte Carlo simulation; Atoms; Neutron stars; Magnetic
fields.

1. Introduction

The discovery of features in the X-ray spectra of the thermal emission spec-

tra of the isolated neutron star 1E 1207 (Refs. 1,2) and three other isolated

neutron stars has revived the interest in studies of medium-Z elements in

strong magnetic fields. The reason is that the observed features could be due

to atomic transitions in elements that are fusion products of the progenitor

star. However, to calculate synthetic spectra for model atmospheres, and

thus to be in a position to draw reliable conclusions from observed spec-

tra to the elemental composition of the atmosphere and the distribution

of elements on different ionization stages, accurate atomic data for these

elements at very strong magnetic fields (∼ 107 to 109 T) are indispensable.

While the atomic properties of hydrogen and, partly, helium at such field

strengths have been clarified in the literature over the last 25 years (for a

detailed list of references see, e. g., Ref. 3), for elements with nuclear charges

Z > 2 only fragmentary atomic data exist with an accuracy necessary for

the calculations of synthetic spectra.
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We have tackled3 the problem by adapting the diffusion Monte Carlo

method (DQMC)4–6 to the case of neutron star magnetic fields. This

method has the advantage that ground-state energies can be determined

practically free from approximations.

2. DQMC for Neutron Star Magnetic Fields

The basic idea of DQMC is to identify the ground state wave function

Φ0 (R, t) (R = (r1, . . . , rN )) of an N -body Hamiltonian Ĥ with a particle

density whose correct distribution is found by following the random walk of

many test particles (“walkers”) in imaginary time in 3N -dimensional con-

figuration space. To reduce fluctuations one works with a density distribu-

tion f(R, τ) ≡ Ψ(R, τ)ΨG(R), where ΨG is a given guiding function used

for importance sampling. The density distribution f obeys a drift-diffusion

equation in imaginary time. Because the importance-sampled Green’s func-

tion is an exponential operator, one can expand it in terms of a Euclidean

path integral. For sufficiently small time steps one can write down accurate

approximations to the Green’s function, and sample it with diffusion Monte

Carlo.3–6

2.1. Choice of the guiding functions

The choice of the guiding function is crucial for the success of the DQMC

procedure. We take the guiding function Ψad
G as a Slater determinant of

single-particle orbitals each of which is a product of a Landau state in the

lowest level with a given magnetic quantum number and an unknown lon-

gitudinal wave function (“adiabatic approximation”7). The different longi-

tudinal wave functions are obtained selfconsistently by an iterative solution

of the Hartree-Fock equations using B-splines on finite elements.

2.2. Jastrow factor

To incorporate correlation effects it is common to multiply the guiding

function by a Jastrow factor, ΨG = ΨJFΨad
G = e−U(R)Ψad

G . We adopt the

form

U = −1/4

N∑

i<j

rij/(1 +
√
β rij) + Z

N∑

i=1

ri/(1 +
√
β ri) , (1)

where β is the magnetic field strength in atomic units (β = B/B0, B0 =

4.701× 105 T). This leads to modifications of the adiabatic approximation

guiding functions only at small distances, of the order of the Larmor radius.
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3. Results and Discussion

As a representative example, Fig. 1 shows for the ground state of neutral

iron (Z = 26) atB = 5×108 T the typical flow of a diffusion quantum Monte

Carlo simulation. Ions can be treated without additional complication in

the same way.3 The figure depicts the energy offset ET, the block energy

EB and the averaged block energy 〈EB〉 as a function of the number of

blocks performed.

The complete simulation goes through three stages. During the first

100 blocks, a variational quantum Monte Carlo calculation (VQMC) is per-

formed. Since the adiabatic approximation guiding wave function is aug-

mented by the Jastrow factor, the VQMC calculation already lowers the

energy in comparison with the initial adiabatic approximation result. This

stage is followed, in the next 300 blocks, by a fixed-phase diffusion quantum

Monte Carlo (FPDQMC) simulation. It is seen that the onset of the sim-

ulation leads to a considerable drop in the energy. Finally, in the last 300

blocks a released-phase diffusion quantum Monte Carlo (RPDQMC) simu-

lation is carried out, which still slightly lowers the averaged block energy, by

roughly 0.1 per cent. The dashed vertical lines in Fig. 1 indicate the blocks

where dynamical equilibrium of the walkers is reached. The relatively small

difference between the fixed-phase and the released-phase results indicates

that the phase of the adiabatic approximation wave function already well

reproduces the phase of the ground-state wave function. The small fluctua-

tions of the individual block energies EB evident in Fig. 1 are characteristic

of diffusion quantum Monte Carlo simulations. It is also seen, however, that

the averaged block energies 〈EB〉 quickly converge to constant values in all

three stages of the simulation. Our final RPDQMC result for the energy is

E0 = −109.079 keV and lies well below the density functional (DF) value.

The standard deviation of the block energies at the end of the simulation

in this case is σ = ±0.186 keV.

Table 1 lists the results for all elements from helium to iron at the

magnetic field strength B = 108 T. The table contains in the first three

columns the results of the three stages of the simulation and in the fourth

column the energy values in adiabatic approximation calculated with our

own Hartree-Fock finite-element method HFFEM. Literature values ob-

tained by Ivanov and Schmelcher11 (2DHF), by Mori and Hailey8 (MCPH3,

multi-configurational perturbative hybrid Hartree-Hartree-Fock) and the

results of density functional calculations9,10 (DF) are given in the remain-

ing columns. The numbers in brackets attached to the HFFEM, 2DHF,

MCPH3 and DF results designate the number of electrons occupying an
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Fig. 1. Behavior of the block energy EB (ragged curve) and the averaged block energy
〈EB〉 (smooth curve) in the DQMC simulation for the ground-state energy of neutral iron
(Z = 26) at B = 5×108 T as a function of the number of blocks. In each block, 200 time
steps ∆τ = 5×10−6 a.u. were performed. (HFFEM (top horizontal line): energy value in

adiabatic approximation; DF (second horizontal line from top): density functional result
of Ref. 9; MCPH3 (third horizontal line from top): result of Ref. 8).

excited hydrogen-like single-particle longitudinal state. It can be seen that

already the fixed-phase results lie slightly below the values that were ob-

tained using the 2DHF method. The comparison with the results of the

MCPH3 method shows that our RPDQMC energy values generally lie be-

low those results, but there are also exceptions where our results lie above

the MCPH3 energies. This may be due to the fact that the hybrid method

is not self-consistent, since it evaluates the exchange energy in first-order

perturbation theory in a basis of Hartree states and it does not include the

back-reaction of the excited Landau states whose admixtures are taken into

account perturbatively on the effective interaction potentials. Therefore the

method need not necessarily produce an upper bound on the energy.

The comparison with the results of the DF calculations shows that these

yield lower ground state energies at small nuclear charge numbers than

our RPDQMC results, while for large Z the reverse is the case. The DF
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Table 1. Energy values in keV for the ground states from helium to iron at B = 108 T. Parameters of the
QMC simulations: 500 walkers, time steps ∆τ(Z = 2, . . . , 10) = 10−4 a.u., ∆τ(Z = 11, . . . , 19) = 5× 10−5 a.u.,
∆τ(Z = 20, . . . , 26) = 2 × 10−5 a.u. (discussion see text).

Z RPDQMC FPDQMC VQMC HFFEM 2DHF MCPH3 DF

2 −0.5827 −0.5827 −0.5791 −0.5754 −0.57999 −0.5766 −0.6035b

3 −1.230 −1.229 −1.220 −1.211 −1.22443 −1.214
4 −2.081 −2.080 −2.065 −2.044 −2.07309 −2.056
5 −3.122 −3.119 −3.095 −3.057 −3.10924 −3.085
6 −4.338 −4.331 −4.294 −4.236 −4.31991 −4.288 −4.341b

7 −5.716 −5.712 −5.660 −5.568 −5.69465 −5.657
8 −7.252 −7.246 −7.173 −7.045 −7.22492 −7.176
9 −8.938 −8.930 −8.834 −8.658 −8.90360 −8.845
10 −10.766 −10.753 −10.630 −10.400 −10.72452 −10.664 −10.70a

11 −12.725 −12.716 −12.569 −12.266 −12.625
12 −14.827 −14.817 −14.618 −14.249 −14.745
13 −17.061 −17.043 −16.813 −16.352[1] −16.973[1]
14 −19.480 −19.461 −19.185 −18.619[1] −19.408[1] −19.09a

15 −22.022 −22.009 −21.665 −21.002[1] −21.987[1]
16 −24.700 −24.668 −24.275 −23.482[2] −24.718[2]
17 −27.541 −27.523 −27.044 −26.130[2] −27.618[2]
18 −30.529 −30.509 −29.950 −28.890[2] −30.766[2]
19 −33.650 −33.605 −32.999 −31.756[2] −34.036[2]
20 −36.891 −36.881 −36.145 −34.750[3] −37.500[3] −35.48a

21 −40.296 −40.274 −39.458 −37.865[3]
22 −43.867 −43.821 −42.900 −41.083[3]
23 −47.526 −47.490 −46.458 −44.426[4]
24 −51.360 −51.271 −50.102 −47.877[4]
25 −55.279 −55.224 −53.915 −51.430[5]
26 −59.366 −59.311 −57.913 −55.108[5] −56.01a

Note: aRef. 9. bRef. 10.
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results listed in Table 1 differ in the choice of the exchange functional. Given

this restriction, it cannot be ensured that the DF calculations in all cases

produce an upper bound on the ground state energy in magnetic fields as

do the ab-initio methods used in this work or in Ref. 11.

4. Conclusions

We have extended the released-phase diffusion Monte Carlo method to the

calculation of the ground state energies of atoms and ions from helium to

iron neutron star magnetic field strengths by using adiabatic approximation

wave functions as guiding wave functions.3 However, for matching observed

thermal spectra from isolated neutron stars, wavelength information, and

thus energies of excited states, are requisite. Jones et al.6 have shown a

way how to calculate excited states of small atoms in strong magnetic fields

using the correlation function Monte Carlo method.5 The challenge remains

to transfer their method to the DQMC simulations presented in this paper,

and to calculate excited states of large atoms in intense fields.
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Hard and soft disks in external periodic (light-) fields show rich phase diagrams
including freezing and melting transitions when the density of the system is
varied. Monte Carlo simulations for detailed finite-size scaling analysis of var-
ious thermodynamic quantities like the order parameter, its cumulants, etc.
have been used in order to map the phase diagram of the system for various
values of the density and the amplitude of the external potential.

Interpreting hard disks as the simplest model of an atomic fluid, quantum
effects on the phase diagram are investigated by path integral Monte Carlo
simulations.

Keywords: Monte Carlo simulation; Colloids; Phase transition.

1. Introduction

Colloidal dispersions can roughly be classified as solutions of mesoscopic

solid particles with a stable (non-fluctuating), often spherical shape, em-

bedded in a molecular fluid solvent. Examples are aqueous suspensions of

polystyrene, latex spheres, or rods. These particles can be prepared and

characterized in a controlled way, the interactions are tunable, and many

systems can be well approximated as hard sphere- (in three dimensions) and

hard disk- (in two dimensions) potentials. Due to their simplicity, these sys-

tems can be considered as the simplest complex fluids and as prototypes

of soft matter systems. They are nearly ideal model systems in statistical

physics and are, thus, sometimes “bridges” to the “world” on nanometer

length scales.

Systems such as hard disks are not only models for suspensions of col-

loidal particles (with diameters on the µm scale) which behave according to

classical statistical mechanics under all circumstances of practical interest

(for examples see Refs. 1–3), but also are the simplest possible model for flu-
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ids formed by atoms or small molecules (with diameters on the Angstrom

scale). Using the latter interpretation, it makes sense to explore the ex-

tent to which quantum statistical mechanics rather than classical statisti-

cal mechanics is needed to understand their behavior. Quantum effects on

the phase diagram are analyzed by path integral Monte Carlo simulations

(PIMC).

2. Melting of Hard Disks in Two Dimensions

One of the first continuous systems to be studied by computer simulations4

is the system of hard disks of diameter σ interacting with the two-body

potential

φ(r) =

{∞ r ≤ σ

0 r > σ ,
(1)

where, σ, taken to be 1 in the rest of the paper, denotes the hard disk

diameter, which sets the length scale for the system, and the energy scale

is set by kBT = 1. Despite its simplicity, this system was shown to undergo

a phase transition from solid to liquid as the density ρ was decreased. The

reason for this phase transition with increasing density roughly is the higher

entropy of the solid structure at high densities, where the particles can

fluctuate around their average lattice positions, compared to the entropy of

a liquid, in which the particles have positional disorder, but are essentially

locked and cannot explore much phase space anymore.

The solid-liquid transition of hard disk systems has been discussed con-

troversially in the literature of the last 40 years. By application of a new

finite-size scaling procedure5 for the computation of elastic constants, this

transition has been analyzed again.6,7

According to our results the behavior of the system is consistent with the

predictions of the KTHNY theory.8,9 The core energy amounts to Ec > 2.7

at the transition, so KTHNY perturbation theory is valid, though numerical

values of non universal quantities may depend on the order of the perturba-

tion analysis. The solution of the recursion relations shows that a KTHNY

transition at pc = 9.39 preempts the first-order transition at p1 = 9.2. Since

these transitions, as well as the hexatic-liquid KTHNY transition lie so

close to each other, the effect of, as yet unknown, higher order corrections

to the recursion relations may need to be examined in the future. Due to

this caveat, our conclusion that a hexatic phase exists over some region of

density exceeding ρ = 0.899 still must be taken as preliminary.7
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Fig. 1. Schematic picture of the (two-dimensional) system in an external periodic field,
periodic in x-direction and with amplitude V0.

3. Phase Transitions in External Periodic Potentials

3.1. Model and classical systems

The liquid-solid transition in two dimensional colloidal systems under the

influence of external modulating potentials has recently attracted a fair

amount of attention from experiments,10–16 density functional theory,17,18

dislocation unbinding calculations8,9 and computer simulations.19–23 The

field acts on the particles like a commensurate, one dimensional, modulating

potential, see Fig. 1.

One of the more surprising results of these studies is the fact that there

exist regions in the phase diagram over which one observes reentrant13–15

freezing/melting behavior. As a function of the laser field intensity the sys-

tem first freezes from a modulated liquid to a two dimensional triangular

solid. This effect is described in the literature as Laser Induced Freezing

(LIF). A further increase of the intensity confines the particles strongly

within the troughs of the external potential, suppressing fluctuations per-

pendicular to the troughs, which leads to an uncoupling of neighboring

troughs and to re-melting. This effect is described in the literature as Laser

Induced Melting (LIM).

We have analyzed the phase diagrams of two dimensional systems of

hard24–27 and various soft disks27–29 in an external sinusoidal potential,

V (x, y) = V0 sin

(
2π

λ
x

)
, (2)
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see Fig. 1, which is periodic in the x-direction and constant in the y-

direction, by Monte Carlo simulations. The system is characterized by

the reduced density ̺∗ = ̺σ2 and the reduced potential strength V ∗
0 =

V0/(kBT ), where kB is the Boltzmann constant and T the temperature.

We find an increase of the freezing region with the range of particle inter-

action, and a decrease of the reentrance region for the most long ranged

potential 1/r6. The relative extent of the reentrance region is closest to the

experimental data for the DLVO or the 1/r12- potentials.31

3.2. Quantum effects

Besides these classical studies we explored the validity of our results on

atomic length scales. In this context we were able to investigate the prop-

erties of quantum hard disks with a finite particle mass m and interaction

diameter σ in an external periodic potential by path integral Monte Carlo

simulations (PIMC).30,31 PIMC simulations32–37 have been successfully ap-

plied to the analysis of quantum effects in solids,38–40 pore condensates,41

fluids,42,43 and adsorbed molecular layers.44,45

Canonical averages < A > of an observable A in a N-particle system

with Hamiltonian H = Ekin + Vpot in the volume V are given by:

< A >= Z−1 Sp [Ae−βH] . (3)

Here Z = Sp e−βH is the partition function and β = 1/kBT the inverse

temperature. After the application of the Trotter product formula,

e−βH = lim
P→∞

(
e−βEkin/P e−βVpot/P )

)P
, (4)

we obtain the path integral formulation of the partition function:

Z =
1

N !
lim
P→∞

(
mP

2πβ~2

)3NP/2 P∏

S=1

∫
d{r(S)}

×exp

[
−

N∑

J=1

mP

2~2β
(r

(S)
J − r

(S+1)
J )2 − β

P
Vpot({r(S)})

]
. (5)

Here m is the particle mass, P the Trotter number, and r
(S)
J the coordi-

nate of particle J at Trotter index S, and periodical boundary conditions

apply, i.e. P + 1 = 1. This form of the partition function makes it possible

to perform Monte Carlo simulations with increasing values of P in order

to approximate the quantum limit P → ∞. The effects of quantum statis-

tics on the phase diagram are neglected here, since they will play only a

significant role at much lower temperatures as studied here.
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Fig. 2. Schematic picture of a system with N = 3 particles and Trotter number P = 4.
All harmonic chains for each quantum particle are shown, and for the Trotter index
S = 1 and S = 3 the interacting “particles”.

with ext. potential

σ

without ext. potential

σx

x

Fig. 3. Schematic picture of the effect of an external periodic potential of the form
V (x, y) = V0 sin(x/a) on the “effective” diameter of quantum hard disks.

In Eq. (5) we see that in the path integral formalism each quantum

particle J (for finite P -values) can be represented by a closed quantum

chain of length P in coordinate space, where the classical coordinate of the

point r
(S)
J on this chain at Trotter index S has a harmonic interaction to

the nearest neighbors on the chain at r
(S+1)
J and r

(S−1)
J . An interaction

between different quantum particles only happens between particles with

coordinates {r(S)} at the same Trotter index S. A schematic picture of a
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Fig. 4. Phase diagram in the density (ρ∗ = ρσ2)- potential amplitude (V0/kBT )- plane
for a system with N = 400 particles, m∗ = mTσ2 = 10.000 (“qm”) and m∗ = ∞
(classical) and Trotter order P = 64.30,31

system with N = 3 particles and P = 4 is shown in Figure 2.

Due to the quantum delocalization effect a larger effective particle di-

ameter results, and in the external potential this delocalization is asym-

metrical: in the direction perpendicular to the potential valleys we obtain

a stronger particle localization than parallel to the valleys, see Fig. 3. As a

result the reentrance region in the phase diagram is significantly modified

in comparison to the classical case, see Fig. 4.

Due to the larger quantum “diameter” the transition densities at small

potential amplitudes are reduced in comparison to the classical values. At

large amplitudes the classical and quantum transition densities merge. This

effect is due to the approach of the effective quantum disk size to the clas-

sical value in the direction perpendicular to the potential valleys and leads

to the surprising prediction that the quantum crystal in a certain density

region has a direct transition to the phase of the modulated liquid by an

increase of the potential amplitude. This scenario is classically not known

in the classical case.30,31
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By Hamiltonian path-integration a purely-quantum, self-consistent, spin-wave
approximation can be developed for spin models on a lattice, that finally allows
to map the original quantum problem to a classical one ruled by an effective

classical spin Hamiltonian. Such approach has revealed especially valuable to
investigate systems with S > 1/2 which cannot be easily addressed by other
methods. This has made possible to quantitatively interpret experimental data
for intermediate-spin compounds and to study how different observables reach
the classical limit by increasing S. Here, we focus on the spin-flop phase of a
quantum 2D antiferromagnet frustrated by an applied magnetic field that acts
as an effective easy-plane anisotropy and determines Berezinskii-Kosterlitz-
Thouless (BKT) behavior. By acting on the field one can tune the BKT tran-
sition temperature, giving a unique opportunity to observe the otherwise elu-
sive BKT critical behavior in real magnetic systems. The calculated data are
shown to well concur with the experimental findings for the S=5/2 compound
manganese-formate-dihydrate.

Keywords: Hamiltonian path integral; Spin system; Magnet; BKT transition.

1. Introduction

In recent years a huge amount of data has been accumulated on low-

dimensional magnetic systems like spin-chains, magnetic multilayers or

quasi-2D magnetic compounds. When a quantitative interpretation of ex-
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perimental data at temperatures of the order of the interaction energy is

required, one of the difficulties to be faced is that in many real compounds

the magnetic ions carry intermediate spin values: in this case many of the

common theoretical approaches become ineffective. For instance, quantum

Monte Carlo simulations become very demanding in terms of computing

resources and simulation time when values of spin higher than 1/2 are con-

sidered; at the same time, 1/S perturbation expansions may require too

many terms to reach convergence or even become useless for describing

strongly nonlinear effects like those due to soliton or vortex excitations. In-

deed, the investigation of quasi-2D compounds is made even more intriguing

by the presence of the topological phase transition named after Berezinskii,

Kosterlitz and Thouless (BKT), which is the only phase transition expected

in a purely 2D easy-plane magnet. The ‘pure-quantum self-consistent har-

monic’ approximation1 (PQSCHA) overcomes these difficulties by giving an

effective classical Hamiltonian which incorporates the effects of quanticity in

its renormalized interaction parameters: for quasi-2D isotropic Heisenberg

systems such approximation has revealed its power by allowing a unified

interpretation of experimental and numerical simulation data in a broad

range of temperature and spin values;2 moreover, its ability to retain the

full classical nonlinearity makes it especially suitable to study strongly non-

linear phenomena as the BKT transition.

Despite magnetic systems being the prototypical models usually em-

ployed to illustrate this interesting topological critical behavior, an unam-

biguous observation of the BKT transition in real compounds is hindered,

when approaching the critical temperature from above, by the onset of 3D

order due to the residual interplane interactions. However, if one considers

that a magnetic field H acts as an effective easy-plane anisotropy on an

antiferromagnet and gives rise to a peculiar BKT phase diagram, Tc(H), it

appears that one can prove BKT behavior for a real compound by checking

that the critical curve closely follows Tc(H).

2. 2D Antiferromagnet in a Field and BKT Transition

This system is described by the Hamiltonian

Ĥ =
J

2

∑

〈ij〉
Ŝi·Ŝj − gµ

B
H
∑

i

Ŝxi , (1)

where the spins {Ŝi} lie on a square lattice and the first sum is over all

nearest-neighbor pairs ij; for field H larger than the exact saturation value

Hs = 8JS/gµB its ground state is fully aligned.
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θ θ

H

Fig. 1. The minimum energy configuration of the 2D AFM in a field, and the represen-
tation of the sublattice reflection, Eq. (2).

In the corresponding classical model the minimum-energy configuration

for field H = 0 corresponds to antiparallel spins in whatever direction, while

a finite H<Hs favors a canted configuration, as shown in Fig. 1, with

sin θ=H/Hs; the Sx components are frozen and the system symmetry is

reduced to O(2) (rotations in the yz-plane), i.e., the field acts as an ef-

fective easy-plane anisotropy: therefore, a BKT transition occurs, whose

critical temperature has a distinctive dependence on H . Quantum Monte

Carlo simulations3 for S=1/2 prove that the quantum antiferromagnet

also shows field-tunable BKT behavior: by the effective classical Hamilto-

nian one can obtain the quantum phase diagram Tc(S,H) for any value of

S just knowing4 the classical curve T
(cl)
c (H).

3. Effective Hamiltonian for Canted Configurations

The approach for deriving the effective Hamiltonian corresponding to

Eq. (1) is a little more complicated than that described, e.g., in Ref. 5,

since one must apply the Holstein-Primakoff transformation (HPT) after

performing two canonical transformations in spin space, namely, a reflec-

tion of the in-plane spin components in one sublattice, such that in the

minimum-energy configuration all spins are aligned (see Fig. 1),
(
Ŝxi , Ŝ

y
i , Ŝ

z
i

)
−→

(
Ŝxi , (−)iŜyi , (−)iŜzi

)
(2)

and a rotation such that the spin z-axis points in the canted direction:

Ŝxi −→ cos θ Ŝxi + sin θ Ŝzi , Ŝzi −→ − sin θ Ŝxi + cos θ Ŝzi . (3)

After these transformations, one can then apply the HPT with ‘quantization

axis’ z, and eventually proceed with the PQSCHA recipe as in Ref. 5, taking

into account that the canting angle θ is to be self-consistently determined

by requiring the vanishing of the linear terms in the bosonic effective Hamil-

tonian. The rest of the calculations involves the application of the inverse
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HPT to classical spin variables in order to recast the effective Hamiltonian6

in the surprisingly simple forma

Heff =
J

2

∑

〈ij〉
Si·Sj − gµBH

∑

i

Sxi , (4)

in terms of the classical spins Si = (Sxi , S
y
i , S

z
i ). Remarkably, all quan-

tum effects are included in the reduction of their classical-limit length

S̃ = S+1/2 by a factor κ< 1, i.e. |Si| = S̃ κ(S, t, h) . Using the energy

scale JS̃2 to define the dimensionless temperature and field, t=T/JS̃2 and

h= gµ
B
H/4JS̃, respectively, one has for κ the following expression

κ(S, t, h) = 1 − 1

2S̃ N

∑

k

ak

bk
(1 + γk)

(
coth fk−

1

fk

)
, (5)

where γk =(cos kx + cos ky)/2, fk = ak bk/2S̃ t, a2
k =4 κ (1−γk), and

b2k = 4 κ
[
1+(1−h2/2κ2)γk

]
. The above system of equations is self-consistent

and can be easily solved numerically. Given its classical nature, when deal-

ing with Heff it is more convenient to express it in terms of unit vectors si

as

Heff

JS̃2
=
jeff
2

∑

〈ij〉
(si·sj − 2 heff s

x
i ) , (6)

with the effective exchange jeff(S, t, h)= κ2 and field heff(S, t, h)=h/κ. The

saturation field in reduced units is h
S
=2S/S̃. It is apparent from Eq. (6)

that the quantum critical line tc(S, h) is connected to its known classical

counterpart t
(cl)
c (h) by

tc(h) = jeff(tc, h) × t(cl)c

(
heff(tc, h)

)
. (7)

This equation can be solved numerically for any spin value using a fitted

function for the classical data, and gives results that agree even with those

from quantum Monte Carlo3 in the extreme case S= 1/2, as can be seen in

Fig. 2.

4. Theory Versus Experiment

We also performed Monte Carlo simulations with Heff and calculated the

magnetic specific heath cm(t, h) and the uniform susceptibility χxu(t, h)

aWe omitted an additive free-energy term, irrelevant in calculating averages with Heff .
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Fig. 2. Theoretical phase diagram for different spin values; classical data from Ref. 4,
quantum MC data for S= 1/2 from Ref. 3.
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Fig. 3. Theoretical vs experimental data for temperature behavior of the magnetic
specific heath cm at H = 50 kG and of the uniform susceptibility χx

u at H = 40 kG.

for S=5/2, in order to compare with experimental data7 for the com-

pound Mn(HCOO)22H2O (manganese formate dihydrate, or briefly Mn-f-

2h), whose spin structure is composed of alternating antiferromagnetic and

paramagnetic Mn layers with a tiny interlayer interaction. The former ones

can be approximated as square-lattice QHAF, with a small anisotropy that

can be neglected when the magnetic field is applied. The measured satura-

tion field7 H
S
=105±5 kG can be used to estimate the exchange constant

J = gµ
B
H

S
/8S=0.70±0.03 K.

In Fig. 3 the measurements at intermediate field values are reported

and compared with the corresponding theoretical curves, showing that the

agreement is very good if one accounts for the uncertainty in the estimated
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Fig. 4. Location of the maxima of the specific heat cm(h) and of the susceptibility χx
u(h)

measured for Mn-f-2h,7 compared with the theoretical data for the 2D AFM for S= 5/2,
assuming J =0.70± 0.03. Generally, in BKT systems these maxima usually occur at a
temperature 10%–20% above the critical one (line).

exchange constant. In particular, as proposed in Ref. 7, one can draw a kind

of ‘phase diagram’ by reporting the maxima of cm(t, h) and χxu(t, h) in the

h− t plane. We remind that in BKT systems such quantities are not critical

and display maxima slightly above (by 10%-20%) the critical temperature

tc(h). This is indeed what can be observed in Fig. 4, confirming that the

overall behavior of the measured data follows the calculated BKT curve

and hence that the experiments indeed observed a BKT system.
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A simple microcanonical strategy for the simulation of first-order phase tran-
sitions is presented. The method does not require iterative parameters opti-
mization, nor long waits for tunneling between the ordered and the disordered
phases. It is illustrated in the Q-states Potts model in two dimensions for which
several exact results are known, and where a cluster method nicely works.

Keywords: Numerical simulations; Order-disorder transformations.

1. Introduction

Due to phase coexistence, systems undergoing (Ehrenfest) first-order phase

transitions1 are a challenge for Monte Carlo simulations,2 specially for large

linear system size, L (or space dimension, D). Correct sampling requires

that the system tunnels between coexisting pure phases. It does so by build-

ing an interface of size L, with a free-energy cost of ΣLD−1 (Σ: surface

tension). Therefore, the natural time scale for the simulation grows with L

as exp[ΣLD−1], and we suffer exponential critical slowing down (ECSD).

The invention of multicanonical Monte Carlo,3 and the variants known

as flat-histogram methods,4 was a major step forward. The multicanonical

probability for the energy density is constant in the energy gap eo<e<ed

(eo and ed: energy densities of the coexisting low-temperature ordered phase

and high-temperature disordered phase). The system performs a random

walk in the energy gap. Yet, one-dimensional random walk expectations are

misleading: the state of LD spins cannot be encoded into just one number

(the energy). Topologically diverse configurations may have quite the same

energy, see Fig. 1. So, flat-histogram methods suffer ECSD.5

Recently, a microcanonical method to simulate first-order transitions

without iterative parameter optimization nor energy random walk was pro-
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Fig. 1. L = 1024 equilibrium configurations for the Q=10, D=2 Potts model, at the
two sides of the droplet-strip transition.6 Periodic boundary conditions reduce the surface
energy of the strip-like ordered domain (left), as compared with the droplet (right).

posed7 (and tested in the Potts model8). There are two practical advan-

tages. First, microcanonical simulations9 are feasible at any value of e within

the gap. Second, Fluctuation-Dissipation Eqs. (5) and (6) define the (in-

verse) temperature β̂, a function of e and the spins, playing a role dual to

that of e in the canonical ensemble. Since the microcanonical mean value

〈β̂〉e is almost constant over the energy gap, it is easily interpolated from a

grid. Please mind that, at variance with β̂, β = 1/T is a parameter (rather

than a function) in the canonical ensemble.

The microcanonical method can be regarded as an artifact to perform

canonical computations in large lattices (see also Janke10). Yet, a micro-

canonical point of view suggests a new interpretation of quenched averages

in disordered systems,11 and avoids the rare-events intrinsic to the canonical

ensemble.12 Here, a simple presentation is made of this new approach.

2. Our Microcanonical Setting

As in Hybrid Monte Carlo,13 we addN real momenta, pi, to ourN variables,

σi (named spins here). We work in the microcanonical ensemble for the

{σi, pi} system. Let U be the spin Hamiltonian. Our total energy is

E =
N∑

i=1

p2
i

2
+ U , (e ≡ E/N , u ≡ U/N) . (1)

In the canonical ensemble, the {pi} are a trivial Gaussian bath decoupled

from the spins (at inverse temperature β, one has 〈e〉β = 〈u〉β + 1/(2β) ).



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Microcanonical method for the study of first-order transitions 337

In a microcanonical setting, the crucial role is played by the entropy

density, s(e,N), given by (
∑

{σi}: summation over spin configurations)

exp[Ns(e,N)] =

∫ ∞

−∞

N∏

i=1

dpi
∑

{σi}
δ(Ne− E) . (2)

Integrating out the {pi} using Dirac’s delta function in (2) we get

exp[Ns(e,N)] =
(2πN)

N
2

NΓ(N/2)

∑

{σi}
ω(e, u,N) , (3)

(ω(e, u,N) ≡ (e − u)
N−2

2 θ(e − u)). The step function, θ(e − u), enforces

e > u. Equation (3) suggests to define the microcanonical average at fixed

e of any function of e and the spins, O(e, {σi}), as9

〈O〉e ≡
∑

{σi}
O(e, {σi})ω(e, u,N)/

∑

{σi}
ω(e, u,N) . (4)

We use Eq. (3) to compute ds/de:7

ds(e,N)

de
=〈β̂(e; {σi})〉e , β̂(e; {σi})≡

N − 2

2N(e− u)
. (5)

Fluctuation-Dissipation follows by taking the derivative of Eq. (4):

d〈O〉e
de

=

〈
∂O

∂e

〉

e

+N
[
〈Oβ̂〉e − 〈O〉e〈β̂〉e

]
. (6)

A histogram method allows to obtain an integral version of (6), to extrap-

olate 〈O〉e′ from simulations at a neighboring e .7

3. Microcanonical Data Analysis

The connection between the canonical and the microcanonical ensemble

follows from the saddle-point approximation for the partition function,

〈β̂〉〈e〉β = β .a Yet, at a first-order phase transition 〈β̂〉e is not a mono-

tonically decreasing function of e, Fig. 2, and the saddle-point equation

〈β̂〉e=β has several roots.

We start from the exact relation between the canonical probability den-

sity function for e, P
(L)
β (e) ∝ exp[N(s(e,N) − βe)], and 〈β̂〉e, Eq. (5):

logP
(L)
β (e2) − logP

(L)
β (e1) = N

∫ e2

e1

de
(
〈β̂〉e − β

)
. (7)

Equation (7) allows us to interpret several saddle points:

aA relation best known as the second law of thermodynamics: Tds = de .
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Fig. 2. Excess of 〈β̂〉e over βL=∞
c vs. e, for the Q = 10, D = 2 Potts model and two

system sizes. The local extrema of 〈β̂〉e are the L-dependent spinodal points.1

• The rightmost root, edL(β), is a local maximum of P
(L)
β corresponding

to the disordered phase.

• The leftmost root, eoL(β), is a local maximum of P
(L)
β corresponding to

the ordered phase.

• The second rightmost root, e∗L(β), is a local minimum of P
(L)
β .

Maxwell’s construction yields the finite-system critical point, βLc :

0 =

∫ edL(βLc )

eoL(βLc )

de
(
〈β̂〉e − βLc

)
, (8)

which coincides with the standard canonical estimator,14 P
(L)
βLc

(edL(βLc )) =

P
(L)

βLc
(eoL(βLc )). In a cubic box the surface tension is estimated asb

ΣL =
N

2LD−1

∫ edL(βLc )

e∗L(βLc )

de
(
〈β̂〉e − βLc

)
. (9)

Also the specific heat for each of the coexisting phases can be easily ob-

tained.7 Of course, the L-dependent estimates for ΣL, βLc , etc. need to be

bIn the strip phase (Fig. 3) two interfaces form, hence15 P
(L)

βLc
(edL(βL

c ))/P
(L)

βLc
(e∗L(βL

c )) =

exp(2ΣLL
D−1) .
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extrapolated to L→ ∞.15,16 Our analysis was presented elsewhere.7

4. Simulations

We now specialize to the Potts model.8 The spins σi = 0, 1, . . . , Q − 1 ,

live on the N = LD nodes of a (hyper)cubic lattice of side L with periodic

boundary conditions, and interaction (〈ij〉: lattice nearest-neighbors)

U = −
∑

〈ij〉
δσi,σj . (10)

The Metropolis simulation of Eq. (4), as applied to (10), is straightforward.

Yet, since one needs to reach topologically non-trivial configurations such

as those in Fig. 1, it is preferable to have a cluster algorithm.17–20 This can

be achieved also for the microcanonical ensemble.7 Although not rejection-

free, acceptance rates are well above 50% both for a single-cluster variant,7

or for the Swendsen-Wang-like update.11

The cluster method is derived from a canonical probability at in-

verse temperature κ , exp(−κNu) , that tries to falsify the microcanonical

weight. Perhaps unsurprisingly, κ = 〈β̂〉e maximizes the acceptance.c The

Swendsen-Wang like algorithm consists of three steps:d

(1) Trace clusters canonically: adjacent spins belong to the same cluster

only if equal and, in that case, with probability 1−exp(−κ).
(2) For each cluster, choose with uniform probability the common value for

all spins that belong to it.

(3) Let w(e, u, κ) = (e − u)
N
2 −1 exp(κNu)θ(e − u). Accept the new spin

configuration, generated in step (2), with the Metropolis probability:

p(e, κ)=min{1, w(e, ufinal, κ)/w(e, uinitial, κ)} .

The single-cluster variant,7 that is also analogous to the canonical algo-

rithm,18 was used to generate the data in Figs. 2 and 3. For disordered

systems,11 the Swendsen-Wang-like alternative is preferable.

In practice, what one has is a grid of values {ei, 〈β̂〉ei}, from which

the function 〈β̂〉e has to be interpolated. A cubic spline,e combined with a

Jack-knife method to estimate errors,7 works nicely for small lattices, such

as those of Fig. 2. However, in large enough systems clear droplet-strip

cA short Metropolis run provides a first working κ estimate.
dIt is easy to adapt the recursive C routines in Amit and Martin-Mayor20 to this problem.
eYou are advised not to use the so called natural spline, that enforces 0 = d2〈β̂〉e/de2,
both at the largest and smallest e value in the grid. Instead, we fixed the first derivative
at the borders, from a 3-point parabolic fit.
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Fig. 3. As in Fig. 2 for L = 512 and L = 1024. The flat central region is the strip
phase (the strip width, see Fig. 1, varies at fixed surface free energy). Lines (shown for
L = 1024) are the two interpolations used for L ≥ 512. We connect 3 independent cubic
splines, in the strip phase and in its sides, either by a linear function or by a step-like
1/100 power. Differences among the two interpolations are used to estimate the error
induced by the uncertainty in the location of the droplet-strip transitions.

transitions are visible, see Figs. 1 and 3, causing a strong Gibbs oscillation

phenomenon close to the discontinuities in 〈β̂〉e. Fortunately, this is fairly

easy to cure by first locating the jumps, and later on performing indepen-

dent interpolations on the e-intervals where the 〈β̂〉e function is smooth (for

technical details see caption to Fig. 3).

Following the steps outlined here, one can obtain an estimate for the

(inverse) critical temperature β∞
c = 1.426066(9),7 to be compared with the

exact result 1.4260624389 . . . .

5. Conclusions

We have briefly presented a general, powerful method to simulate first-order

transitions.7 The method has been already very successful11 on the study

of the highly non-trivial problem of first-order transitions in the presence

of quenched disorder.12 Hopefully, by now the reader will be convinced of

the intrinsic simplicity of this approach.
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Random graphs are widely used for modeling complex networks. Instead of con-
sidering many different models, to study dynamical phenomena on networks,
it is desirable to design a general algorithm which produces random graphs
with a variety of properties. Here we present a Monte Carlo method based on
a random walk in the space of graphs. By ascribing to each graph a statistical
weight we can generate networks of different types by tuning the weight func-
tion. The algorithm allows in particular to perform multicanonical simulations
known, e.g., from spin models.

Keywords: Complex networks; Random graphs; Monte Carlo methods; Multi-
canonical simulations.

Complex networks1 such as the Internet, citation networks, neural or

transportation networks are usually modeled by various classes of random

graphs. The word “random”means that the graph is built in some stochas-

tic process and is not fully deterministic. When one repeats the procedure

of generation, one obtains different graphs, so it is natural to speak about

an ensemble of random graphs. Therefore, in the language of statistical

physics we can say that each graph has a certain statistical weight which

determines the probability of its occurrence.

Many models were thought to mimic processes leading to the emer-

gence of networks observed in nature, but statistical weights resulting from

“physical”processes are usually not easy to guess. Sometimes, however, one

only needs to generate a network with known features, in order to study
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some process taking place on it, e.g., the Ising model. The problem can

then be formulated as follows: given a set of desired structural properties

of the network, how can one generate it? A good general-purpose algorithm

should be flexible to allow for the generation of trees, simple- or degenerated

graphs, to adjust specific features like the degree distribution or distribu-

tion of component sizes, and be easy to implement. In this short article we

present a Monte Carlo (MC) method performing this task, which has been

described in details in Ref. 2. Its computer implementation has been pre-

sented in Ref. 3. The idea is similar to that previously used for example in

simulations of simplicial quantum gravity, where different topologies were

obtained in a sort of Markovian process by performing local updates.

To introduce a statistical ensemble of graphs we need two ingredients:

a set of graphs and a set of statistical weights. Usually, one is interested in

simple graphs, that is graphs without multiple- and self-connections, with

given number of nodes N and links L. Thus, the set of all possible simple

graphs with labeled nodes is our starting point. This set can be further

restricted by demanding, e.g., that only trees, that is graphs without loops,

are allowed. Or, one can impose a causal labeling of nodes which leads to so-

called causal (growing) networks.4 On the other hand, one can relax these

constraints and allow to have multiple links, fluctuating N,L etc. Some of

the possible choices are discussed in Refs. 2 and 5.

The question of statistical weights is in fact a question about what fea-

tures are desired as “typical” in the ensemble of graphs. If one assumes

that all labeled graphs are equiprobable, one obtains the ensemble of max-

imally random graphs (Erdös-Rényi graphs). Another, non-trivial choice is

to ascribe to each graph α a product weight:

W (α) =
N∏

i=1

p(ki), (1)

where ki is the degree of the ith node and p(k) is some arbitrary function.

This leads to graphs with tunable degree distribution π(k) = p(k)k!, if the

mean degree k̄ = 2L/N is properly adjusted. By taking p(k) ∼= k−γ/k!
one can produce graphs with heavy tails2 in π(k). In a similar manner

one can alter the typical number of triangles T in the graph, by setting

W (α) = exp(−µT ), or to introduce correlations between node degrees.

As mentioned above, in a computer algorithm graphs can be recursively

generated through a Markov chain by consecutive local modifications. In

the simplest version, a new graph αt+1 is obtained from a previous one αt
by rewiring a single, randomly chosen link, to some randomly chosen node.
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The move is accepted with a Metropolis probability

P (αt → αt+1) = min

{
1,
W (αt+1)

W (αt)

}
, (2)

which ensures that graphs are generated with correct probabilities W (α).

To restrict the ensemble to simple graphs only, we reject moves leading

to multiple– or self–connections. To produce trees, only leaves (nodes with

degree one) should be rewired. To simulate graphs with fluctuating number

of links, or with fixed sequence of degrees, other moves are needed.2 Because

moves are local, consecutive graphs are correlated and one has to wait some

number of steps to get two (almost) uncorrelated configurations. The initial

graph can be chosen arbitrarily, for example as Erdös-Rényi graph with

given N,L.

The approach presented here offers the possibility of using more sophis-

ticated methods known, e.g., from MC simulations of spin systems. One of

them is the multicanonical simulation algorithm we consider here to study

systems with the degree distribution π(k) going over many orders of mag-

nitude. Suppose that in our ensemble (1) we have p(k) ∼ k−γk! which

in the thermodynamic limit N → ∞ leads to a power law: π(k) ∼ k−γ .
When N is finite, however, finite-size corrections appear and π(k) has a

cut-off. How does this cut-off scales with N for various graphs? To answer

this question, one needs to sample large degrees k which appear rarely and

therefore the tail of π(k) has poor statistics. To overcome this difficulty, we

introduce an additional weight r(α), so that each graph has now the weight

W (α)r(α), and the function r(α) is chosen to increase the probability in

the tail of π(k). During the simulation, node degrees are collected and their

probabilities of occurrence are reweighed by 1/r(α) in order to get π(k) for

the original ensemble. The function r(α) can depend only on the maximal

degree kmax, because it gives the most significant contribution to the tail.

Alternatively, in case of graphs where all nodes are statistically equivalent,

it can depend on the degree k of some node chosen at the beginning of

the simulation. The form of r(kmax) or r(k) can be iteratively obtained “on

the fly”.6 This allows one to study π(k) that are smaller than 10−40, and

networks of size N ≥ 40000, magnitudes that cannot normally be reached.

In Fig. 1 we show a comparison between π(k) obtained in a simple MC and

in a multicanonical simulation.

To summarize, we have proposed a method for generating graphs, sim-

ilar in spirit to that used, e.g., in simulations of quantum gravity. A new

graph is obtained by a local modification of the previous one, and the mod-

ification is accepted with the probability (2), so that graphs appear with



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Monte Carlo methods for generation of random graphs 345

1 10 100
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1 10 100
10

-40

10
-30

10
-20

10
-10

10
0

k

π
(k

)

Fig. 1. Example of π(k) for simple MC (squares) and multicanonical simulations (dotted
line) for N = 103. The network is defined to be a simple, maximally random graph with
Barabási-Albert degree distribution1 π(k) = 4/(k(k+1)(k+2)) for k > 0, and π(0) = 0,
in the thermodynamic limit (solid line). Inset: the same for a broader range of k.

the prescribed frequencies. By tuning these weights one can modify “typ-

ical” properties of a graph. The method can also be easily extended to

multicanonical simulations.
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We investigate the behaviour of stochastic differential equations, especially
Burgers’ equation, by means of Monte Carlo techniques. By analysis of the pro-
duced configurations, we show that direct and often intuitive insight into the
fundamentals of the solutions to the underlying equation, like shock wave for-
mation, intermittency and chaotic dynamics, can be obtained. We also demon-
strate that very natural constraints for the lattice parameters are sufficient to
ensure stable calculations for unlimited numbers of Monte Carlo steps.
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1. Introduction and Motivation

Hydrodynamic turbulence remains a basically unsolved problem of modern

physics. This is especially noticeable as the fundamentals seem to be fairly

easy – the Navier-Stokes equations for the velocity and pressure fields v and

p,

∂tvα + vβ∂βvα − ν∇2vα +
1

ρ
∂αp = 0, (1)

with the additional constraint

∂αvα = 0, (2)
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express the conservation of momentum in a classical, Newtonian, incom-

pressible fluid of viscosity ν and density ρ. Laminar flows are reproduced

very accurately; in the turbulent regime, it still is an open question how the

universal characteristics of a flow, the scaling exponents ξp of the structure

functions Sp of order p, defined by

Sp(x) := 〈[|v(r + x) − v(r))|p〉r ∝ |x|ξp , (3)

can be extracted from the basic equations. Intermittency is reflected by

exponents ξp that differ from those expected by dimensional analysis. Monte

Carlo simulations enable us to analyze turbulent flow patterns in detail,

to gain direct insight into the formation of localized structures and their

behaviour, and to measure observables like the scaling exponents.

Instead of working with the full Navier-Stokes equations, we decided to

elaborate the methods using Burgers’ equation

∂tvα + vβ∂βvα − ν∇2vα = 0, (4)

which can be interpreted as the flow equation for a fully compressible fluid.

A finite viscosity ν and energy dissipation ǫ provide a dissipation length

scale λ corresponding to the Kolmogorov-scale in Navier-Stokes turbulence:

λ =

(
ν3

ǫ

) 1
4

. (5)

Besides being of interest of its own (e.g. in cosmology), working with Eq. (4)

has a number of technical advantages:a

• Burgers’ equation is local, while the incompressibility condition acts as

a nonlocal interaction in Navier-Stokes turbulence.

• The fundamental solutions to Burgers’ equation are well-known; in the

limit of vanishing viscosity (Hopf equation), these form singular shocks

as seen in Fig. (1). The dissipation-scale provides an UV-regularization

of the shock structures.

• A huge variety of analytical methods have been applied to Burgers

equation, giving results that can directly be compared to numerical

measurements; and the origin of intermittency is well understood.

2. Path Integral

For the moment, we restrict our work to 1-dimensional Burgulence which

already shows intermittent statistics. A random force f has to be introduced

aFor a more complete overview, see Ref. 2.
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 0  1 0  1

Fig. 1. Typical solution of Burgers’ equation in the limit of vanishing viscosity. The
graph shows v(x, t) as a function of x in periodic boundary conditions at constant t.

into Eq. (4) so that solutions are statistically homogenous in time:

B[v]
.
= ∂tv + v

∂

∂x
v − ν

∂2

∂x2
v = f, (6)

where we model the stochastic force to be Gaussian distributed with zero

mean, energy injection rate ǫ and correlation length Λ:

〈f(x, t)〉 = 0, (7)

χ−1(x, x′; t, t′)
.
= 〈f(x, t)f(x′, t′)〉 = ǫδ(t− t′) exp

(
−|x− x′|

Λ

)
. (8)

We then expect intermittent statistics to be found within the inertial sub-

range λ ≪ x ≪ Λ. We can further identify a characteristic velocity at the

injection scale, u0 = (ǫΛ)1/3, and a Reynolds number

Re = (ǫΛ4/ν3)1/3. (9)

The path integral is introduced via the standard Martin-Siggia-Rose for-

malism, giving for the generating functionalb

Z[J ] =

∫
DvDf δ(B[v] − f) exp

(
−1

2

∫
fχf +

∫
Jv

)
(10)

=

∫
Dv e−S[v;J], (11)

with the action

S[v; J ] =

∫
dxdtdx′dt′ (B[v(x, t)]χ(x, x′; t, t′)B[v(x′, t′)] + J(x, t)v(x, t)) .

(12)

bThe functional determinant can be shown not to contribute for local theories, see e.g.
Ref. 3.
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Beginning from an equivalent path integral, it has been shown that in-

termittent statistics of Burgers’ equation can be understood in terms of

instanton solutions.1

3. Monte Carlo Simulations

We discretized the above action onto a rectangular lattice with L sites in

space-, and T sites in time-direction. Derivatives have been written in a

symmetric (Stratanovich-) prescription. Lattice spacings will be denoted

∆x and ∆t, respectively. We mainly used a heat bath algorithm on single

nodes.

3.1. Lattice parameters

To identify the lattice parameters with the constants of the continuum

theory, we first notice that the viscosity has to be defined asc

ν = α
(∆x)2

∆t
, (13)

in which we define the arbitrary constant α = 1. The so-defined ν gives us

Re according to Eq. (9). We further find that the dissipation length λ is

related to the correlation length Λ simply by

λ =
Λ

Re
. (14)

In any practical application, it is sufficient to define the η and Re, to choose

L and Λ, and to calculate from that T and ǫ. Stability considerations lead to

further constraints for the lattice size, as will be explained in the following

subsection.

3.2. Stability

As would be expected, the stability of the simulations over a large number

of Monte Carlo (MC) steps is a big issue, due to the shock-like solutions

of Eq. (4). Indeed, if certain restrictions to the lattice parameters are not

taken care of rigorously, the simulation terminates sooner or later due to

divergences.

It is interesting to notice that the occurrence of instabilities in our MC

simulations is related to the (non-trivial) existence of the dissipation scale

cFor example, this can be shown via the continuum limit of the symmetric random walk,
leading to the diffusion equation.
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λ. We found that to obtain stable simulations, λ has to be resolved on the

lattice: λ > ∆x. Unstable simulations occur otherwise — we observed that

the overall energy of the configurations accumulate in the smallest scale

∆x, causing the configuration to separate into two sub-configurations, of

which one looks as the expected solution to the Hopf equation, while the

other grows beyond any limit, eventually breaking the simulation.

As long as the dissipation length is resolved, the simulations are sta-

ble. Having performed several millions of MC steps, no further instabilities

occurred. If length scales are measured in units of the system size, this

translates into a constraint involving the Reynolds number:

Re < ΛL, (15)

which enforces huge lattices for high Re as Λ ≤ 1.

3.3. Configurations

We simulated systems of different sizes, from (L = 4) × (T = 16) to larger

lattices of the same viscosity, as 8 × 64 and 16 × 256, and also different

viscosities, like 16 × 16 or 64 × 32. The Reynolds number ranged from

Re = 0.01 to Re = 100, not respecting the above conditions for stability.

This may seem surprising, but we could see that interesting information

could also be extracted from the physical sub-configurations. Stable runs

have been obtained for Re = 1. Long runs of several millions of MC steps,

on a single node, are realistic for small lattices like 4 × 16 or 8 × 64 only.

For larger lattices, a parallelized version of the code will be needed.

We obtained the following results:

• Thermalization and autocorrelation times are very long, up to the order

of 105 MC steps.

• In the stable runs, after thermalization, the typical shock solutions of

the Burgers’ equation form and can be observed moving and interacting

with each other, see Fig. (2).

• In the unstable runs before occurrence of the instability, configurations

resemble the kink-solutions of the Hopf equation.

• The distinction between stable and unstable simulations can directly

be related to the existence of a dissipation length scale which is ei-

ther bigger (stable) or smaller (unstable simulations) than the lattice

spacing.
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 0  32 0  32

Fig. 2. Calculated configuration v(x, t) of a (L = 32) × (T = 8)-lattice; the plot shows
a slice of constant t, periodic boundary conditions in x. Two shock-like structures are
clearly visible.

4. Summary and Outlook

We have shown how to perform stable MC simulations of stochastic par-

tial differential equations, like Burgers’ or the Hopf equation. The lattice

versions of the theories can directly be identified with their continuum coun-

terparts, and, as long as certain constraints on the lattice size are respected,

unlimited numbers of configurations produced. Direct insight into the struc-

tures leading to intermittency and, thus, multiscaling, can be obtained. Es-

pecially, we want to point out that the existence of a dissipation length

scale can be observed.

As next steps, complete statistics will be made; especially the scaling ex-

ponents of the structure functions have to be compared with the analytic re-

sults. Later, we will proceed by analyzing the incompressible Navier-Stokes

equations.
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1. Introduction

Quantum chromodynamics (or QCD) is the underlying theory of the strong

interaction (one of the four fundamental interactions in nature besides grav-

ity, electromagnetism and the weak interaction). It is the force that binds

quarks and gluons as the nucleus in the heart of the atom. Since all mat-

ter in the universe is built that way, unraveling the structure of matter at

its deepest level as governed by QCD is key to our understanding of the

physical world, and presents one of the most challenging tasks in contempo-

rary nuclear and particle physics. While it is easy to write down the basic

equation of QCD, it is very difficult to obtain quantitative solutions in view

of the complex quark-gluon dynamics. At present, the only known way to

solve QCD directly is by numerically evaluating the path integrals in the

theory on a discrete space-time lattice using supercomputers. For textbooks

on the subject, see Refs. 1–3.

2. Formalism

All physics can be computed by path integrals in QCD. Take the calcula-

tion of the proton mass for example. It requires the fully-interacting quark

propagator defined by the Euclidean-space path integrals over gluon field
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Aµ and quarks fields ψ and ψ̄,

〈M−1〉 ≡ 〈0|ψ(x)ψ̄(0)|0〉 ≡
∫
DψDψ̄DAµe

−SQCDM−1

∫
DψDψ̄DAµe−SQCD

. (1)

The action is the sum of a gluon part and a quark part

SQCD = SG + Sq =
1

2

∫
dx4TrFµν F

µν +

∫
dx4ψ̄Mψ, (2)

where Fµν = ∂µAν−∂νAµ+g[Aµ, Aν ] is the gluon field strength tensor and

M = γµDµ +mq is the Dirac operator for quarks and γµ the 4x4 gamma

matrices. The interaction between the two is provided by the covariant

derivative Dµ = ∂µ + gAµ. The basic parameters of the theory are the

coupling constant g and quark mass mq. The quark part of the integration

can be done analytically using Grassmann variable integration, leading to

a path integral over only gluon fields

〈M−1〉 ≡
∫
DAµdet(M)e−SGM−1

∫
DAµdet(M)e−SG

(3)

which is evaluated numerically by Monte Carlo methods. In the quenched

approximation, the quark determinant det(M) is ignored (equivalent to

suppressing vacuum polarization), making the numerical calculation signif-

icantly faster.

To compute the proton mass, one considers the time-ordered, two-point

correlation function in the QCD vacuum, projected to zero momentum:

G(t) =
∑

x

〈0 |T { η(x) η̄(0) } | 0〉. (4)

Here η is called the interpolating field which is built from quark fields with

the quantum numbers of the proton (spin-1/2, isospin-1/2, quark content

uud, charge +e)

η(x) = ǫabc
[
uaT (x)Cγ5d

b(x)
]
uc(x) (5)

where C is the charge conjugation operator and the superscript T means

transpose. Sum over color indices a,b,c is implied and the ǫabc ensures the

proton is color-singlet.

The calculation of G(t) at the quark level proceeds by contracting out

all the quark pairs, resulting in

G(t) =
∑

x

ǫabcǫa
′b′c′

{
Saa

′
u γ5CS

cc′
d

T
Cγ5S

bb′
u + Saa

′
u Tr(CScc

′T

dCγ5S
bb′
u γ5)

}
,

(6)

where Sijq denotes the fully-interacting quark propagator 〈M−1〉 in Eq. (3).
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On the hadronic level, the correlation function is saturated by the com-

plete spectrum of intermediate states with the proton as the ground state:

G(t) =
∑

i

λ2
i e

−mit, (7)

where mi are the masses and λ2 are the ‘amplitudes’ which are a measure

of the ability of the interpolating field to excite or annihilate the states

from the QCD vacuum. At large time, the ground state proton, λ2
1 e

−m1t,

dominates G(t), with the excited states exponentially suppressed. Other

physics quantities are computed in a similar way.

3. Some Examples

It is impossible to give a full account of the achievements made in lattice

QCD in the space given here. A good place to gauge the progress in the

field (which is not limited to QCD) is the annual gathering4 by active

practitioners. Here I select a few examples relevant to nuclear physics.

Example 1. Fig. 1 shows that the computed light hadron mass spec-

trum which comes within 10% of the observed spectrum. The remaining

discrepancy is attributed to the quenched approximation. Intense efforts

are under way to extend the success to the excited sectors of the mass

spectrum.6

Example 2. Fig. 2 shows the high-precision lattice QCD calculations

for selected physics quantities which are within 3% of the observed values.

The effects of the quenched approximation are clearly demonstrated.

Example 3. Fig. 3 shows a calculation of the magnetic moment of the

proton and neutron which find good agreement between lattice QCD and

experiment. Results from a different method can be found in Ref. 9, as well

as precise determinations of the strangeness magnetic (GsM ) (Ref. 10) and

electric form factors (GsE) (Ref. 11) of the proton.

Example 4. Fig. 4 shows the good agreement between lattice QCD and

experiment for pion-pion scattering length,12 using Lüscher’s method.13

Other hadron-hadron scattering channels have been studied by the same

group.

Example 5. Fig. 5 shows a direct lattice QCD calculation of the

nucleon-nucleon potential14 whose features are consistent with the known

phenomenological features of the nuclear force.
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Fig. 1. The computed light hadron mass spectrum in the quenched approximation. See
Ref. 5 for details.

Fig. 2. Lattice QCD results compared to experiment as ratios for selected physics quan-
tities (the dashed line is perfect agreement), in the quenched approximation of QCD (left
panel) and full QCD (right panel). See Ref. 7 for details.

4. Conclusion

The path-integral formulation of QCD, coupled with large-scale numerical

simulations, has played a crucial role in the progress of nuclear and particle
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Fig. 3. Magnetic moment of the proton and neutron as a function of the pion mass
squared. The physical points correspond to pion mass of 138 MeV. The line is a chiral
extrapolation. See Ref. 8 for details.

1 2 3

mπ / fπ

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
π

a  2

 χ - PT  (Tree Level)

Experiment

This Work

CP-PACS

Fig. 4. Lattice QCD calculation of the π−π scattering length in the isospin 2 channel.
The dashed line is a chiral fit. See Ref. 12 for details.

physics. Its continued prominence as the only way to solve QCD with con-

trolled errors is expected to play out with better results in the foreseeable

future.
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13. M. Lüscher, Nucl. Phys. B 354, 531 (1991).
14. N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007).



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

PART VII

Bose-Einstein Condensation
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The investigation of superfluid atomic Fermi gases in the regime of strong in-
teractions is conveniently investigated with the path-integral method at tem-
perature zero, or at the critical temperature where the gap vanishes, by tak-
ing particle-pair or hole-pair fluctuations into account. Here, we also take the
particle-hole excitations into account, which is important to investigate inter-
mediate temperatures. The additional terms in the fluctuation propagator are
identified, and a contour integral representation is used to calculate the con-
tribution of these terms to the free energy and to the density of noncondensed
fermions.
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1. Introduction

Ultracold atomic Fermi gases provide a ’quantum laboratory’ for studying

the crossover physics between the Bardeen-Cooper-Schrieffer (BCS) state

and a Bose-Einstein condensate (BEC) of molecules. In the experimental

realization of the crossover superfluid,1 many parameters are experimen-

tally tunable: the interaction strength, the temperature, the geometry, and

the individual amount of fermions in each hyperfine spin state contributing

to pairing. These experimental advances have renewed the theoretical in-

terest in this particular problem. In this contribution, we use the functional

integral description of the system and consider the problem of incorporat-

ing quantum fluctuations at finite temperatures in the description of the

thermodynamics of the superfluid. A recent review of the state-of-the-art

in the calculation of Gaussian fluctuations is given in Ref. 2. In these calcu-

lations, the terms in the fluctuation propagator that vanish at either zero

temperature or zero order parameter are omitted. The former allows to
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derive the temperature-zero results, and the latter allows to calculate the

critical temperature. However, to describe the superfluid at the intermedi-

ate temperatures, we need to retain these terms. This is the subject of the

present calculation.

2. Fluctuation Propagators

The partition sum of an interacting Fermi gas with two hyperfine states

is characterized by an imaginary time functional integral over Grassmann

fields ψ and ψ,

Z =

∫
Dψ̄xσDψxσ exp

{
−S[ψ̄xσ, ψxσ]

}
(1)

where σ is the hyperfine spin coordinate and x = {r, τ} with r the spatial

coordinate and τ the imaginary time, and the action functional is given by

S =

∫
dx

{∑
σψ̄xσ

[
∂τ −

1

2m
∇2

x − µ

]
ψxσ + gψ̄x,↑ψ̄x,↓ψx,↓ψx,↑

}
(2)

Here, µ is the chemical potential fixing the density n = k3
F /(3π

2) of

fermionic atoms and
∫
dx =

∫
d3x

∫ β

0

dτ (3)

with β = 1/(kBT ) the inverse temperature. The interactions between the

fermions occur only between atoms in different hyperfine states (indicated

as σ =↑ and σ =↓, respectively), and are well characterized as contact

interactions with a bare coupling strength g. This bare coupling strength

g is related to the s-wave scattering length as through a renormalization

relation

m

4πas
=

1

g
+
∑

|k|<Λ

m

k2
(4)

where Λ is a cut-off wavevector that can safely be taken to infinity at the

end of the calculation. Performing the Hubbard-Stratonovic transformation

introduces the bosonic pair fields ∆x, ∆̄x which couple to ψ̄x,↑ψ̄x,↓ and

ψx,↓ψx,↑, respectively. Integrating over the Grassmann variables then yields

the well-known result3,4

Z =

∫
D∆̄xD∆x exp

{
−S[∆x, ∆̄x]

}
(5)
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where the original action functional is transformed into a new action func-

tional for the bosonic pair field

S[∆x, ∆̄x] =

∫
dx

{
tr
[
ln
(
−G

−1
)]

− ∆̄x∆x

g

}
(6)

where G
−1 is the inverse Nambu Green’s function

G
−1 =

(−∂τ + 1
2m∇2

x + µ ∆x

∆̄x −∂τ − 1
2m∇2

x − µ

)
(7)

and the trace is taken over the spin variables. Expressions (5)–(7) provide

an exact result for the partition sum, and hence the thermodynamics of

the Fermi gas. However, the remaining functional integral over the bosonic

fields cannot be performed analytically. It is possible to use a saddle-point

result, approximating the functional integral by the value where its inte-

grand becomes maximal. This gives good results at low temperature, and in

the BCS regime (as < 0), but fails to incorporate the quantum fluctuations

necessary for nonzero temperatures and in the strong coupling regime. The

obvious way out, introducing a second collective field to improve the de-

scription of the noncondensed bosonic pairs, fails due to double-counting,5

which can be remedied using the variational perturbation method.6 Here,

we use a different approach,7,8 based on the Bogoliubov shift:

∆x =
(
∆̄x

)∗
= ∆ + ηx (8)

Here ∆ is a saddle-point value, and ηx is a bosonic field representing the

fluctuations around the saddle point. The saddle point value is independent

of x, since it is interpreted as the order parameter of the condensate of pairs,

which condense in the momentum zero, i.e. uniform density state. The sad-

dle point serves to factorize out the largest contribution. The fluctuations

are assumed to be small so that an expansion of the action, Eq. (6), up

to second order in ηx, captures the essence of the thermodynamics of the

noncondensed pairs. For the quadratic expansion, the remaining functional

integral over ηx can be performed analytically. The result can be written as

Z = exp {−Ssp − Sfl} . (9)

The action is the sum of a saddle point action Ssp = βFsp, where Fsp is the

saddle-point free energy (for the condensed pairs), and a fluctuation action

Sfl = βFfl, where Ffl is the contribution to the free energy coming from

the noncondensed pairs. The saddle-point free energy is

Ffl = −m |∆|2
4πas

−
∑

k

(
2

β
ln [2 cosh(βEk/2)] − ξk

)
(10)
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with

ξk = k2/(2m) − µ,

Ek =

√
ξ2k + |∆|2.

The fluctuation action is given by

Sfl =
1

2

∑

q

∑

iΩm

ln {det [M (q, iΩm)]} (11)

with M the inverse Nambu fluctuation propagator, a 2×2 matrix like G−1,

as a function of the wave vector q and the bosonic Matsubara frequency

iΩm = i2πm/β. The diagonal elements of the propagator are related by

M22(q, z) = M11(q,−z) with

M11(q, z) = −1

g
+

∫
dk

(2π)3

[
Ek + ξk

2Ek

Ek+q + ξk+q

2Ek+q

1

z − Ek − Ek+q

− Ek − ξk
2Ek

Ek+q + ξk+q

2Ek+q

1

z + Ek − Ek+q

+
Ek + ξk

2Ek

Ek+q − ξk+q

2Ek+q

1

z − Ek + Ek+q

−Ek − ξk
2Ek

Ek+q − ξk+q

2Ek+q

1

z + Ek + Ek+q

]
tanh(βEk/2) (12)

Here we have used the analytical continuation of M11 (q, iΩm) in the com-

plex plane. The off-diagonal elements M21(q, z) = M12(q,−z) are given

by

M12(q, z) = |∆|2
∫

dk

(2π)3
tanh(βEk/2)

4EkEk+q

[
1

z − Ek − Ek+q

− 1

z − Ek + Ek+q

+
1

z + Ek − Ek+q

− 1

z + Ek + Ek+q

]
= M12(q,−z) (13)

The current treatments of the BEC/BCS crossover2,9–12 are valid for tem-

perature zero or order parameter zero, and can be rewritten in the current

formalism. However, they neglect in the above formula the terms that con-

tain a denominator z + Ek − Ek+q or z − Ek + Ek+q, and only keep the

terms with denominators z −Ek −Ek+q and z +Ek +Ek+q (compare the

above equations for example with Eqs. (21), (22) of Ref. 2). The neglected

terms, however, are important to evaluate the nonzero temperature results.

However, care should be taken in evaluating these integrals. We outline our

procedure in the next section and focus on the density of the noncondensed

pairs as an example.



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Tackling fluctuation corrections in the BEC/BCS crossover at nonzero temperature 365

3. Fluctuation Density

The free energy contribution from the fluctuations can be written as

Ffl =
1

2β

∑

iΩm

∫
dq

(2π)3
ln [Γ(q, z)]z=iΩm (14)

with

Γ (q, z) = M11(q, z)M11(q,−z) − [M12(q, z)]
2

(15)

The density of fermions contributing to the condensed pairs is nsp =

−∂Ffl/∂µ and the density of fluctuations is then given by

nfl = −∂Ffl
∂µ

=
1

2β

∑

iΩm

∫
dq

(2π)3
J(q, z) (16)

with

J (q, z) =
1

Γ (q, z)

[
M11 (q,−z) ∂M11 (q, z)

∂µ
− M12 (q,−z) ∂M12 (q, z)

∂µ

]

(17)

The function J (q, z) , needed for the calculation of nfl, is analytical in

the complex z-plane except for poles on the real axis. In the calculation of

Ffl, the function ln [Γ(q, z)] also has poles on the real axis, and moreover a

branch line on the real axis. So, when transforming the Matsubara summa-

tion into its complex integral representation, one should avoid the real axis.

We found that the optimal contour is a large circle in the upper complex

plane, bounded by z = iπ/β, complemented by a large circle in the lower

complex plane, bounded by the line z = −iπ/β. This choice of contour (cf.

Ref. 2) leads in our case to

nfl = −
∫

dq

(2π)
3





1

π

∞∫

−∞

Im

[
J (q, ω + iπ/β)

eβ(ω+iπ/β) − 1

]
dω +

1

β
J (q, 0)




 (18)

which lends itself to numerical evaluation. We then find the gap equation

from ∂Fsp/∂ |∆| = 0, and the number equation from

nsp + nfl = k3
F /(3π

2) (19)

These two equations allow us to evaluate the gap |∆| and the chemical

potential µ, when the interaction strength as and the density (through kF )

are given.
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Fig. 1. The superfluid order parameter |∆| and the chemical potential µ can be de-
termined as a function of temperature from the gap equation ∂Fsp/∂ |∆| = 0 and the
number equation nsp = k3

F /(3π
2), yielding the saddle point results (top panel). When

fluctuations are included, the number equation is modified to nsp +nfl = k3
F /(3π

2), and
we find the results of the bottom panel.

4. Results and Conclusion

The saddle-point results for the gap and the chemical potential are shown

in the top panel of Figure 1; the bottom panel shows the results when

fluctuations are included. In the present treatment, not only the particle-

particle and the hole-hole contributions are taken into account, but also

particle-hole contributions are kept in Eqs. (12) and (13). The result is that

the smooth temperature dependence of |∆| and µ that follows from the

saddle-point result, is changed into more abrupt changes near the critical

temperature. Note that even when |∆| = 0, fluctuation effects are present;

in the normal state they reflect the effect of the interactions on the normal

Fermi gas. So, whereas the normal state in the saddle-point treatment is the

ideal gas, it is an interacting Fermi gas when Gaussian fluctuations beyond
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mean field are taken into account.
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We construct an effective field theory for a condensate of cold Fermi atoms
whose scattering is controlled by a Feshbach resonance, with particular em-
phasis on the speed of sound and its hydrodynamic description.
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1. Condensates of Ultracold Fermions

Cold alkali atoms whose scattering is controlled by a Feshbach resonance

can form diatomic molecules with tunable binding energy on applying an

external magnetic field. For weak fermionic pairing we have a BCS theory

of Cooper pairs, whereas strong fermionic pairing gives a BEC theory of

diatomic molecules. The transition is characterised by the divergence of the

s-wave scattering length. However, most properties of the condensate (e.g.

the speed of sound) vary continuously across the transition.

A considerable theoretical and experimental effort has been expended

on understanding such macroscopic quantum systems. Although this is suf-

ficient motivation for our work we are also interested in possible analogies1

between condensed matter physics and the early universe. For example, it

has been suggested that the ‘naturalness’ of Lorentz violation (in LV mod-

els) has a counterpart in the dispersion relations of condensate modes. In a
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different direction, changing the speed of sound changes the causal horizons

(metric), with implications for particle production.

Our goals are to represent the (T = 0) condensate by a single effective

bosonic field theory across the BEC-BCS regimes, from which we can i)

derive the dispersion relations (most simply, the speed of sound) ii) pro-

vide a hydrodynamic description in the semiclassical limit. In the light of

our earlier comments this permits a realisation in terms of an analogue

gravitational metric, if we so wish, although we shall not do so.

The literature is huge – our approach is idiosyncratic. Many references

are given in our paper2 upon which much of this article is based.

2. Idealised Theory of Cold Fermi Atoms (T = 0)

Consider the action for cold Fermi fields ψσ, with spin label σ = (↑, ↓),

S[ψσ, ψ
∗
σ, φ, φ

∗] =

∫
dt dx

{ ∑

↑,↓
ψ∗
σ(x)

[
i ∂t +

∇2

2m
+ µσ

]
ψσ(x)

+ U ψ∗
↑(x) ψ

∗
↓(x) ψ↓(x) ψ↑(x)

+ φ∗(x)

[
i ∂t +

∇2

2M
+ (µ↑ + µ↓) − ν

]
φ(x)

− g
[
φ∗(x) ψ↓(x) ψ↑(x) + φ(x) ψ∗

↓(x) ψ∗
↑(x)

]}
.

We have displayed explicit coupling to a (narrow) resonant diatomic field

φ with M = 2m and binding energy ν, which can be varied by applying an

external magnetic field. External fields lead to a spin imbalance3 in that the

chemical potentials µσ also carry the σ = (↑, ↓) label, with µ↑ 6= µ↓, which

we write as µ↑ = µ + ξ, µ↓ = µ − ξ. At zero external energy-momentum

the effective coupling strength varies with ν as Ueff = U + g2/(ν − 2µ).

To construct the condensate action we consider

Z =

∫
DψDψ∗DφDφ∗ exp iS[ψσ, ψ

∗
σ, φ, φ

∗].

Introducing auxiliary fields ∆(x) = Uψ↓(x)ψ↑(x), ∆∗(x) = Uψ∗
↓(x)ψ

∗
↑(x)

leads to the equivalent action

S̄[Ψσ,Ψ
∗
σ, φ, φ

∗,∆,∆∗] =

∫
dt dx

{
Ψ†(x)G−1

ξ Ψ(x)

+ φ∗(x)

[
i ∂t +

∇2

2M
+ 2µ− ν

]
φ(x) − 1

U
|∆|2

}
,
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in terms of the total condensate ∆̃(x) = ∆(x)− g φ(x). Ψ†(x) = (ψ†
↑, ψ↓) is

the Nambu spinor, and G−1
ξ is the inverse Nambu Green function

G−1
ξ =

(
i∂t − ε↑ ∆̃(x)

∆̃∗(x) i∂t + ε↓

)
(1)

with εσ = −∇2

2m − µσ. On integrating out the Fermi fields, we have

Z =

∫
DφDφ∗D∆D∆∗ exp iSNL[φ, φ∗,∆,∆∗]

where the non-local effective condensate action is

SNL = −i T r lnG−1
ξ − 1

U
|∆|2.

If we write ∆(x) = |∆(x)| eiθ∆(x), φ(x) = −|φ(x)| eiθφ(x) then ∆̃(x) =

|∆̃(x)| eiθ∆̃(x) follows by definition.

We conclude these preliminary comments with the observation that it is

not necessary3 to include the bound-state field φ explicitly in (1). However,

the ‘double’ linearisation that we have effected here in the construction of

∆̃ is, to our way of thinking, more intuitive in the BEC regime and more

amenable to analytic approximation.

3. The Effective Action SNL

Invariance under the U(1) transformations θ∆(x) → θ∆(x)+α(x), θφ(x) →
θφ(x)+α(x) is spontaneously broken: δ SNL = 0 implies spacetime constant

|∆(x)| = |∆0| 6= 0 and |φ(x)| = |φ0| 6= 0 whereby |∆̃(x)| = |∆̃0| 6= 0, the

constant-field gap equations. The mean-field, or semiclassical, approxima-

tion is the general solution to δSNL = 0: In this we ignore the subtle issue

of multivaluedness4 (and that of the possibility of a non-trivial Jacobian).

To expand SNL about the gap solutions, we use the gauge transformation

e−iσ3θ∆̃(x)/2G−1
ξ eiσ3θ∆̃(x)/2 = Ḡ−1

ξ − Σ = Ḡ−1
0 − (Σ − ξI),

where

Ḡ−1
ξ =

(
i∂t − ε↑ |∆̃0|
|∆̃0| i∂t + ε↓

)
= Ḡ−1

0 + ξI (2)

and

Σ = (−i∇2θ∆̃/4m+ (∇θ∆̃)(−i∇)/2m)I (3)

+ (θ̇∆̃/2 + (∇θ∆̃)2/8m)σ3 − δ|∆̃| σ1,
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with |∆̃| = |∆̃0|+δ|∆̃|. We perform a simultaneous expansion in derivatives

and ξ as

SNL = −iTrLn(Ḡ−1
0 + ξI) + iTr

∞∑

n=1

[Ḡ0(Σ − ξI)]n

n
−
∫
d4x

|∆|2
U

+

∫
d4xφ∗(x)

(
i∂t +

∇2

2M
+ 2µ− ν

)
φ(x).

By construction this is Galilean invariant term-by-term.

Our approximation is to keep n = 1, 2 terms only, to give a local effective

action S(2) =
∫
dt dxL. It is convenient to express L(θ∆̃, θφ, ǫ, δφ) in terms

of the phase angles θ∆̃, θφ, δφ = φ− |φ0| and ǫ ∝ δ|∆̃|. The outcome is

L(θ∆̃, θφ, ǫ, δφ) =

−1

2
ρ0
B

[
θ̇φ +

(∇θφ)2
4m

]
− 2|φ0|δφ

[
θ̇φ +

(∇θφ)2
4m

]
− 1

2
Ω2(θ∆̃ − θφ)

2

−1

2
ρ0
F

[
θ̇∆̃ +

(∇θ∆̃)2

4m
+

(∇ǫ)2
4m

]
+
N0

4

[
θ̇∆̃ +

(∇θ∆̃)2

4m
+

(∇ǫ)2
4m

]2

−α ǫ
[
θ̇∆̃ +

(∇θ∆̃)2

4m

]
+

1

4
γ

(
ǫ̇+

∇θ∆̃.∇ǫ
2m

)2

− 1

4
M2ǫ2

+δφ

(∇2

4m
+ (2µ− ν)

Ueff

U

)
δφ+ ζǫδφ, (4)

where ρ0
F and ρ0

B = 2|φ0|2 are the densities of fermions in the Cooper

pair and molecular parts of the condensate for the gap solutions and N0

measures the density of states. Since Tr(ΣḠ0Σ) = 0 the form of the action is

ξ-independent but the coefficients depend on ξ. Renormalisation is required

which, because of IR divergences that follow from the gapless mode, is

non-trivial.5

Superficially, there are four dynamical variables θ∆̃, θφ, ǫ, δφ. However,

both θφ and δφ are not ‘fully’ dynamical variables, because they do not

possess relevant time derivatives in the action. Hence, we have one gapless

mode and one ‘massive’ (gap) mode.

4. Speed of Sound – the Linearised EL Equations

For the speed of sound we only need the quadratic Lagrangian density

Lqu(θ∆̃, θφ, ǫ, δφ) = −1

2
ρ0
B

(∇θφ)2
4m

− 2|φ0|δφθ̇φ − 1

2
Ω2(θ∆̃ − θφ)

2

(5)
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Fig. 1. The behavior of the sound velocity v throughout BEC and BCS regimes for

ξ = 0 as a function of the threshold energy for U = 7.54 ǫF /k
3
F and g = 4.62 ǫF /k

3/2
F .

The lower inset shows the scattering length as, while the upper inset shows the fermion
density ρF

0 (solid line) and the molecule density ρB
0 (dotted line).

−1

2
ρ0
F

[
(∇θ∆̃)2

4m
+

(∇ǫ)2
4m

]
− α ǫ θ̇∆̃ +

1

4
γǫ̇2 − 1

4
M2ǫ2

+δφ

(∇2

4m
+ (2µ− ν)

Ueff

U

)
δφ+ ζǫδφ.

In general, once we have imposed conservation of fermion number, v2

is just a ratio of combinations of simple integrals.2 For example, in Fig. 1

we show the speed of sound over the whole BCS-BEC range, in agreement

with Ref. 9, for example.

In the deep BCS regime (|φ0| ≈ 0), for which α ≈ 0; γ ≈ N0, we recover

v2 = 2ρ0
F /N0(= v2

F /3 for ξ = 0) and in the deep BEC regime, where

|∆0| ≈ 0, v2 vanishes as v2 ≃ |∆̃0|2/8mµ (the dashed lines in Fig. 1).

Note that we can essentially reconstruct the full action from the

quadratic action by invoking Galilean invariance,7,8 replacing θ̇ → θ̇ +

(∇θ)2/4m and (∇θ)2 → (∇θ)2 + 4mθ̇.

5. Hydrodynamics

A discussion of the hydrodynamics of the condensate requires a restoration

of the non-linearity of the action. As a first step we take g = 0, ∆̃ = ∆, to

give the BCS Lagrangian6,8,10

L(θ∆, ǫ) = −1

2
ρ0
F

[
θ̇∆ +

(∇θ∆)2

4m
+

(∇ǫ)2
4m

]
+
N0

4

[
θ̇∆ +

(∇θ∆)2

4m
+

(∇ǫ)2
4m

]2
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(6)

+
1

4
γ

(
ǫ̇+

∇θ∆.∇ǫ
2m

)2

− 1

4
M2ǫ2.

To make this more familiar set ǫ = 0, whence

L(θ∆) = −1

2
ρ0
F

[
θ̇∆ +

(∇θ∆)2

4m

]
+
N0

4

[
θ̇∆ +

(∇θ∆)2

4m

]2
. (7)

To show that L of (7) describes a classical fluid we observe that the Euler-

Lagrange equation is the continuity equation

∂tρ∆ + ∇ · (ρ∆ v∆) = 0,

where v∆ = ∇θ∆/2m and ρ∆ is defined by ρ∆ = ρ0 −N0G. Rewritten as

θ̇∆ +

[
1

N0
(ρ∆ − ρ0) +

(∇θ∆)2

4m

]
= 0

this leads to

m
∇θ̇∆
2m

+ ∇
[

1

2N0
δρ+

1

2
m

(∇θ∆
2m

)2]
= 0,

i.e., Euler’s equation

mv̇∆ + ∇
[
δµ+

1

2
mv2

∆

]
= 0, δp = ρ0δµ.

Equivalently, if j = mρv∆, then combining the continuity and Euler’s equa-

tions gives

∂ji
∂t

+
∂

∂xj
tij = 0,

in which tij = mρvi vj + p δij is the stress tensor.

Restoring density fluctuations (ǫ 6= 0) into the classical picture leads to

a characteristic doubling of fields: Introducing θ± = θ∆± ǫ enables L(θ∆, ǫ)

to be written as

L(θ+, θ−) =
1

2
L(θ+) +

1

2
L(θ−) +

1

2
LI(θ+, θ−)

where L(θ±) is the classical fluid action (7) and LI(θ+, θ−) =

−(1/4)M2(θ+ − θ−)2. The gap M determines the strength of the ‘spring’

that couples the phases. If we now define v± = ∇θ±/2m and ρ± = ρ∆±ρǫ,
where

ρ∆ = ρ0−N(0)

(
θ̇ +

(∇θ)2
4m

+
(∇ǫ)2
4m

)
, ρǫ = −N(0)

(
ǫ̇+

∇ǫ · ∇θ
2m

)
, (8)
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then translation invariance gives (pI = LI)

∂

∂t
(mρ+v+ + mρ−v−)i + ∇j [(mρ+v+,jv+,i + p+δji)

+ (mρ−v−,jv−,i + p−δji) + pIδji] = 0,

a coupled two-fluid system.

The density fluctuations act as sources and sinks in the continuity equa-

tions but as long as ǫ is small (e.g. we are away from vortices) and the gap

is not too small, one can argue for a single BCS fluid description.

Let us now consider2,11 the complete system described by (4). The EL

‘continuity’ equations are

∂

∂t
ρ∆̃ + ∇ · (ρ∆̃v∆̃ + ρǫvǫ) − 2Ω2(θ∆̃ − θφ) = 0

and

∂

∂t
ρφ + ∇ · (ρφvφ) + 2Ω2(θ∆̃ − θφ) = 0,

where v∆̃ = ∇θ∆̃/2m and vφ = ∇θφ/2m, with

ρ∆̃ = ρ0
F −N0(θ̇∆̃ +mv2

∆̃
+mv2

ǫ ) + 2α ǫ, (9)

and ρφ = 2|φ|2 ≈ ρ0
B + 4δφ|φ0|. In a small fluctuation approximation in

which ρǫvǫ can be ignored the continuity equations can be combined as

∂

∂t
(ρφ + ρ∆̃) + ∇ · (ρφvφ + ρ∆̃v∆̃) = 0,

the continuity equation for two coupled fluids.

Since Ω2 (θ∆̃ − θφ) ∝ |∆0||φ0| (θ∆ − θφ) vanishes in the deep BCS and

BEC regimes, we recover an approximate single fluid description in each of

these cases (of which the BCS single fluid (7) described above is one).

The definition of density (9) is again equivalent to Euler’s equation

mv̇∆̃ + ∇
[
δµ+

1

2
mv2

∆̃

]
= 0,

over the whole regime. If δµ is the total specific enthalpy, then the EOS is

d p

dρ∆̃

= ρ∆̃

dµ

dρ∆̃

.

Given p ∝ ργ+1

∆̃
, then γ is completely determined, varying from γ = 2/3 in

the deep BCS regime to γ = 1 in the deep BEC regime (e.g., see Ref. 12).

We have ignored the fluctuations in δφ, which give rise to a fluctuation

pressure δ p = O(δρφ).
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6. Conclusions

We have shown that, beginning from a microscopic theory of interacting

Fermi atoms, with an explicit Feshbach resonance, we can straightforwardly

derive the speed of sound across the BCS-BEC transition. However, we

stress that, whereas phase fluctuations and density fluctuations decouple

in the deep BCS regime, in general we are only able to tune the speed

of sound because of the coupling between them. Nonetheless, a classical

hydrodynamic description exists when density fluctuations are small. It is

a coupled two-fluid system, collapsing to a single fluid in both deep BCS

and BEC regimes.
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The appearance of coherence and order is studied for ultracold bosonic atoms
in the presence of additional disorder potentials. These arise either naturally
like in current carrying wire traps, or artificially and controllably like in laser
speckle fields. The description of such disordered bosons within a suitably gen-
eralized Bogoliubov theory, first given by Huang and Meng, is rederived here
within a functional integral approach for replicated bosonic fields. The su-
perfluidity in homogeneous Bose systems with condensates depleted by weak
interactions and disorder can thereby be discussed.

Keywords: Bogoliubov theory; Disordered bosons; Functional integral.

1. Introduction

Usually, one studies ultracold quantum gases moving in a one-particle po-

tential V (x) which is fixed by an external magneto-optical trap. Here, how-

ever, we consider a different physical situation where the one-particle po-

tential V (x) is fluctuating at each space point x. Such a frozen disorder

potential, which consists of a random distribution of hills and valleys, was

considered some time ago for modelling superfluid helium in porous media.1

By doing so, one assumes that the pores can be modelled by statistically

distributed local scatterers so that the ensemble average of the disorder

potential vanishes

V (x1) = 0 (1)

and their correlation function

V (x1)V (x2) = R(2)(x1,x2) . (2)

decays with a characteristic correlation length ξ which models the aver-

age pore size. Nowadays such random potentials can be created artificially
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and controllably by laser speckles,2–5 incommensurate lattices,6 or different

localized atomic species.7 However, they can also arise naturally via the

spatial fluctuations of the electric currents generating the magnetic wire

traps.8–10

Thus, one can raise the fundamental question how the phenomenon of

Bose-Einstein condensation is affected by an additional weak disorder. To

this end Huang and Meng in 1992 generalized the Bogoliubov theory of

ultracold Bose gases11 for frozen random potentials.12–16 It turned out that

the formation of local condensates in the minima of the random potential re-

duces the superfluid component of the fluid even at zero temperature, where,

in the absence of disorder, the whole fluid would be superfluid.17 Although

this finding agrees qualitatively with the earlier experiments in porous me-

dia, the predictions of this Bogoliubov theory for disordered bosons have

not yet been tested experimentally in a more quantitative manner. Re-

cently, we have worked out a proposal to test this theory by measuring

the disorder-induced shifts in the frequencies of the collective excitations in

trapped Bose-Einstein condensed gases,18 as these can be measured with

an accuracy of a few fractions of a percent.19

Here we study the Bogoliubov theory of disordered bosons within a

functional integral approach. In order to perform ensemble averages with

respect to the random potential, we apply the replica method which turned

out to be quite useful for studying spin glasses.20,21 In particular, we find

that a replica-symmetric ansatz for the background of the replicated bose

fields is sufficient to completely rederive the Huang-Meng theory. There is

no indication that replica-symmetry breaking occurs for disordered bosons

in contrast to the replica theory of spin glasses. This result coincides with

the general physical reasoning that the tunneling of bosons between the

local minima of the frozen disorder potential leads to a quantum state with

a well-defined global phase where any frustration is absent. Contrary to

that replica-symmetry breaking occurs within the classical theory of spin

glasses as the spins trapped in the respective local minima of the energy

landscape are frustrated.

2. Theoretical Description

We start with the thermodynamical properties of a disordered homogeneous

Bose gas. The functional integral for the grand-canonical partition function

reads

Z =

∮
Dψ∗

∮
Dψ e−A[ψ∗,ψ]/~ , (3)
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where the integration is performed over all Bose fields ψ∗(x, τ), ψ(x, τ)

which are periodic in imaginary time τ . The euclidean action is given by

A[ψ∗, ψ] =

∫
~β

0

dτ

∫
dDx

{
ψ∗(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ + V (x) − µ

]
ψ(x, τ)

+
g

2
ψ∗2(x, τ)ψ2(x, τ)

}
, (4)

where M denotes the particle mass, µ the grand-canonical potential, and

g the strength of the contact interaction. As the grand-canonical partition

function represents a functional of the disorder potential V (x), the corre-

sponding thermodynamic potential follows from the expectation value

Ω = − 1

β
lnZ . (5)

In general it is not possible to explicitly evaluate expression (5), as the

averaging with respect to the disorder potential V (x) and the nonlinear

function of the logarithm do no commute:

lnZ 6= lnZ . (6)

An important method to perform the averaging procedure prescribed by (5)

is provided by investigating the Nth power of the grand-canonical partition

function Z in the limit N → 0. Indeed, from

ZN = eN lnZ = 1 +N lnZ + . . . (7)

we deduce for the thermodynamic potential (5):

Ω = − 1

β
lim
N→0

ZN − 1

N
. (8)

The N -fold replication of the disordered Bose gas (3), (4) and a subsequent

averaging with respect to the disorder potential V (x) corresponds to the

characteristic functional

I[j] = exp

{
i

∫
dDx j(x)V (x)

}
(9)

with the auxiliary current field

j(x) =
i

~

∫
~β

0

dτ
N∑

α=1

ψ∗
α(x, τ)ψα(x, τ) . (10)

Due to the above assumptions (1) and (2), the characteristic functional is

of the general form

I[j] = exp

{ ∞∑

n=2

in

n!

∫
dDx1 · · ·

∫
dDxnR

(n)(x1, . . . ,xn) j(x1) · · · j(xn)

}
(11)
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By definition the cumulant functions R(n)(x1, . . . ,xn) are symmetric with

respect to their arguments x1, . . . ,xn. Therefore, the disordered Bose gas

is described by the disorder averaged, replicated grand-canonical partition

function

ZN =

{
N∏

α=1

∮
Dψ∗

α

∮
Dψα

}
e−A(N)[ψ∗,ψ]/~ (12)

with the replica action

A(N)[ψ∗, ψ] =

∫
~β

0

dτ

∫
dDx

N∑

α=1

{
ψ∗
α(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ − µ

]
ψα(x, τ)

+
g

2
|ψα(x, τ)|4

}
+

∞∑

n=2

1

n!

(−1

~

)n−1∫ ~β

0

dτ1 · · ·
∫

~β

0

dτn

∫
dDx1 · · ·

∫
dDxn

∫
dDxn

N∑

α1=1

· · ·
N∑

αn=1

R(n)(x1, . . . ,xn) |ψα1(x1, τ1)|2 · · · |ψαn(xn, τn)|2 . (13)

Thus, in leading order n = 2 the random potential leads to a residual

attractive interaction between the replica fields ψ∗
α(x, τ), ψα(x, τ) which is,

in general, bilocal in both space and imaginary time.

3. Bogoliubov Theory

Now we apply the field-theoretic background method23–25 in order to derive

the effective potential for the replicated action (13) within a Bogoliubov the-

ory.11 As we restrict ourselves to a homogeneous Bose gas, the background

fields are assumed to be independent of space and imaginary time. Further-

more, as the replica action (13) has a global U(1) × O(N)-symmetry, we

assume that the background fields are replica symmetric. Thus, we arrive

at the decomposition

ψα(x, τ) =
√
n0 + δψα(x, τ) , (14)

where n0 denotes the condensate density. Inserting this decomposition in

the replica action (13), we have only to take into account the fluctuation

fields δψ∗
α(x, τ), δψα(x, τ) in zeroth and second order due to the background

method. Performing the replica limit N → 0 according to (8), then yields

the effective potential defined by

Veff(n0) = − 1

V β
lim
N→0

lnZN

N
. (15)
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A lengthy but straight-forward calculation shows that, within the Bogoli-

ubov theory, all higher contributions n > 2 of the cumulant functions

R(n)(x1, . . . ,xn) do not contribute to the effective potential due to the

replica limit N → 0. Thus, we end up with

Veff = −µn0 +
g

2
n2
0 +

∫
dDk

(2π)D

{
E(k)

2
+

1

β
ln
[
1 − e−βE(k)

]

− ǫ(k) − µ+ gn0

E(k)2
R(k)n0

}
(16)

with the Fourier transformed

R(k) =

∫
dDx e−ikxR(2)(0,x) (17)

as well as the dispersions ǫ(k) = ~
2k2/2M and

E(k) =

√
[ǫ(k) − µ+ gn0]2 + 2 [ǫ(k) − µ+ gn0] gn0 . (18)

4. Condensate Density

Extremizing the effective potential (16) with respect to the condensate den-

sity n0 then yields the particle density via n = −∂Veff/∂µ:

n = n0 +

∫
dDk

(2π)D

{
ǫ(k) + gn

E(k)

[
1

2
+

1

eβE(k) − 1

]
+

nR(k)

[ǫ(k) + 2gn]2

}
. (19)

Here E(k) denotes the Bogoliubov dispersion

E(k) =
√
ǫ(k)2 + 2ǫ(k)gn , (20)

which does not depend on the disorder. This finding of the original Huang-

Meng theory12 here stems from the fact that the disorder average in (13) is

taken before analyzing the quantum fluctuations. From (19) we read off at

T = 0 that the depletion of the condensate density consists of two terms.

The interaction-induced depletion is given by the UV-divergent expression

∆n
(int)
0 = −

∫
dDk

(2π)D
ǫ(k) + gn

2
√
ǫ(k)2 + 2ǫ(k)gn

, (21)

which is calculated by applying dimensional regularization.26 In D = 3

dimension Eq. (21) reduces with g = 4π~2a/M and the s-wave scattering

length a to the well-known result of Bogoliubov:11

∆n
(int)
0 = − 8

3
√
π

(an)3/2 . (22)
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Correspondingly, the disorder-induced depletion reads

∆n
(dis)
0 = −

∫
dDk

(2π)D
R(k)n

[ǫ(k) + 2gn]
2 , (23)

which can be further evaluated for a specific Fourier-transformed disorder

correlation R(k).14,18

5. Superfluid Density

In order to determine the superfluid density of a disordered Bose gas, we

transform our system to an inertial frame with moves uniformly with the

velocity u with respect to the laboratory.27 A corresponding Galilei boost

leads to the additional action

δA =

∫
~β

0

dτ

∫
dDxψ∗(x, τ)u

~

i
∇ψ(x, τ) . (24)

Going again through the replica and the Bogoliubov formalism yields the

effective potential

Veff = −µn0 +
g

2
n2
0 +

∫
dDk

(2π)D

{
E(k)

2
+

1

β
ln
[
1 − e−βE(k)

]
−R(k)n0 (25)

× ǫ(k) − µ+ gn0

E(k)2
−
[

β~
2k2 eβE(k)

2D
[
eβE(k) − 1

]2 +
R(k)n0~

2k2 [ǫ(k) − µ+ gn0]

DE(k)4

]
u2

}

Its extremum with respect to the condensate density coincides with the

grand-canonical potential Ω whose explicit dependence on the boost velocity

u defines the momentum p = −∂Ω/∂u of the system. This yields

p = MV nv + V

∫
dDk

(2π)D

{
~2βk2eβE(k)

D
[
eβE(k) − 1

]2 +
2~2R(k)nk2ǫ(k)

DE(k)4

}
u . (26)

Thus, the system momentum (26) is of the form p = MV nnu + . . ., which

defines the normal density nn. With this we obtain

nn =

∫
dDk

(2π)D

{
~2βk2eβE(k)

DM
[
eβE(k) − 1

]2 +
4R0n

D [ǫ(k) + 2gn]2

}
, (27)

whose complement defines the superfluid density ns = n − nn. At T = 0

we read off from (27) that the superfluid density has no interaction-induced

depletion17 but a depletion due to disorder

∆n(dis)
s = −4n

D

∫
dDk

(2π)D
R(k)

[ǫ(k) + 2gn]
2 . (28)
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A comparison of (23) with (28) shows that the disorder-induced depletions

of the condensate and the superfluid density are related via

∆n(dis)
s =

4

D
∆n

(dis)
0 (29)

irrespective of the Fourier-transformed disorder correlation R(k). This

means in D = 3 dimensions that the depletion of the superfluid density

exceeds the corresponding one of the condensate density by a factor 4/3.

On general physical grounds it is understandable that this factor is larger

than 1. The localized condensates, which form in the randomly distributed

minima of the random potential, do not contribute to and thereby“hamper”

the superfluid motion.

6. Conclusion and Outlook

Here we have rederived the Huang and Meng theory12 for a homogeneous

three-dimensional hard-sphere Bose gas in a random external potential

within a functional integral approach. In qualitative agreement with the

experiments in porous media,1 the formation of local condensates in the

minima of the random potential reduces the superfluid component of the

fluid even at zero temperature, where, in the absence of disorder, the whole

fluid would be superfluid. The recent experimental advances in trapping

Bose-Einstein condensates in a disordered medium3,4 make it interesting to

test in a more quantitative manner the predictions of the model considered

by Huang and Meng. In Ref. 18 we, therefore, extended the latter approach

and the approach of the present work to include a harmonic trapping po-

tential in addition to the weak external random potential. We considered

there a condensate in the limit of a large number of particles N and in

the presence of disorder with a correlation length shorter than the healing

length of the superfluid. These conditions allowed for a simple hydrodynam-

ical formulation of the problem similar to the theory of wave propagation

in random elastic media.28
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A mixture of spin-1/2 fermionic atoms and molecules of paired fermionic atoms
is studied in an optical lattice. The molecules are formed by an attractive
nearest-neighbor interaction. A functional integral is constructed for this many-
body system and analyzed in terms of a mean-field approximation and Gaussian
fluctuations. This provides a phase diagram with the two merging Mott insula-
tors and an intermediate superfluid. The Gaussian fluctuations give rise to an
induced repulsive dimer-dimer interaction mediated by the unpaired fermions.
The effect of an unbalanced distribution of spin-up and spin-down fermions is
also discussed.

Keywords: Functional integral; Atomic mixture; Phase transition.

1. Introduction

A wide new field for investigating complex many-body systems has been

opened by the idea that clouds of atoms can be cooled to very low temper-

atures by sophisticated cooling techniques.1 Such an atomic cloud can be

brought into a periodic potential which is created by counter-propagating

laser fields.2 This potential mimics the lattice of core atoms of a solid-state

system and is called optical lattice due to its origin. It allows the simula-

tion of conventional condensed-matter systems as well as the creation of new

many-body systems. New quantum states can emerge due to the interplay

of tunneling and interaction between the atoms.

In the following, a cloud of spin-1/2 fermionic atoms in an optical lattice

is considered, where an attractive interaction between atoms in nearest-

neighbor lattice wells is assumed. Our aim is to study different quantum

phases that can appear due to the formation and dissociation of molecules,

and condensation of the (bosonic) molecules.
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2. Model

Our atomic cloud in an optical lattice is described by a grand-canonical

system of spin-1/2 fermions at temperature 1/β and chemical potentials µ1

and µ2, referring to the two possible projections of the spin. Its partition

function is defined as a functional integral with respect to Grassmann fields

as:3,4

Z =

∫
e−S(ψ,ψ̄)D[ψ, ψ̄] , (1)

where S is the action

S(ψ, ψ̄) =

∫ β

0

[
∑

r

(ψ1
r∂τ ψ̄

1
r + ψ2

r∂τ ψ̄
2
r) −

∑

r

(µ1ψ
1
r ψ̄

1
r + µ2ψ

2
r ψ̄

2
r)

− t

2d

∑

〈r,r′〉
(ψ1
r ψ̄

1
r′ + ψ2

r ψ̄
2
r′) −

J

2d

∑

〈r,r′〉
ψ1
r ψ̄

1
r′ψ

2
r ψ̄

2
r′



 dτ. (2)

Here t is the tunneling rate of single fermions, whereas J is the rate for

tunneling of a pair of fermions, located at nearest-neighbor sites in the

optical lattice. The J-term represents an attractive interaction. In contrast

to a local interaction, it provides a dynamics for the molecules. Depending

on the ratio t/J , there is a competition between the individual fermion

dynamics, which is dominating for t/J ≫ 1, and the dynamics of molecules,

which is dominating for t/J ≪ 1.

3. Mean-Field Approximation and Gaussian Fluctuations

We decouple the J-term in the functional integral by two complex fields

φ and χ.3,4 Here φ is related to the order parameter for the formation of

molecules, and χ is required for stabilizing the complex integral. A subse-

quent integration over the Grassmann fields leads to

Seff =

∫ β

0





∑

r,r′

φ̄r v̂
−1
r,r′φr′ +

1

2J

∑

r

χ̄rχr − ln det Ĝ−1




 dτ , (3)

where

Ĝ−1 =

( −iφ− χ ∂τ + µ1 + tŵ

∂τ − µ2 − tŵ iφ̄+ χ̄

)
,

and a nearest-neighbor matrix ŵ whose elements are 1/2d on the d-

dimensional lattice. Moreover, we have v̂ = J(ŵ + 21̂). The saddle-point
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Fig. 1. Density of a molecular condensate for different single-fermion tunneling rates t.
Here µ and t are given in units of J .

(SP) approximation δSeff = 0 for uniform fields and equal chemical poten-

tials µ1 = µ2 leads to the BCS-type mean-field result:

χ = −2iφ

3
,

1

J
=

1

β

∑

ωn

∫ 1

−1

ρ(x) dx

|φ|2/9 − (iωn + µ1 + tx)(iωn − µ2 − tx)
, (4)

where ρ denotes the density of states of free particles in the optical lattice.

The mean-field calculations gives three phases: an empty phase, a Mott

insulator, and a Bose-Einstein condensate (BEC) of the molecules whose

condensate density is n0 = |φ|2/9J2. The latter is plotted in Fig. 1, and the

phase diagram is shown in Fig. 2.

Excitations out of the molecular BEC can be described by Gaussian

fluctuations around the SP solution by complex fields φ and χ. Using ∆ =

iφ+ χ and ∆̄ = iφ̄+ χ̄, the corresponding action is

Seff = S0
eff + δSeff (5)

with

δSeff =

∫ β

0




∑

r,r′

δφ̄r v̂
−1
r,r′δφr′ +

1

2J

∑

r

δχ̄rδχr



 dτ−1

2
tr

[
Ĝ0

(−δ∆ 0

0 δ∆̄

)]2
.

(6)

The above result reads in terms of Fourier coordinates

δSeff =
∑

q,ω

〈δφ̄q,ω , Ĝ−1
eff (q, iω)δφq,ω〉, (7)
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Fig. 2. Phase diagram for different values of t.
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Fig. 3. Quasiparticle excitations for t = 0.5 and J = 1.

where Ĝ−1
eff is a 4 by 4 propagator and δφ is a four-component spinor. More

details of the calculation can be found in Ref. 4. The excitation spectrum

ǫq ≡ iω(q) is the solution of

det Ĝ−1
eff (q, iω) = 0. (8)

This gives the Bogoliubov spectrum in the molecular BEC and a gapped

spectrum outside the BEC (see Fig. 3).
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Fig. 4. Mean-field action of an unbalanced system, indicating a first-order transition
from the molecular condensate with increasing h = (µ1 − µ2)/2. For t = 0.2, µ = 0 and
zero temperature the transition takes place around h = 0.25.

4. Discussion and Conclusions

Our mean-field approach also allows us to consider an unbalanced molecu-

lar condensate5,6 by imposing different chemical potentials for the two spin

projections of the fermions, µ1 = µ + h, µ2 = µ − h. Although we cannot

address questions about nonlocal properties, like phase separation,7–9 di-

rectly within our mean-field approach, the effect of two chemical potentials

provides interesting effects even in a uniform system. In particular, the ex-

istence of a first-order phase transition, usually leading to phase separation,

can be studied with the mean-field action of the unbalanced system

Seff ∼ |φ|2
9J

− 1

β

∫ 1

−1

ρ(x) ln

[
cosh

(
E+(x)β

2

)
cosh

(
E−(x)β

2

)]
dx, (9)

where

E±(x) = −h±
√
|φ|2/9 + (µ+ tx)2 . (10)

This gives a first order-phase transition due to two separated minima in the

mean-field action for small µ or for larger µ, depending on h and t for fixed

J (cf. Fig. 4).

For small single-fermion tunneling rate t, there is a spin-polarized phase

simply because one spin projection has a negative chemical potential. This

can happen for small µ (cf. Fig. 5). If t is larger, there is a shift of the

chemical potential in Eq. (10) by the single-fermion tunneling rate. This

prevents the appearance of a spin-polarized state for small µ but it leads to
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Fig. 5. Density of a molecular condensate as a function of (µ1 + µ2)/2 for h = 0.26,
J = 1, and T = 0.

a sudden disappearance of the molecular condensate at large |µ|, as shown

in Fig. 5. This is accompanied by a first-order phase transition. At the

point h = µ there might be a coexistence of molecules and spin polarized

fermions.10,11

In conclusion, our mean-field approach to the model of Eq. (2) reduces

to a BSC-type theory of molecules for spin-1/2 fermions with attractive in-

teraction. It also provides a Mott insulator and a spin-polarized phase. The

Gaussian fluctuations describe Bogoliubov-type excitations of a molecular

condensate and the gapped excitation spectrum of a Mott insulator.
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1. Introduction

Recently developed cooling and trapping techniques for ultracold gases has

allowed to study complex quantum systems.1,2 Of particular interest are

mixtures of different types of atoms and their interaction. Here we will dis-

cuss a mixture of fermions, where one type of fermion is light, the other one

is heavy. This mixture is brought into an optical lattice and its behavior is

studied. Since the heavy fermions are localized to their wells in the optical

lattice, the light particles are scattered elastically by them. This leads to a

distribution of heavy fermions which is driven by thermal fluctuations and

the interplay with the light fermions. On the other hand, the light fermions

experience complex interference effects during their scattering events, lead-

ing to localization. Such a system can be described by a functional-integral

approach, where the heavy fermions represent classical degrees of freedom

and the light fermions quantum degrees of freedom.

2. Functional-Integral Representation

A grand-canonical ensemble of a mixture of light and heavy fermions at the

inverse temperature β = 1/kBT can be defined by the partition function
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in terms of a functional integral on a Grassmann algebra.3,4 For the latter

the integration over a Grassmann field Ψσ(r, t) and its conjugate Ψ̄σ(r, t)

is performed, where we use a pseudospin formalism with σ =↑ for heavy

and σ =↓ for light fermions. A discrete time is used with t = ∆, 2∆, ..., β,

implying that the limit ∆ → 0 has to be taken in the end. Ψ̄σ(r, t) and

Ψσ(r, t) (σ =↑, ↓) are independent Grassmann fields which satisfy antiperi-

odic boundary conditions in time, i.e. Ψσ(r, β + ∆) = −Ψσ(r,∆) and

Ψ̄σ(r, β + ∆) = −Ψ̄σ(r,∆). For the subsequent calculations it is conve-

nient to rename Ψσ(r, t) → Ψσ(r, t+ ∆). Then the partition function Z of

the grand-canonical ensemble of light and heavy fermions reads

Z =

∫
e−SD[Ψ↑,Ψ↓] ,

(
D[Ψ↑,Ψ↓] =

∏

r,t,σ

dΨσ(r, t)dΨ̄σ(r, t)

)
(1)

and the Green’s function that describes the dynamics of a light fermion,

starting at (r′, t′) and terminating at (r, t), is

G(r, t; r′, t′) =

∫
Ψ↓(r, t)Ψ̄↓(r

′, t′)e−SD[Ψ↑,Ψ↓]/Z ≡ 〈Ψ↓(r, t)Ψ̄↓(r
′, t′)〉 .

(2)

The dynamics of fermions is described by the action S = S↓+S↑+SI , where

light fermions with chemical potential µ and nearest-neighbor tunneling rate

J have the action

S↓ =
∑

t

{∑

r

[
Ψ̄↓(r, t)Ψ↓(r, t+ ∆) − µ̄Ψ̄↓(r, t)Ψ↓(r, t)

]

−∆J
∑

〈r,r′〉
Ψ̄↓(r, t)Ψ↓(r

′, t)
}

with µ̄ = 1 + ∆µ. Heavy fermions with the same chemical potential µ but

no tunneling term have the action

S↑ =
∑

t

∑

r

[
Ψ̄↑(r, t)Ψ↑(r, t+ ∆) − µ̄Ψ̄↑(r, t)Ψ↑(r, t)

]
.

The repulsive interaction of strength U between the two types of fermions

is given by

SI = ∆U
∑

r,t

Ψ̄↑(r, t)Ψ↑(r, t)Ψ̄↓(r, t)Ψ↓(r, t) .

The Grassmann field Ψ↑ appears in a quadratic form in S and, therefore,

the Ψ↑ integration can be performed in Z and in Eq. (2). It leads to a

space-diagonal determinant
∫
e−S↑−SI

∏

r,t

dΨ↑(r, t)dΨ̄↑(r, t) = det(−∂t + µ̄− ∆UΨ̄↓Ψ↓), (3)
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where ∂t is the time-shift operator

∂tΨ(r, t) =

{
Ψ(r, t+ ∆) for ∆ ≤ t < β

−Ψ(r,∆) for t = β .
(4)

The determinant can also be written as

det(−∂t + µ̄− ∆UΨ̄↓Ψ↓)D[Ψ↓] =
∏

r

[
1 +

∏

t

(µ̄− ∆UΨ̄↓(r, t)Ψ↓(r, t))
]

because the matrix is diagonal in space and has a triangular structure in

time. This allows us to expand the product on the right-hand side as

∏

r

[
1 +

∏

t

(µ̄− ∆UΨ̄↓(r, t)Ψ↓(r, t))
]

=
∏

r

∑

n(r)=0,1

∏

t

×[µ̄− ∆UΨ̄↓(r, t)Ψ↓(r, t)]
n(r)

=
∏

r

∑

n(r)=0,1

µ̄βn(r)/∆e−(∆U/µ̄)n(r)
P
t Ψ̄↓(r,t)Ψ↓(r,t) ,

where the last equation is due to the fact that Grassmann variables are

nilpotent. This result allows us to combine the remaining Ψ↓–depending

terms to the new action

S′
↓ = − log(µ̄)β

∆

∑

r

n(r) + Ψ̄↓ · (∂t − µ̄− t̂+
∆U

µ̄
n)Ψ↓ , (5)

where t̂ is the nearest-neighbor tunneling matrix. After performing the Ψ↓–
integration in Z, we obtain for a fixed realization of {n(r)}

Z({n(r)}) = µ̄(β/∆)
P
r n(r)det(−∂t + µ̄+ t̂− (∆U/µ̄)n).

Following the same procedure for the Green’s function, we obtain for G in

Eq. (2) the averaged resolvent matrix

G =
∑

{n(r)}

(
−∂t + µ̄+ t̂− (∆U/µ̄)n

)−1
P ({n(r)}) (6)

with the probability P ({n(r)}) for finding the realization {n(r)}:

P ({n(r)}) = Z({n(r)})/
∑

{n(r)}
Z({n(r)}) . (7)
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Fig. 1. Properties of the fermionic mixture at half filling on a square lattice with U = 9
and µ = U/2 (in units of the tunneling rate J). (a) Typical distribution of heavy fermions
at β ≈ 10.2. (b) Scaling of the localization length with respect to the linear system size
M for different temperatures T = 1/kBβ.

3. Discussion and Conclusions

The configuration {n(r)} is the distribution of heavy fermions in the op-

tical lattice, given by the distribution function of Eq. (7). The latter is

related to a distribution of Ising spins S(r) = [1− 2n(r)]/2, which are sub-

ject to an effective symmetry-breaking field, except for the symmetry point

µ = U/2, and an antiferromagnetic spin-spin interaction.4 The distribution

is controlled by thermal fluctuations. This is a well-known result for the

model, which is also known as the Falicov-Kimball model,5 and has been

studied in detail by Monte-Carlo simulations.6 Fig. 1a shows a typical dis-

tribution of heavy fermions. The light fermions move in the bath of heavy

fermions due to tunneling and scatter by the heavy fermions with rate U .

This is described by the Green’s function in Eq. (6). The dynamics of the

light particles is strongly affected by the scattering which can even lead to

their localization. The latter is studied numerically with a transfer-matrix

method7 in a two-dimensional lattice by evaluating the localization ξ from

ξ−1 = − lim
|r|→∞

1

|r| log



∑

t≥0

|G(r, t; 0, 0)|2

 .

Fig. 1b shows the change of the normalized localization length ΛM = ξ/M

with respect to a change of linear system size M at different temperatures.

Delocalized (localized) states are characterized by an increasing (decreas-

ing) ΛM with respect to an increased system sizeM . In the half-filled system

there is a critical temperature with β ≈ 10.2, with delocalized (localized)

states in the low- (high-) temperature regime.
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1. Introduction

The random phase approximation (RPA) to interacting Bose gases1,2 ap-

peared in the past one of the most basic approximations underlying the so

called dielectric approach to the superfluid transition.3 It was also noticed

already long time ago that the RPA formalism emerges naturally from a

theory containing N bosons species interacting through an U(N)-invariant

potential in the large-N limit.4,5

More recently the 1/N -expansion was applied to the dilute Bose gas in a

different context, namely, the computation of the critical temperature shift

due to fluctuation effects.6 However, such a calculation does not require too

much knowledge of dynamical effects, since the Tc-shift is dominated by the

zero Matsubara mode.7 In the framework of the 1/N -expansion this critical

temperature shift was also calculated beyond the leading order in 1/N .8

Interestingly, although the 1/N -expansion is in many respects physically

unrealistic, the result for the Tc-shift extrapolated to N = 1 was found to

agree reasonably well with more accurate approaches.9

Another example is the RPA approach discussed recently for the two-

dimensional case.10 In this case the spectrum has the very interesting prop-

erty of exhibiting a minimum for a nonzero value of the momentum. This

effect occurs only at finite temperature and can be thought as a kind of

roton-like behavior.

In this paper we revisit the 1/N -expansion using functional integral
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techniques. This will allow us to recover and provide further insight on

some known results.

2. The 1/N-Expansion

2.1. The saddle-point approximation

Let us consider the following action for an N -component interacting Bose

gas:

S =

∫ β

0

dτ

∫
ddr




N∑

α=1

b∗α

(
∂τ − µ− ∇2

2m

)
bα +

g

2

(
N∑

α=1

|bα|2
)2

 , (1)

where bα and b∗α are complex commuting fields. The partition function is

then given by

Z =

∫ [∏

α

Db∗αDbα
]
e−S . (2)

In order to perform the 1/N -expansion we introduce an auxiliary field

λ(τ, r) via a Hubbard-Stratonovich transformation:

S′ =

∫ β

0

dτ

∫
ddr

[
N∑

α=1

b∗α

(
∂τ − µ− ∇2

2m
+ iλ

)
bα +

1

2g
λ2

]
. (3)

Now we integrate out N − 1 Bose fields to obtain the effective action

Seff = (N − 1)Tr ln

(
∂τ − µ− ∇2

2m
+ iλ

)

+

∫ β

0

dτ

∫
ddr

[
b∗
(
∂τ − µ− ∇2

2m
+ iλ

)
b+

1

2g
λ2

]
, (4)

where we have called b the unintegrated Bose field.

Next we extremize the action according to the saddle-point approxi-

mation (SPA), which is exact for N → ∞. This is done by making the

replacement iλ → λ0 and b → b0, with λ0 and b0 being constant fields,

followed by extremization with respect to these constant background fields.

From this SPA we obtain the equations

(λ0 − µ)b0 = 0, (5)
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λ0 = g|b0|2 −
Ng

β

∞∑

n=−∞

∫
ddp

(2π)d
1

iωn + µ− λ0 − p2

2m

, (6)

where ωn = 2πn/β is the standard bosonic Matsubara frequency. The large-

N limit is taken with Ng fixed. Below the critical temperature Tc we have

b0 6= 0, and thus from Eq. (5) λ0 = µ. Therefore, Eq. (6) becomes

|b0|2 =
µ

g
−N

(
m

2πβ

)d/2
ζ(d/2), (7)

provided d > 2. The particle density is obtained as usual n = −∂f/∂µ,

where f = − lnZ/(NV β) is the free energy density. This gives us

n =
|b0|2
N

+

∫
ddp

(2π)d
1

exp
[
β
(

p2

2m + λ0 − µ
)]

− 1
. (8)

By setting λ0 = µ in Eq. (8) and using Eq. (7), we obtain

n =
µ

Ng
, (9)

and therefore we obtain the condensate density

n0 ≡ |b0|2
N

= n

[
1 −

(
T

Tc

)d/2]
, (10)

where

Tc =
2π

m

[
n

ζ(d/2)

]2/d
. (11)

We see that the SPA does not change the value of Tc with respect to the

non-interacting Bose gas. Indeed, the SPA corresponds to the Hartree ap-

proximation and it is well known that it gives a zero Tc shift.

2.2. Gaussian fluctuations around the saddle-point

approximation: beyond Bogoliubov theory

In order to integrate out λ approximately, we consider the 1/N -corrections

to the SPA by computing the fluctuations around the constant background

fields b0 and λ0. By setting
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b = b0 + b̃, iλ = λ0 + iλ̃, (12)

and expanding the effective action (4) up to quadratic order in the λ̃ field,

we obtain

Seff = SSPA
eff

+

∫

τ

∫

r

[
b̃∗
(
∂τ − µ+ λ0 −

∇2

2m

)
b̃+ iλ̃(b∗0b̃+ b0b̃

∗ + |b̃|2) +
1

2g
λ̃2

]

−N
2

∫

τ

∫

τ ′

∫

r

∫

r′
λ̃(τ, r)G0(τ − τ ′, r − r′)G0(τ

′ − τ, r′ − r)λ̃(τ ′, r′), (13)

where
∫
τ
≡
∫ β
0
dτ and

∫
r
≡
∫
ddr, SSPA

eff is the effective action (4) in the

SPA and

G0(τ, r) =
1

β

∞∑

n=−∞

∫
ddp

(2π)d
ei(p·r−ωnτ)Ĝ0(iωn,p), (14)

with

Ĝ0(iωn,p) =
1

iωn + µ− λ0 − p2

2m

. (15)

After integrating out λ̃ the effective action for the quadratic fluctuations in

the Bose fields is given by

Seff = SSPA
eff

+
1

2
Tr ln

[
δ(τ − τ ′)δd(r − r′) −Ng G0(τ − τ ′, r− r′)G0(τ

′ − τ, r′ − r)
]

+
1

2

∫

τ

∫

r

∫

τ ′

∫

r′
Ψ†(τ, r)M(τ − τ ′, r− r′)Ψ(τ, r′), (16)

where we have introduced the two-component fields

Ψ†(τ, r) =
[
b̃∗(τ, r) b̃(τ, r)

]
, Ψ(τ, r) =

[
b̃(τ, r)

b̃∗(τ, r)

]
, (17)

which satisfy Ψ†Ψ = 2|b̃|2. The matrix M(τ − τ ′, r − r′) has a Fourier

transform given by
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M̂(iωn,p) =

−iωn−µ+λ0+

p2

2m+|b0|2Γ̂(iωn,p) b20 Γ̂(iωn,p)

(b∗0)
2Γ̂(iωn,p) iωn−µ+λ0+

p2

2m+|b0|2Γ̂(iωn,p)


 ,

(18)

where

Γ̂(iωn,p) =
g

1 −NgΠ̂(iωn,p)
(19)

is the Fourier transform of the effective interaction Γ(τ − τ ′, r − r′), and

Π̂(iωn,p) =
1

β

∞∑

m=−∞

∫
ddq

(2π)d
Ĝ0(iωn + iωm,p + q)Ĝ0(iωm,q) (20)

is the polarization bubble. The effective interaction can be represented in

terms of Feynman diagrams as in Fig. 1. Physically λ̃ corresponds to the

fluctuation of the particle density and thus the effective interaction (19)

gives in fact the density-density correlation function. An effective interac-

tion like the one in Eq. (19) was already obtained some time ago by a

number of authors.2–4 Thus, the 1/N -expansion is actually equivalent to

a random phase approximation (RPA) considered previously in the litera-

ture.4 Explicit evaluation of the Matsubara sum in Eq. (20) yields

Π̂(iωn,p) =

∫
ddq

(2π)d
1

iωn − 1
2m (p2 + 2p · q)

{
nB

(
q2

2m
+ λ0 − µ

)

− nB

[
(p + q)2

2m
+ λ0 − µ

]}
, (21)

where nB(x) = 1/(eβx − 1) is the Bose distribution function.

By inverting the matrix (18) we obtain the propagator

Ĝ(iωn,p) =

[
Ĝb̃∗ b̃(iωn,p) F̂b̃∗ b̃∗(iωn,p)

F̂b̃b̃(iωn,p) Ĝb̃∗ b̃(−iωn,p)

]
, (22)

where
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= +

+ + ...

Fig. 1. Feynman diagram representation of the effective interaction Eq. (19). The line
wiggle represents the bare λ-field propagator while the double line wiggle represents the
dressed 1/N-corrected λ-field propagator. Continuous lines represent b̃-fields and each
loop is the polarization bubble Eq. (20) formed by two b̃-field propagators in convolution.
The effective interaction is obtained as a geometric series of polarization bubbles.

Ĝb̃∗ b̃(iωn,p) =
iωn + λ0 − µ+ p2

2m + |b0|2Γ̂(iωn,p)

ω2
n +

[
p2

2m + λ0 − µ+ |b0|2Γ̂(iωn,p)
]2

− |b0|4Γ̂2(iωn,p)
,

(23)

and

F̂b̃∗ b̃∗(iωn,p) = − (b∗0)
2Γ̂(iωn,p)

ω2
n +

[
p2

2m + λ0 − µ+ |b0|2Γ̂(iωn,p)
]2

− |b0|4Γ̂2(iωn,p)

(24)

is the anomalous propagator.

2.3. The excitation spectrum below Tc

From the pole of the matrix propagator (22) we obtain that the energy

spectrum E(p) satisfies the equation

E2(p) =

{
p2

2m
+ λ0 − µ+ |b0|2Γ̂[E(p) + iδ,p]

}2

− |b0|4Γ̂2[E(p) + iδ,p]
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=

(
p2

2m
+ λ0 − µ

)2

+ 2

(
p2

2m
+ λ0 − µ

)
|b0|2Γ̂[E(p) + iδ,p], (25)

where δ → 0+. Note that Eq. (25) can be written as the product of two

elementary excitations, E2(p) = El(p)Et(p), where

El(p) =
p2

2m
+ λ0 − µ+ 2|b0|2Γ̂[E(p) + iδ,p], (26)

Et(p) =
p2

2m
+ λ0 − µ (27)

are the spectrum of the longitudinal and transverse modes, respectively.

When λ0 = µ we obtain that the transverse mode is gapless, consistent

with Goldstone’s theorem.

By inserting the saddle-point value λ0 = µ, we obtain the following

self-consistent equation for the excitation spectrum

Ẽ(p) =

√
p4

4m2
+

|b0|2
m

p2 Γ̂[Ẽ(p) + iδ,p], (28)

where the notation Ẽ(p) ≡ E(p)|λ0=µ is used. Note that the above spec-

trum corresponds to a generalization of the well-known Bogoliubov spec-

trum.11 The difference lies in the fact that in the 1/N -expansion the cou-

pling constant g is replaced by the effective interaction Γ̂[E(p) + iδ,p].2

At zero temperature Π(iω,p) vanishes and the excitation spectrum cor-

responds to the usual Bogoliubov spectrum. Such a modification of the

spectrum by the effective interaction accounts for thermal fluctuation ef-

fects at higher temperatures and leads to a consistent treatment of critical

fluctuations near Tc.
12

3. Conclusions

We have seen how the functional integration formalism recovers in a natural

and physically intuitive way some of the earlier results of the RPA (or

dielectric) approach to dilute Bose systems. The field theoretic approach

discussed here can be used to compute many physical quantities, like for

example, the condensate and superfluid densities. These results are new and

will be published elsewhere.12
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I. Kondor, in: Proceedings of the International School of Physics “Enrico
Fermi”: Local Properties of Phase Transitions, ed. K. A. Müller (North-
Holland, Amsterdam, 1976), p. 806.

5. R. Abe, Prog. Theor. Phys. 52, 1135 (1974); R. Abe and Hikami, Prog.
Theor. Phys. 52, 1463 (1974).

6. G. Baym, J.-P. Blaizot, and J. Zinn-Justin, Europhys. Lett. 49, 150 (2000).
7. G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, and D. Vautherin, Phys.
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We set up a recursion relation for the partition function of a fixed number
of harmonically confined bosons. For an ideal Bose gas this leads to the well-
known results for the temperature dependence of the specific heat and the
ground-state occupancy. Due to the diluteness of the gas, we include both the
isotropic contact interaction and the anisotropic dipole-dipole interaction by
an infinite-bubble sum of the lowest-order perturbative results. Due to the
anisotropy of the dipole-dipole interaction, the thermodynamic quantities of
interest crucially depend on the trap configuration.

Keywords: Dipolar gas; Bose-Einstein condensation; Canonical ensemble.

1. Many-Body Path-Integral Formalism

The aim of this work is to give a path-integral description for a system of

a fixed particle number N . To this end, we start with the imaginary-time

evolution amplitude which is given by the following N -fold path integral

(x1, ...,xN ; τb | x′

1, ...,x
′

N ; τa)
B ≡ 1

N !

∑

P

N∏

n=1

[∫ xn(τb)=xP(n)

xn(τa)=x′

n

D3xn(τ)

]

× exp

{
− 1

~

(
A(0)[x1, ...,xN ] + A(int)[x1, ...,xN ]

)}
. (1)

Therein we have to sum over all possible N -particle orbits which begin

at (x′
1, ...,x

′

N ) and go to (x1, ...,xN) during the imaginary-time interval
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[τa, τb]. All these orbits are weighted with the help of the euclidean action

which contains the interaction-free part

A(0)[x1, ...,xN ] ≡
N∑

n=1

∫ τb

τa

dτ

[
M

2
ẋ2
n(τ) + V (xn(τ))

]
(2)

and the interaction

A(int)[x1, ...,xN ] ≡ 1

2

N∑

n,m=1

′
∫ τb

τa

dτ V (int)
(
xn(τ) − xm(τ)

)
. (3)

Here, M is the particle mass, V denotes the harmonic background potential

V (x) =
M

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (4)

V (int) stands for the interaction potential which is specified later on, and the

prime over the sum in (3) indicates that any self interaction is avoided. Since

we deal with indistinguishable bosons, the evolution amplitude (1) contains

a sum over all N ! possible permutations P . Furthermore, for describing

the thermodynamics of the N -particle ensemble, we have to calculate its

partition function

ZBN (β) ≡
∫
d3x1...d

3xN (x1,...,xN ; ~β | x1,...,xN ; 0)B , (5)

where only the ~β-periodical path configurations in (1) contribute. Thereby,

β ≡ 1/kBT represents the reciprocal temperature. The requirement of in-

distinguishability of bosons complicates further calculations considerably

even for the ideal Bose gas, as is explicitly shown in the next section.

2. Canonical Ensemble for Ideal Particles

Here, we discuss the situation for a non-interacting N -boson system and

omit therefore the interaction (3). For this case, the action is given by

(2) as the sum of N single-particle actions, so that our N -particle evolution

amplitude factorizes intoN single-particle ones. This yields for the partition

function (5)

Z
(0)B
N (β)=

1

N !

∑

P

∫
d3x1...d

3xN (xP (1);~β|x1; 0)(0)...(xP (N);~β|xN ; 0)(0). (6)

Because of the occurrence of non-trivial permutations single-particle am-

plitudes are not necessarily periodical and one is led to multiple cycles as

represented in Fig. 1. In general, such an n-cycle is defined by

hn(β) ≡
∫
d3x1...d

3xn(x1; ~β|xn; 0)(0)...(x2; ~β|x1; 0)(0) = Z1(nβ) . (7)
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a) b) c)

Fig. 1. Example of paths contributing to (6) for a cycle of length n = 3: a) final points
coincide with initial points of the other particles, b) and c) show the same situation in
an extended zone scheme and wrapped upon a cylinder.

The last equation follows from the imaginary-time translationary invari-

ance of a single-particle amplitude and its group properties. This shows

that the contribution of an n-cycle is simply the partition function of a

single particle with a temperature lowered by a factor n. The full bosonical

N -particle partition function (6) can be decomposed in such multiple cy-

cles. The only problem is that the cycle structure strongly depends on the

given permutation. One needs to know explicitly all possible cycle numbers

with respect to the constraint of the fixed particle number N . In praxis,

this becomes problematical for larger N ’s. But, according to Refs. 1,2, the

partition function also follows from the recursion relation

Z
(0)B
N (β) =

1

N

N∑

n=1

Z1(nβ) Z
(0)B
N−n(β) with Z1(nβ) =

∑

k

e−βEk . (8)

The partition function in vacuum Z
(0)B
0 (β) = 1 serves here for the starting

point. We apply, furthermore, the results (8) for the heat capacity

C
(0)B
N = kBT

∂2

∂T 2

{
T lnZ

(0)B
N

(
1/kBT

)}
(9)

and the ground-state occupancy, which is the probability for a particle being

in the ground state E0,2

w
(0)B
N =

1

N

N∑

n=1

e−nβE0

Z
(0)B
N−n (β)

Z
(0)B
N (β)

. (10)

The results in an isotropic harmonic trap (4) are plotted for different par-

ticle numbers N in Fig. 2.
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C
(0)B
N /NkB

T/Tc0.5 10

5

10

w
(0)B
N /N

T/Tc0.5 10

1 10

100

1000

10000

∞
a) b)

Fig. 2. a) Specific heat capacity and b) ground-state occupancy for an ideal Bose gas in
an isotropic harmonic trap for different particle numbers N versus reduced temperature.
Here Tc ≡ ~ω [N/ζ(3)]1/3/kB is the critical temperature in the thermodynamic limit.

3. Dipolar Interacting System

Now we describe the effect of an interaction upon thermodynamical prop-

erties of a Bose gas within the canonical ensemble theory. The system to

be described is typically a gas of 52Cr atoms which has recently been con-

densed in Stuttgart in T. Pfau’s group.3 The interaction between the atoms

can be modelled by a contact s-wave scattering plus a dipolar interaction

V (int)(x) =
4π~2as
M

δ(x) +
µ0m

2

4π

(
1

|x|3 − 3z2

|x|5
)
, (11)

the latter being caused by the large magnetic dipole moment of these atoms,

m = 6µBohr. In the experiment, the gas is trapped in a harmonic potential

of a general form (4) with two almost equal frequencies giving rise to a cylin-

drically symmetric configuration. For aligned dipole moments two different

configurations are possible. In the first configuration (I), the dipoles sit on

top of each other and experience an attraction. In the second configuration

(II), they are placed side by side and repel each other. The dipole forces are

expected to distort slightly the condensate whose main interparticle forces

come from an s-wave repulsion which is independent of the trap orientation.

In Refs. 4,5, we have calculated the shift of the Bose-Einstein condensation

temperatures caused by the dipolar forces. Here we discuss the thermody-

namic properties of the anisotropic system at the entire low-temperature

regime.

We begin with the full N -particle evolution amplitude (1) and Taylor

expand the interaction factor exp
{
−A(int)/~

}
around the zeroth order re-

sult of Section 2. The first-order contribution to the partition function (5)
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has the following cycle decomposition:

Z
(1)B
N (β) = − 1

2~

N∑

k=2

k−1∑

l=1

[
I
(D)
l,k−l(β) + I

(E)
l,k−l(β)

]
Z

(0)B
N−n(β) . (12)

Thereby many non-interacting cycles (7) occur which are combined to the

non-interacting part Z
(0)B
N−n. Furthermore two different kinds of interacting

cycles are always present. These are the direct and the exchange contribu-

tions, in contrast to the interaction-free one from Fig. 1c) represented by

τ

x

-

6

t

t

τ

x

-

6

t

t

I
(D)
1,2 (β) ≡ , I

(E)
1,2 (β) ≡ ,

where the wiggly line stands for the interaction. Their simplified pictures

represent the Hartree- and the Fock-like Feynman diagrams

I
(D)
1,2 ≡ (1) (2) , I

(E)
1,2 ≡

(1)

(2)

.

Combining both partition functions (8) and (12) to ZBN = Z
(0)B
N +Z

(0)B
N + ...

and performing the cumulant resummation one obtains the following new

recursion relation for the full partition function

ZBN (β) =
1

N

N∑

n=1

{
Z1(nβ)− n

~

n−1∑

l=1

[
I
(D)
l,n−l(β)+I

(E)
l,n−l(β)

]
+...

}
ZBN−n(β). (13)

Calculating both interacting contributions yields the proportionality

I(D),(E) ∝ β. Hence, for low temperatures, the second term in the curly

brackets of (13) is much larger than the first interaction-free summand lead-

ing to negative full partition function. The perturbative result must there-

fore be resummed. This can be done self-consistently by using the renormal-

ized cycle contributions Z̃1(nβ) = e−βnẼ
(n)
k instead of the interaction-free

terms Z1(nβ), where

Ẽ
(n)
k = Ek −

[
Σ(D)
n (k) + Σ(E)

n (k)
]
/~β (14)

are new energy levels shifted by the self-energies. They are represented by

Feynman diagrams related to (13) by cutting one line:

Σ(D)
n (k) =

k k

(n)

, Σ(E)
n (k) =

k k

(n)

. (15)
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Fig. 3. a) Specific heat capacity and b) ground-state occupancy for N = 1000 ideal
(dashed-dotted curves), contact (solid curves) and dipolar interacting (dashed curves)
bosons within a cylindrically symmetric harmonic trap. The configurations (I) or (II)
correspond to dipoles which sit on each other or are placed side by side, respectively.

All interaction terms are given by functions of the form

Σ(D,E)
n (k) , I

(D,E)
l,n−l ∼ ~β

{
4π~2as
M

− µ0m
2

3
f
(
κ

(D,E)
l,n [ω⊥, ω‖]

)}
(16)

with certain anisotropy parameters κ
(D,E)
l,n [ω⊥, ω‖], which are smaller than

1 for prolate configurations and larger than 1 for oblate ones. The first term

in the curly brackets of (16) represents the contribution of the contact inter-

action irrespective of the trap anisotropy. The second term corresponds to

the shift of the dipolar interaction and crucially depends on the anisotropy.

The configurations (I) and (II) are described by the anisotropy functions

f (I)(κ) = −2f (II)(κ) =
2κ+ 1

1 − κ
− 3κ

(1 − κ)3/2
Artanh

√
1 − κ . (17)

We apply these results to calculate the canonical N -particle full partition

function. From this, the specific heat capacity and the ground-state occu-

pancy for N interacting particles have been obtained by analogy with the

non-interacting case. The results for N = 1000 are presented in Fig. 3.
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The dynamic structure factor of a homogeneous, weakly interacting Bose gas
has been calculated for finite temperatures within RPA and compared to corre-
sponding results for a Fermi gas. Approaching Tc from high temperatures, the
boson S(q, ω) exhibits a noteworthy BEC precursor. Temperature–dependent
renormalization of the Bogoliubov frequency and the Landau damping of den-
sity excitations in the Bose gas are discussed in detail. The isothermal com-
pressibility of a Bose gas in the condensed phase turns out to vary only slightly
with temperature.
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1. Dynamical Structure Factor

Within the random–phase approximation (RPA), the van Hove function

determining the double–differential inelastic–scattering cross section of a

homogeneous quantum gas takes the form (ω 6= 0)1

S(q, ω) =
χ′′

0(q, ω)/(1 − e−ω/T )

|1 + vq χ′
0(q, ω) + i vq χ′′

0 (q, ω)|2
, (1)

where χ′(q, ω)=π−1−
∫∞
−∞ dω̄ χ′′(q, ω̄)/(ω̄−ω) is Kramers–Kronig related to

the known density excitation spectrum of the non–interacting gas obeying

Bose–Einstein (η=−1) or Fermi–Dirac (η=1) statistics:1,2

χ′′
0(q, ω) = 2C0 ω δ

(
ω2 − q4

)
+

3T

q
ln




1 + η exp
[
µ0

T − (ω−q2)2
4Tq2

]

1 + η exp
[
µ0

T − (ω+q2)2

4Tq2

]




1
η

(2)
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Fig. 1. (a)–(d): S(q, ω) within RPA for q = 0.25, vq = 0.05 for bosons (full line) and
fermions (dashed line) at T/Tc =5.0 (a), 1.05 (b), 0.5 (c), 0.1 (d). (e): Boson dispersion
for vq =0.05; roots of 1 + vqχ′

0(q, ω)=0 for T/Tc =0.1 (full line), 0.9 (dashed line), and

ωB
q =

p

q4 + c2q2 (full line). Dots: peak positions ωmax(q) taken from S(q, ω)–plots not
shown. Inset: same magnified for interval 0 < q ≤ 0.1; vertical bars: full width at half
maximum of boson peak taken from S(q, ω)–plots not shown.

with the chemical potential µ0 determined from the implicit equation

1 = C0 + 6
√
πT

3
2

ζ 3
2

(
−η eµ0/T

)

(−η) , C0 =

[
1 −

(
T

Tc

) 3
2

]
Θ(Tc − T )δη,−1 (3)

where ζν(x) :=
∑∞

j=1 x
j/jν . The condensed fraction C0 is non–zero for

bosons below the BEC critical temperature Tc = [6
√
πζ(3/2)]

−2/3
, only,

and vq :=πn
∫

d3r e−iq·rv(|r|), for contact interactions considered here, will

reduce to a constant proportional to the scattering length a: vq=8π2na.

Dimensionless quantities are used throughout with k−1
u and ~/ǫu as

units of length and time, resp., where ku := 2
(
6π2n/(2s+ 1)

)1/3
and

ǫu := ~2k2
u/(2m). Thus, in the above equations and below, quantities are

to be interpreted as S → S ǫu/~, χ′′
0 → χ′′

0 ǫu/~, (Note the definition

χ′′(q, ω) :=
∫∞
−∞ dt eitω < [N †

q(t), Nq(0)] > /(2πN) used here.) q → q/ku,
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z → ~z/ǫu, T → kBT/ǫu, vq → vq/ǫu, a → aku, n → nk−3
u , κT → κT ǫuk

3
u,

etc. according to their physical dimensions. Thus for a given gas, the (dimen-

sionless) excitation spectrum χ′′
0 is a function of 3 (dimensionless) variables

(q, ω, T ), only. Mass m and spin s of particles as well as the gas density n

are absorbed in the units.

Figures 1 (a)–(d) display S(q, ω) calculated for vq = 0.05 and q = 0.25

from Eqs. (1)–(3) for a series of temperatures ranging from a high (T =5Tc)

to a very low temperature (T = 0.1Tc). As expected, the results for both

bosons and fermions at high T nearly agree with the van Hove function of a

Maxwell–Boltzmann gas. As T is lowered, however, there is not only an over-

all decrease of intensity for ω < 0 in accordance with the detailed–balance

relation S(q,−ω)=exp(−ω/T )S(q, ω), but boson– and fermion–excitation

spectra develop qualitative differences due to the statistics. For T → T+
c ,

the boson S(q, ω) increases strongly displaying a precursor of the resonant

peak which appears at T < Tc reflecting long–lived density excitations asso-

ciated with the Bose–Einstein condensed fraction. In contrast, the fermion

S(q, ω) remains broad and feature–less gradually acquiring the well-known

zero–temperature form made up of piecewise straight lines and parabolas.3

2. Dispersion, Damping, and Isothermal Compressibility

As displayed in Fig. 1 (b)–(d), the boson S(q, ω) develops a pronounced

peak at ω ≈ ωq for T → T+
c . While the width of this peak narrows with

decreasing T , its position is almost fixed for 0 ≤ T ≤ Tc. The gross fea-

tures of the long–lived boson density excitations are well understood. In

the non–interacting gas, owing to the δ–contribution in Eq. (2), an excita-

tion of infinite lifetime and of spectral weight C0 will appear at ω =±q2.
This resonance peak is shifted and broadened as a result of particle interac-

tions. The dispersion of the peak position and its width at half–maximum

are determined within RPA by the complex root ω̃ = ωq + iγq, for which

the denominator on the right–hand side of Eq. (1) will vanish. Introduc-

ing the Bogoliubov excitation frequency ωB
q :=

√
q4 + c2q2 with the low–T

isothermal sound velocity c := 1/
√
nκT=0/2 =

√
2v0/π, this root may ap-

proximately be written as

ωq = ωB
q [1 − 2v0∆(q, T )]

1
2
q→0−→ c q , (4)

γq = ωB
q

c2/2

c2 + q2
χ′′

ex(q, ω
B
q ) v0 [1 − 2v0∆(q, T )]

− 1
2
q→0−→ q2 Γq , (5)

∆(q, T ) =
1

π

(T/Tc)
3
2

c2 + q2
+

c2/2

c2 + q2
−
∫ ∞

−∞

dǫ

π

χ′′
ex(q, ǫ)

ǫ− ωB
q

, (6)
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Fig. 2. Reduced isothermal compressibility nκT = S(q = 0)/T of interacting Bose gas
within RPA for vq =0.02, 0.05, and 0.10 (top to bottom, full lines). Dashed lines: low–T
asymptote nκT=0 = 2/c2 =π/v0.

where χ′′
ex denotes the excited–states contribution, i. e. the ln–term in

Eq. (2) for η=−1. The approximate ωq in Eq. (4) is indistinguishable from

the numerically determined roots (full and dashed lines in Fig. 1(e)). It is

remarkable that (i) ωq≈ωB
q , since |∆(q, T )

<∼0.1| for T
<∼Tc (see Figs. 1 (e)

and 2), also reflected by nearly fixed peak positions in Fig. 1 (b)–(d). (ii) the

sound–damping “constant” extracted from the Landau damping in Eq. (5),

Γq
q→0
= q−1 3v0c

2

2

[
e(c2/4−µ0)/T − 1

]−1 T→0∝ e−c
2/(4T ) , (7)

is anomalous: diverging as q−1 for fixed T ; however, exponentially vanishing

with decreasing T for fixed small q. (iii) the isothermal compressibility

κT will be T –independent for 0 ≤ T
<∼ Tc, if vq is sufficiently large, see

Fig.(2). Here the static structure factor S(q) :=
∫

dω S(q, ω) was determined

from numerical integration of S(q, ω) in Eq. (1) and κT = S(0)/(nT ) by

subsequent extrapolation q→0.
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We introduce a stochastic field equation based on the P-representation of the
grand canonical density operator of a Bose gas which is free from ultraviolet
problems. Numerical simulations for a harmonic trap potential are presented.
Although strictly valid for an ideal gas only, we argue that the behavior of
weakly interacting Bose gases at finite temperatures may also be described.

Keywords: Bose gas; Quantum field equation; Grand-canonical ensemble; P-
function.

1. Introduction

The fascinating experimental possibilities to manipulate relevant parame-

ters of ultracold quantum gases in traps allow us to investigate fundamental

concepts of quantum many particle theory1 in great detail. Our goal here

is to simulate the thermal state of an atomic Bose gas at low temperatures,

possibly including the atomic interaction. Well below the critical tempera-

ture, and neglecting thermal and quantum fluctuations, such a gas is well

described by the Gross-Pitaevskii (GP) equation1 for the mean field wave

function (we set ~ = 1 throughout)

∂tψ = −i
(
p2

2m
+ V (x) − µ+ g|ψ(x)|2

)
ψ, (1)

with µ the chemical potential, m the atomic mass, V (x) an external poten-

tial, and g an interaction constant reflecting two-body collisions. Viewed as

a classical field equation (as it should), the GP equation (1) can be seen as

Hamilton’s equation of motion for a classical matter field with field energy1

H =

∫
dxψ∗(x)

(
p2

2m
+ V (x) +

g

2
|ψ(x)|2 − µ

)
ψ(x). (2)
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We need to include damping and thermal fluctuations ξ(x, t) in order

to describe the thermal (grand canonical) state of the field. In this purely

classical framework stochastic field equations are well known, and exist for

any given Hamilton functional.2 In our case, it takes the form

∂tψ(x) = −(Λ + i)Hψ(x) +
√

2ΛkBT ξ(x, t), (3)

with the mean field“Hamiltonian”H = p2

2m+V (x)+g|ψ(x)|2−µ, a damping

constant Λ, the Boltzmann constant kB and temperature T . The complex

white noise field ξ(x, t) satisfies the usual condition 〈ξ(x1, t1)ξ
∗(x2, t2)〉 =

δ(x1−x2)δ(t1−t2). Formally – using the corresponding Fokker-Planck equa-

tion – it is easy to see that in the asymptotic limit t→ ∞, the distribution

of the stochastic field ψ(x, t) is indeed the classical (grand canonical) ther-

mal field state ρgc = 1
Zgc

e−H/kBT with the Hamilton functional (2), and

the grand canonical partition function Zgc.

In this classical framework we face the old problem of the ultraviolet

catastrophe, due to the infinite number of degrees of freedom of a field –

simply invoking the equipartition theorem. In order to give some meaning to

a stochastic field equation like (3), one has to introduce a cutoff. In the con-

text of ultracold bosonic gases, see Ref. 3 for recent investigations on these

matters. Closely related to the problem of the ultraviolet catastrophe is the

simple observation that such a“classical”description of a quantum field can

only make sense as long as the field modes are occupied by a macroscopic

number of quanta. In the case of a Bose gas at very low temperatures, the

energetically lowest states are indeed highly populated. However, for modes

with high enough energy (the “ultraviolet” ones) this no longer holds true.

We establish a “quantum” version of such a stochastic field equation that

will not suffer from all these problems.

2. Quantum Field Equation

We begin with an ideal Bose gas, where the energy is simply the sum over

all independent one-particle field modes with energy En, weighted with the

occupation number of that mode. The grand canonical quantum density

operator may be written as a mixture of coherent states using the (Glauber-

Sudarshan) P -function,4 ρ̂gc =
∫
d2ψ
π Pgc(ψ

∗, ψ)|ψ〉〈ψ| with coherent state

products |ψ〉 = |ψ0〉|ψ1〉 · · · |ψn〉 · · · of all modes. In this representation,

quantum expectation values of normally-ordered operators may simply be

obtained as phase-space averages over Pgc,
4 which thus replaces the classical

phase-space density ρgc.
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It is now straightforward to find a stochastic field equation that recov-

ers the proper P -function in the long-time limit just as the classical field

equation (3) gave us the classical distribution ρgc. The P-function for the

thermal state of a harmonic oscillator is well known;4 we chose to write it in

the form Pgc(ψ
∗, ψ) = exp

(
−∑

n

(En−µ)
kBTn

|ψn|2
)
/n̄, with a “local” temper-

ature kBTn = En−µ
e(En−µ)/kBT−1

and the product n̄−1 =
∏
n

(
e(En−µ)/kBT − 1

)

over all mean occupation numbers. Compared to the corresponding clas-

sical density ρgc, we see that the only difference between ρgc and Pgc is

the occurrence of the “global” temperature kBT in the classical density,

while there is a “local” temperature kBTn for each mode in the P -function.

The corresponding “quantum” stochastic field equation – now written in a

representation independent form – is

∂t|ψ〉 = −(Λ + i)Ĥ |ψ〉 +

√
2Λ ˆkBT |ξ〉, (4)

with Ĥ = p̂2

2m + V (x̂) − µ and, crucially, an operator ˆkBT = Ĥ

eĤ/kBT−1
.

We see that if the energy may be considered bounded such that kBT ≫
Ĥ , then indeed, ˆkBT ≈ kBT and the “quantum” field equation (4) reduces

to the “classical” field equation (3). However, the “quantum” field equation

(4) does not suffer from the ultraviolet problem of the “classical” equation

(3): for energetically high states, such that Ĥ ≫ kBT , the operator ˆkBT

tends to zero, reflecting the built-in cutoff.

It appears more than tempting to use Eq. (4) even in the case of a

weakly interacting gas. We simply include a mean-field interaction energy

and replace V (x) → V (x) + g|ψ(x)|2. As we have discussed, the resulting

equation is free from ultraviolet problems and coincides with the classical

equation (3) (including interaction) in the infinite-temperature limit.

3. First Simulation with our Stochastic Field Equation

We study a 2D ideal Bose gas of 〈N〉 = 500 atoms in an isotropic harmonic

oscillator trap. In Fig. 1 the occupation number of the ground state is

determined with our stochastic field equation (crosses) and compared with

both, an exact direct calculation (full line) and the well-known result of the

thermodynamic limit1 〈N0〉
N = 1 −

(
T
Tc

)2

with Tc =
√

2N
Γ(2)ζ(2)~2ω2 (dashed

line). We see good agreement (see also Ref. 5).

It is obvious from Fig. 1 that the stochastic results suffer from some

remaining statistical fluctuations. This is due to the large fluctuations of

the particle number in the grand canonical ensemble for an ideal gas.6 It
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Fig. 1. Ground state occupation from a simulation (crosses) of an ideal 2D Bose gas
of 500 particles on average, compared with the direct calculation (full line) and the
thermodynamic limit (dashed line).

is therefore desirable to seek a stochastic field equation that describes a

canonical ensemble.7

To summarize, based on a P-representation of the thermal (quantum)

density operator, we present a stochastic field equation for an ideal Bose gas.

The equation naturally overcomes problems connected with the ultraviolet

catastrophe. We are very optimistic that the equation may also be applied

to the weakly interacting case – in an approximate mean field sense. It

should be emphasized that the stochastic field formulation of a Bose gas

not only allows us to determine simple thermodynamic quantities, but it

opens the door to (spatial) correlation functions of arbitrary order. Such

investigations will be pursued in the near future.7
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After its first experimental realization in 19951 the field of Bose-Einstein

condensation (BEC) has experienced an enormous increase of interest both

experimentally and theoretically. Although BEC is actually an atomic

physics phase transition, it represents such a versatile and controllable

many-particle system, that the research in BEC could be extended to sev-

eral other fields of physics. In all early BEC experiments the atoms were

alkali metals. So it was sufficient to model the van-der-Waals interaction in

the gas by using the short-range pseudopotential

V
(int)
δ (r − r′) =

4π~2a

M
δ(r − r′) . (1)

Its strength is characterized by the s-wave scattering length a. In 2005,

the first dipolar BEC was realized in a gas of 52Cr, where besides (1) also

a magnetic dipole-dipole interaction2 is present. An even more dramatic
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long-range interaction would be supplied by a 1/r potential

V
(int)
1/r (r − r′) = −4π2~2

MaG

1

|r − r′| . (2)

Here, we basically follow an idea of Ref. 3 to artificially create an attractive

1/r interaction due to a certain laser configuration which is similar to grav-

itation but up to 17 orders of magnitude stronger. The characteristic length

scale aG contains all information about the laser setup. As the interaction is

attractive, a self-binding situation can occur where the attractive 1/r inter-

action balances both the kinetic energy and the contact interaction. Such

tremendous attractive gravitational forces are only possible in nature on

stellar scales. Thus, such ultracold quantum gases can be used to simulate

cosmology in the laboratory and, in particular, to investigate the possibility

of a Bose star which, so far, has only been discussed theoretically.4

An effective 1/r interaction results from the interaction of neutral

atoms with a radiation field via induced electric dipoles. A quantum-

electrodynamic fourth-order perturbative calculation leads to the inter-

atomic contribution5

U(r) =
I

ε0c
ê
(λ)∗
i (k) ê

(λ)
j (k)α2(k)Vij(r, k) cos(k · r) . (3)

Here, α(k) denotes the polarizability, I the intensity of the radiation field,

ê
(λ)∗
i (k), ê

(λ)
j (k) are the polarization vectors, and λ = −, + stands for right

or left circular polarization. Furthermore, the retarded dipole-dipole inter-

action tensor Vij(r, k) turns out to be

1

4πε0r3
[
(δij − 3 r̂ir̂j) (cos kr + kr sin kr) − (δij − r̂ir̂j) k

2r2 cos kr
]
. (4)

In the near zone kr ≪ 1 and a rotational average, Eq. (3) reduces to an

attractive 1/r interaction.5

The first experimental proposal, how such an orientation average could

be realized for ultracold gases, has been made in Ref. 3. The simplest model

that suppresses the 1/r3 part consists of three orthogonal, circularly polar-

ized laser beams: k1 = kêx, k2 = kêy, k3 = kêz. In the near zone kr ≪ 1

we simply superpose the three terms to get the resulting potential

U3(r) = −3Ik2α2

16πcε20

1

r

[
7

3
+ (sinϑ cosϕ)4 + (sinϑ sinϕ)4 + (cosϑ)4

]
. (5)

The angles ϕ and ϑ describe the orientation of the atoms with respect to the

incident beam. Although the perturbative derivation of the interaction is

only valid for static perturbations, we suggest here as a second experimental
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proposal a setup of rotating lasers within a quasi-static frame, under the

constraint ωexcitation ≪ ωrot ≪ ωlaser. Instead of a static wave vector k we

now use the time-dependent one k(t) = k (sin γ cosωt, sinγ sinωt, cos γ)

with a free parameter γ for which the best choice turns out to be the magic

angle γ = arccos
√

1/3.6,8 Thus, the averaged potential reduces to

U1×rot(r) = − Iα2k2

96πcε20

1

r
(17 + 6 cos2 ϑ− 7 cos4 ϑ). (6)

The rotating setup does not depend on ϕ and is more spherical than (5). A

totally spherical-symmetric 1/r potential is obtained either from 18 static

lasers as suggested in Ref. 3 or from three rotating lasers as proposed here.7

Using the functional-integral formalism of many-body physics, we apply

Feynman’s diagrammatic perturbation expansion to calculate the leading

shift of the critical temperature for a Bose gas in an isotropic harmonic trap.

As there occurs an infrared divergence in the exchange contribution, it is

not possible to apply the usual semiclassical equal-time correlation function.

Instead we have to use the full quantum-mechanical one G(0)(x, 0;x′, 0):

∞∑

n=1

enβ(µ−3~ω/2)

[
Mω

π~(1 − e−2~βωn)

]3/2
e−

Mω
2~ sinh ~βωn [(x2+x′2) cosh ~βωn−2x·x′] .

(7)

Herewith we solve the Feynman diagrams of the free energy

F = F (0) − 1

β

{
1

2
+

1

2
+ . . .

}
(8)

in order to determine the particle number N = −∂F/∂µ and the self-energy

Σ(x, τ ;x′, τ ′) =
x,τ x′,τ ′+ x,τ x′,τ ′ + . . . , (9)

which defines the critical chemical potential.8 With this we obtain for the

leading shift of the critical temperature caused by both interactions7

∆Tc

T (0)
c

= −cδ (N)
a

λ
T

(0)
c

+
λ

T
(0)
c

aG

[
cE (N) + cD (N)

1
(
~β(0)

c ω
)2

]
(10)

with the thermodynamic de Broglie wavelength λ
T

(0)
c

=

√
2π~2β

(0)
c /M . The

coefficients cδ, cD, cE are shown as functions of the particle number in Fig. 1.

In the semiclassical approximation we execute the limit ~β
(0)
c ω ≪ 1. For

the contact interaction we obtain cδ = 3.42603 which is known from litera-

ture and has also been confirmed experimentally.9 The direct term becomes
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(a) Contact coefficient. (b) Direct coefficient.

(c) Exchange coefficient. (d) Total shift.

Fig. 1. (a)–(c): Numerical evaluation of the coefficients in (10). (a), (b): The straight
lines show the corresponding semiclassical results. Due to the divergence there is no one
in the exchange case; here we added a fitting line 2.929N2/9 that reproduces the values
quite well and shows the behavior of the divergence. (d): The straight line comes from
the result of a contact interaction only, aG → ∞, while the dashed lines give the complete
shift (10) for different values of aG; short to long dashes: aG = 0.05, 0.075, 0.1m. Chosen
values for all plots: mass of 87Rb, a = 3nm, and ω = 2π · 100 Hz.

cD = 2.0951 but for the exchange contribution cE we find the divergence∑∞
m=1 1/

√
m which was avoided by our full quantum-mechanical calcula-

tion and renders cE(N) finite. For a realistic experiment the total shift is of

the order of about 5% − 10%, see Fig. 1(d), and should be measurable.
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We consider a dilute Bose gas moving in a harmonic trap with a superimposed
frozen random potential which arises in experiments either naturally in wire
traps or artificially and controllably with laser speckles. The critical tempera-
ture, which characterises the onset of Bose-Einstein condensation, depends on
the disorder realization within the ensemble. Therefore, we introduce an ef-
fective grand-canonical potential from which we determine perturbatively the
disorder averages of both the first and the second moment of the critical tem-
perature in leading order. We discuss our results for a finite number of particles
by assuming a Gaussian spatial correlation for the quenched disorder potential.

Keywords: Disorder; Bose-Einstein condensation; Critical temperature.

1. Introduction

This work is motivated by recent experiments which study disorder effects

on Bose-Einstein condensates (BECs). Frozen random potentials for BECs

arise naturally in wire traps due to surface roughness.1,2 For a better under-

standing of these effects one needs to create disorder in a more controllable

fashion. A prominent example is provided by laser speckles where both

strength and correlation length of disorder realizations can be tuned.3,4

Here we investigate the effect of disorder on the critical temperature of

a harmonically trapped dilute ideal Bose gas. We assume that the disorder

potential is spatially Gaussian correlated and that it is weak enough to

treat it in a perturbative manner. The aim of this work is to determine the

disorder-induced shift of the critical temperature and the mean deviation

around its average. To this end we calculate the critical temperature as a

functional of the disorder potential and evaluate then the first and second

disorder averaged moments.
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2. Effective Action

We start with the usual functional integral representation of the grand-

canonical partition function

Z =

∮
Dψ∗

∮
Dψ e−A/~ , (1)

where one integrates over all possible bosonic Schrödinger fields which are

periodic in imaginary time. The corresponding action reads

A=

∫ ~β

0

dτ

∫
d3x ψ∗(x, τ)

[
~
∂

∂τ
− ~2

2M
∆+

M

2
ω2x2+U(x)−µ

]
ψ(x, τ) , (2)

where U(x) and ω denote the disorder potential and the frequency of the

isotropic harmonic trap.

To find the average influence of the disorder we consider a large ensemble

of macroscopically identical realizations and define an ensemble average as

• =
∏

x

∫ ∞

∞
dU(x) • P [U ] , 1 = 1 . (3)

For our purposes it is not necessary to know the concrete form of the proba-

bility distribution P [U ] apart from the condition that it has to be bounded

from below. Furthermore, we assume that the disorder potential vanishes

on the average and that the disorder is spatially Gaussian correlated:7

U(x1) = 0 , U(x1)U(x2) =
R

(2πǫ2)
3
2

e−
(x1−x2)2

2ǫ2 . (4)

Here R is the disorder strength and ǫ the disorder correlation length.

In the next step we calculate the effective action and make use of

the so-called background method.5,6 Thus, we use the decomposition

ψ(x, τ)=Ψ(x, τ)+δψ(x, τ) for the Schrödinger field, where Ψ(x, τ) and

δψ(x, τ) denote field expectation value and fluctuations, respectively. The

remaining functional integral in the partition function is expanded for a

small disorder potential U(x) up to second order. After applying the log-

arithm to the grand-canonical partition function we get for the effective

action

Γ[Ψ∗,Ψ] = −
∞∑

k=1

eβ(µ−E0)k

βk

[
1

(1 − e−~ωβk)3
− 1

]

+
1

~β

∫ ~β

0

dτ

∫
d3x Ψ∗(x, τ)

[
~
∂

∂τ
− ~2

2M
∆+

M

2
ω2x2+U(x)−µ

]
Ψ(x, τ)
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− 1

2~2β

∫ ~β

0

dτ1,2

∫
d3x1,2 U(x1)U(x2)G0(x1, τ1;x2, τ2)G0(x2, τ2;x1, τ1)

+

∫
d3x U(x)G0(x, 0;x, 0) + . . . . (5)

Here G0(x1, τ1;x2, τ2) = 〈ψ(x1, τ1)ψ
∗(x2, τ2)〉 stands for the unperturbed

correlation function of the Schrödinger fields. The grand-canonical potential

Ω can be found by extremizing the effective action (5) with respect to the

field expectation values:

δΓ[Ψ∗
e,Ψe]

δΨe(x, τ)
=
δΓ[Ψ∗

e,Ψe]

δΨ∗
e(x, τ)

= 0 ⇒ Ω(T, V, µ) = Γ[Ψ∗
e,Ψe] . (6)

In the symmetry-broken phase we expand the critical chemical potential µc
and the extremal field expectation value Ψe(x, τ) with respect to U(x) up

to second order to determine the respective disorder-induced corrections:

µc =
3

2
~ω+µ(1)

c +µ(2)
c + . . . , Ψe(x, τ)=

√
N0ψ0(x)+Ψ(1)

e (x)+Ψ(2)
e (x)+ . . . .

(7)

Here ψ0(x) denotes the ground-state wave function and 3~ω/2 the ground-

state energy of the three-dimensional harmonic oscillator. Both corrections

allow us in the following to calculate the critical temperature as a functional

of the disorder potential.

3. Critical Temperature

We determine the critical temperature from the particle number equation

N which follows immediately from the grand-canonical potential Ω. To this

end we set the ground-state occupation number N0 equal to zero, the chem-

ical potential equal to its critical value µc, and expand the critical temper-

ature: Tc[U ] = T
(0)
c +T

(1)
c [U ]+T

(2)
c [U ]+ . . . with T

(0)
c =~ωN1/3/ζ(3)1/3kB .

Using the disorder averages (4) one finds the following equations for the

average shift and the variance:

∆Tc[U ]

T
(0)
c

=
T

(2)
c [U ]

T
(0)
c

+ . . . ,
∆Tc[U ]2

T
(0)2
c

=
T

(1)
c [U ]2

T
(0)2
c

+ . . . . (8)

The respective results can be seen in Fig. 1. The average shift of the critical

temperature in Fig. 1a) is positive and has a maximum when the correlation

length ǫ is about the same size than the thermal wave length λ
(0)
c of the

bosons at the critical temperature. Both the critical temperature and the

mean deviation are proportional to N−1/3 when ǫ̃ is kept constant. In the

related Ref. 8 it is assumed that the critical temperature is self-averaging.
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∆Tc/T
(0)
c /R̃

ǫ̃

a) current work

Ref. 8
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q
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(0)
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Fig. 1. Average shift of critical temperature a) and mean deviation b) versus
ǫ̃=ǫ

p

Mω/~ for N=105 and R̃=R M3/2ω−1/2~−7/2.

This approximation leads qualitatively to the same result but differs quan-

titatively as is shown in Fig. 1a) for an experimentally realistic particle

number. One also finds in Fig. 1b) that the relative variance does not van-

ish for disorder correlation lengths much smaller than the oscillator length.

This implies that the critical temperature is not a self-averaging quantity

with respect to the correlation length.
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We analyze in detail recent experiments on ultracold dilute 87Rb–40K mix-
tures in Hamburg and in Florence within a mean-field theory. To this end we
determine how the stationary bosonic and fermionic density profiles in this
mixture depend in the Thomas-Fermi limit on the respective particle numbers.
Furthermore, we investigate how the observed stability of the Bose-Fermi mix-
ture with respect to collapse is crucially related to the value of the interspecies
s-wave scattering length.

Keywords: Bose-Fermi-mixture; Density; Stability.

1. Introduction

Six years after the first experimental achievement of Bose-Einstein conden-

sation (BEC) of trapped atomic gases in 1995 fermionic atomic gases were

brought together with bosonic atoms to quantum degeneracy in a 7Li–6Li

mixture,1,2 23Na–6Li mixture,3 and 87Rb–40K mixture.4 In such mixtures

one investigates, in particular, how the two-particle interaction influences

the system properties. Depending on the nature of the interspecies interac-

tion, a repulsion between bosons and fermions tends to a demixing in order

to minimize the overlapping region,5 whereas in the case of an attraction

the mixture can collapse as long as the particle numbers are sufficiently

large.6,7 Ultracold trapped boson-fermion mixtures were investigated with

respect to a demixing of the components8–10 and to a collapse due to the in-

terspecies attraction.9–13 Furthermore, the time-dependent dynamics of the
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collapse14 and finite-temperature effects on the stability in a boson-fermion

mixture were also studied.15

Our theoretical investigation is based on the experiments with a 87Rb–
40K boson-fermion mixture in a harmonic trap, which were performed in

Hamburg6 and in Florence.4,7 The parameters of both experiments are sum-

marized in Ref. 16. There our attention is mainly focused on the value of

the interspecies s-wave scattering length aBF since this parameter is of

great importance for the system, especially for the stability of the mix-

ture against collapsing. It turns out that different determination methods

for aBF lead, surprisingly, to incompatible values in the literature.16 Thus,

further investigations in this field are needed.

2. Density Profiles

A boson-fermion mixture at zero temperature, where all bosons are con-

densed in the single-particle ground state and the fermions occupy every

state below the Fermi energy, is described by the stationary Gross-Pitaevskii

equation16

[
− ~2

2mB
∆ + VB(x) − µB + gBB|ΨB(x)|2 + gBF nF (x)

]
ΨB(x) = 0 (1)

with the condensate wave function ΨB(x) and the fermionic particle density

nF (x) = κΘ (µF−VF (x)−gBF nB(x)) [µF−VF (x)−gBF nB(x)]
3/2

, (2)

which modulates the condensate density nB(x) = |ΨB(x)|2 and vice versa.

Here Vi(x) and µi (i = B,F ) denote the external trap potential and the

chemical potential for bosons and fermions, respectively, gBB describes the

strength of the contact interaction between two bosons and gBF stands

for the corresponding one between a boson and a fermion. Assuming that

the potential and interaction energy are larger than the kinetic energy, one

can use the Thomas-Fermi approximation, where the kinetic term in the

Gross-Pitaevskii equation (1) is neglected, so that the latter reduces to an

algebraic equation with respect to the bosonic particle density nB(x):17

VB(x) − µB + gBB nB(x) + gBF nF (x) = 0. (3)

The bosonic and the fermionic density distribution solving this equation is

plotted in Fig. 1 for the parameters of the Hamburg experiment.6
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Fig. 1. Comparison of the dimensionless particle densities for bosons and for fermions
between mixtures with interspecies interaction (thick lines) and without interspecies
interaction (thin lines). The densities are plotted versus the coordinates r at the plane
z = 0 and versus z at the line r = 0, respectively, in units of the Thomas-Fermi radii
of the noninteracting BEC for an example of typical particle numbers NB, NF of the
Hamburg experiment.6

3. Stability Against Collapse

In order to determine the border between stability and instability we ex-

tremized the grand-canonical free energy16

F =

∫
d3x

{
Ψ∗
B(x)

[
− ~2

2mB
∆ + VB(x) − µB +

gBB
2

|ΨB(x)|2
]

ΨB(x)

− 2

5
κΘ(µ̃F (x)) µ̃

5/2
F (x)

}
(4)

of the mixture by varying the widths αLB,k in the test function

ΨB(x) =

√
NBλ1/2

π3/2α3L3
B,r

exp

{
−r

2 + λz2

2α2L2
B,r

}
, λ = (ωz/ωr)

2, (5)

which has the form of the ground-state wave function of a three-dimensional

anisotropic harmonic oscillator. Here the variational parameter α has to

fulfill the conditions

NB = NBcrit ⇔ dF(α)

dα

∣∣∣∣
α=αcrit

=
d2F(α)

dα2

∣∣∣∣
α=αcrit

= 0, (6)

which yield the critical number of bosons NB and the corresponding one

for fermions NF by integrating out the fermionic particle density (2). Com-

paring them with the data of the Hamburg experiment allows us to fit the

s-wave scattering length to aBF = (−16.82± 030) as shown in Fig. 2.
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Fig. 2. Stability border for a new value aBF = (−16.82 ± 0.30) nm of the 87Rb–
40K mixture in the Hamburg experiment.6 All three lines are obtained by numerically
integrating the fermionic density (2). Those stable (unstable) points, which are located
above (below) the solid line, are equipped with error bars indicating a relative uncertainty
of 20% and 30% for NB and NF , respectively, according to Fig. 3 of Ref. 6.
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At first, we consider an ideal gas of harmonically trapped fermions with total
angular momentum F = 3/2 and calculate, e.g., the temperature dependence
of the heat capacity for a fixed magnetization. Afterwards, the isotropic short-
range contact-interaction is treated perturbatively and its influence on the
ground-state energy is worked out. Such spinor Fermi gases are important, for
example, in the context of a 52Cr-53Cr boson-fermion mixture.1

Keywords: Spinor Fermi gas; Bose-Einstein condensation.

1. Introduction

Since the first observations of Bose-Einstein condensation (BEC) in ultra-

cold dilute gases of alkali metals,2,3 the interest in fermionic gases has also

increased. Superfluidity in fermionic species has been shown to be deeply

related to the BEC of Cooper pairs, as originally introduced in the context

of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. The

recent observation of the BCS-BEC-crossover4 in 6Li, as theoretically pre-

dicted,5 has emphasised how important the underlying fermionic degrees of

freedom are for the physics of ultracold degenerate quantum gases.

Here, we are mainly interested in the spinorial character of Fermi gases

with total angular momentum, denoted by F , larger than 1/2. From now on,

we assume that fermionic atoms with large F are cooled and trapped in the

harmonic potential of an optical trap, where the spinorial character becomes

particularly enhanced. One could choose fermionic isotopes of ytterbium,

potassium, chromium, etc. Let us consider 53Cr for definiteness. We remark
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that its bosonic counterpartner 52Cr has been Bose-condensed6 and that

its large magnetic moment of 6µB, where µB denotes the Bohr magneton,

makes it an interesting system in itself. Consider the ground-state of 53Cr.

The nuclear spin I = 3/2 added to the electronic spin S = 3 renders it four-

fold degenerate with F ranging from F = |I−S| = 3/2 to F = I+S = 9/2.

This suggests to investigate, at first, ideal Fermi gases with large F .

2. Ideal Fermi Gases

The Euclidean action A(0) of a non-interacting system is given by

A(0) =

~β∫

0

dτ

∫
dDxΨ†

[
~
∂

∂τ
− ~2∇2

2M
+ U(x) − µ− ηFz

]
Ψ. (1)

Here, Ψ(x, τ) is a Grassmannian spinor field with the ad-joint Ψ†(x, τ) =(
ψ∗

+F (x, τ), · · · , ψ∗
−F (x, τ)

)
and Fz is the z-component of the spin matrix.

Both the chemical potential µ and the magneto-chemical one η are functions

of the temperature and represent Lagrange parameters for fixing the particle

number and the magnetization in z-direction, respectively.

The grand-canonical partition function Z(0) is defined by

Z(0) =

∮
DΨ†DΨ e−A(0)/~, (2)

where the functional integration runs over all spinor fields, which are

anti-periodic in imaginary time. Treating the harmonic potential U(x) =

M
3∑
i=1

ω2
i x

2
i /2 semi-classically, the grand-canonical free energy F (0) =

−(logZ(0))/β is given by

F (0) =
−1

β(βω̄~)3
H4

0 (z, α). (3)

Here, the function Hk
n(z, α) =

+F∑
f=−F

fk

Γ(n)

∫∞
0 dy yn−1

1+exp(y)(zαf )−1 is intro-

duced with z (α) being the fugacity (magnetic fugacity). The geometric

mean of the trap frequencies is denoted by ω = (ωxωyωz)
1/3

.

From Eq. (3) follow all thermodynamic properties of the system. For

example, the total particle number N = −∂F/∂µ and the magnetization

M = −∂F/∂η are given by

N =
1

(βω̄~)3
H0

3 (z, α), M =
1

(βω̄~)3
H1

3 (z, α). (4)
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Fig. 1. Spinor Fermi gas with F = 3/2: Left : Heat capacity versus temperature for
some values of δ. Right : Occupation numbers against δ at T = 0.

A similar expression can be derived for the heat capacity

C

NkB
= 12

H0
4 (z, α)

H0
3 (z, α)

− 9
H1

3 (z, α)H1
2 (z, α) −H0

3 (z, α)H2
2 (z, α)

H1
2 (z, α)2 −H0

2 (z, α)H2
2 (z, α)

+9δ
H1

3 (z, α)H0
2 (z, α) −H0

3 (z, α)H1
2 (z, α)

H1
2 (z, α)2 −H0

2 (z, α)H2
2 (z, α)

, (5)

where δ = M/N characterises the magnetization per particle.

Evaluating thermodynamic quantities for given F , δ necessitates to solve

Eq. (4) for z, α. Some examples are presented in Fig. 1 for F = 3/2. The

left part shows the heat capacity (5) against temperature in units of the

Fermi temperature TF ≡ EF /kB, where EF = ~ω(3N/2)1/3 is the Fermi

energy. The right part depicts the occupation numbers for T = 0 against δ.

3. Weakly Interacting Fermi Gases at T = 0

The energy differences between the different F substates in the ground-state

of 53Cr is much larger1 than the expected trapping frequencies. This, com-

bined with the diluteness of the system, allows to describe the low-energy

dynamics of the system through a pairwise contact interaction which is ro-

tationally invariant in the hyperfine spin space and preserves the hyperfine

spin of the individual atoms. Such an interaction is described through7

V
(contact)
ıı′′ (x,x′) = δ(x − x′)

[
c0 (Fı ·Fı′′)0 + c1 (Fı · Fı′′)1

]
, (6)

where the coefficients c0 and c1 depend only on a0 and a2, the scattering

lengths in the |F+F′| = 0, 2-channels. The ground-state energy, up to first

order in (6) with c′0 = 5a2 − a0 and c′1 = (a2 − a0), reads (see Fig. 2)

E

NEF
=

3

4
+ 7

N1/6

√
2π

(
3

2

)7/6 { ∑

f,f ′ 6=f
A(y<, y>)

[
c′0

4aosc
+ f(f ′ + 1)

c′1
3aosc

]
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Fig. 2. Spinor Fermi gas with F = 3/2: Ground-state energy for ω ≈ 2π×100 Hz, a0 ≈
a2 = 10−9m, and N ≈ 105.

+
c′1

6aosc

3/2∑

f=−3/2

[(
3

2
− f

) (
5

2
+ f

)
A(yf , yf+1)

+

(
3

2
+ f

)(
5

2
− f

)
A(yf−1, yf )

]}
, (7)

where A (y<, y>) = 2F1

(
− 3

2 ,
3
2 ; 4; y<y>

)
y3
<

Γ(4)

y
3/2
>

Γ(5/2)Θ(y<) and y< (y>) is the

smallest (largest) of yf = µ+ fη and yf ′ = µ+ f ′η.

4. Outlook

We have studied some properties of the weakly interacting spinor Fermi

gas. Future studies are necessary to understand, e.g., multi-channel super-

fluidity,8 the role of the dipole-dipole interaction,9 and their combination.
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Electrical noise produced when charges flow through a mesoscopic conductor is
non-Gaussian, where higher order cumulants carry valuable information about
the microscopic transport process. In these notes we briefly discuss the ex-
perimental situation and show that theoretical descriptions for the detection
of electrical noise with Josephson junctions lead to generalizations of classical
and quantum theories, respectively, for decay rates out of metastable states.

Keywords: Non-Gaussian noise; Mesoscopic systems; Thermal activation;
Quantum tunneling.

1. Introduction

Typically noise is an annoying phenomenon. This is particularly true for

mesoscopic systems since they are inevitably in contact with external leads,

substrates, gates etc., which only allow for control and manipulation of the

system under investigation. However, this is not the whole story. In fact,

noise may even carry information that cannot be obtained by standard mea-

surements detecting mean values. The relevance of the shot noise power of

the electrical current was already discovered by Schottky, who showed that

one gains direct access to the effective charge carrying the current by ob-

serving the shot noise and the mean current. Based on this seed, within the

last decade electrical noise has moved into the focus of research activities

on electronic transport in nanostructures1,2 since it provides information

on microscopic mechanisms of the transport not available from the volt-

age dependence of the average current. Lately, attention has turned from

the noise auto-correlation function (shot noise) to higher order cumulants

of the current fluctuations characterizing non-Gaussian statistics.2,3 While
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theoretical attempts to predict these cumulants for a variety of devices are

quite numerous,2 experimental observation is hard because of small signals,

large bandwidth detection, and strict filtering demands. A first pioneering

measurement by Reulet et al.4 of the third cumulant of the current noise

from a tunnel junction has intensified efforts and several new proposals for

experimental set-ups have been put forward very recently, some of which

are based on Josephson junctions (JJ) as on-chip noise detectors.5

In all experimental set-ups to measure higher order cumulants realized

and proposed so far, heating is one of the major experimental obstacles.4,6

Thus, experiments have primarily attempted to establish just the unspec-

ified non-Gaussian nature of the noise or to measure the third cumulant

(skewness). The latter one is particularly accessible since it can be discrim-

inated from purely Gaussian noise due to its asymmetry, e.g. when inverting

the current through the conductor. This way, very recently the skewness of

current noise generated by a tunnel junction was measured in the adia-

batic limit (low frequency noise) of the quantum tunneling regime of a JJ.7

In the even more interesting regime of finite frequencies,8 first data have

been obtained in Ref. 9, where the JJ stays in the classical domain of ther-

mally activated switching. This latter situation requires a new theoretical

framework generalizing the well-established Kramers’ theory10 to escape in

presence of non-Gaussian noise.11 We will present the main results in the

first part of these notes.

The problem for a corresponding quantum theory is that electrical noise

is produced by an environment in a steady state but far from equilibrium. A

consistent general theory for quantum tunneling in such a situation is still

elusive. What one could think about is to place the mesoscopic conductor

in parallel to a current biased JJ in the zero voltage state.12 Then, no net

current flows through the sample prior to the read out and the generated

electrical noise is equilibrium noise (with non-Gaussian cumulants though).

Accordingly, on the one hand only even higher order cumulants exist so

that in particular the fourth order cumulant (sharpness) becomes accessible

that due to heating effects may always be hidden behind the second and

third order ones. On the other hand, a generalization of the standard ImF

approach,13 which is based on a proper evaluation of the partition function

of the total system, is possible as we will briefly discuss in the second part.
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2. Preliminaries

The complete statistics of current noise generated by a mesoscopic conduc-

tor can be gained from the generating functional

G[χ] = e−SG[χ] = 〈T exp

[
i

e

∫

C
dtI(t)χ(t)

]
〉 , (1)

where I(t) = e
∫ t
0
dsN(s) is the current operator, N the number of trans-

ferred charges, χ the counting field, and T the time ordering operator along

the Kadanoff-Baym contour C. Time correlation functions of arbitrary order

of the current are determined from functional derivatives of G[χ], namely,

Cn(t1, . . . , tn) = −(−ie)n ∂nSG[χ]/∂χ(t1) · · · ∂χ(tn)|χ=0 , (2)

where cumulants Cn, n ≥ 3 display non-Gaussian properties of the noise.

We remark that the functional SG[χ] carries the full frequency dependence

of all current cumulants and not just their time averaged zero frequency

values usually studied in the field of full counting statistics.3

3. Classical Thermal Activation

Let us consider the experimental situation summarized in Fig. 1, where a

tunnel junction represents the noise generating sample and a JJ the detec-

tor. We assume the underlying stochastic processes to be classical, both for

the dynamics of the detector and for the electrical noise originating from

the mesoscopic conductor. Hence, the standard RSJ model applies, where

now the total noise consists of the Johnson-Nyquist noise δIb = Ib−〈Ib〉, in

the simplest case produced by a resistor R in parallel to the JJ biased by

Ib, and of the weak stationary mesoscopic noise δIm from the fluctuating

part of the mesoscopic current Im = 〈Im〉 + δIm. If the phase ϕ of the JJ

is initially trapped in one of the wells of the tilted washboard potential

U(ϕ) = −EJ cos(ϕ) − (〈Ib〉(~/2e)ϕ (zero-voltage state), it may for suffi-

ciently large 〈Ib〉 < I0 = (2e/~)EJ escape so that the JJ switches to a finite

voltage state. Further, since the third cumulant vanishes in equilibrium

due to time-reversal symmetry, experimentally, the mesoscopic conductor

is at low temperatures driven far from equilibrium, where no fluctuation-

dissipation theorem applies. Hence, the switching of the JJ can be visual-

ized as the diffusive dynamics of a fictitious particle in a metastable well

with non-Gaussian continuous fluctuations acting as external random driv-

ing force. In a refined version of this theory also back-action effects can be

taken into account.
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Im(t)Im

Ib+ Im <Im>

CJ,EJ R

RT

VmIb

C

Fig. 1. Simplified scheme of the experiment reported in Ref. 9. The high frequency
(f > 1/RC) fluctuations δIm of the current through a voltage-biased tunnel junction
(tunnel resistance RT ) pass through a Josephson junction (capacitance CJ , Josephson
energy EJ ). The switching of the Josephson junction to the finite-voltage state depends
on the sum of δIm and of the pulsed current bias Ib. The switching probability of the
junction during one pulse can be related to the current fluctuations.

According to the Kirchhoff rules and the Josephson relations we have

for the currents entering the detector (cf. Fig. 1)

〈Ib〉 + δIb + δIm(t) =
~

2e

ϕ̇

R
+ I0 sinϕ+ CJ

~

2e
ϕ̈ , (3)

where ϕ denotes the phase difference of the JJ. The two noisy forces are

assumed to be Markovian, which is an accurate approximation since the

experiment is operated in a regime, where the typical correlations times are

much smaller than the typical time scales of the junction, e.g. the inverse of

the plasma frequency Ω. This situation also ensures that we can work with

continuous noise processes. The thermal noise δIb has a vanishing mean

and a standard δ-correlated second cumulant. The statistical properties

of the stationary non-Gaussian noise δIm are determined by the generat-

ing functional (1) with the current operator I(t) replaced by the classical

noise δIm(t). In particular, one has 〈δIm(t)δIm(0)〉 = F2e
2〈Im〉δ(t) and

and 〈δIm(t2)δIm(t1)δIm(0)〉 = F3e
3〈Im〉δ(t2)δ(t1). The factors F2 and F3

denote the Fano-factors, which for a simple tunnel junction turn out to be

F2 = F3 = 1. It is important to realize that the average mesoscopic current

can be large so that the second moment can be comparable to or lager

than that of the thermal noise, while the third moment is still small due

to eΩ/I0 ≪ 1. In fact, the Gaussian component of the mesoscopic noise

effectively adds to the thermal noise to determine the effective temperature
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of the junction (heating). Equation (3) is a Langevin equation for a ficti-

tious particle in the tilted Josephson potential U(ϕ) in presence of thermal

Gaussian and electrical non-Gaussian noise.

As usual in rate theory, for analytical treatments it is much more conve-

nient to work with phase space probabilities rather than individual stochas-

tic trajectories.10 The general problem for non-Gaussian noise is then that

the corresponding Fokker-Planck equation (FPE) based on a Kramers-

Moyal expansion contains diffusion coefficients up to infinite order. The

basic idea for weak non-Gaussian noise with a leading third cumulant is

thus, to derive an effective, finite order Fokker-Planck equation. Based on a

cumulant expansion of the noise generating functional (1) with the count-

ing field proportional to the momentum derivative such a generalized FPE

has been derived in Ref.11 It leads to a FPE with a momentum dependent

diffusion term, where the momentum dependence is weighted by the third

cumulant.

The thermal rate expression derived from the steady state solution of the

standard FPE looks as Γ = A exp(−βUb) and is dominated by the exponen-

tial (activation factor) being identical to the probability to reach the barrier

top from the well bottom (energy difference Ub) by a thermal fluctuation.10

Within the theoretical framework of the extended FPE an analytical expres-

sion for the exponent including leading corrections due to a third cumulant

have been obtained.11 The rate takes the form Γ± ∝ exp[−βUb(1 ∓ |g3|)]
with the correction g3 due to the third cumulant such that Γ+ corresponds

to 〈Im〉 > 0 and Γ− to 〈Im〉 < 0. The rate asymmetry RΓ = Γ+/Γ− − 1

is found as being proportional to F3 and strongly depends on the effec-

tive temperature, damping, and bias current. Hence, a measurement of RΓ

gives direct information about the third cumulant of the electrical noise.

This has been discussed in detail in Ref. 9. There also results of numerical

simulations have been presented which are in agreement with the analytical

expressions.

To complete this discussion, we remark that an analytical expression

for the asymmetry of the escape rate in the limits of low and high friction

has been also derived in Ref. 14 leading up to minor deviations to identical

results.

4. Quantum Tunneling

As mentioned above, a general theory for quantum tunneling in presence

of steady state non-Gaussian noise has not been formulated yet. The idea

is thus to place the mesoscopic conductor in parallel to a current biased JJ
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V
Ib G

CJ,EJ

Fig. 2. Electrical circuit containing a mesoscopic conductor G in parallel to a JJ with
capacitance CJ and coupling energy EJ biased by an external current Ib. The switching
out of the zero voltage state of the JJ by MQT is detected as a voltage pulse V .

as depicted in the circuit diagram of Fig. 2. For a bias current Ib below the

critical current I0, the JJ is in its zero voltage state and the bias current

flows as a supercurrent entirely through the JJ branch of the circuit. Conse-

quently, no heating occurs in the conductor and the total system can easily

be kept at low temperatures, where the decay of the zero voltage state oc-

curs through Macroscopic Quantum Tunneling (MQT).12 The rate of this

process depends with exponential sensitivity on the current fluctuations of

the conductor so that the JJ acts as a noise detector.

The MQT rate Γ can be calculated in the standard way13,15 from the

imaginary part of the free energy F , i.e., Γ = (2/~) Im{F}, where F =

−(1/β) ln(Z) is related to the partition function Z = Tr{e−βH}. In the

path integral representation one has

Z =

∫
D[ϕ]e−S[ϕ] ,

which is a sum over all imaginary time paths with period ~β where each

paths is weighted by the dimensionless effective action of the JJ. In the

present case, we have S[ϕ] = SJJ [ϕ] + SG[ϕ/2], where the first term is

the bare action of the JJ, i.e. the phase dynamics in the tilted Josephson

potential, while the second one describes the influence of the environment.

The factor of 2 in the argument of SG arises from the fact that the voltage

across the conductor equals the voltage (~/e)(ϕ̇/2) across the JJ. In the

standard theory only thermal Gaussian noise is present, which is described

by an ohmic resistor in parallel to the JJ. The corresponding action SG[ϕ] ≡
SR[ϕ] can be calculated exactly and gives the well-known Feynman-Vernon

influence functional.15 Now, if we consider a tunnel junction as environment

generating stationary electrical non-Gaussian noise an exact expression for
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the action ST is found as well,16 where the granularity of the charge appears

as a periodic dependence on ϕ. The current generating functional thus

determines a non-Gaussian influence functional for the system with the

detector degree of freedom being the counting field.

In the MQT regime the partition function of the isolated JJ is domi-

nated by the so-called bounce trajectory, an extremal δS[ϕ] = 0 periodic

path in the inverted barrier potential. In the limit of vanishing temper-

ature one finds an analytical solution of the bounce ϕB so that for zero

temperature the bare rate coincides with the usual WKB result, namely,

Γ0 ∝ exp[−(36/5)Ub/~Ω] with Ub being the barrier height and Ω the fre-

quency for oscillations near the well bottom (plasma frequency). Following

the theory of the effect of an electromagnetic environment on MQT,13 the

partition function can now be calculated for arbitrary coupling between

detector and conductor based on a numerical scheme developed in Ref. 15.

Analytical progress is made when the noise generating element has a di-

mensionless conductance gT ≡ ~/(2e2RT ) ≪ I0/2eΩ so that the influence

of the noise can be calculated by expanding about the unperturbed bounce

which gives

Γ = Γ0 e−SG[ϕB/2] . (4)

For a tunnel junction with tunnel resistance RT , the correction SG[ϕB/2]

can be represented as a series in even order cumulants, which is usually

dominated by the second cumulant C2 and the fourth cumulant C4, see

Ref. 12. Note that this treatment still contains the full dynamics of detector

and noise source.

For the on-chip detection circuit proposed here, the impact of the

fourth order cumulant needs to be clearly discriminated from effects of

purely Gaussian noise. This is achieved by considering the function B(x) =

−ln[Γ(x)/Γ0(x)] with the variable x = (1−s2)/s2 (s = 〈Ib〉/I0) which allows

to discriminate between weak Gaussian and non-Gaussian noise due to a

qualitatively different scaling behavior with varying x. For purely Gaussian

noise B(x) results essentially in a straight line, while non-Gaussian noise

displays a nonlinear behavior. Even more pronounced are the differences in

the slopes dB(x)/dx, which saturate for larger x-values when only Gaus-

sian noise is present, but strongly decrease with increasing x in presence

of a nonlinear conductor. This scaling property is robust against additional

Gaussian noise present in the wiring incorporated by an additional resistor

with resistance R ≪ RT : it merely shifts dB(x)/dx and thus does not spoil

the scaling behavior originating from C4 (cf. Ref. 12).
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Some time ago, DeWitt-Morette1 et al. discussed the problem of the propa-
gation of radiation or particles in the presence of a wedge. Their treatment
includes path integral solutions of the wedge problem with Dirichlet or Neu-
mann boundary conditions for various situations. Recently, the superconduct-
ing phase in a wedge has gained increasing interest. The linearized Ginzburg-
Landau equation for the order parameter is formally similar to the Schrödinger
equation. But the conditions of no normal current at the boundary pose very
specific problems, which are discussed in the present paper.

Keywords: Superconductivity; Wedge; Ginzburg-Landau equation.

1. Introduction

We discuss some problems related to the application of path integrals to

treat the first linearized Ginzburg-Landau equation2,3 for describing the su-

perconducting phase in a wedge. This work was motivated by the increasing

possibilities of engineering phase boundaries of mesoscopic superconduc-

tors. A comprehensive review of some recent advances can, e.g., be found

in Ref. 4.

For superconducting samples with sizes of the order of the coherence

length, the Ginzburg-Landau equations provide good agreement between

the experimental5,6 and the theoretical7,8 phase boundary in the temper-

ature versus magnetic field plane. We here concentrate on the supercon-

ducting wedge, which has already been the subject of intense studies, in
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particular in the limit of a small wedge angle α ≪ π. E.g., some earlier

variational efforts9–12 concentrated on a lower bound to the nucleation field

Hc3 for α → 0. Some of them found the correct limit Hc3 =
√

3Hc2/α

(with Hc2 the bulk upper critical field) which was analytically obtained.13,14

Also the asymptotic behavior of the lowest eigenvalue and corresponding

eigenfunction for α → 0 has been fully investigated.15–17 Furthermore, for

the semi-infinite superconductor (α = π) the nucleation field is accurately

known.18,19

No analytical solutions are known for general α, but an analytical vari-

ational approach11,20,21 provides a lower bound for the nucleation field as

a function of α.

Inspired by the interesting path integral study of the Schrödinger equa-

tion in a wedge by DeWitt-Morette1 et al., we here investigate whether the

path integral treatment can elucidate the superconducting properties of the

wedge. But serious difficulties arise from the boundary conditions on the

superconducting current.

2. Ginzburg-Landau Equation and Boundary Conditions

Consider a wedge shaped superconductor with angle α, infinitely extended

along its edge which is considered to be the z direction. A uniform magnetic

field with vector potential A is applied parallel to the edge. We thus can

eliminate the free motion along the z direction, and restrict the treatment

to the (x, y) dependence of the order parameter Ψ. In the Ginzburg-Landau

equation 1
2m

(
p− e

cA
)2

Ψ + aΨ + bΨ |Ψ|2 = 0, two phenomenological pa-

rameters a and b occur, and e and m denote the charge and the mass of a

Cooper pair. In the vicinity of the phase boundary, when the superconduc-

tivity is just beginning to nucleate, |Ψ|2 is small, and the Ginzburg-Landau

equation can be used in its linearized form

1

2m

(
p− e

c
A
)2

Ψ = EΨ (1)

with a given coefficient E = −a related to the coherence length ξ =√
~2/ (2mE). The radius of the wedge is assumed large enough for radial

current effects to be negligible. The absence of a normal superconducting

current through the boundaries of the wedge can then be limited to the

angular boundaries:

J⊥ = (r × p)z −
e

c
(r × A)z ; J⊥Ψ|ϕ=0,α = 0. (2)

The lowest eigenvalue in bulk would be 1
2
eHc2
mc = 1

2~ω, where Hc2 is the

bulk critical magnetic field, and ω the effective cyclotron frequency. The
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nucleation (or 3rd critical) magnetic field Hc3, which is compatible with

the boundary problem in the wedge, is determined by the relation12

min (E) =
1

2

eHc3

mc
, (3)

The minimum of the eigenvalues E of the Schrödinger equation (1) thus

immediately determines the nucleation field Hc3.

2.1. The case α = π

The semi-infinite superconductor deserves special attention as a reference

system for further treatments or approximations. In the gauge A =H

(
0

x

)
,

the Schrödinger equation (1) and the current condition (2) can be cast in

the form
[
p2
x

2m
+
mω2

2
(x−X)

2

]
Ψ = EΨ, with

∂Ψ

∂x

∣∣∣∣
x=0

= 0, (4)

where X ≡ py/ (mω) is a constant of the motion. The order parameter is

thus even in x, which is equivalent to treating a reflected potential V (x) =
mω2

2 (|x| −X)
2
. For X > 0, e.g., this leads to a variant of a ”Mexican hat”

potential. The eigenfunctions can be expressed in terms of Weber functions,

and minimizing the lowest eigenvalue with respect to X gives18

min (Eα=π) = 0.59010
~ω

2
. (5)

Although we know of no path integral solution for this problem, a direct

application of the Jensen-Feynman inequality22 is rather satisfactory. The

action S becomes (in the Euclidean time variable τ = it/~; ẋ = dx
dτ )

S = −m
2

∫ β

0

(
ẋ2/~2 + ω2 (|x (τ)| −X)2

)
dτ. (6)

Using Z =
∮
DxeS , the Jensen-Feynman inequality reads

Z = Z0

〈
eS−S0

〉
0
≥ Z0e

〈S−S0〉0 with 〈•〉0 =
1

Z0

∮
Dx (•) eS0 , (7)

where S0 is a real trial action with corresponding partition function Z0.

Consider an harmonic trial action S0 with variational parameter Ω

S0 = −m
2

∫ β

0

(
ẋ2/~2 + Ω2x2 (τ)

)
dτ (8)
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with a symmetrized propagator K0, based on the propagator KΩ of the

harmonic oscillator

K0 (x, β|x0) =
1

2
(KΩ (x, β|x0) +KΩ (x, β| − x0)) (9)

KΩ (x, β|x0) =

√
mΩ

2π~ sinhΩβ~
exp

(
−mΩ

2~

(
x2 + x2

0

)
coshΩβ~ − 2xx0

sinh Ωβ~

)
.

(10)

Elementary algebra reveals

Z0 = e−
1
2
Ωβ~

1−e−2Ωβ~ →
β→∞

e−
1
2Ωβ~

〈
x2
〉
0

= 1
Z0

~ sinh Ωβ~

4
√

2mΩ

(
1

(cosh Ωβ~−1)
3
2

+ 1

(cosh Ωβ~+1)
3
2

)
→

β→∞
~

2mΩ

〈|x|〉0 = 1
Z0

√
~ sinh Ωβ~

8mΩπ

(
1

cosh Ωβ~−1 + 1
cosh Ωβ~+1

)
→

β→∞

√
~

mΩπ

→ min (Eα=π) ≤
Ω~

2
− m

2

(
~
(
Ω2 − ω2

)

2mΩ
+ 2ω2X

√
~

mΩπ
− ω2X2

)
(11)

which is readily minimized with respect to X and Ω

min (Eα=π) ≤
√
π − 2

π

~ω

2
= 0.602 81

~ω

2
, (12)

giving the optimal estimate at Ω = ω
√

1 − 2/π and X =
√

~/ (πmΩ). This

estimate differs by only 2% from the exact value in (5), and can be easily

improved, e.g., from Chapter 5 of Ref. 23. This seems encouraging for a

path integral approach to a superconducting wedge.

2.2. Variational approach

Inspired by the wave function for α = π, we developed a variational ap-

proach20,21 with variants of trial functions of the form

Ψvar (r, ϕ) = exp

(
i
mω

2~

sin 2πnϕ
α

2πn/α
r2 + iqr cos

πϕ

α
− r2λ

(
1 − γ cos2

πϕ

α

))

(13)

where q, λ γ, and n (integer) are variational parameters. Ψvar satisfies the

boundary conditions in the symmetric gauge for ϕ ∈ [0, α]. For α ≪ π

the variational order parameter turns out to be concentrated in the origin,

with the variational energy proportional to α. With increasing α, Ψvar

concentrates near the surface, and the energy becomes independent of α.
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Fig. 1. E = Evar/ (~ω/2) as a function of x = α/π. The dashed line shows the extension
of the two constituting expressions beyond the critical angle α = 0.4411π. The case
α ≤ 0.4411π is found in Ref. 11, whereas the upper bound for α ≥ 0.4411π results from
our approach.

Recently we became aware of an alternative variational approach11 (also

in the symmetric gauge):

ΨSimonov (r, ϕ) = exp

(
i
mω

2~

(
ϕ− sinh (2ϕ− α)

2 coshα

)
r2
)

(14)

which for sufficiently small α gives a lower trial energy than ours. Combining

both results one finds

min (E) ≤ Evar =

{
1
2~ω

√
1 − sinhα

α coshα for α/π ≤ 0.4411
1
2~ω

√
1 − 2/π for α/π ≥ 0.4411

, (15)

as represented in Fig. 1.

3. Path-Integral Considerations

The path integral for the Schrödinger equation in a wedge was treated

in Ref. 1. Dirichlet or Neumann boundary conditions were translated in

absorption or reflection, respectively. Apart from algebraic complications,

this treatment is a natural extension of the one-dimensional infinite square

well problem, like, e.g., formulated in Chapter 7 of Ref. 24. But for the
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superconducting wedge under consideration, the boundary condition (2) is

more complicated.

3.1. Symmetric gauge

The symmetric gauge

AS=
H

2

(−y
x

)
(16)

seems a useful start, because the propagator GS (x, T |x0) for an electron in

a magnetic field nicely reflects the classical circular motion

GS (x, T |x0) =

mω exp

[
imω

2~ sin ωT
2

(
1
2

(
r2 + r20

)
cos ωT2

−rr0 cos
(
ϕ− ϕ0 + ωT

2

)
)]

4iπ~ sin ωT
2

. (17)

The eigenfunctions and energy values follow from the spectral representa-

tion

GS (x, T |x0) =
∑∞

n=0

∑∞
j=−∞ Ψ∗

n,j (x)Ψn,j (x0) e
−iEn,jT/~;

→ Ψn,j (x) ∼ eijϕ × r|j|L(|j|)
n

(
~

mω r
2
)
× e−

~r2

2mω ;

En,j = (1 + 2n+ |j| − j) ~ω
2 .

(18)

A detailed derivation can, e.g., be found in Chapter 9.5 of Ref. 23 (but be

careful with the sign of the indices of the Bessel functions in the derivation.)

The operator J⊥,S for the normal current in this gauge is

J⊥,S =
1

mr

[
~

i

∂

∂ϕ
− mω

2
r2
]
, (19)

resulting in neither Dirichlet nor Neumann boundary conditions. But the

wave functions {Ψn,j (x)} do not form a complete set for ϕ ∈ [0, α], because

linear combinations of the states Ψn,j (x) give energy expectation values

E ≥ ~ω/2.

3.2. Gauge transformation(s)

The operator J⊥ (2) for the normal current in a point r contains a term from

the vector potential, which in the symmetric gauge is (x × AS)z = 1
2Hr

2.

A gauge transformation introduces a phase factor in the propagator

A = AS + ∇Λ → G (x, T |x0) = exp
(
i
e

~c
(Λ (x) − Λ (x0))

)
GS (x, T |x0) .

(20)
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Imposing(x × A)z|ϕ=0,α = 0 leads to a partial differential equation

1
2Hr

2 + dΛ(x)
dϕ

∣∣∣
ϕ=0,α

= 0. Among the many solutions, we mention

Λn (x) = −Hr
2

2

sin 2nπϕ
α

2nπ/α
with n integer. (21)

In these gauges we obtain

∂

∂ϕ
G (x, t|x0, t0)

∣∣∣∣
ϕ=0,α

= 0. (22)

But the formalism for Neumann boundary conditions, developed in Ref. 1,

would give a minimal energy ~ω/2, which is much too large. The problem

is that ~

i
∂
∂ϕ does not commute with the transformed Hamiltonian. So far

we did not succeed in finding a solution for such a situation, or to construct

an appropriate trial action∗.

4. Concluding Remarks

The solution of the linearized Ginzburg-Landau equation in a wedge is

seriously hindered by the boundary conditions which forbid a current com-

ponent normal to the boundary. For a semi-infinite superconductor the

minimal energy is known to be substantially lower than the bulk energy

~ω/2. And for general α a variational approach assures that the minimal

energy does never exceed 0.602 81 ~ω/2, and decreases with decreasing α.

A variational path integral treatment with the Jensen-Feynman inequal-

ity is promising for α = π. But for general α, the boundary conditions

prohibit the path integral treatment as developed in Ref. 1, even after a

gauge transformation which imposes Neumann boundary conditions. For-

tunately, these reflections seem numerically tractable with diffusion Monte

Carlo. But the numerical treatment is not yet sufficiently developed and

analyzed to allow for definite conclusions.
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It has recently been shown (K. Park, Phys. Rev. Lett. 95, 027001 (2005))
that the ground state of the t–J model at half filling is entirely equivalent to
the ground state of the Gutzwiller-projected Bardeen-Cooper-Schrieffer (BCS)
Hamiltonian with strong pairing. Here we extend this result to finite doping.
We show that in the immediate vicinity of half filling the projected 2D BCS
Hamiltonian with strong pairing still develops the antiferromagnetically (AF)
ordered ground state.

Keywords: Strongly correlated electrons; BCS Hamiltonian.

1. Introduction

In a recent paper, Park discussed a close connection between the t–J model

and the Gutzwiller-projected BCS Hamiltonian.1 It was shown both nu-

merically and analytically that the ground state of the t–J model at half

filling (i.e. the 2D anti-ferromagnetic Heisenberg model) is equivalent to

the ground state of the strong-pairing BCS Hamiltonian. Moreover, at suf-

ficiently small doping, there is numerical evidence for a strong overlap be-

tween the two ground state wave functions, which provides support for the

existence of superconductivity in the t–J model. It would be interesting

to analytically address this issue at finite hole concentration. As is known,

slightly away from half filling the long-range AF order is still observed in the

cuprate superconductors. Within the t–J model representation this phase

can be accounted for by the AF ordered state described by the Heisenberg

magnetic J-term slightly disturbed by the kinetic t-term. If the projected

BCS Hamiltonian is indeed believed to contain the same low-energy physics

close to half filling of the t–J Hamiltonian, its ground state must also ex-
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hibit the AF order in the immediate vicinity of half filling. This manifests

itself as a quite nontrivial necessary condition for the low-energy physics

described by the Gutzwiller-projected BCS Hamiltonian to be considered

identical to that of the t–J Hamiltonian at sufficiently low doping.

The purpose of the present report is to analytically investigate the

Gutzwiller-projected BCS Hamiltonian close to half filling. We derive the

low-energy long-wavelength effective action for the 2D projected BCS

Hamiltonian on a bipartite lattice in this region. The action obtained is

shown to be identical to that of the 2D quantum antiferromagnetic Heisen-

berg model explicitly represented by the 3D nonlinear σ-model. Since the

conventional BCS Hamiltonian does not exhibit any magnetic ordering and

always displays superconductivity, the previous results follow as an imme-

diate consequence of the Gutzwiller projection that eliminates the doubly

occupied electron states.

2. Gutzwiller-Projected BCS Hamiltonian

We start with the Gutzwiller-projected BCS Hamiltonian on a bipartite

lattice,

HG
BCS = −t

∑

ijσ

(
Xσ0
i X0σ

j + h.c.
)

+ µ
∑

i

X00
i

+
∑

ij

∆ij

(
X↑0
i X

↓0
j −X↓0

i X
↑0
j + h.c.

)
, (1)

where we have introduced the chemical potential term to control the to-

tal number of doped holes. The local NDO constraint is rigorously taken

into account at the expense of the introduction of the Hubbard operators

with more complicated commutation relations than those of the standard

fermion algebra. In fact, fermionic operatorsXσ0
i together with the bosonic

ones, Xσσ′
i form, on every lattice site, a basis of the fundamental represen-

tation of the graded (supersymmetrical) Lie algebra su(2|1) given by the

(anti)commutation relations

{Xab
i , X

cd
j }± = (Xad

i δbc ±Xbc
j δ

ad)δij , (2)

where the (+) sign should be used only when both operators are fermionic.

In the strong-pairing limit (|∆| >> t) the projected BCS Hamiltonian

(1) reduces to

HG
∆ =

∑

ij

∆ij

(
X↑0
i X

↓0
j −X↓0

i X
↑0
j + h.c.

)
+ µ

∑

i

X00
i . (3)
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3. su(2|1) Coherent-State Path-Integral Representation of

the Partition Function

In the su(2|1) coherent-state basis the partition function

Z∆ = tr exp(−βHG
∆)

takes the form of the su(2|1) coherent-space phase-space path integral

Z∆ =

∫
Dµ(z, ξ) eS∆ , (4)

where

Dµ(z, ξ) =
∏

i,t

dz̄i(t)dzi(t)

2πi(1 + |zi|2)2
dξ̄i(t)dξi(t).

Here zi is a complex number that keeps track of the spin degrees of free-

dom, while ξi is a complex Grassmann parameter that describes the charge

degrees of freedom.

The effective action reads

S∆ = i
∑

i

∫ β

0

ai(t)dt −
∑

i

∫ β

0

ξ̄i (∂t + iai) ξidt−
∫ β

0

HG,cl
∆ dt, (5)

where

ia = −〈z|∂t|z〉 =
1

2

˙̄zz − z̄ż

1 + |z|2 ,

with |z〉 being the su(2) coherent state. This term is frequently referred to

as the Berry connection. The dynamical part of the action takes the form

HG,cl
∆ =

∑

ij

(
∆ijξiξj

z̄j − z̄i√
(1 + |zi|2)(1 + |zj|2)

+ h.c

)
+ µ

∑

i

ξ̄iξi. (6)

Here zi(t) and ξi(t) are the dynamical fields. This representation rigorously

incorporates the constraint of no double occupancy.

4. Effective Action

The fermionic degrees of freedom in Eq. (4) can formally be integrated out

to yield

∫
Dξ̄Dξ exp




∑

ij

∫ β

0

ξ̄i(t)G
−1
ij (t, s)ξj(s)dtds



 = expTr logG−1
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= exp
(
Tr logG−1

(0) + Tr log(1 −G(0)ia+G(0)Σ)
)
, (7)

where

G−1
ij (t, s) = G−1

(0)ij(t, s) − iai(t)δijδ(t− s) + Σij(t)δ(t − s),

with Σij = ∆ij〈zj |zi〉 and

G−1
(0)ij(t, s) = δij(−∂t − µ)δ(t− s), i ∈ A,

G−1
(0)ij(t, s) = δij(−∂t + µ)δ(t − s), i ∈ B.

Here the trace has to be carried out over both space and time indices.

Up to this point no approximation has been made in the derivation of the

effective action. In fact, we are interested in a derivation of an effective ac-

tion to describe a low-energy dynamics of the spin degrees of freedom of the

projected strong-pairing Hamiltonian close to half-filling. For that purpose

we deduce an effective action in the spin degrees of freedom by performing

a perturbative expansion of the expression Tr log(1 − G(0)ia + G(0)Σ) in

powers of |∆|/µ ≪ 1. Physically, this corresponds to a highly underdoped

region of the phase diagram. The second step consists in expanding thus

obtained representation up to first order in ∂t and second order in ∆ij

implying that eventually we will set i → j. This amounts to the so-called

gradient expansion that corresponds to the low-energy and long-wavelength

limit of the action. In this way we obtain

Zeff
∆ /Z0 =

∫
Dµ(z, z̄) eS

eff
∆ , (8)

with the SU(2) invariant measure factor

Dµ(z, z̄) =
∏

i,t

dz̄i(t)dzi(t)

2πi(1 + |zi|2)2

and

Seff
∆ = i

∑

i

∫ β

0

ai(t)dt −
∑

ij

Jij

∫ β

0

(
|〈zi|zj〉|2 − 1

)
dt, (9)

where the long-wavelength limit (j → i) is implied. This action describes

the anti-ferromagnetic Heisenberg model with the effective coupling Jij =

|∆ij |2/2µ > 0.



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Low-energy effective representation of the projected BCS Hamiltonian close to . . . 455

5. Conclusion

We conclude by discussing the physical implications of the close connection

between the Gutzwiller-projected BCS Hamiltonian and the t–J model of

the high-Tc superconductors. Our result shows that the ground state of the

Gutzwiller-projected BCS Hamiltonian can in principle be considered the

reference state of a slightly doped Mott insulator. Note, however, that this

state does not coincide with the Gutzwiller-projected BCS ground state

which is just the short-range RVB state proposed by Anderson. The RVB

state is known to show no long-range order even at half filling. In contrast,

right at half filling as well as in the immediate vicinity of half filling the

ground state of the Gutzwiller-projected Hamiltonian exhibits long-ranged

AF order observed in the cuprates superconductors. Note also that the

low-energy action that corresponds to the strong-pairing BCS Hamiltonian

cannot in itself account for the weakening as well as the eventual disap-

pearance of the magnetic ordering as the hole concentration increases. This

effect is produced by the growing influence of the kinetic t-term that grad-

ually destroys the long-range ordered state. Therefore, one needs to include

the kinetic t-term into consideration to regain the full Gutzwiller-projected

BCS Hamiltonian, HG
BCS, to describe the actual behavior of the high-Tc

phase diagram close to half filling.

At a moderate, non-zero doping the RVB wave function yields good

agreement with experiments2 as well as with numerical studies3 and is con-

jectured to be a good ansatz wave function for the t–J model.4 In doped

regimes sufficiently away from half filling, the RVB state turns out indeed

to be qualitatively similar to the ground state of HG
BCS .1 One can there-

fore conclude that the Gutzwiller-projected BCS Hamiltonian qualitatively

captures the essential low-energy physics of the high-Tc superconductors

close to half filling, and beyond.
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1. Introduction

Nonadiabatic transitions at avoided level crossings play an essential role

in numerous dynamical phenomena in physics and chemistry. They have

been studied both theoretically and experimentally in various contexts like

spin-flip processes in nano-scale magnets,1,2 molecular collisions,3 optical

systems,4 quantum-dot arrays,5 Bose-Einstein condensates,6 and recently

also in quantum information processing.7–10

The “standard” Landau-Zener problem describes the ideal situation in

which the dynamics is restricted to two levels that are coupled by a constant

tunnel matrix element and cross at a constant velocity. The quantity of

primary interest is the probability that finally the system ends up in the one

or the other of the two states. This classic problem was solved independently

by several authors in 1932.11–14

In an experiment, the two-level system will be influenced by its environ-

ment, which may affect the quantum phase of the superposition, alter the
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effective interaction between the levels, or may cause spontaneous decay.

The environment of a quantum system can often be described as a bath of

harmonic oscillators.15–19 In some situations, it is known that the dominant

environmental effects can best be modelled as a spin bath instead,20–22 for

example for molecular magnets1 and for Josephson phase qubits.7

In the presence of a heat bath, the Landau-Zener dynamics will sensi-

tively depend on the qubit operator to which the bath couples.23,24 Ao and

Rammer25 studied Landau-Zener transitions for the special case in which an

ohmic heat bath couples to the same operator as the driving and derived

the transition probabilities in the limit of high and of low temperatures.

In the limits of very fast and very slow sweeps at zero temperature, they

found that the transition probability is the same as in the absence of the

heat bath, as was confirmed by numerical studies.26,27

This zero-temperature result was recently proven to hold exactly for

arbitrary Landau-Zener sweep speeds, as a special case of an exact expres-

sion for arbitrary qubit-bath couplings and spectral densities.23 An exact

solution is also possible if the decoherence stems from the coupling of the

system to a spin bath.24

2. The Dissipative Landau-Zener Problem

The dissipative Landau-Zener problem is specified by the system-bath

Hamiltonian

H(t) = HLZ(t) +Hq-env +Henv, (1)

whereHenv andHq-env describe the environment and its coupling to the two-

level system, henceforth termed qubit. The time-dependent qubit Hamilto-

nian reads

HLZ(t) =
vt

2
σz +

∆

2
σx, (2)

which defines the “standard” Landau-Zener problem. The adiabatic ener-

gies, i.e. the eigenstates of HLZ(t) form at time t = 0 an avoided crossing

between the diabatic states |↑〉 and |↓〉. The latter are the eigenstates of

HLZ(t) at large times.

If the qubit starts at time t = −∞ in state |↑〉, one finds that finally at

time t = ∞, the qubit will be in state |↑〉 with a probability given by the

classic expression11–13

P↑→↑ = exp
(
− π∆2

2~v

)
. (3)
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time

|↑〉 |↓〉

|↑〉

Fig. 1. Adiabatic (solid) and diabatic (dashed) energy levels of “standard” Landau-
Zener Hamiltonian (2).

In general, this transition probability is modified by a coupling to the

environment23,24 for which we assume the form Hq-env = σ · nξ, where n

determines the “direction” of the coupling and ξ is a collective coordinate

of the bath. In the following, we explore for which types of coupling the

opposite holds, namely that P↑→↑ still is given by Eq. (3), despite the

coupling to the bath.

3. Multi-Level Landau-Zener Dynamics

The two-level Landau-Zener problem defined by the Hamiltonian (1) can be

mapped to the multi-level Landau-Zener problem sketched in Fig. 2 which

has been solved in Ref. 24. It is defined by the Hamiltonian

H(t) =
∑

a

(εa +
vt

2
)|a〉〈a| +

∑

b

(
εb −

vt

2
)|b〉〈b|

+
∑

a,b

(Xab|a〉〈b| +X∗
ab|b〉〈a|

)
,

(4)

which describes a group of levels |a〉 whose energy increases linearly in time,

while the energy of the levels |b〉 deceases. In the limit t→ ±∞, the states

|a〉, |b〉 become eigenstates of the Hamiltonian (4), which means that they

represent the diabatic eigenstates. The off-diagonal part of the Hamiltonian

is such that it only couples states of different groups while states within one

group are uncoupled.

If now the system starts in any non-degenerate state |a〉, one can derive

for the transition to a state |a′〉 the following two statements:24 First, the
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time

|a〉
{

|b〉
{

Fig. 2. Diabatic levels of the multi-level Hamiltonian to which we map the dissipative
Landau-Zener problem.

probability to end up in the initial state is given by

Pa→a = exp
(
− 2π〈a|X2|a〉

~v

)
, (5)

while, second, all a-states with higher energy are finally not populated, i.e.

Pa→a′ = 0 for εa′ > εa. (6)

If in particular, the initial state is the a-state with the lowest energy, re-

lation (6) implies that 1 − Pa→a denotes the probability to end up in any

state of group b.

4. Bath-Independent Landau-Zener Probability

In order to make use of the results of the last section, we have to identify

the diabatic states of the dissipative Landau-Zener Hamiltonian (1). Since

at large times, the time-dependent part of the Hamiltonian dominates, the

diabatic qubit states are the eigenstates of σz, |↑〉 and |↓〉. The bath states

corresponding to |↑〉 are determined by the Hamiltonian

Henv↑ = 〈↑|n · σ|↑〉ξ +Henv = nzξ +Henv (7)

and will be denoted by |ν+〉 with |0+〉 being the ground state. Thus the

states |↑, ν+〉 correspond to group a while the accordingly defined states

|↓, ν−〉 form group b. The coupling operator X then becomes

X =
∆

2
σx + (nxσx + nyσy)ξ. (8)

Note that nzσzξ does not couple states from different groups and, thus, is

not contained in X .
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At zero temperature, the natural initial state of the qubit coupled to

the bath is the diabatic state |↑, 0+〉, which is the ground state in the limit

t → −∞. Since Eq. (6) implies that all states |↑, ν+〉 with |ν+〉 6= |0+〉 will

finally be unoccupied, we find

P↑→↑ =
∑

ν+

P↑,0+→↑,ν+ = exp
(
− 2π〈↑, 0+|X2|↑, 0+〉

~v

)
, (9)

where the coupling operator X is given by Eq. (8).

A particular case is now n = ez for which X = ∆
2 σx, such that the bath

couples only via the Pauli matrix that determines the diabatic states. Then

〈↑, ν+|(∆
2 σx)

2|↑, ν+〉 = ∆2/4 and, consequently, the transition probability

for a diabatic transition in the presence of a heat bath at zero temperature,

Eq. (3), becomes identical to the “standard” Landau-Zener result (9). This

result holds true at zero temperature whenever the bath couples to the

qubit via σz, irrespective of the nature and the spectral density of the bath.

An important experimentally relevant case for which this prediction

applies is the measurement of tiny tunnel splittings ∆ in nanomagnets1 for

which laboratory experience tells us that at temperatures well below 1K,

Landau-Zener tunneling is robust against dephasing. Recent theories2 for

multiple Landau-Zener transitions in such systems presumed that during

the individual Landau-Zener transitions, dephasing does not play a role,

which is in accordance with our results. Our results show that these theories

should be more widely applicable than guessed previously.

5. Conclusions

We have investigated the dissipative Landau-Zener problem for a qubit with

a qubit-bath coupling that commutes with the time-dependent part of the

qubit Hamiltonian. For large time, this bath coupling causes pure dephas-

ing, while it can induce spin flips at the center of the avoided crossing of

the adiabatic levels. As a central result, we have shown that at zero temper-

ature, the Landau-Zener transition probability is dissipation independent.

This result holds true for all quantum heat baths with a non-degenerate

ground state.
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We review recent advances in the full counting statistics (FCS) of transport of
charge through an impurity in a 1D quantum wire. The model also applies to
a coherent conductor in a resistive environment and to a resistively shunted
Josephson device. Starting out from the path integral Coulomb gas representa-
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generating function can be found in analytic form in particular regions of the
parameter space. The zero temperature case is discussed in some detail.
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1. Introduction

The physics of 1D metals is drastically different from the physics of conduc-

tors in two or three dimensions since the Fermi liquid behavior is abrogated

by the electron interaction. The generic features of 1D interacting systems

are well described in terms of the Tomonaga-Luttinger liquid (TLL) of

which a field-theoretical formulation has been given by Haldane.1 In the

TLL universality class, all effects of the spinless electron-electron interac-

tion are captured by a single dimensionless parameter g.

A sensitive experimental probe of a Luttinger liquid state is the tun-

neling conductance through a point contact in a 1D quantum wire.2 The

differential conductance is a power law of the applied voltage or tempera-

ture, depending on what is larger. This is due to the formation of a highly

correlated collective state. The exponent of the power law is related to the

interaction parameter g. Of interest are also the dc nonequilibrium cur-

rent noise and cumulants of higher order. The generic model is a point-like
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impurity embedded in a Luttinger liquid environment (QI-TLL model). De-

pending on the parameter regime, the impurity may operate as a weak or

strong barrier. Tunneling of edge currents in the fractional quantum Hall

(FQH) regime provides another realization of a Luttinger phase. The nature

of the entity transferred may depend on the parameter region. In FQH sam-

ples, the tunneling entities in the strong-backscattering regime are physical

electrons. In the weak-backscattering limit, on the other hand, Laughlin

quasiparticles of fractional charge are tunneling independently.

Analytic solutions for the QI-TLL model are available since the under-

lying field theory is integrable and the regions of weak and strong tunneling

are related by self-duality.3 The existence of analytic solutions makes 1D

quantum wires very interesting for the growing field of full counting statis-

tics. Here we review the charge transfer statistics at T = 0.

We introduce in Sec. 2 the quantum impurity model. In Sec. 3, we give

exact formal expressions for the current statistics and moment generating

function. The full counting statistics at T = 0 is discussed in Sec. 4.

2. Quantum Impurity in a Tomonaga-Luttinger Liquid

The low-energy modes of the 1D interacting electron liquid are conve-

niently treated in the framework of bosonization.4 The creation opera-

tor for spinless fermions may be written in terms of bosonic field opera-

tors φ(x, t) and θ(x, t) obeying [φ(x, t), θ(x′, t) ] = −(i/2) sgn(x − x′) as

ψ†(x) ∝ ∑
n odd exp{in[kFx +

√
π θ(x)]} exp[i

√
πφ(x)]. The ground state

of 1D interacting spinless electrons is a Tomonaga-Luttinger liquid (TLL).

The generic interaction of the TLL universality class is effectively given by a

δ-potential yielding the interaction term HI = U
∫

dxdy ρ(x) δ(x− y) ρ(y).

In the TLL, the electron interaction is characterized by a single dimension-

less parameter g = 1/
√

1 + U/πvF. We have g < 1 for repulsive interaction.

Excitations of the liquid are described by the generic harmonic Hamiltonian

HL(g) =
vF
2

∫
dx
[
(∂xθ)

2/g + g (∂xφ)2
]
. (1)

A hopping term of the form H ′
I = −∆[ψ†(x = 0+)ψ(x = 0−) + h. c. ]

represents a single strong point-like impurity. This term induces a jump

of the φ-field at the impurity, φ̄ = 1
2 [φ(x = 0+) − φ(x = 0−) ]. In the

φ-representation, the tunneling term reads

H ′
I(φ̄) = −∆cos[ 2

√
πφ̄ + eVat/~ ] . (2)



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

464 A. Herzog and U. Weiß

Here we have included a voltage term. Adding the terms describing the har-

monic liquid in the right/left (±) lead, we get the weak-link Hamiltonian2

Hφ = HL,+(g) + HL,−(g) + H ′
I(φ̄) . (3)

A single weak impurity is modelled by the Hamiltonian Hsc =∫
dxV (x)ψ†(x)ψ(x), where V (x) is the scattering potential. For a point-like

scatterer at x = 0, the contribution describing 2kF-backscattering takes the

form Hsc(θ̄) = −V0 cos[ 2
√
πθ̄ ], where θ̄ = θ(0). With the lead and voltage

term added, the weak-impurity or strong-tunneling Hamiltonian is

Hθ = −V0 cos[ 2
√
πθ̄ ] − eVaθ̄/

√
π + HL(g) . (4)

The harmonic modes in the leads of the φ- and θ-model away from x = 0

act as reservoir modes and may be integrated out. Then, the correlators of

the tunneling degree of freedom φ̄, J
φ̄
(t; g) = 4π〈[ φ̄(0) − φ̄(t)]φ̄(0)〉β , and

of the scattering degree of freedom θ̄, J
θ̄
(t; g) = 4π〈[ θ̄(0) − θ̄(t)]θ̄(0)〉β , are

found in thermal equilibrium as

Jθ̄(t; g) = Jφ̄(t; 1/g) = 2g ln

[
βωc
π

sinh
(π|t|
β

)]
+ iπg sgn(t) . (5)

The Hamiltonians (3) and (4) are analogous to the tight-binding (TB)

and weak-binding (WB) Hamiltonians of a quantum Brownian particle in

a tilted periodic potential. From the form (5) we see that the Luttinger

modes in the leads act as an Ohmic thermal reservoir with g = 1/K, where

K is the usual dimensionless Ohmic coupling parameter.5 The TB and WB

representations of the Brownian particle model are related by an exact self-

duality, as shown first by A. Schmid.6 According to the analogy, also the

weak-tunneling model (3) and the strong-tunneling model (4) are related

by an exact duality symmetry in which the interaction parameter g maps

on the inverse of it, as can be seen from the dual equilibrium correlation

functions given in Eq. (5).

In the theory of FCS, the most natural quantity to consider is the gen-

erating function Z(λ, τ), which is the Fourier transform of the probability

distribution Pn(τ) of the amount of charge ne crossing the impurity dur-

ing time τ , Z(λ, τ) =
∑

n eiλen Pn(τ). The function Z(λ, τ) captures all

moments of the charge Qτ =
∫ τ
0 dt I(t) transferred during time τ ,

Z(λ, τ) =
∑

k

(iλ)k

k!
〈Qkτ 〉 = exp

{
τ
∑

k

(iλ)k

k!
〈δkQ〉

}
. (6)

Here, I(t) is the current through the barrier, 〈Qkτ 〉 =
∑

n(en)kPn(τ) is

the kth moment, and τ〈δkQ〉 is the kth cumulant of the distribution. The



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

Correlated nonequilibrium charge transport through impurities 465

dynamics of the charge transfer is governed by the set of master equations

Ṗn(t) =

∞∑

ℓ=1

[
k+
ℓ Pn−ℓ (t) + k−ℓ Pn+ℓ (t) − (k+

ℓ + k−ℓ )Pn(t)
]
. (7)

The quantity k±n is the weight per unit time for joint forward/backward

(+/−) transfer of charge en through the barrier.

The moment generating function (MGF) Z(λ, τ) is found from Eq. (7) as

Z(λ, τ) = exp

{
τ

∞∑

n=1

[
( eiλen − 1)k+

n + ( e− i λen − 1)k−n
]
}
. (8)

Now observe that the curly bracket is just the cumulant generating function.

Thus, the Nth cumulant is given in terms of the transition weights k±n as

〈δNQ〉 =

∞∑

n=1

(en)N [ k+
n + (−1)Nk−n ] . (9)

The first cumulant yields the average particle current, 〈I〉 = 〈δQ〉. The sec-

ond one gives the nonequilibrium diffusion coefficient or dc current noise.

The third cumulant (skewness) provides information about the leading

asymmetric deviation from the Gaussian distribution, while the fourth cu-

mulant is a measure for the sharpness of the distribution compared to the

standard distribution.

3. Exact Formal Expressions for the Current Statistics

The most powerful tool to calculate the reduced density matrix (RDM) and

the MGF is the nonequilibrium Keldysh or Feynman-Vernon method. Let

us now apply this approach to the discrete φ-model (3). The double path

for the population Pn(τ) is conveniently parametrized in terms of charges

{ηj = ±1} describing forward/backward moves parallel to the diagonal of

the RDM and in terms of charges {ξj = ±1} describing moves off and

towards the diagonal of the RDM. Then the effects of the Luttinger modes

for a path with 2mmoves parametrized with 2m ξ-charges and 2m η-charges

are represented by the influence factor

Fm = Gm exp

{
− i

π

g

2m−1∑

j=1

pjηj

}
, (10)

Gm = exp

{
2

g

2m∑

j>k=1

ξjξk ln

[
βωc

π
sinh

(π(tj − tk)

β

)]}
. (11)
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The cumulative charge pj =
∑j

k=1 ξk = −∑2m
k=j+1 ξk measures how

far the system is off-diagonal after j transitions. For the MGF the η-sums

can be done explicitly in each order of ∆. The expansion in powers of

the transition amplitude ∆ then leads us to the so-called Coulomb gas

representation of the MGF5,7 (we put eVa = ǫ),

Z(λ, τ) = 1 + sin
(λe

2

) ∞∑

m=1

(−1)m∆2m

∫ τ

0

D2m{tj} (12)

×
∑

{ξj}′
m

exp
{
i ǫ

2m−1∑

j=1

pj(tj+1 − tj)
}
Gm

2m−1∏

j=1

sin
(λe

2
− π

g
pj

)
,

where the integration symbol denotes time-ordered integration,
∫ t

0

D2m{tj} × . . . :=

∫ t

0

dt2m

∫ t2m

0

dt2m−1 . . .

∫ t2

0

dt1 × . . . . (13)

The sum {ξj}′m is over all sequences of 2m charges ξj = ±1 with over-all

charge neutrality,
∑2m

j=1 ξj = 0, which is indicated by the prime. Charge

neutrality is, because each path contributing to the MGF starts out from

a diagonal state and returns to a diagonal state of the reduced density

matrix (RDM). Every individual charge sequence together with its charge-

conjugate counterpart gives a real contribution to Z(λ, τ).

Explicit forms for moments follow from (12) upon differentiation,

〈
QNτ
〉

=
eN

2

∞∑

m=1

(−1)m−1∆2m

∫ t

0

D2m{tj}
∑

{ξj}′

Gm b(N)
m . (14)

For the most interesting cases N = 1 and N = 2 we get

b(1)m = i

2m−1∏

j=1

sin(πpj/g) , b(2)m =

2m−1∑

k=1

cos(πpk/g)

2m−1∏

j=1, j 6=k
sin(πpj/g) .

The Laplace transform Ẑ(λ, z) is the analogue of an isobaric ensemble

of a classical gas of charges ξj = ±1 with charge interactions (11). The

expression (8) follows from a cluster decomposition of Ẑ(λ, z) resulting

from the series (12). The clusters are the z-independent (irreducible) path

sections which start and end in diagonal states of the RDM. They have

total charge zero and are noninteracting with each other. Path segments

with intermediate visits of diagonal states are reducible, i.e, factorize into

clusters of lower order. One finds that after subtraction of the reducible part

an irreducible part is left. The transition weights k±n , can be identified as the

sum of all clusters which interpolate between the (arbitrary) diagonal state
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m and the diagonal statem±n. As a consequence of the thermal equilibrium

property J(t − iβ) = J∗(t) satisfied by the correlation function (5), the

transition weights are found to obey detailed balance, k−n = e−n ǫ/T k+
n .8

Evaluation of the Coulomb gas representation (12) in analytic form is

possible in special regions of the parameter space: (i) in the classical limit

g → 0 for general T and Va, (ii) at the so-called Toulouse point g = 1
2 (and

by self-duality also at g = 2) for general T and Va, and (iii) at T = 0 for

general g and Va.
5

4. Full Counting Statistics at Zero Temperature

At T = 0, it is possible to determine the expansions of the CGF in analytic

form for strong and weak tunneling. The calculation has been carried out

first in the integrable field theory approach with the thermodynamic Bethe

ansatz. Subsequently, the results have been confirmed with the rigorous

Keldysh method.8,9

There are clear physical pictures in the limits of weak and strong tun-

neling.9 When the barrier is very high, the true ground state is that of two

completely disconnected leads. Evidently, then only physical electrons with

integer charge may tunnel between these subsystems. On the other hand,

for a weak barrier a strongly coupled system with a collective state between

the edges is formed, which in the case of a FQH bar has fractionally charged

Laughlin quasiparticles for elementary excitations.

In the weak-tunneling limit, the clusters formally appear as the series

k+
n =

ǫ

2π
x2n

∞∑

ℓ=0

x2ℓf (ℓ)
n , x =

∆

ǫ

( ǫ

ωc

)
, (15)

in which the coefficients are given in terms of a sum of 2(n + ℓ) − 1-fold

integrals, each of them representing a particular sequence of ξ-charges. A

detailed analysis has revealed that there are extensive cancellations among

the various charge sequences, so that only paths with the minimal number

2n of hops contribute to the transition weight k+
n . Thus we have

k+
n =

ǫ

2π
x2n f (0)

n , k−n = 0 . (16)

It is convenient to introduce an energy scale ǫ0 analogous to the Kondo

energy in the Kondo model and to the scale T ′
B in QIPs.9 The relations of

ǫ0 to the bare parameters of the φ- and θ-model are found to read

ǫ
2−2/g
0 =

22−2/g π2

Γ2(1/g)

∆2

ω
2/g
c

, ǫ 2−2g
0 = g2g−2 22−2g π2

Γ2(g)

V 2
0

ω2g
c

. (17)
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For strong backscattering or weak tunneling, one readily obtains

lnZ(λ, τ) = τ

∞∑

m=1

(ei eλm − 1)k+
m . (18)

The transition weight k+
m is

k+
m =

1

m
am(1/g)G0Va (ǫ/ǫ0)

2m(1/g−1) (19)

with G0 = e2/2π, and the g-dependent prefactor is3,10

am(g) = (−1)m+1 Γ(3/2)Γ(mg)

Γ(m) Γ[3/2 +m(g − 1)]
. (20)

The physical meaning of the expression (18) is quite illuminating. Sup-

pose that km is the probability per unit time for transfer of a particle of

chargeme (or joint transfer ofm particles of charge e) through the impurity

barrier. Then the charge transferred in the time interval τ is the result of a

Poisson process for particles of charge e crossing the barrier, contributing

a current I1 = ek1, plus a Poisson process for particles of charge two con-

tributing a current I2 = 2ek2, etc. The logarithm of the Fourier transform

of the probability distribution of all these Poisson processes would then be

the expression (18). The only subtle point now is that the signs of the rates

km are not quite right since a classical process would require that all rates

are positive. Certainly, the m = 1–term is indeed a Poisson process for the

tunneling of single electrons, but the joint tunneling of pairs of electrons

(and of multiples thereof)m = 2, 4, . . . comes with the different sign, which

is an effect of quantum interference.

In the opposite limit of weak backscattering, the CGF is found as

lnZ(λ, τ) = τ

[
iλ g G0Va +

∞∑

m=1

(e−i geλm − 1)k̃m

]
, (21)

where

k̃m =
1

m
am(g) g G0Va (ǫ/ǫ0)

2m(g−1) . (22)

This form is quite similar to (18), but there are subtle differences. The first

term in the expression (21) represents the current of fractionally charged

quasiparticles in the absence of the barrier. The exponential factor e−igeλm

indicates that now we have tunneling of quasiparticles of charge ge and

of multiples thereof, and the minus sign in the exponent means that the

tunneling diminishes the current instead of building it up as in the strong-

backscattering regime. The sign of the tunneling rate k̃m is now that of
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cos(mπg). Therefore, the perception of clusters of quasiparticles with frac-

tional charge ge tunneling independently with a classical Poisson process is

quite appropriate when g is small. The classical limit is reached as g goes

to zero. Then all the rates k̃m are positive, but the quantum fluctuations

〈δnQ〉 with n > 1 have faded away,

lnZ(λ, τ) = iλτ g G0ǫ

[
1 −

∞∑

m=1

Γ(m− 1
2 )

2
√
πm!

(ǫ0
ǫ

)2m
]

= iλτ g G0Va

√
1 −

(ǫ0
ǫ

)2

.

(23)

Finally, we show that every single cumulant can be calculated once

the current is known. First, we see from the relation (9) that cumulants

correspond to moments of the current. Secondly, the property (16) yields

(∆/2) ∂/∂∆ k+
n = n k+

n . Thus we get in the weak-tunneling regime

〈δNQ〉 =
(
e
∆

2

∂

∂∆

)N−1

〈I〉 . (24)

The corresponding relation for weak backscattering or strong tunneling is

〈δNQ〉 =
(
− ge

V0

2

∂

∂V0

)N−1

〈I〉 . (25)

We conclude with the remark that strict self-duality implies that the en-

tire expansions around weak and strong tunneling are related to each other.

In the FQH system, the crossover from strong tunneling to weak tunnel-

ing comes along with a crossover from Laughlin quasiparticle tunneling to

electron tunneling.
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In contrast to standard critical phenomena, disordered systems need to be
treated via the Functional Renormalization Group. The latter leads to a coarse
grained disorder landscape, which after a finite renormalization becomes non-
analytic, thus overcoming the predictions of the seemingly exact dimensional
reduction. We review recent progress on how the non-analytic effective action
can be measured both in simulations and experiments, and confront theory
with numerical work.
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1. Introduction

When talking to his experimental colleagues about the marvels of field

theory and his recent achievements in computing the effective action of his

favorite model, the conversation is likely to resemble this:

Theorist: I have a wonderful field theory, I can even calculate the effective

action!

Experimentalist: Can I see it in an experiment? Can I measure it?

Theorist: . . . well, that’s difficult, but it tells you all you want to know . . .

Experimentalist: okay, I understand, another of these unverifiable predic-

tions . . .

Here we will see how to measure it, considering the explicit and far-

from-trivial example of elastic manifolds in a disordered environment. Due

to a lack of space, we will not be able to give all arguments in the necessary

details. We recommend that the reader consults the recent “Basic Recipes

and Gourmet Dishes”,1 to which we also refer for a more complete list of

references.
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(‘‘random bond’’)  

defect

‘‘random field’’

x

u(x)

Fig. 1. An Ising magnet at low temperatures forms a domain wall described by a func-
tion u(x) (right). An experiment on a thin Cobalt film (left);2 with kind permission of
the authors.

2. The Disordered Systems Treated Here – Our Model

Let us first give some physical realizations. The simplest one is an Ising

magnet. Imposing boundary conditions with all spins up at the upper and

all spins down at the lower boundary (see Fig. 1), at low temperature T ,

a domain wall will form in between. In a pure system at T = 0, this do-

main wall is completely flat; it will be roughened by disorder. Two types of

disorder are common: random bond (which on a coarse-grained level repre-

sents missing spins) and random field (coupling of the spins to an external

random magnetic field). Figure 1 shows, how the domain wall is described

by a displacement field u(x). Another example is the contact line of water

(or liquid hydrogen), wetting a rough substrate. A realization with a two-

parameter field u(x) is the deformation of a vortex lattice: the position of

each vortex is deformed from x to x+ u(x). A three-dimensional example

are charge density waves.

All these models are described by a displacement field

x ∈ R
d −→ u(x) ∈ R

N . (1)

For simplicity, we now set N = 1. After some initial coarse-graining, the

energy H = Hel + HDO consists of two parts: the elastic energy, and the

disorder:

Hel[u] =

∫
ddx

1

2
(∇u(x))2 , HDO[u] =

∫
ddxV (x, u(x)) . (2)

In order to proceed, we need to specify the correlations of disorder:3

V (x, u)V (x′, u′) := δd(x− x′)R(u− u′) . (3)
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Fluctuations u in the transversal direction will scale as

[u(x) − u(y)]2 ∼ |x− y|2ζ . (4)

There are several useful observables. We already introduced the roughness-

exponent ζ. The second is the renormalized (effective) disorder function

R(u), and it is this object we want to measure here. Introducing replicas

and averaging over disorder, we can write down the bare action or replica-

Hamiltonian

H[u] =
1

T

n∑

a=1

∫
ddx

1

2
(∇ua(x))2−

1

2T 2

n∑

a,b=1

∫
ddxR(ua(x)−ub(x)) . (5)

Let us stress that one could alternatively pursue a dynamic or a supersym-

metric formulation. Since our treatment is perturbative in R(u), the result

is unchanged.

3. Dimensional Reduction

There is a beautiful and rather mind-boggling theorem relating disordered

systems to pure systems (i.e. without disorder), which applies to a large class

of systems, e.g. random-field systems and elastic manifolds in disorder. It

is called dimensional reduction and reads as follows:4

Theorem: A d-dimensional disordered system at zero temperature is equiv-

alent to all orders in perturbation theory to a pure system in d−2 dimensions

at finite temperature.

Experimentally, one finds that this result is wrong, the question being

why? Let us stress that there are no missing diagrams or any such thing,

but that the problem is more fundamental: As we will see later, the proof

makes assumptions, which are not satisfied. Before we try to understand

why this is so and how to overcome it, let us give one more example. We

know that the width u of a d-dimensional manifold at finite temperature

in the absence of disorder scales as u ∼ x(2−d)/2. Making the dimensional

shift implied by dimensional reduction leads to

[u(x) − u(0)]2 ∼ x4−d ≡ x2ζ i.e. ζ =
4 − d

2
. (6)

4. The Larkin Length

To understand the failure of dimensional reduction, let us turn to an in-

teresting argument given by Larkin.5 He considers a piece of an elastic

manifold of size L. If the disorder has correlation length r, and character-

istic potential energy f̄ , this piece will typically see a potential energy of
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strength EDO = f̄
(
L
r

)d
2 . On the other hand, there is an elastic energy,

which scales like Eel = c Ld−2. These energies are balanced at the Larkin

length L = Lc with Lc =
(
c2

f̄2 r
d
) 1

4−d
. More important than this value is

the observation that in all physically interesting dimensions d < 4, and at

scales L > Lc, the membrane is pinned by disorder; whereas on small scales

the elastic energy dominates. Since the disorder has a lot of minima which

are far apart in configurational space but close in energy (metastability),

the manifold can be in either of these minimas, and the ground state is no

longer unique. However exactly this is assumed in the proof of dimensional

reduction.

5. The Functional Renormalization Group (FRG)

Let us now discuss a way out of the dilemma: Larkin’s argument suggests

that d = 4 is the upper critical dimension. So we would like to make an

ǫ = 4 − d expansion. On the other hand, dimensional reduction tells us

that the roughness is ζ = 4−d
2 (see Eq. (6)). Even though this is systemat-

ically wrong below four dimensions, it tells us correctly that at the critical

dimension d = 4, where disorder is marginally relevant, the field u is di-

mensionless. This means that having identified any relevant or marginal

perturbation (as the disorder), we can find another such perturbation by

adding more powers of the field. We can thus not restrict ourselves to keep-

ing solely the first moments of the disorder, but have to keep the whole

disorder-distribution function R(u). Thus we need a functional renormal-

ization group treatment (FRG). Functional renormalization is an old idea,

and can e.g. be found in Ref. 6. For disordered systems, it was first pro-

posed in 1986 by D. Fisher.7 Performing an infinitesimal renormalization,

i.e. integrating over a momentum shell à la Wilson, leads to the flow ∂ℓR(u),

with (ǫ = 4 − d)

∂ℓR(u) = (ǫ− 4ζ)R(u) + ζuR′(u) +
1

2
R′′(u)2 −R′′(u)R′′(0) . (7)

The first two terms come from the rescaling of R and u, respectively. The

last two terms are the result of the 1-loop calculations, see e.g. Refs. 1,7.

More important than the form of this equation is it actual solution,

sketched in Fig. 2. After some finite renormalization, the second derivative

of the disorder R′′(u) acquires a cusp at u = 0; the length at which this

happens is the Larkin length. How does this overcome dimensional reduc-

tion? To understand this, it is interesting to study the flow of the second
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renormalization

uu

-R’’(u) -R’’(u)

Fig. 2. Change of −R′′(u) under renormalization and formation of the cusp.

and forth moment. Taking derivatives of (7) w.r.t. u and setting u to 0, we

obtain

∂ℓR
′′(0) = (ǫ− 2ζ)R′′(0) +R′′′(0)2 −→ (ǫ− 2ζ)R′′(0) (8)

∂ℓR
′′′′(0) = ǫR′′′′(0) + 3R′′′′(0)2+ 4R′′′(0)R′′′′′(0) −→ ǫR′′′′(0) + 3R′′′′(0)2.

Since R(u) is an even function, and moreover the microscopic disorder is

smooth (after some initial averaging, if necessary),R′′′(0) and R′′′′′(0) are 0,

which we have already indicated. The above equations for R′′(0) and R′′′′(0)

are in fact closed. The former tells us first that the flow of R′′(0) is trivial

and that ζ = ǫ/2 ≡ 4−d
2 . This is exactly the result predicted by dimensional

reduction. The appearance of the cusp can be inferred from the second one.

Its solution is R′′′′(0)
ℓ

= c eǫℓ

1−3 c(eǫℓ−1)/ǫ
, with c = R′′′′(0)

ℓ=0
. Thus after

a finite renormalization R′′′′(0) becomes infinite: The cusp appears. By

analyzing the solution of the flow equation (7), one also finds that beyond

the Larkin length R′′(0) is no longer given by (8) with R′′′(0)2 = 0. The

correct interpretation of (8), which remains valid after the cusp-formation, is

∂ℓR
′′(0) = (ǫ− 2ζ)R′′(0)+R′′′(0+)2. Renormalization of the whole function

thus overcomes dimensional reduction. The appearance of the cusp also

explains why dimensional reduction breaks down: The simplest way to see

this is by redoing the proof for elastic manifolds in disorder, which in the

absence of disorder is a simple Gaussian theory. Terms contributing to the

2-point function involve R′′(0), TR′′′′(0) and higher derivatives of R(u) at

u = 0, which all come with higher powers of T . To obtain the limit of T → 0,

one sets T = 0, and only R′′(0) remains. This is the dimensional-reduction

result. However we just saw that R′′′′(0) becomes infinite. Not surprisingly

R′′′′(0)T may also contribute; indeed one can show that it does, hence the

proof fails.

6. The Cusp and Shocks

Let us give a simple argument of why a cusp is a physical necessity, and

not an artifact. The argument is quite old and appeared probably first in
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Fig. 3. Generation of the cusp, as explained in the main text.

the treatment of correlation functions by shocks in Burgers turbulence. It

was nicely illustrated in Ref. 8. Suppose, we want to integrate out a sin-

gle degree of freedom coupled with a spring. This harmonic potential and

the disorder term are represented by the parabola and the lowest curve

in Fig. 3(a), respectively; their sum is the remaining curve. For a given

disorder realization, the minimum of the potential as a function of u is re-

ported in Fig. 3(b). Note that it has non-analytic points, which mark the

transition from one minimum to another. Taking the derivative of the po-

tential leads to the force in Fig. 3(c). It is characterized by almost linear

pieces, and shocks (i.e. jumps). Calculating the force-force correlator, the

dominant contribution for small distances is due to shocks. Their contribu-

tion is proportional to their probability, i.e., to the distance between the

two observable points. This leads to F (u)F (0) = F (0)2 − c|u|, with some

numerical coefficient c.

7. The Field-Theoretic Version

The above toy model can be generalized to the field theory.9 Consider an

interface in a random potential, and add a quadratic potential well, centered

around w:

Hw
tot[u] =

∫
ddx

m2

2
(u(x) − w)2 + Hel[u] + HDO[u] . (9)
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Fig. 4. Filled symbols show numerical results for Y (z), a normalized form of the inter-
face displacement correlator −R′′(u) [Eq. (12)], for D = 2 + 1 random field (RF) and

D = 3+1 random bond (RB) disorders. These suggest a linear cusp. The inset plots the
numerical derivative Y ′(z), with intercept Y ′(0) ≈ −0.807 from a quadratic fit (dashed
line). Open symbols plot the cross-correlator ratio Ys(z) = ∆12(z)/∆11(0) between two
related copies of RF disorder. It does not exhibit a cusp. The points are for confining
wells with width given by M2 = 0.02. Comparisons to 1-loop FRG predictions (curves)
are made with no adjustable parameters. Reprinted from Ref. 11.

In each sample (i.e. disorder configuration), and given w, one finds the

minimum energy configuration. This ground state energy is

V̂ (w) := min
u(x)

Hw
tot[u] . (10)

It varies with w as well as from sample to sample. Its second cumulant

V̂ (w)V̂ (w′)
c

= LdR(w − w′) (11)

defines a function R(w) which is proven9 to be the same function com-

puted in the field theory, defined from the zero-momentum effective ac-

tion.10 Physically, the role of the well is to forbid the interface to wander

off to infinity. The limit of small m is taken to reach the universal limit.

The factor of volume Ld is necessary, since the width u2 of the interface in

the well cannot grow much more than m−ζ . This means that the interface

is made of roughly L/Lm pieces of internal size Lm ≈ m pinned indepen-

dently: (11) expresses the central-limit theorem and R(w) measures the

second cumulant of the disorder seen by each piece.

The nice thing about (11) is that it can be measured. One varies w and

computes (numerically) the new ground-state energy; finally averaging over

many realizations. This has been performed recently in Ref. 11 using a pow-

erful exact-minimization algorithm, which finds the ground state in a time
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Fig. 5. The measured Y (u) with the 1- and 2-loop corrections subtracted. Left: RB-
disorder, right: RF-disorder. One sees that the 2-loop corrections improve the precision.

∆(u)

um2 = 1 m2 = 0.5

m2 = 0.003

Fig. 6. Running the RG in a numerical simulation: Crossover from RB disorder to RF
for a driven particle (left).11 Residual errors for Y (u) for a driven string12 which show
that statics and depinning are controlled by different fixed points.

polynomial in the system size. In fact, what was measured there are the fluc-

tuations of the center of mass of the interface u(w) = L−d ∫ ddxu0(x;w):

[w − u(w)][w′ − u(w′)]
c

= m−4L−d∆(w − w′) (12)

which measures directly the correlator of the pinning force ∆(u) = −R′′(u).
To see why it is the total force, write the equilibrium condition for the center

of massm2[w−u(w)]+L−d ∫ ddxF (x, u) = 0 (the elastic term vanishes if we

use periodic b.c.). The result is represented in Fig. 4. It is most convenient

to plot the function Y = ∆(u)/∆(0) and normalize the u-axis to eliminate

all non-universal scales. The plot in Fig. 4 is free of any parameter. It

has several remarkable features. First, it clearly shows that a linear cusp

exists in any dimension. Next it is very close to the 1-loop prediction. Even
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more remarkably the statistics is good enough11 to reliably compare the

deviations to the 2-loop predictions of Ref. 13.

When we vary the position w of the center of the well, it is not a real

motion. It means to find the new ground state for each w. Literally“moving”

w is another interesting possibility: It measures the universal properties of

the so-called “depinning transition”.12,14 This was recently implemented

numerically (see Fig. 6).
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We studied the statics and dynamics of elastic manifolds in disordered me-
dia with long-range correlated disorder using functional renormalization group
(FRG). We identified different universality classes and computed the critical
exponents and universal amplitudes describing geometric and velocity-force
characteristics. In contrast to uncorrelated disorder, the statistical tilt sym-
metry is broken resulting in a nontrivial response to a transverse tilting force.
For instance, the vortex lattice in disordered superconductors shows a new
glass phase whose properties interpolate between those of the Bragg and Bose
glasses formed by pointlike and columnar disorder, respectively. Whereas there
is no response in the Bose glass phase (transverse Meissner effect), the stan-
dard linear response expected in the Bragg glass gets modified to a power
law response in the presence of disorder correlations. We also studied the long
distance properties of the O(N) spin system with random fields and random
anisotropies correlated as 1/xd−σ . Using FRG we obtained the phase diagram
in (d, σ, N)-parameter space and computed the corresponding critical expo-
nents. We found that below the lower critical dimension 4 + σ, there can exist
two different types of quasi-long-range-order with zero order-parameter but
infinite correlation length.

Keywords: Functional renormalization group; Depinning; Random field.

1. Elastic Manifolds in Disordered Media

Elastic objects in disordered media is a fruitful concept to study diverse

physical systems such as domain walls (DW) in ferromagnets, charge den-

sity waves (CDW) in solids, vortices in type II superconductors.1 In all

these systems the interplay between elastic forces which tend to keep the

system ordered, i.e., flat or periodic, and quenched disorder, which promotes

deformations of the local structure, forms a complicated energy landscape

with numerous metastable states. Most studies of elastic objects in dis-
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ordered media restricted to uncorrelated pointlike disorder. Real systems,

however, often contain extended defects in the form of linear dislocations,

planar grain boundaries, three-dimensional cavities, etc. We studied the

statics and dynamics of elastic manifolds in the presence of (power-law)

long-range (LR) correlated disorder.2 The power-law correlation of defects

in d-dimensional space with exponent a = d − εd can be ascribed to ran-

domly distributed extended defects of internal dimension εd with random

orientation.

The configuration of elastic object can be parametrized by displacement

field ux, where x denotes the d dimensional internal coordinate of the elastic

object. The Hamiltonian is given by

H[u] =

∫
ddx

[ c
2
(∇ux)2 + V (x, ux)

]
. (1)

Here c is the elasticity, V (x, u) a random potential with zero mean and

variance

V (x, u)V (x′, u′) = R1(u − u′)δd(x− x′) +R2(u− u′)g(x− x′), (2)

where g(x) ∼ x−a. For interfaces one has to distinguish two universality

classes: random bond (RB) disorder described by a short-range function

R(u) and random field (RF) disorder corresponding to a function which

behaves as R(u) ∼ |u| at large u. Random periodic (RP) universality class

corresponding to a periodic function R(u) describes systems such as CDW

or vortices in d = 1 + 1 dimensions. Disorder makes the interfaces rough

with displacements growing with the distance x as C(x) ∼ x2ζ , where ζ is

the roughness exponent. Elastic periodic structures loose their strict trans-

lational order and may exhibit a slow logarithmic growth of displacements,

C(x) = Ad ln |x|. The driven dynamics at zero temperature is described by

the over-damped equation of motion

η∂tuxt = c∇2uxt + F (x, uxt) + f. (3)

Here η is the friction coefficient, f the applied force, and F = −∂uV (x, u)

the pinning force with zero mean and correlator

F (x, u)F (x′, u′) = ∆1(u − u′)δd(x− x′) + ∆2(u− u′)g(x− x′), (4)

where ∆i(u) = −R′′
i (u). The system undergoes the so-called depinning

transition at the critical force fc, which separates sliding and pinned states.

Upon approaching the depinning transition from the sliding state f → f+
c

the center-of-mass velocity v = L−d ∫
x ∂tuxt vanishes as a power law v ∼

(f − fc)
β and the time and length scales are related by t ∼ xz.
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Let us firstly discuss the case of short range (SR) correlated disorder

(∆2=0). The problem turns out to be notably difficult due to the so-called

dimensional reduction (DR). However, simple Imry-Ma arguments show

that DR is wrong. The metastability renders the zero temperature pertur-

bation theory useless breaking it down on scales larger than the so-called

Larkin length. To overcome these difficulties one can apply functional renor-

malization group (FRG). Scaling analysis gives that the large-scale proper-

ties of a d-dimensional elastic system are governed by uncorrelated disorder

in d < duc = 4. The peculiarity of the problem is that there is an infinite set

of relevant operators which can be parametrized by a function. The latter

is nothing but the disorder correlator. We generalized the FRG approach to

systems with LR correlated disorder. Using a double expansion in ε = 4−d
and δ = 4 − a we derived the flow equations to one-loop order:

∂ℓ∆1(u) = (ε− 2ζ)∆1(u) + ζu∆′
1(u) −

1

2

d2

du2
[∆1(u) + ∆2(u)]

2 +A∆′′
1(u),

∂ℓ∆2(u) = (δ − 2ζ)∆2(u) + ζu∆′
2(u) +A∆′′

2 (u), (5)

where A = [∆1(0)+∆2(0)]. The scaling behavior of the system is controlled

by a stable fixed point [∆∗
1(u),∆

∗
2(u)] of flow equations (5). Note that for

uncorrelated disorder the elasticity remains uncorrected to all orders due

to the statistical tilt symmetry (STS). LR disorder destroys the STS and

allows for the renormalization of elasticity introducing a new exponent ψ.

The SR part of disorder correlator ∆1(u) becomes a nonanalytic function

beyond the Larkin scale, while the LR part ∆2(u) remains analytic along

the flow. The appearance of non-analyticity in the form of a cusp at the

origin is related to metastability, and nicely accounts for the generation of

threshold force fc at the depinning transition. The actual values of critical

exponents are fixed by the disorder correlator at the stable FP, for instance,

ψ = 1
4 (δ − ε)∆∗′′

2 (0) and z = 2 − ∆∗′′
1 (0) − ∆∗′′

2 (0). Let us summarize the

results obtained for different universality classes.

RB disorder. The crossover from the SR FP (∆2 = 0) to the LR FP

(∆2 6= 0) takes place for δ > 1.041ε. At the LR RB FP there is an exact

relation between exponents: ζLR = (δ + 2ψ)/5, where ψ = O(ε2, δ2, εδ) to

one-loop order. We also computed the amplitude of height-height correla-

tion function which turns out to be universal up to the strength of disorder.

RF disorder. The large-scale properties of the system is controlled by the

LR FP for δ > ε. The roughness exponent is given by the exact relation

ζLR = (δ+2ψ)/3. Surprisingly, the function ∆∗
1(u) satisfies

∫∞
0 du ∆∗

1(u) =
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0, characteristic for RB type correlations along the u direction. In other

words, the LR RF FP is in fact of mixed type: RB for the SR part and

RF for the LR part of the disorder correlator. The RF FP describes the

depinning transition of interfaces in the presence of LR correlated disorder.

The corresponding dynamic exponents read: z = 2 − ε/3 + δ/9 and β =

1 − ε/6 + δ/18. It is remarkable that for δ > 3ε the exponent β is larger

than 1, and z larger than 2.

Random periodic. For δ > π2ε/9 the periodic system is controlled by

the LR RP FP. The system exhibits a slow growth of the displacements:

(ux − u0)2 = δ
2π2 ln |x|. As an example, we consider vortices in the presence

of three types of disorder: uncorrelated, LR, and columnar. The correlation

of disorder violates the STS resulting in a highly nonlinear response to tilt.

In the presence of columnar disorder vortices exhibit a transverse Meiss-

ner effect: disorder generates the critical field hc below which there is no

response to tilt and above which the tilt angle behaves as ϑ ∼ (h − hc)
φ

with the universal exponent φ < 1. The RP case describes a weak Bose

glass which is expected in type II superconductors with columnar disorder

at small temperatures and at high vortex density which exceeds the density

of columnar pins. The weak Bose glass is pinned collectively and shares fea-

tures of the Bragg glass, such as a power-law decay of the translation order,

and features of the strong Bose glass such as a transverse Meissner effect.

For isotropically LR correlated disorder the linear tilt modulus vanishes

at small fields leading to a power-law response ϑ ∼ hφ with φ > 1. The

response of the system with LR correlated disorder interpolates between

responses of systems with uncorrelated and columnar disorder. We argued

that in the presence of LR correlated disorder vortices can form a strong

Bragg glass which exhibits Bragg peaks and vanishing linear tilt modulus

without transverse Meissner effect.3

2. LR Random Field and Random Anisotropy O(N)

Models

The large-scale behavior of the O(N) symmetric spin system at low tem-

peratures can be described by the nonlinear σ model with the Hamiltonian

H [s ] =

∫
ddx

[
1

2
(∇s )2 + V (x, s)

]
, (6)

where s(x) is the N -component classical spin with a fixed-length constraint

s 2 = 1. V (x, s) is the random disorder potential, which can be expanded in
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spin variables: V (x, s) = −∑∞
µ=1

∑
i1...iµ

h
(µ)
i1...iµ

(x)si1 (x)...siµ (x). The cor-

responding coefficients have simple physical interpretation: h
(1)
i is a random

field, h
(2)
ij is a random second-rank anisotropy, and h(µ) are general µth ten-

sor anisotropies. We studied system (6) with LR correlated disorder given by

cumulants h
(µ)
i1...iµ

(x)h
(ν)
i1...jν

(x′) = δµνδi1j1 ...δiµjν [r
(µ)
1 δ(x−x′)+r(µ)

2 g(x−x′)]
with g(x) ∼ |x|σ−d. The corresponding replicated Hamiltonian reads4

Hn =

∫
ddx



1

2

∑

a

(∇sa )2 − 1

2T

∑

a,b

R1

(
sa(x) · sb(x)

)

− 1

2T

∑

a,b

∫
ddx′ g(x− x′)R2

(
sa(x) · sb(x′)

)


 , (7)

where Ri(z) =
∑
µ r

(µ)
i zµ are arbitrary for RF and even for RA. Power

counting suggests that dlc = 4 + σ is the lower critical dimension for both

models. At criticality or in the quasi-long-range-ordered (QLRO) phase the

connected and disconnected two-point function scale with different expo-

nents η and η̄. The FRG equations to first order in ε = 4 − d and σ are

given by

∂ℓR1(φ) = −εR1(φ) +
1

2

[
R′′

1 (φ) +R′′
2 (φ)

]2 − (N − 2)

{
2AR1(φ)

−AR′′
1 (φ) +AR′

1(φ) cotφ− 1

2 sin2 φ

[
R′

1(φ) +R′
2(φ)

]2
}
,

∂ℓR2(φ) = −(ε− σ)R2(φ) −
{

(N − 2)
[
2R2(φ) +R′

2(φ) cotφ
]
+R′′

2 (φ)
}
A.

Here A = R′′
1 (0) + R′′

2 (0) and z = cosφ. An attractive FP of the flow

equations describes a QLRO phase, while a singly unstable FP describes

the critical behavior. The critical exponents are determined by the FRG

flow in the vicinity of the FP and to one-loop order are given by η = −A∗

and η̄ = −ε − (N − 1)A∗. A singly unstable FP has only one positive

eigenvalue λ1 which determines the third independent exponent ν = 1/λ1

characterizing the divergence of the correlation length at the transition. For

the RF model the critical exponents are given by

ηLR =
ε− σ

N − 3
, η̄LR =

2ε− (N − 1)σ

N − 3
. (9)

The stability regions of different FPs and the phase diagrams for the RF

and RA models are shown in Figure 1. For the LR RF model we found that

the truncated RG developed in work 5 for the RF model gives the correct
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a b c

Fig. 1. (a) Stability regions of various FPs for RF O(N) model corresponding to dif-
ferent patterns of the critical behavior above the lower critical dimension, ε > σ. In-
sert: Schematic phase diagram on the (ε, σ) plane for a particular value of N ∈ (3, 18).
(b) Phase diagram of the RF model below the lower critical dimension, d < 4 + σ.
(c) Phase diagram of the RA model below the lower critical dimension, d < 4 + σ.

one-loop values of exponents η and η̄ above the dlc, but not the phase

diagram and the critical exponent ν except for the region controlled by the

weakly nonanalytic LR TT FP. Thus, although the truncated RG overcomes

the dimensional reduction it fails to reproduce all properties which can be

obtained using FRG. We found a new LR QLRO phase existing in the

LR RF model below the dlc for N < 3 and determined the regions of its

stability in the (ε, σ,N) parameter space. We obtained that the weak LR

correlated disorder does not change the critical behavior of the RA model

above dlc for N > Nc = 9.4412, but can create a new LR QLRO phase

below dlc. The existence of two QLRO phases in the LR RA system may

be relevant to two different states of 3He-A in aerogel observed recently in

NMR experiments.6
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The critical behavior of the d-dimensional uniaxial ferromagnetic systems with
weak quenched disorder is studied. In the critical region this model is known
to be described by both the conventional Ginzburg-Landau Hamiltonian and
the two-dimensional fermionic Gross-Neveu model in the n = 0 limit. Renor-
malization group calculations are used to obtain the temperature dependences
near the critical point of some thermodynamic quantities, the large distance
behavior of the two-spin correlation function and the equation of state at criti-
cality. The ǫ expansion of the critical exponents is also discussed as well as the
Kramers-Wannier duality of two-dimensional dilute systems. Most important
questions of the theory of critical phenomena are the problem of universality of
the critical behavior of random systems and the role of Griffiths singularities.
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1. Introduction

The critical properties of random spin systems have been extensively stud-

ied since more than 30 years (see the review textbook and articles in

Refs. 1–5). Perfect crystals are the exception rather than the rule, quenched

disorder always existing in different degrees. Even weak disorder may dras-

tically effect the critical behavior. Despite many efforts, this problem is a

complex and poorly understood phenomenon.

The conventional field-theoretic renormalization group (RG) being a

highly-developed approach based on the standard φ4 theory in (4 − ǫ)-

dimensions1 firstly was applied to study properties of disordered systems

in the papers of Refs. 6–8.

In the beginning of eighties of the last century, the Dotsenko brothers2

initiated a considerable progress in the study of the two-dimensional (2D)
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random bond Ising model (IM) by exploiting the remarkable equivalence

between this system and the n = 0 Gross-Neveu model. For weak dilu-

tion the new temperature dependence of the specific heat was found to be

as C ∼ ln ln τ , with τ = T−Tc
Tc

being a reduced deviation from the criti-

cal temperature. However, their results concerning the two-spin correlation

function at the Curie point were later questioned in Refs. 9–11.

2. Spin Correlation Function

We begin with the classical Hamiltonian of the 2D IM with random bonds

defined on a square lattice with periodic boundary conditions:

H = −
N∑

i=1,j=1

[J1(i, j)sijsij+1 + J2(i, j)sijsi+1j ], (1)

where i, j label sites of the square lattice, sij = ±1 are spin variables,

J1(i, j) and J2(i, j) are horizontal and vertical random independent cou-

plings having the same probability distribution, which reads:

P (x) = (1 − p)δ(x− J) + pδ(x− J ′), (2)

where p is the concentration of impurity bonds and both J and J ′ are as-

sumed to be positive so that the Hamiltonian favors aligned spins. Both an-

tiferromagnetic couplings (creating frustration) and broken bonds (J ′ = 0)

leading to ambiguities in the transfer matrix are excluded in this treatment.

The partition function of the IM reads:

Z =
∑

exp(−H
T

) (3)

where H is defined in Eq. (1) and the sum runs over all 2N
2

possible spin

configurations. The partition function is known to be represented as the

trace of the product of the row-to-row transfer matrices T̂i.
12,13 It is very

important that the transfer-matrix of the Ising model with random bonds

possesses self-duality if p = 0.5. Using the replica-trick one obtains the

well-known identity for the averaged free energy:

F̄ = −T lnZ = −T lim
n→0

1

n
(Zn − 1). (4)

It is shown that near the Curie point the model under consideration can be

described by the O(n)-symmetric Lagrangian of the Gross-Neveu model:2

L =

∫
d2x[iψ̄a∂̂ψa +m0ψ̄aψa + u0(ψ̄aψa)

2], (5)
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where γµ = σµ, ∂̂ = γµ∂µ, µ = 1, 2, ψ̄ = ψT γ0 and

m0 ∼ τ =
T − Tc
Tc

, uo ∼ p. (6)

Here m0, u0 are the bare mass of the fermions and their quartic coupling

constant, respectively.

The one-loop RG equations and initial conditions are given by:

du

dt
= β(u) = − (n− 2)u2

π
,

d lnF

dt
= −γψ̄ψ(u) =

(1 − n)u

π
,

u(t = 0) = u0, F (t = 0) = 1, (7)

where u is the dimensionless quartic coupling constant, β(u) is the Gell-

Mann-Low function, γψ̄ψ(u) is the anomalous dimension of the composite

operator ψ̄aψa, being actually the energy density operator ǫ(x), t = ln Λ
m ,

Λ = 1
a is an ultraviolet cutoff, a and m are the lattice spacing and renor-

malized mass, respectively, and F is a Green function with zero external

momenta.

The solution of the above equations yields the temperature dependence

of the correlation length ξ and specific heat C in the asymptotic region

t→ ∞, n = 0:2

u =
π

2t
, F ∼ t−

1
2 ,

ξ = m−1 ∼ τ−1[ln
1

τ
]
1
2 ,

C ∼
∫
dtF (t)2 ∼ ln ln

1

τ
. (8)

The main conclusion of our consideration is that the critical behavior of the

2D random bond IM is governed by the pure Ising fixed point confirmed by

a good deal of numerical calculations.15

The Ising model exhibits dual relationship in 2D, and in the special case

p = 0.5 duality imposes strong restrictions, in particular it gives the exact

value of the Curie temperature Tc which is believed to be unique!14 (see

also Ref. 3):

tanh(
J

T ∗ ) = exp(−2J

T
). (9)

We conjecture that there are only two phases divided by a single critical

point given by the self-duality equation likewise Eq. (9).

The square of the spin-spin correlation function of the pure 2D IM in

terms of the Dirac fermions can be written as a path integral over the real
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bosonic field φ of the quantum sine-Gordon model:3,21

G(x − y)2 = Z−1 1

2π2a2

∫
Dφ sin(

√
4πφ(x)) sin(

√
4πφ(y)) exp(−S),

S =
1

2

∫
d2x

[
(∂µφ)2 +

2m0

πa
cos(

√
4πφ)

]
,

Z =

∫
Dφ exp(−S). (10)

The temperature dependences of the homogeneous susceptibility, sponta-

neous magnetization and the equation of state at criticality are described

by power-law functions of the correlation length ξ (Refs. 16,17):

χ ∼ ξ2−η ∼ τ−
7
4 [ln

1

τ
]
7
8 ,

M ∼ ξ
η
2 ∼ (−τ) 1

8 [ln
1

(−τ) ]
1
16 , (11)

and

H ∼M
4+η
η ∼M15. (12)

3. Critical Exponents

The powerful machinery of the RG equations1 yields an asymptotic re-

sult for the ǫ-expansion of critical exponents, these being the five-loop ǫ-

expansion results for the critical exponents and a marginal spin dimen-

sionality giving us exceptionally bad asymptotic expansions of the critical

exponents.22

Critical properties of the three-dimensional Ising system with weak

quenched disorder were discussed in the good review paper5 where ex-

perimental, numerical and theoretical results were reviewed. Recent the-

oretical results and MC simulations showed that the IM fixed point of the

three-dimensional system is stable,5,18–20 giving numerical values of critical

exponents which are close to the known estimates. The critical exponents

obtained by MC simulations are in agreement with reasonable modern es-

timates: ν = 0.682(3), η = 0.036(1).5

4. Griffiths Singularities

All abovementioned results were obtained by using the perturbations theory

without taking into account non-perturbative effects, more precisely, Grif-

fiths singularities.23,24 That problem has originated from the celebrated

theorem of T. D. Lee and C. N. Yang.25
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The central idea of the Griffiths’s theory is that above the ferromagnetic

transition point in a disordered system there is always a finite probability of

finding an arbitrary large ferromagnetic cluster. These rare-fluctuation clus-

ters give singular contribution to the magnetization, which can be proven to

be a non-analytic function of the external magnetic field. The corresponding

phase being not purely paramagnetic, is called the Griffiths phase. Exper-

imenters have probably observed large deviations from standard scaling

relations.26

It has been recently considered a large influence of quenched disorder

on diluted systems between the completely disordered paramagnets in the

high-temperature regime and the magnetically ordered state.26–28

5. Conclusions

It is known that random systems behave like the unhappy families in Tol-

stoy’s novel“All happy families look the same, all unhappy ones are unhappy

in their own way”.29 The most interesting question concerning random fer-

romagnets reads: Is the critical behavior of random systems as universal as

in perfect ones (as “all happy families”) or not?1

It was shown that the critical behavior of the random 2D Ising ferromag-

nets is governed by the IM fixed point as well as the 3D Ising models. In the

2D case, Kramers-Wannier duality intimately connected with symmetries

of the IM with p = 0.5 saves universality!

In conclusion, we should like to quote B. M. McCoy:24 “There are still

many open questions in the theory of random Ising model and their study

will continue to enlarge our intuition of the effects of impurities on phase

transitions.”
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The functional measure of the three-dimensional complex |ψ|4 theory allows for
line-like topological excitations which can be related to vortex lines in super-
fluid helium by universality arguments. Upon approaching the λ point, these
lines proliferate and destroy the superfluidity. To study the phase transition
from this geometrical point of view, we investigated the statistical properties of
the emerging vortex-loop network in the vicinity of the critical point by means
of high-precision Monte Carlo simulations. For comparison the standard mag-
netic properties of the system were considered as well. Using sophisticated
embedded cluster update techniques we examined if both of them exhibit the
same critical behaviour leading to the same critical exponents and therefore to
a consistent description of the phase transition. We find that different defini-
tions for constructing the vortex-loop network lead to slightly (but statistically
significantly) different results in the thermodynamic limit, and that the percola-
tion thresholds are close to but do not really coincide with the thermodynamic
phase transition point.

Keywords: Phase transition; Universality class; Vortex network.

The partition function of the Villain model in three dimensions, a partic-

ular spin model with global O(2) symmetry due to the 2π-periodicity in

the Hamiltonian, can be equivalently represented as a partition function

of a dual theory in which the “spin” configurations are integer-valued and

sourceless.1,2 These configurations can be interpreted as line-like excitations

forming closed networks which can be identified with the vortex loops of the

original theory. At the transition point, where the broken O(2) symmetry

in the low-temperature phase is restored, loops of infinite length become

important which provides the basis for attempting a percolational treat-

ment.3 The question arises whether the percolational threshold coincides



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

494 E. Bittner and W. Janke

with the thermodynamic critical point, or under which conditions such a

coincidence can be established.4 Therefore we connect the obtained vortex

line elements to closed lines, i.e. loops, which are geometrically defined ob-

jects. When a branching point, where n ≥ 2 junctions are encountered, is

reached, a decision on how to continue has to be made. This step involves

a certain ambiguity. We want to investigate the influence of treating such

a branching point as a knot.

We start form the standard complex or two-component Ginzburg-

Landau theory defined by the Hamiltonian

H [ψ] =

∫
ddr

[
α|ψ|2 +

b

2
|ψ|4 +

γ

2
|∇ψ|2

]
, γ > 0 , (1)

where ψ(r) = ψx(r) + iψy(r) = |ψ(r)|eiφ(r) is a complex field, and α, b

and γ are temperature independent coefficients derived from a microscopic

model. In order to carry out Monte Carlo simulations we put the model (1)

on a d-dimensional hypercubic lattice with spacing a. Using the notation of

Ref. 5, we introduce scaled variables ψ̃ = ψ/
√

(|α|/b) and u = r/ξ, where

ξ2 = γ/|α| is the mean-field correlation length at zero temperature. This

leads to the normalized lattice Hamiltonian

H [ψ̃] = kB Ṽ0

N∑

n=1

[ σ̃
2

(|ψ̃n|2 − 1)2 +
1

2

d∑

µ=1

|ψ̃n − ψ̃n+µ|2
]
, (2)

with Ṽ0 = |α|γad−2/bkB, σ̃ = a2 ξ2, where µ denotes the unit vectors

along the d coordinate axes, N = Ld is the total number of sites, and an

unimportant constant term has been dropped. The parameter Ṽ0 merely

sets the temperature scale and can thus be absorbed in the definition of the

reduced temperature T̃ = T/Ṽ0. After these rescalings and omitting the

tilde on ψ, σ, and T for notational simplicity in the rest of the paper, the

partition function Z considered in the simulations is given by

Z =

∫
DψDψ̄ e−H/T , (3)

where the functional measure
∫
DψDψ̄ ≡

∫
DReψD Imψ stands short for

integrating over all possible complex field configurations.

The main focus in this work is on the properties of the geometrically

defined vortex-loop network. The standard procedure to calculate the vor-

ticity on each plaquette is by considering the quantity

m =
1

2π
([φ1 − φ2]2π + [φ2 − φ3]2π + [φ3 − φ4]2π + [φ4 − φ1]2π) , (4)
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Fig. 1. If two (or three) vortex lines pass through one cell, the vortex tracing algorithm
must decide how to connect them, and this leads to an ambiguity in the length distribu-
tion. Using the “maximum” rule we connect all line elements (forming a knot). Following
the “stochastic” rule the connections are made stochastically.

where φ1, . . . , φ4 are the phases at the corners of a plaquette labelled,

say, according to the right-hand rule, and [α]2π stands for α modulo 2π:

[α]2π = α + 2πn, with n an integer such that α + 2πn ∈ (−π, π], hence

m = n12 +n23 +n34 +n41. If m 6= 0, there exists a topological charge which

is assigned to the object dual to the given plaquette, i.e., the (oriented) line

elements ∗lµ which combine to form closed networks (“vortex loops”). With

this definition, the vortex “currents” ∗lµ can take three values: 0,±1 (the

values ±2 have a negligible probability and higher values are impossible).

The quantity v = 1
N

∑
n,µ |∗lµ,n| serves as a measure of the vortex density.

In order to study percolation observables we connect the obtained vor-

tex line elements to closed loops. Following a single line, there is evidently

no difficulty, but when a branching point, where n ≥ 2 junctions are en-

countered, is reached, a decision on how to continue has to be made. This

step involves a certain ambiguity. If we connect all in- and outgoing line

elements (“maximal” rule), knots will be formed. Another choice is to join

only one incoming with one outgoing line element (“stochastic” rule), with

the outgoing direction chosen randomly. These two possibilities are shown

in Fig. 1.

We can thus extract from each lattice configuration a set of vortex loops,

which have been glued together by one of the connectivity definitions above.

For each loop in the network, we measure the “extent” of a vortex loop in

3 dimensions, O3D. This means simply to project the loop onto the three

axes and record whether the projection covers the whole axis, or to be more

concrete, whether one finds a vortex-line element of the loop in all planes

perpendicular to the eyed axis. If there is a loop fulfilling this requirement,

then this loop is percolating and we record 1 in the time series of measure-

ments; if not, a value of 0 is stored. This quantity can thus be interpreted

as percolation probability3 which is a convenient quantity for locating the
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percolation threshold βp. Furthermore we measure the “susceptibilities”,

χi = N(〈O2
i 〉 − 〈Oi〉2) , for the vortex density v and for the extent of a

vortex loop O3D defined above.

In order to perform Monte Carlo simulations, we employed the single-

cluster algorithm6 to update the direction of the field.7 The modulus of ψ

is updated with a Metropolis algorithm.8 Here some care is necessary to

treat the measure in (3) properly (see Ref. 5). One sweep consisted of N

spin flips with the Metropolis algorithm and Nsc single-cluster updates. We

performed simulations for lattices with linear lattice size L = 6 up to 40,

subject to periodic boundary conditions. After an initial equilibration time

of 20 000 sweeps we took about 100 000 measurements, with ten sweeps

between the measurements. All error bars are computed with the Jackknife

method. For further details concerning the simulation, see Ref. 9.

In order to be able to compare standard, thermodynamically obtained

results (working directly with the original field variables) with the percola-

tive treatment of the geometrically defined vortex-loop networks considered

here, we used the same value for the parameter σ = 1.5 as in Ref. 10 for

which we determined by means of standard finite-size scaling (FSS) anal-

yses a critical coupling of βc = 0.780 08(4). Focussing here on the vortex

loops, we performed new simulations at this thermodynamically determined

critical value, β = 0.780 08, as well as additional simulations at β = 0.79,

0.80, and 0.81. The latter β values were necessary because of the spread-

ing of the pseudo-critical points of the vortex loop related quantities. As

previously we recorded the time series of the energy H , the magnetization

M , the mean modulus |ψ|, and the mean-square amplitude |ψ|2, and the

vorticity v. In the present simulations, however, we saved in addition also

the field configurations in each measurement. This enabled us to perform

the time-consuming analyses of the vortex-loop networks after finishing the

simulations.

The FSS ansatz for the pseudo-critical inverse temperatures βi(L), de-

fined as the points where the various χi attain their maxima, is taken as

usual as

βi(L) = βi,c + c1L
−1/ν + c2L

−1/ν−ω + . . . , (5)

where βi,c denotes the infinite-volume limit, and ν and ω are the correlation

length and confluent correction critical exponents, respectively. Here we

have deliberately retained the subscript i on βi,c.

Let us start with the susceptibility χv of the vortex density. Note that

this quantity, while also being expressed entirely in terms of vortex ele-
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Table 1. The critical exponents of the 3D XY model universality
class as reported in Ref. 11 and the correction-to-scaling exponent
ω of Ref. 7.

α β γ ν ω

−0.0146(8) 0.3485(2) 1.3177(5) 0.67155(27) 0.79(2)

ments, plays a special role in that it is locally defined, i.e., does not require

a decomposition into individual vortex loops (which, in fact, is the time-

consuming part of the vortex-network analysis). Assuming the XY model

values for ν and ω compiled in Table 1, and fitting only the coefficients βi,c
and ci, we arrive at the estimate βv,c = 0.779 7(14) with a goodness-of-fit

parameter Q = 0.20. This value is perfectly consistent with the previously

obtained “thermodynamic” result,10 derived from FSS of the magnetic sus-

ceptibility and various (logarithmic) derivatives of the magnetization. On

the basis of this result one would indeed conclude that the phase transi-

tion in the three-dimensional complex Ginzburg-Landau field theory can be

explained in terms of vortex-line proliferation.12,13

To develop a purely geometric picture of the mechanism governing this

transition, however, one should also consider for example the quantity O3D

introduced above that focus on the percolative properties of the vortex-loop

network. We show in Fig. 2(a) the resulting scaling behaviour of the max-

ima locations β3D(L) for the susceptibility χ3D of O3D for the “stochastic”

and the “maximal” rule. The lines indicate fits according to Eq. (5) with ex-

ponents fixed again according to Table 1. We obtain β3D,c = 0.7824(1) with

χ2/dof = 1.14 (Q = 0.32, L ≥ 8) for the “stochastic” and β3D,c = 0.8042(4)

with χ2/dof = 0.75 (Q = 0.58, L ≥ 20) for “maximal” rule. While for the

“stochastic” rule the infinite-volume limit of β3D(L) is at least close to βc, it

is clearly significantly larger than βc for the fully knotted vortex networks.

With these remarks in mind we nevertheless performed tests whether

at least for the “stochastic” rule the critical behaviour of the vortex-loop

network may consistently be described by the 3D XY model universality

class. As an example for a quantity that is a priori expected to behave as

a percolation probability we picked again the quantity O3D. As is demon-

strated in Fig. 2(b) for the“stochastic”rule, by plotting the raw data of O3D

as a function of β for the various lattice sizes, one obtains a clear crossing

point so that the interpretation of O3D as percolation probability is nicely

confirmed. To test the scaling behaviour we rescaled the raw data in the

FSS master plot shown in the inset of Fig. 2(b), where the critical exponent

ν has the XY model value given in Table 1 and βc(O3D) = 0.7842 was in-

dependently determined by optimizing the data collapse, i.e., virtually this
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Fig. 2. (a) Location of the percolation thresholds determined from the maximum of
susceptibility of O3D for the “stochastic” and “maximal” rule as a function of L−1/ν ,
respectively. The lines indicate fits according to Eq. (5) with ν and ω fixed according
to Table 1. The horizontal dashed line shows the thermodynamically determined crit-
ical coupling βc = 0.78008(4). (b) O3D as a function of β for the “stochastic” rule.
Inset: Rescaled data with ν fixed at the 3D XY model value (cf. Table 1) and choos-
ing βc(O3D) = 0.7842 to be the location of the crossing point in (a) for the best data
collapse.

is the location of the crossing point in Fig. 2(b). The collapse turns out to

be quite sharp which we explicitly judged by comparison with similar plots

for standard bond and site percolation (using there the proper percolation

exponent, of course).

In this work9 we have found for the three-dimensional complex

Ginzburg-Landau field theory that the geometrically defined percolation

transition of the vortex-loop network is close to the thermodynamic phase

transition, but does not coincide with it for any observable we have used.

Nevertheless we believe that it should be possible to bring the percola-

tion transition closer to the thermodynamic one by using different vortex-

loop network definitions, e.g., using a temperature-dependent or a size-

dependent connectivity parameter. To verify this presumption would be an

interesting future project, but thereby one should first investigate the XY

model which is much less CPU time-consuming.
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A magnetic system is usually described in terms of the exchange coupling be-
tween neighboring spins lying on the sites of a given lattice. Our goal here is to
account for the unavoidable quantum effects due to the further coupling with
the vibrations of the ions constituting the lattice. A Caldeira-Leggett scheme
allows one to treat such effects through the analysis of the associated influence
action, obtained after tracing-out the phonons. In a physically sound model, it
turns out that one must deal with an environmental coupling which is nonlinear
in the system’s variables. The corresponding path integral can be dealt with
by suitably extending the pure-quantum self-consistent harmonic approxima-
tion. In this way one can obtain extended phase diagrams for magnetic phase
transitions, accounting for the environmental interaction.

Keywords: Quantum environment; Magnetic systems; Phase diagram.

1. Introduction

It is well known that real physical systems are unavoidably coupled with

their environment, although their modeling as isolated systems is a very

useful and often good approximation. However, there are cases where envi-

ronmental coupling displays significant effects, as in the case of Josephson

junction arrays, where the inclusion of shunt resistances across the junctions

enhances the coherence of the array and stabilizes the globally supercon-

ducting phase.1

Quantum magnetic systems, by the very reason of having the spins

sitting on the sites of a real lattice, are no exception as their quantum

environment is well identified with the thermalized vibrations of the lattice.
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It is therefore natural to investigate whether and under which conditions

environmental effects could be displayed by magnetic materials. This is the

original motivation for the present study, that has led us to extend the

system plus reservoir approach2–4 in order to include coupling forms more

general than those considered so far.5 As for the spin-phonon coupling, we

consider both a spin-orbit-mediated mechanism and the direct influence of

the bond length upon the exchange constant, which give rise to a quadratic

and to a quartic influence action, respectively.

2. The 2D XXZ Ferromagnet

Although the treatment we are going to propose is valid for whatever

spin Hamiltonian, it will be more clearly explained by choosing a refer-

ence model: let’s then assume the easy-axis ferromagneta on the square

lattice, i.e.,

Ĥ = −J
∑

〈ij〉

[
µ
(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)
+ Ŝzi Ŝ

z
j

]
, (1)

where J > 0 is the exchange constant and µ < 1 is the easy-axis anisotropy,

while Ŝi are spin-S operators with Ŝ2
i = S(S+1). This system under-

goes an Ising phase transition, that was characterized both in the clas-

sical (S→∞)6,7 and in the quantum case.8,9 The latter study relied upon

the effective classical Hamiltonian method,10 also called pure-quantum self-

consistent harmonic approximation (PQSCHA),11 an approach that gen-

eralized the variational effective classical potential12,13 and that can be

naturally extended to account for environmental coupling.14

Basically, obtaining the effective classical Hamiltonian for a magnet en-

tails (i) a spin-boson transformation, such as the Holstein-Primakoff (HP),

Ŝzi = S − â†i âi , Ŝ+
i = Ŝxi + iŜyi = (2S − â†i âi)

1/2 âi ; (2)

(ii) applying the PQSCHA recipe for phase space variables (p̂i, q̂i) defined

by âi = (S̃/2)1/2(q̂i + ip̂i); the classical spin value S̃ = S + 1
2 is such that

the Weyl symbols (required in the Hamiltonian path integral) for the spin

operators read

Szi = S̃
(
1 − q2i +p2

i

2

)
, S±

i = S̃

√
1 − p2

i+q
2
i

4
(qi ± ipi) +O(S̃−1) ; (3)

aThe antiferromagnet can be treated with slightly more complicated expressions.
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this transformation is eventually used to recast the effective Hamiltonian

in terms of classical spins, i.e., unit vectors si:

Heff = E(T ) − JS̃2jeff
∑

〈ij〉

[
µeff

(
sxi s

x
j + syi s

y
j

)
+ szis

z
j

]
. (4)

Using the reduced temperature t≡T/JS̃2, the effective exchange

jeff(t, µ, S)= θ21 and anisotropy µeff(t, µ, S)=µ θ2/θ1 depend, through

θ1 = 1−D+µD′ and θ2 =1−D+D′/µ, on the renormalization parameters

D =
1

2S̃ N

∑

k

Lk , D′ =
1

2S̃ N

∑

k

γk Lk , (5)

where γk = (cos kx + cos ky)/2; they describe the (on-site and nearest-

neighbor) pure-quantum fluctuations of the spins, being

Lk = coth
ωk

2tS̃
− 2tS̃

ωk

. (6)

D and D′ are evaluated self-consistently with the (dimensionless) frequen-

cies ωk = z(θ1 − µ θ2γk).

3. Linear Environmental Coupling

A model that entails a linear coupling between spins and environment has

been used in spin-boson systems15,16 and for the related Ising chain in

transverse field.17,18 The underlying physical mechanism can be identified in

the spin-orbit mediated coupling that for a static lattice can give rise to the

magnetic anisotropy. It is reasonable to neglect spin correlations mediated

by the environment, i.e., to assume the latter has a fast thermalization

dynamics. Each spin is therefore subject to an independent environment,

and for simplicity let us assume that that this holds for any component (a

generalization is possible along the lines of Ref. 19). For the spin component

Ŝσi the environmental Hamiltonian reads then

Ĥ(iσ)
E =

1

2

∑

α

[
a2
σα p̂

2
α + b2σα (q̂α − Ŝσi )2

]
, (7)

where {p̂α, q̂α} are the environmental variables. The corresponding influence

action is obtained by tracing out the environment from the path integral4

S(iσ)
I = −J

2

∫ β

0

du du′ κσ(u−u′) Sσi (u)Sσi (u′) , (8)
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where the kernel κσ(u) = β−1
∑

n κσn e
iνnu has Matsubara components

that are related4 to the Laplace transform of the memory function γ(t)

κσn =
1

J

∑

α

b2α ν
2
n

ν2
n + a2

αb
2
α

= |νn| γ(z= |νn|) . (9)

Inserting the HP variables (3) and using the property κ0 =
∫ β
0
du κ(u) = 0,

it turns out that the lowest-order contributions to SI are quadratic and arise

from Sx and Sy (by symmetry, κxn =κyn =κn). The inclusion of the lowest

order terms of Eq. (8) in the action for the isolated magnet eventually gives

the effective Hamiltonian of Eqs. (4) and (5), but with Eq. (6) replaced by

Lk = 4tS̃

∞∑

n=1

ωk + κn
ν̃2
n + (ωk + κn)2

, (10)

where ν̃n ≡ νn/JS̃
2 = 2πtS̃ n. Assuming a phenomenological Drude mem-

ory function, the corresponding kernel is characterized by two parameters:

the strength γ and the cutoff frequency ωD (of the order of the lattice Debye

frequency), so that

κn =
1

JS̃2

γ ω
D
νn

ω
D

+ νn
= γ

σ
D
ν̃n

σ
D

+ ν̃n
, (11)

where the dimensionless cutoff σ
D
≡ ω

D
/JS̃2 is, essentially, the ratio be-

tween the Debye and the Curie temperature. In Fig. 1 the typical envi-

ronmental effect upon the phase diagram is reported: it appears that the

transition temperature is lower as a result of larger pure-quantum fluctu-

ations, and that the effect is very sensitive to the value of σ
D
, which can

be very large in magnetic materials with small magnetic exchange, like the

organic ones.

However, the fact that the anisotropies of real materials are always

very small (µ/ 1) suggests that spin-orbit coupling is usually weak: con-

sequently, γ is expected to be very small. Indeed, a different spin-lattice

coupling mechanism we are now going to discuss can be more effective.

4. δJ-Coupling Model

It is well known that exchange coupling is a quantum mechanical effect

arising from the fermionic character of electrons, and essentially depends

on the overlap of orbitals, hence on the separation of neighboring ions; for

this reason the exchange energy J over the bond connecting lattice sites i

and j depends on r̂ij = |d+ δr̂ij |, where d ≡ j−i,
J
(
r̂ij
)
≃ J + δJij = J + J ′ d·δr̂ij . (12)
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Fig. 1. Transition temperature vs coupling strength (left) and vs cutoff frequency (right)
for the S=1 XXZ antiferromagnet with anisotropy µ=0.5.

If one considers the isotropic part of Hamiltonian

Ĥis = −
∑

〈ij〉

(
J + δJij

)
Ŝi·Ŝj (13)

it appears that one has to consider a coupling model which is quadratic in

the spin operators

Ĥ(ij)
E =

1

2

∑

α

[
a2
α p̂

2
ijα + b2α (q̂ijα − Ŝi·Ŝj)

2
]
, (14)

where, as in Sec. 3, an independent phonon environment for each bond

is assumed. The above environmental coupling model is so effective that

it can even lead to a spin-Peierls transition,20 where a distorted lattice

configuration permits a gain in magnetic energy; the same model is used

to account for environmental effects on quantum phase transitions,21 on

thermal-transport anomalies,22 and on the magnetic phase diagrams.23,24

It is immediate to obtain the influence action as

SI = − J

2S̃2

∑

〈ij〉

∫ β

0

du du′ K(u−u′)
[
Ŝi(u)·Ŝj(u)

] [
Ŝi(u

′)·Ŝj(u
′)
]
. (15)

The Hamiltonian of lattice vibrations together with Eq. (12) can be

used to evaluate the spectral density of spin-phonon coupling J (ω) =∑
α b2α ωα δ(ω2 −ω2

α), and the related kernel K(u). If the vibrating lat-

tice coincides with the magnetic one one gets

J (ω) =
2J ′2

mΩ2
W(ω) , (16)

where Ω is the maximum phonon frequency and W(ω) is the phonon density

of states. As W(ω) is peaked at large ω, it is reasonable to use the Einstein
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approximation, i.e., WE(ω) ≅ δ(ω−Ω), so J (ω) ≅
4 J′2

mΩ δ(ω2 −Ω2) and the

corresponding kernel is

Kn = γ
ν2
n

ν2
n + Ω2

, γ =
4 JS̃2

mΩ2R2
, (17)

where the magnetic length scale R≡ J/J ′ =
[
∂r lnJ(r)

]−1
enters the cou-

pling strength γ. At difference with Sec. 3, it appears in this case that the

environmental effect is expected to increase with J .

If one is happy with a model that unambiguously gives all interaction

parameters, there is however a significant complication: the influence ac-

tion (15) is quartic in the spins, and going over to HP variables, Eq. (3),

one finds at lowest order 36 quartic terms in the integrand of (15), such as

qi(u) qj(u) qi(u
′) qj(u

′) + qi(u) qj(u) pi(u
′) pj(u

′) + . . . . (18)

It is therefore necessary to extend the previously used approach in such a

way to account for nonlinear environmental coupling.

5. PQSCHA with Nonlinear Environmental Coupling

The framework of the PQSCHA can be extended in a natural way to nonlin-

earities appearing in the nonlocal action: one introduces a trial influence ac-

tion in terms of the pure-quantum fluctuations of the paths, ξi(u) = qi(u)−q̄
and ηi(u) = pi(u) − p̄, where (p̄, q̄) = β−1

∫
du
(
p(u), q(u)

)
,

SI0 = −JS̃2
∑

〈ij〉

∫ β

0

du du′
{
κ(u−u′)

[
ξi(u) ξi(u

′) + ηi(u) ηi(u
′)
]

−κ′(u−u′)
[
ξi(u) ξj(u

′) + ηi(u) ηj(u
′)
]}

.(19)

Its Fourier-Matsubara transform reads

SI0 = − z

2t

∑

k

∑

n6=0

(κn − γk κ
′
n)
(
pkn p

∗
kn + qkn q

∗
kn

)
. (20)

By symmetry there are two possible components (self and nn) of the trial

kernel which has to be optimized; they correspond to the only nonvanishing

pure-quantum variances

D(u) =
〈〈
ξi(0)ξi(u)

〉〉
=
〈〈
ηi(0)ηi(u)

〉〉
,

D′(u) =
〈〈
ξi(0)ξj(u)

〉〉
=
〈〈
ηi(0)ηj(u)

〉〉
, (21)
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where the ‘double-bracket’ is the Gaussian average taken with respect to

the full (quadratic) trial action S0. All parameters are then optimized by

imposing the generalized (nonlocal) PQSCHA conditions,

〈〈
S − S0

〉〉
= 0 ,

〈〈
δ2(S − S0)

δξi(u) δξj(u′)

〉〉
= 0 , (22)

which are equivalent to decouple all nonlinear terms, i.e., extracting the

averages (21) of all possible pairs and leaving a quadratic expression. In

this way several terms vanish and the effective kernel turns out to be given

by

κ(u) = κ′(u) = K(u) D(u) , (23)

where D(u) ≡ 2
[
D(u)−D′(u)

]
. In spite of the simple appearance, one

has to account for the involute self-consistency that is more evident if one

expresses the Matsubara components,

κn =
∑

ℓ 6=0

Kn−ℓ Dℓ , (24)

Dn =
1

S̃ N

∑

k

(1− γk)
4tS̃ [ωk + z(1−γk)κn]

ν̃2
n + [ωk + z(1−γk)κn]2

. (25)

Indeed, Eq. (24) is a nonlinear system in the numerable components κn. It

can be solved numerically by iteration, using a finite number of coefficients

(κ1, ..., κM ) such that κM ≪ ν̃M and exploiting the fact that one has a

rapidly convergent sum in terms of δKn=K∞−Kn ∼ n−2.

6. Conclusions

We have derived the expressions accounting for the effects of linear environ-

mental coupling in the XXZ model, which give a decrease of the transition

temperature as the coupling strength and the cutoff frequency are increased.

From the point of view of the general method, facing the problem of

δJ-coupling has lead us to a nontrivial extension of the pure-quantum self-

consistent harmonic approximation (PQSCHA), which permits to embody

both pure-quantum fluctuations and environmental effects in the effective

classical Hamiltonian. It will be interesting to use this approach also for

simpler problems that were previously afforded with an inappropriate trial

action.25,26

In the case of δJ-coupling it is possible to identify the environmen-

tal coupling parameters, i.e., in the Einstein approximation, the coupling
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strength γ and the cutoff frequency Ω, in terms of the parameters of the

vibrational Hamiltonian. The work in progress concerns the actual eval-

uation of the related environmental effects and the determination of the

phase-diagram, in view of possibly identifying evidences of such effects in

experimental data.
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The path integral approach is used for the calculation of the correlation func-
tions of the XY Heisenberg chain. The obtained answers for the two-point cor-
relators of the XX magnet are of the determinantal form and are interpreted
in terms of the generating functions for the random turns vicious walkers.

Keywords: Path integration; XY Heisenberg magnet; Random walk.

1. Introduction

The problem of enumeration of paths of vicious walkers on a one-

dimensional lattice was formulated by M. E. Fisher1 and since then contin-

ues to attract much attention (see Refs. 2,3). The walkers are called ‘vicious’

because they annihilate each other at the same lattice site, and their trajec-

tories are thus non-intersecting. Similar problems appear in the theory of

domain walls,4 directed percolation,5 self-organized criticality,6 and poly-

mer theory.7 It has been proposed in Ref. 2 to use the XX Heisenberg chain

to enumerate the paths of the random turns vicious walkers.

Our approach based on path integration was developed in Refs. 8,9

to calculate thermal correlation functions of the XY Heisenberg magnet.

Dependence of the integration variables on the imaginary time is defined

by special quasi-periodicity conditions. In the present paper, this method

is used for the calculation of the two-point correlation functions of the

XX model and the interpretation of the obtained answer in terms of the

generating functions of the random turns vicious walkers is given.
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2. The Problem

The Hamiltonian of the periodic XY Heisenberg chain of “length”M (M

is chosen to be even) in transverse magnetic field h > 0 is:

H = H0 + γH1 − hSz , H0 ≡ −
M∑

n,m=1

∆(+)
nmσ

+
n σ

−
m ,

H1 ≡ − 1

2

M∑

n,m=1

∆(+)
nm(σ+

n σ
+
m + σ−

n σ
−
m) , Sz ≡ 1

2

M∑

n=1

σzn .

(1)

Here Sz is the z-component of the total spin operator, and the entries of

the so-called hopping matrix ∆
(s)
nm (s = ±) are:

2∆(s)
nm ≡ δ|n−m|,1 + sδ|n−m|,M−1 , (2)

where δn,l is the Kronecker symbol. The Pauli matrices σ±
n = (1/2)(σxn ±

iσyn) and σzn, where n ∈ M ≡ {1, . . . ,M}, satisfy the commutation rela-

tions:
[
σ+
k , σ

−
l

]
= δkl σ

z
l and

[
σzk, σ

±
l

]
= ± 2 δkl σ

±
l . The periodic boundary

condition reads: σαn+M = σαn , ∀n. The Hamiltonian H (1), taken at γ = 0

(the case of XX magnet), commutes with Sz.

Time-dependent thermal correlation functions are defined as follows:

Gab(m, t) ≡ Z−1Tr
(
σal+m(0)σbl (t) e

−βH) , Z ≡ Tr
(
e−βH

)
, (3)

where σbl (t) ≡ eitH σbl e
−itH , β = 1/T is inverse temperature, and t is

time. This correlator may be rewritten in terms of the canonical lattice

Fermi fields ci, c
†
j , where i, j ∈ M, by means of the Jordan-Wigner map:

σ+
n =

(n−1∏

j=1

σzj

)
cn , σ−

n = c†n
(n−1∏

j=1

σzj

)
, n ∈ M ,

where σzj = 1 − 2c†jcj . The periodic conditions for the spin operators result

in the boundary conditions for the fermions:

cM+1 =
(
−1
)N

c1 , c†M+1 = c†1
(
−1
)N

, (4)

where N =
∑M

n=1 c
†
ncn is the operator of the total number of particles. In

the fermionic representation, H in Eq. (1) will take a form H = H+P+ +

H−P−, where P± = (1/2)(I±(−1)N ) are projectors.8 The operatorsHs are

of identical form with s = ± pointing out a correspondence between these

operators and an appropriate specification of the conditions (4): cM+1 =

− s c1, c
†
M+1 = − s c†1.

Equation (3) for the z-components of spins, for instance, becomes:

Gzz(m, t) = 1 − 2Z−1Tr
(
c†l+m cl+m e

−βH) − 2Z−1Tr
(
c†l cl e

−βH)
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+ 4Z−1Tr
(
c†l+m cl+m e

itH c†l cl e
−(β+it)H

)
. (5)

To evaluate (5), it is convenient to consider the generating functional:

G ≡ G(S, T
∣∣µ, ν) = Z−1Tr

(
eS e−µH eT e−νH

)
, (6)

where µ, ν are the complex parameters, µ+ν = β. Two operators, S ≡ c†Ŝc
and T ≡ c†T̂ c, are defined through the matrices Ŝ = diag

{
S1, S2, . . . , SM

}
,

T̂ = diag
{
T1, T2, . . . , TM

}
. For instance, the last term on the r.h.s. of (5)

is obtained from (6) in the following way:

∂

∂Sk

∂

∂Tl
G(S, T

∣∣µ, ν)
∣∣∣∣∣Sn, Tn, ∀n −→ 0

µ, ν −→ −it, β + it

.

As a result, we express the trace on the r.h.s. of (6) in the form:8

Tr
(
eS e−µH eT e−νH

)
=

1

2

(
G+

F Z+
F + G−

F Z−
F + G+

B Z+
B − G−

B Z−
B

)
, (7)

where

G±
F Z±

F = Tr
(
eS e−µH

±
eT e−νH

±)
,

G±
B Z±

B = Tr
(
eS e−µH

±
eT (−1)N e−νH

±)
,

(8)

and Z±
F = Tr (e−βH

±
), Z±

B = Tr
(
(−1)Ne−βH

±)
.

3. The Path Integral

We use the coherent states |z
〉

≡ exp
(
c†z
)
|0
〉

and
〈
z∗| ≡

〈
0| exp

(
z∗c
)

generated from the Fock vacuum |0
〉
, ck|0

〉
= 0, ∀k. We use the short-

hand notations for the M -component objects, say, z∗ ≡ (z∗1 , . . . , z
∗
M ) and

z ≡ (z1, . . . , zM ) formed by the independent Grassmann parameters zk, z
∗
k

(k ∈ M). Besides,
∑M

k=1 c
†
kzk ≡ c†z,

∏M
k=1 dzk ≡ dz, etc. Then, we shall

represent9 the trace of the operator in G±
F Z±

F in Eq. (8) by means of the

Grassmann integration over dz, dz∗:

G±
F Z±

F =

∫
dz dz∗ ez

∗z
〈
z∗| eS e−µH±

eT e−νH
± |z
〉
. (9)

For the sake of simplicity we shall consider the XX model only and take

those H± that correspond to H in Eq. (1) at γ = 0.

To represent the r.h.s. of (9) as a path integral, we first introduce new co-

herent states |x(I)
〉
,
〈
x∗(I)|, where 2L×M independent Grassmann param-

eters are arranged in the form of 2L “vectors” x∗(I), x(I) (I ∈ {1, . . . , L}).
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It allows to insert L times the decompositions of unity
∫

dx∗(I)dx(I) exp
(
−x∗(I)x(I)

)
|x(I)

〉〈
x∗(I)|

into the r.h.s. of (9). We define then the additional variables satisfying the

quasi-periodicity conditions:

−Ê x(0) = x(L + 1) ≡ z , − x∗(L + 1) = x∗(0) Ê−1 ≡ z∗ . (10)

Here, Ê ≡ e
bS e−µ bH±

e
bT with the matrices Ĥ± expressed9 through the

hopping matrices (2): Ĥ± = −∆̂(∓) +hÎ, where Î is a unit M ×M matrix.

The described procedure allows to pass in the limit L → ∞ from (L + 1)-

fold integration to the continuous one over the “infinite” product of the

measures dx∗(τ)dx(τ) on a space of trajectories x∗(τ), x(τ), where τ ∈ R:

G±
F Z±

F =

∫
eS dλ∗ dλ

∏

τ

dx∗(τ)dx(τ) .

The integration over the auxiliary Grassmann variables λ∗, λ guarantees

the fulfilment of the continuous version of the constraints (10). The action

functional is S ≡
∫
L(τ) dτ , where L(τ) is the Lagrangian:

L(τ) ≡ x∗(τ)
( d

dτ
− Ĥ±

)
x(τ) + J∗(τ)x(τ) + x∗(τ)J(τ) ,

J∗(τ) ≡ λ∗
(
δ(τ) Î + δ(τ − ν) Ê−1

)
, J(τ) ≡

(
δ(τ) Î + δ(τ − ν) Ê

)
λ .

The δ-functions reduce τ to the segment [0, β]. The stationary phase re-

quirements δS/δx∗ = 0, δS/δx = 0 yield the regularized answer:9

G±
F = det

(
Î +

e(β−ν) bH±
e

bS e−µ bH±
e

bT − Î

Î + eβ bH±

)
,

The remainder correlators Gab(m, t) (3) (with a, b ∈ {+,−}) are obtained

analogously.

4. Random Walks

The evolution of the states obtained by selective flipping of the spins gov-

erned by the XX HamiltonianH0 in Eq. (1) is related to a model of random

turns vicious walkers.2,3 Indeed, let us consider the following average over

the ferromagnetic state vectors 〈⇑ |, | ⇑〉:
Fj; l(λ) ≡ 〈⇑ |σ+

j e
−λH0σ−

l | ⇑〉 , (11)

where | ⇑〉 ≡ ⊗Mn=1| ↑〉n, i.e., all spins are up, and λ is an “evolution” pa-

rameter. Spin up (or down) corresponds to an empty (or occupied) site.
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Differentiating Fj; l(λ) and applying the commutator [H0, σ
+
j ], we obtain

the differential-difference equation (master equation):

d

dλ
Fj; l(λ) =

1

2

(
Fj+1; l(λ) + Fj−1; l(λ)

)
. (12)

The average Fj; l may be considered as the generating function of paths

made by a random walker travelling from lth to jth site. Really, its K-th

derivative has the form

dK

dλK
Fj; l(λ)

∣∣∣∣∣
λ=0

= 〈⇑| σ+
j (−H0)

Kσ−
l |⇑〉 =

∑

n1,...,nK−1

∆
(+)
jnK−1

. . .∆(+)
n2n1

∆
(+)
n1l

.

A single step to one of the nearest sites is prescribed by the hopping matrix

(2) with s = +. After K steps, each path connecting lth and jth sites

contributes into the sum. The N -point correlation function (N ≤M),

Fj1,j2,...,jN ; l1,l2,...,lN (λ) = 〈⇑| σ+
j1
σ+
j2
. . . σ+

jN
e−λH0 σ−

l1
σ−
l2
. . . σ−

lN
|⇑〉 , (13)

enumerates the nests of the lattice paths of N random turns vicious walkers

being initially located at the positions l1 > l2 > · · · > lN and, eventually,

at j1 > j2 > · · · > jN . It is expressed in the form:2

Fj1,...,jN ; l1,...,lN (λ) = det
(
Fjr ; ls(λ)

)
1≤r, s≤N . (14)

The ground state and the excited states of the XX chain at h = 0 with

the total spin equal to (M/2) − N are decomposed over a basis of states

σ−
l1
σ−
l2
. . . σ−

lN
|⇑〉 with N spins flipped.10 Therefore, the trace F̃m+1; 1(λ) ≡

Tr
(
σ+
m+1e

−λH0σ−
1

)
is a linear combination of the generating functions (13)

describing the evolution of N + 1 random turns walkers. The initial and

the final positions of one of them are fixed at l1 = 1 and j1 = m + 1,

respectively, while for the remaining ones these positions are random. In the

thermodynamic limit, the number of the virtual walkers tends to infinity.

We apply the procedure described in Sec. 3 to calculation of F̃m+1; 1(λ) in

the limit when M and N are large enough. In this limit, the contributions

with the subindex ‘B’ become, with regard of (8), negligible in (7):

F̃m+1; 1(λ) =
[
tr
(
e−λ

bH0

ê1,m+1

)
− d

dα

]
det
(
Î + Ûm +

α

M
V̂m
)∣∣∣∣∣
α=0

= det
(
Î + Ûm

)
[
tr
(
e−λ

bH0

ê1,m+1

)
− 1

M
tr
( V̂m
Î + Ûm

)]
,

where ê1,m+1 ≡ (δ1,nδm+1,l)1≤n,l≤M , and the matrix Ĥ0 is used instead

of Ĥ± since s can be taken zero at large enough M . The traces of λ-

dependent M × M matrices Ûm and V̂m are given below. A differential
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equation analogous to (12) is fulfilled by F̃m+1; 1(λ). At large separation m

it takes the form:

d

dλ
F̃m+1; 1(λ) =

1

2

(
F̃m; 1(λ) + F̃m+2; 1(λ)

)
−Tr

(
H0 σ

+
m+1 e

−λH0 σ−
1

)
. (15)

We expand formally F̃m+1; 1(λ) with respect to Ûm and obtain the answer

in the two lowest orders as follows:

F̃m+1; 1(λ) ≈ Fm+1; 1(λ) + Fm+1; 1(λ) × tr Ûm − 1

M
tr V̂m ,

tr Ûm = (M − 2m)F1; 1(λ) ,

1

M
tr V̂m = Fm+1; 1(2λ) − 2

m∑

l=1

Fm+1; l(λ)Fl; 1(λ) .

(16)

Although M and m are chosen to be large in this expansion, the ratio m/M

is kept bounded. In each order the master equation (15) is fulfilled by (16).

The contribution of the second order can be re-expressed through the two-

point functions Fm+1,l; l,1(λ) (see Eqs. (13) and (14)). Thus, summation over

intermediate positions (of a virtual walker located at the lth site) arises in

the second order. A similar picture is expected in the next orders.
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With continuous time quantum Monte Carlo simulations we investigate a con-
tinuous quantum phase transition in the mixed quantum spin chain with spin
arrangement −Sa − Sa − Sb − Sb−, with Sa = 1/2 and Sb = 1. By finite-size
scaling analysis we calculate estimates of the critical control parameter as well
as estimates of critical exponents.
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Introduction. Antiferromagnetic quantum spin chains with bond alterna-

tion show a rich variety of (quantum) effects.1 Among many applications,

they serve as generic models to study an interesting type of topological

quantum phase transitions.2 Depending on the strength of bond alternation,

topologically different phases appear that can be understood qualitatively

within the picture of valence bonds.3

Our model Hamiltonian reads

H = J
∑

i

(
Sa

4iS
a
4i+1 + αSa

4i+1S
b
4i+2 + Sb

4i+3S
b
4i+4 + αSb

4i+4S
a
4i+5

)
, (1)

with α being the parameter that controls bond alternation. For a coupling

constant J > 0, the model is antiferromagnetic. For S = Sa = Sb = 1/2,

the model becomes the antiferromagnetic Heisenberg model (AFHM) which

is critical at the point α = 1, i.e., there is no excitation gap. The critical

point separates two different quantum phases.4

In contrast to the AFHM, the quantum spin chain with S = 1 is not

critical. This fundamental difference between uniform quantum spin chains

with S = 1/2 and S = 1, and even more generally between uniform quantum

spin chains of half-odd integer sized spin and integer sized spin, has become
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famous as Haldane’s conjecture.5 Yet, by tuning the control parameter α

one can drive the system with S = 1 towards criticality at α ≈ 0.578.6

The different phases that can be accessed by tuning the control param-

eter α, can be conveniently pictured by valence bonds.3 Spins of magnitude

S ≥ 1 are represented by subspins of size S = 1/2. Then subspins at differ-

ent sites couple to form antiferromagnetic singlets.

The model we study in this paper, with Sa = 1/2 and Sb = 1, serves as

a natural interpolation between the two cases discussed above. The critical

value of the control parameter has been calculated previously by means of

quantum Monte Carlo simulations,7 but no attempts to calculate critical

exponents have yet been published.

Observables. We apply the continuous imaginary time loop algorithm in

the path integral representation8,9 to create, after thermalisation, N =

100 000 configurations. The expectation value of an observable O reads

〈O〉 =
1

N

N∑

i=1

Oi , (2)

with Oi denoting the value calculated from configuration i.

We measure, among other quantities, the dynamic susceptibilitiesa

χ(π, 0) and χ(π, 2π/β) by improved estimators8

〈χ(k, ω)imp〉 =
1

4βL

〈
∑

all loops i

|Li(k, ω)|2
〉
, (3)

where β is the inverse temperature, L the chain length, and Li(k, ω) denotes

the generalised“size” of loop i with respect to k and ω. The imaginary time

correlation length ξτ is then estimated by the second-moment method10

ξτ =
β

2π

√
χ(π, 0)

χ(π, 2π/β)
− 1 . (4)

The inverse of ξτ gives the energy gap between ground state and lowest

lying excited states and thus diverges at the critical point.

We, furthermore, measure the twist order parameter z, defined by the

ground state expectation value of the unitary operator

UT = exp



i
2π

L

L∑

j=1

jSzj



 . (5)

aFourier modes of the two-point correlation function 〈Sz
i0

Sz
i0+i〉−〈Sz

i0
〉〈Sz

i0+i〉 averaged
over all points i0, with i = (x, τ).
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Table 1. Finite-size scaling analysis. Results are obtained by fits of the pseudo-critical
points α∗(L) to Eq. (6). Pseudo-critical points are the maxima of the imaginary time
correlation length ξτ and the zero points of the twist order parameter z, respectively.

ξτ z
L αc θ χ2

pdof αc θ χ2
pdof

8 . . . 128 0.76230(4) 2.38(6) 0.68 0.76244(8) 1.66(2) 1.63
12 . . . 128 0.76228(4) 2.46(8) 0.61 0.76237(9) 1.67(3) 1.60
16 . . . 128 0.76228(4) 2.46(13) 0.68 0.76236(10) 1.68(3) 1.69
20 . . . 128 0.76226(4) 2.63(17) 0.52 0.76225(8) 1.73(3) 0.82
24 . . . 128 0.76226(5) 2.63(40) 0.60 0.76227(9) 1.72(4) 0.93
32 . . . 128 0.76227(7) 2.47(48) 0.70 0.76233(15) 1.68(8) 1.04

It has been shown that z signals the transition from one valence bond

configuration to another by a change of sign.6

To extrapolate finite-size data to the thermodynamic limit we apply

a finite-size scaling analysis.11 Pseudo-critical points, α∗(L), for a given

chain length L are defined as the maxima of ξτ (α;L), and the zero points

of z(α;L), respectively. All simulations are performed at a constant aspect

ratio of β/L = 2, so in first approximation we can assume that the pseudo-

critical points obey

α∗(L) = αc + bL−θ , (6)

where αc is the critical point of the infinite chain and θ = 1/ν the shift ex-

ponent. The maxima of ξτ (α;L) scale with L−zν. In our case the dynamic

critical exponent takes the value z = 1,2 and we can expect to get an esti-

mate for ν from finite-size scaling analysis of the maxima of ξτ (α;L). This,

however, is not necessarily true for the pseudo-critical points of z(α;L).

Results and discussion. Taking all chain lengths into account we get

αc = 0.76230(4) from ξτ (α;L) and αc = 0.76244(8) from z(α;L). This

slight discrepancy vanishes if we neglect small chain lengths in the analysis

of the twist order parameter. In Table 1 we list the results of finite-size

scaling fits when successively omitting small chain lengths.

The shift of the maxima of ξτ (α;L) is controlled by a shift exponent

θ ≈ 2.40. This implies ν = 1/θ ≈ 0.42 for the critical exponent of the

correlation length. We, however, clearly see that the shift of the zero points

of z(α;L) is controlled by a different shift exponent θ (see also Fig. 1).

Studies of uniform quantum spin chains with bond alternation and ex-

change anisotropy for S = 1/2,4 and S = 1,12 imply also for mixed quantum

spin chains that the critical point we are interested in is the end point – or
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Fig. 1. Pseudo-critical points of the imaginary time correlation length ξτ , and the twist
order parameter z. Lines show the fits to Eq. (6) performed with pseudo-critical points
of all chain lengths L.

at least very close to – of a Gaussian type critical line with continuously

varying critical exponents. Moreover they show that this line bifurcates ex-

actly at the point with no exchange anisotropy. Thus, in fact, we are at –

or close to – a multicritical point, and this might spoil our simple finite-size

scaling ansatz of Eq. (6). Future investigation of the whole phase diagram

of mixed quantum spin chains in the parameter space of bond alternation

and exchange anisotropy will reveal more.
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The issue of the number, nature and sequence of phase transitions in the fully
frustrated XY (FFXY) model is a highly non trivial one due to the complex
interplay between its continuous and discrete degrees of freedom. In this contri-
bution we attack such a problem by means of a twisted conformal field theory
(CFT) approach1 and show how it gives rise to the U (1) ⊗ Z2 symmetry and
to the whole spectrum of excitations of the FFXY model.2
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1. Introduction: The State of Art

The phase diagram of the FFXY model has been the subject of intensive

studies in the last thirty years, due to the presence of the mixed symmetry

U (1)⊗Z2. But a full and definitive answer to such a question still lacks; in
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this paper we address the problem by means of a twisted CFT approach.1

The XY model on a square lattice in the presence of an external magnetic

field transversal to the lattice plane is described by the action:

H = − J

kT

∑

〈ij〉
cos (ϕi − ϕj −Aij) , (1)

where {ϕ} are the phase variables on the sites, the sum is over nearest neigh-

bors, J > 0 is the coupling constant and the bond variablesAij = 2e
ℏc

∫ j
i A·dl

satisfy the full frustration condition
∑

plaquette Aij = π. Choosing the Lan-

dau gauge in such a way to get a lattice where each plaquette displays one

antiferromagnetic and three ferromagnetic bonds, we obtain two ground

states with opposite chiralities. The discrete Z2 symmetry of the FFXY

model is broken at low temperature and will be restored beyond a cer-

tain temperature after the formation of domain walls separating islands of

opposite chirality. The Ising transition overlaps to a vortex-unbinding tran-

sition, which is associated with the continuous U(1) symmetry.3 The action

(1) can be rewritten as a fractionally charged Coulomb gas (CG) defined

on the dual lattice, HCG = − J
kT

∑
r,r′
(
m (r) + 1

2

)
G (r, r′)

(
m (r′) + 1

2

)
,

where lim|r−r′|→∞G (r, r′) = log |r − r′| + 1
2π and the neutrality condi-

tion
∑

r

(
m (r) + 1

2

)
= 0 holds. Such a model exhibits two possible phase

transitions, an Ising and a vortex-unbinding one. The issue whether there

are two distinct phase transitions, TV > Tdw or TV < Tdw with TV and Tdw
marking respectively the breaking of U(1) and of Z2 symmetry,4 or a single

transition with the simultaneous breaking of both symmetries5 has been

widely investigated. The model allows for the existence of two topological

excitations: vortices and domain walls. Vortices are point-like defects such

that the phase rotates by ±2π in going around them.3 A domain wall can be

viewed as a line on the square lattice, each segment of which separates two

cells with the same chirality.6 If the domain walls form a right angle, such

corners must behave as fractional vortices with topological charge ±1/4.3

There exists a temperature Tdw such that, when T > Tdw, dissociation of

bound pairs of fractional vortices is allowed, which triggers the dissociation

of pairs of ordinary vortices. The system undergoes two phase transitions

with temperatures such that TV < Tdw.7 At finite temperatures kinks may

appear on the domain wall. Simple kinks must behave as fractional vortices

with topological charge ±1/2 while a double kink does not introduce mis-

matches in the phase distribution. At low temperatures, all simple kinks

are bound into neutral pairs. As the temperature increases, a phase transi-

tion in the gas of logarithmically interacting kinks leads to pair dissociation
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and emergence of free simple kinks.6 That takes place8 at TK < TV and

produces two distinct bulk transitions with TV < Tdw. A more general con-

clusion is reached by studying the coupled XY-Ising model,9,10 which is

in the same universality class of the FFXY model. Such a model can be

introduced starting with a system of two XY models coupled through a

symmetry breaking term:9

H = A



∑

i=1,2

∑

〈r,r′〉
cos
(
ϕ(i)(r)−ϕ(i)(r

′
)
)

+h

∑

r

cos 2
(
ϕ(1)(r)−ϕ(2)(r)

)
.

(2)

The limit h→ 0 corresponds to a full decoupling of the fields ϕ(i), i = 1, 2,

while the h→ ∞ limit corresponds to the phase locking ϕ(1)(r)−ϕ(2)(r) =

πj, j = 1, 2; as a consequence the model gains a symmetry U(1) ⊗ Z2

and its Hamiltonian renormalizes towards the XY-Ising model.9 Its phase

diagram9,10,12 is built up with three branches which meet at a multi-critical

point P . Two branches describe separate Kosterlitz-Thouless (KT) and

Ising transitions while the third (PT ) corresponds to single transitions with

simultaneous loss of XY and Ising order. It becomes a first order one at a

tricritical point T and seems to be non-universal;9 in fact the numerical

estimate for the central charge, c ∼ 1.60, is higher than the value c =

3/2, pertinent to a superposition of critical Ising and Gaussian models.11

Indeed the central charge seems to vary continuously from c ≈ 1.5 near

P to c ≈ 2 at T .10 The system lacks conformal invariance,9 so one could

consider suitable perturbations of the XY-Ising model as a starting point to

study the vicinity of the point P .12 Instead, recent numerical simulations

on huge lattices13 lead to two very close but separate transitions on the

PT line. A possible solution could be7 the addition of an antiferromagnetic

coupling (J) term to the Coulomb gas Hamiltonian HCG; for J 6= 0, the two

transitions on the PT line separate with the KT one occurring at a lower

temperature.7 On the other side, by adding higher harmonics contributions

to the potential,11,14 the possibility of a merging critical point T will be

provided here in the context of a twisted CFT approach,1 which extends

the results of Ref. 11, so recovering the whole phase diagram.9,10,12

2. m-Reduction Procedure

In this section we recall those aspects of the twisted model (TM) which are

relevant for the FFXY model. We focus in particular on the m-reduction

procedure for the special m = 2 case,1 since we are interested in a system
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with U(1)⊗Z2 symmetry. Such a theory describes well a system consisting

of two parallel layers of 2D electron gas in a strong perpendicular magnetic

field, with filling factor ν(a) = 1
2p+2 for each of the two a = 1, 2 layers.1

Regarding the integer p, characterizing the flux attached to the particles,

we choose the “bosonic” value p = 0, since it enables us to describe the

highly correlated system of vortices with flux quanta hc
2e . Let us start from

the “filling” ν = 1
2 , described by a CFT with c = 1 in terms of a scalar

chiral field Q(z) = q− i p lnz+ i
∑
n6=0

an
n z

−n, compactified on a circle with

radius R2 = 1/ν = 2; here an, q and p satisfy the commutation relations

[an, an′ ] = nδn,n′ and [q, p] = i. From such a CFT (mother theory), using

the m-reduction procedure, which consists in considering the subalgebra

generated only by the modes in Q(z) which are a multiple of an integer

m, we get a c = m orbifold CFT (the TM), which is symmetric under

a discrete Zm group and, for m = 2, will be shown to describe the whole

phase diagram of the FFXY model. Its primary fields content, for the special

m = 2 case, can be expressed in terms of two scalar fields given by:

X(z) =
1

2
(Q(z) +Q(−z)) , φ(z) =

1

2
(Q(z) −Q(−z)) ; (3)

X(z) is Z2-invariant and describes the electrically “charged” sector of the

new theory, while φ(z) satisfies the twisted boundary conditions φ(eiπz) =

−φ(z) and describes the “neutral” sector.1 The TM primary fields are

composite vertex operators V (z) = UX (z)ψ (z), where UX (z) is the ver-

tex describing its “charge” content and ψ (z) describing the “neutral” one.

In the neutral sector it is useful to introduce the two chiral operators

ψ (z)
(
ψ (z)

)
= 1

2
√
z

(
: eiαφ(z) : ± : eiαφ(−z) :

)
, with only the first one obey-

ing the boundary conditions. In a fermionized theory they correspond to two

c = 1/2 Majorana fermions with Ramond and Neveu-Schwartz boundary

conditions1 and, in the TM, they appear to be not completely equivalent. In

fact the whole TM theory decomposes into a tensor product of two CFTs, a

Z2 invariant one with c = 3/2 and symmetry U(1)⊗Z2 and the remaining

c = 1/2 one realized by a Majorana fermion in the twisted sector. Fur-

thermore the energy-momentum tensor of the Ramond part of the neutral

sector develops a cosine term, Tψ (z) = − 1
4 (∂φ)

2 − 1
16z2 cos

(
2
√

2φ
)
, a sig-

nature of a tunneling phenomenon which selects out the new stable c = 3/2

vacuum; we identify such a theory with the one describing the FFXY model

conjectured in Ref. 11.
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3. FFXY Phase Diagram from TM Model

In this section we will derive the FFXY phase diagram in terms of the

RG flow which originates from perturbing our TM model with relevant

operators. We observe that the limit h → 0 in the Hamiltonian of Eq. (2)

gives rise, in the continuum, to a CFT with two scalar boson fields ϕ(i) and

with central charge c = 2. Now a good candidate to describe the FFXY

model at criticality around the point T of the phase diagram is a CFT,

with c = 2, which accounts for the full spectrum of excitations of the model:

vortices, domain walls, and kinks. The role of the boundary conditions in

the description of the excitation spectrum is crucial. In fact, by imposing

the coincidence between opposite sides of the square lattice, we obtain a

closed geometry, which is the discretized analogue of a torus and gives rise,

for the ground state, to two topologically inequivalent configurations, one

for even and the other one for odd number of plaquettes. So the ground state

on the square lattice maps into the ground state for the even case while it

generates two straight domain walls along the two cycles of the torus for

the odd case. Such a behaviour has to be taken into account by non trivial

boundary conditions on the field ϕ(i) at the borders of the finite lattice.

To this aim, let (−L/2, 0), (L/2, 0), (L/2, L), (−L/2, L) be the corners of

the square lattice L and assume that the fields ϕ(i) satisfy the boundary

conditions ϕ(1)(r) = ϕ(2)(r) for r ∈ L ∩ x, x being the x axis. That allows

us to consider the two fields ϕ(1) and ϕ(2) on the square lattice L as the

folding of a single field Q, defined on the lattice L0 with corners (−L/2,−L),

(L/2,−L), (L/2, L), (−L/2, L). We can implement a discrete version of

the 2-reduction procedure by defining the fields X (r) = 1
2 (Q(r) + Q(−r)),

Φ(r) = 1
2 (Q(r) −Q(−r)) (r ∈ L0), which are symmetric and antisymmetric

under the action of the group Z2. The Hamiltonian (2) can be rewritten

in terms of these fields and, for h = 0, it gives rise, in the continuum, to

the TM action A =
∫ [

1
2 (∂X )

2
+ 1

2 (∂Φ)
2
]
d2x. Let us now show how the

phase diagram of the FFXY model can be described by the action:

A =

∫ [
1

2
(∂X )

2
+

1

2
(∂Φ)

2
+ µ cos (βΦ) + λ cos

(
β

2
Φ + δ

)]
d2x, (4)

which embodies the higher harmonic potential term conjectured in Refs. 7,

11,14. We assume the constraints β2 < 8π, which characterizes both the

cosine terms as relevant perturbations, and |δ| ≤ π/2.15 Thus the “neu-

tral” sector is a two-frequency sine-Gordon theory that can be viewed

as a deformation of a pure sine-Gordon one with the perturbing term

λ cos (βΦ/2 + δ). The ultraviolet (UV) fixed point µ = 0, λ = 0 of the
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action (4) corresponds to the TM model with central charge c = 2, de-

scribing the fixed point T in the FFXY phase diagram. In order to study

the RG flow in the “neutral” sector let us define the dimensionless variable

η ≡ λµ−(8π−(β/2)2)/(8π−β2); when η = 0, the “neutral” sector reduces to a

sine-Gordon model with a particle spectrum built of solitons and antisoli-

tons and, for β2 < 4π, some breathers. Switching on the perturbation a

confinement of solitons into states with zero topological charge takes place

and packets formed by two of the original solitons survive as stable exci-

tations for generic values of |δ| < π/2. In the limit η → ∞ the 2-soliton

evolves into the 1-soliton of the pure sine-Gordon model with µ = 0. An

unbinding phenomenon takes place in the case δ = ±π/2 for finite η and

the 2-soliton decomposes into a sequence of two kinks K1. So the existence

of an intermediate critical value η = ηc is required at which a phase tran-

sition takes place and the RG flow ends into the infrared (IR) fixed point

described by a CFT with central charge c = 1/2, the Ising model. The cen-

tral charge of the full model (4) so changes from c = 2 of the UV fixed point

to c = 3/2 of the IR fixed point, i.e. we recover early known Monte Carlo

results.10 Such an IR fixed point coincides with the U(1) ⊗ Z2 symmetric

component of the TM model, which results then to properly describe11 the

fixed point P in the phase diagram of the FFXY model.
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We performed Monte Carlo simulations of the two-dimensional Ising model
in the low-temperature phase at T = 1.5 at constant magnetisation (Kawasaki
dynamics) and measured the size of the largest minority droplet, i.e., the largest
cluster and all overturned spins within. The measured values are compared to
theoretical predictions by Biskup et al., which can explain a jump of the droplet
size in the vicinity of the spontaneous magnetisation.

Keywords: Ising model; Phase transition; Finite-size correction.

For our investigation we use the two-dimensional (2D) Ising model on a

square L× L lattice in zero field with Hamiltonian

H = −J
∑

〈ij〉
σiσj , σi = ±1 , (1)

where 〈ij〉 denotes all pairs of nearest-neighbour spins. For temperatures T

below the critical temperature Tc the magnetisation m = M/V =
∑

i σi/V

has in the infinite-volume limit (V = L2 → ∞) a value of m0(T ) 6= 0. This

value is called the spontaneous magnetisation and is given by the famous

Onsager formula1. Assuming that the majority of spins has a positive sign,

i.e. σi = 1, then, on a microscopic level, at every given time there is a fixed

amount of spins V (1−m0)/2 in the system that are overturned and therefore

have a negative sign. If we artificially increase the number of overturned

spins by a macroscopic amount, then the magnetisation decreases and we

can pose the question what happens to the extra −1-spins. One possible

answer is that the system forms a droplet of the “wrong phase” that has the

same magnitude of the spontaneous magnetisation but the opposite sign,

i.e., this phase consists of negative majority spins with some overturned
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Fig. 1. (a) Sketch of the situation considered in Eq. (2): a droplet of size v and mag-
netisation −m0 inside a system of size V and magnetisation m0. (b) Relative droplet
volume v/V for the 2D Ising model at the temperature T = 1.5 and for different system
sizes from L = 40 to L = 640. The abscissa ranges from mmin = 0.96 to the value of the
spontaneous magnetisation mmax = m0(1.5) = 0.9865. The dashed line shows Eq. (3);
for the measured values a combination of Hoshen-Kopelman and flood-fill algorithm was
used. Similar plots can be found in Refs. 2 and 3.

spins within. If all additional −1-spins are “absorbed” into this phase, and

if this phase is compact, then there is only one (large) droplet with negative

magnetisation as shown in Fig. 1 (a). The total magnetisation is then given

by a contributionm0(V −v) from the positive phase (background) of volume

V − v and a contribution −m0v from the negative phase of volume v giving

M = m0(V − v) −m0v = m0V − 2m0v . (2)

We can measure the volume of this droplet and it must hold

v

V
=
m0 −m

2m0
. (3)

To check this result, we performed several simulations of the 2D Ising

model at constant magnetisation, equivalent to Kawasaki dynamics.4 All

simulation were performed at the temperature T = 1.5. After every simula-

tion sweep the spin field was decomposed into geometric clusters where all

spins within a cluster have the same value (+1 or −1) using the Hoshen-

Kopelman algorithm.5 As we are interested in the volume of the second

largest droplet (the largest droplet is the background), which includes all

the overturned spins within the cluster, in a second step, a flood-fill routine6

was employed. Starting at one spin in the interior of the cluster, recursively

all spins are marked to belong to the droplet. This process stops only in
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directions where a spin belongs to the largest cluster but not necessarily if

it is overturned.

Figure 1 (b) shows the droplet size for various values of the magnetisa-

tion m (every point is a single simulation). Clearly, only for large system

sizes and small values of the magnetisation m the theoretical value (3) of

the droplet is approached. For L ≥ 160 and large values of m, a kink in the

droplet size becomes visible and the droplet size rapidly approaches zero.

The position of this drop-off is moving for larger system sizes towards m0

while the height of the drop-off is decreasing. Apparently, the assumption

that all extra spins form a droplet is not correct but only a part of them

form the droplet while the rest stays in the background. For values of the

magnetisation larger than the drop-off value, there is no droplet at all, i.e.,

in this case all extra spins contribute to the fluctuations in the background

and the maximal droplet volume is of the order one.

In recent work Biskup et al.7,8 were able to proof this behaviour in the

case of the 2D Ising model rigorously. They give an analytic expression for

λL(m), the fraction of the additionally overturned spins that help to form

the droplet. Then, the actual droplet volume is not v(m) but λL(m)v(m).

Furthermore, for values m > mc there is no large minority droplet at all

and consequently λL(m) = 0. At m = mc the value of λL jumps to 2/3,

marking the position where the system makes a transition from a one-phase

state (evaporated) to a two-phase state (evaporated/condensed), thereby

absorbing 2/3 of the extra −1-spins into the droplet. For lower values of the

magnetisation the fraction λL(m) gradually increases to 1 and the actual

droplet size approaches that of Eq. (3). In Fig. 2 we show the data for

L = 160 and L = 640 (inset) from Fig. 1 again but additionally the (red)

solid curve shows the finite-size corrected theoretical value of the droplet

size λL(m)v(m).

For large but finite systems, there exists a jump in the size of the largest

minority droplet. Our simulations confirm that already for systems of mod-

erate size the theoretical value is approached and there exists a transition

from an evaporated state with many small bubbles of the “wrong” orienta-

tion to a mixed state with a condensed and an evaporated phase. In the

thermodynamic limit the transition point coincides with the spontaneous

magnetisation m0 and the jump in the relative droplet size v/V approaches

zero. Therefore the effect cannot be seen in the thermodynamic limit, where

Eq. (3) gets (trivially) exact and λL = 1 holds everywhere.

More details can be found in Ref. 9 and the forthcoming detailed work

in Ref. 10.
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Fig. 2. Relative droplet volume v/V for the 2D Ising model at the temperature T = 1.5
and system sizes L = 160 and L = 640 (inset). The dashed line shows Eq. (3) and
the (blue) ’+’ symbols indicate the measured values. The solid (red) line represents the
theoretical curve modified by the factor λL(m).
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Proteins are the “work horses” in biological systems. In almost all functions
specific proteins are involved. They control molecular transport processes, sta-
bilize the cell structure, enzymatically catalyze chemical reactions; others act
as molecular motors in the complex machinery of molecular synthetization pro-
cesses. Due to their significance, misfolds and malfunctions of proteins typically
entail disastrous diseases, such as Alzheimer’s disease and bovine spongiform
encephalopathy (BSE). Therefore, the understanding of the trinity of amino
acid composition, geometric structure, and biological function is one of the
most essential challenges for the natural sciences. Here, we glance at confor-
mational transitions accompanying the structure formation in protein folding
processes.

Keywords: Conformational transition; Protein folding; Monte Carlo simulation.

1. Conformational Mechanics of Proteins

Structural changes of polymers and, in particular, proteins in collapse and

crystallization processes, but also in cluster formation and adsorption to

substrates, require typically collective and cooperative rearrangements of

chain segments or monomers. Structure formation is essential in biosys-

tems as in many cases the function of a bioprotein is connected with its

three-dimensional shape (the so-called “native fold”). Proteins are linear

chains of amino acids linked by a peptide bond (see Fig. 1). Twenty dif-

ferent amino acids occur in biologically relevant, i.e., functional proteins.

The amino acid residues differ in physical (e.g., electrostatic) and chemical

(e.g., hydrophobic) properties. Hence, the sequence of amino acids typically

∗Work supported by Deutsche Forschungsgemeinschaft under grant No. JA483/24-1/2.
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Fig. 1. Atomic composition of the protein backbone. Amino acids are connected by
the peptide bond between C′

i−1 and Ni. Side chains or amino acid residues (“res”) are
usually connected to the backbone by a bond with the Cα

i atom (except proline which
has a second covalent bond to its backbone nitrogen).

entails a unique heterogeneity in geometric structure and, thus, a nonre-

dundant biological function.

Proteins are synthesized by the ribosomes in the cell, where the genetic

code in the DNA is translated into a sequence of amino acids. The folding

of a synthesized protein into its three-dimensional structure is frequently

a spontaneous process. In a complex biological system, the large variety of

processes which are necessary to keep an organism alive requires a large

number of different functional proteins. In the human body, for example,

about 100 000 different proteins fulfil specific functions. However, this num-

ber is extremely small, compared to the huge number of possible amino acid

sequences (= 20N , where N is the chain length and is typically between 100

and 3000). The reason is that bioproteins have to obey very specific require-

ments. Most important are stability, uniqueness, and functionality.

Under physiological conditions, flexible protein degrees of freedom are

the dihedral angles, i.e., a subset of backbone and side-chain torsional angles

(see Fig. 2). Denoting the set of dihedral angles of the nth amino acid in the

chain by ξn = {φn, ψn, ωn, χ(1)
n , χ

(2)
n , . . .}, the conformation of an N residue

protein is then entirely defined by X = X(ξ1, ξ2, . . . , ξN ). Therefore, the

partition function can formally be written as a path integral over all possible

conformations:

Z =

∫
DX exp [−E(X)/kBT ] ,

∫
DX =

N∏

n=1

[∫
dξn

]
, (1)

where E(X) is the energy of the conformation X in a typically semiclassical

all-atom protein model. A precise modeling is intricate because of the im-

portance of quantum effects in this complex macromolecular system, which

are “hidden” in the parameterization of the semiclassical model. Another
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NH+
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φ
ψ
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χ1

χ2

Phe

Fig. 2. Definition of the backbone dihedral angles φ, ψ, and ω. Exemplified for pheny-
lalanine, also the only two side-chain degrees of freedom χ1 and χ2 are denoted. The con-
vention is that the torsional angles can have values between −180◦ and +180◦, counted
from the N-terminus (NH+

3 ) to the C-terminus (COO−) according to the right-hand rule

and in the side chains starting from the Cα atom.

important problem is the modeling of the surrounding, strongly polar sol-

vent. The hydrophobic effect that causes the formation of a compact core

of hydrophobic amino acids screened from the polar solvent by a shell of

polar residues is expected to be the principal driving force towards the

native, functional protein conformation.1–3 Conformational transitions ac-

companying molecular structuring processes, however, exhibit similarities

to thermodynamic phase transitions and it should thus be possible to char-

acterize these transitions by means of a strongly reduced set of effective

degrees of freedom, in close correspondence to order parameters that sep-

arate thermodynamic phases. Assuming that a single “order” parameter

Q is sufficient to distinguish between two (pseudo)phases, its mean value

〈Q〉 = Z−1
∫
DXQ(X) exp [−E(X)/kBT ] should possess significantly dif-

ferent values in these phases. In typical first-order-like nucleation transitions

such as helix formation4 or tertiary two-state folding,5 the free-energy land-

scape F (Q) ∼ −kBT ln 〈δ(Q−Q0(X))〉 exhibits a single folding barrier.

2. From Microscopic to Mesoscopic Modeling

If the characterization of conformational macrostates by low-dimensional

parameter spaces is possible, it should also be apparent to introduce coarse-

grained substructures and thus to reduce the complexity of the model to a

minimum. Such minimal models for proteins have indeed been introduced1,2

and have proven useful in thermodynamic analyzes of folding, adsorption,

and aggregation of polymers and proteins.3,5–8

In the simplest approaches,1,2 only two types of amino acids are consid-

ered: hydrophobic and polar residues. This is plausible as most of the 20
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H
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H

Fig. 3. Coarse-graining proteins in a “united atom” approach. Each amino acid is con-
tracted to a single “Cα” interaction point. The effective distance between adjacent,
bonded interaction sites is about 0.38 nm. In the class of so-called hydrophobic-polar
models, only hydrophobic (H) and polar (P) amino acid residues are distinguished.

amino acids occurring in natural bioproteins can be classified with respect to

their hydrophobicity. Amino acids with charged side chains or with residues

containing polar groups (amide or hydroxylic) are soluble in the aqueous

environment, because these groups are capable of forming hydrogen bonds

with water molecules. Nonpolar amino acids do not form hydrogen bonds

and, if exposed to water, would disturb the hydrogen-bond network. This

is energetically unfavorable. In fact, hydrophobic amino acids effectively

attract each other and typically form a compact hydrophobic core in the

interior of the protein.

Figure 3 shows an example how the complexity of a protein segment

can be reduced by coarse-graining. On one hand, the residual complexity is

limited by only distinguishing hydrophobic (H) and polar (P) amino acids.

On the other hand, the steric extension of the side chains is mesoscopi-

cally rescaled and the whole side chain is contracted into a single interac-

tion point. Volume exclusion in the interaction of different side chains is

then energetically modeled by short-range repulsion. For this reason, lat-

tice proteins are modeled as self-avoiding walks1 and in off-lattice models

Lennard-Jones-like potentials2 satisfy this constraint.

Systematic enumeration studies of simplified hydrophobic-polar lattice

models have indeed qualitatively revealed characteristic features of real pro-

teins, such as the small number of amino acid sequences possessing a unique

native fold, but also the comparatively small number of native topologies

proteins fold into.9 It is also remarkable that typical protein folding paths

known from nature are also identified by employing coarse-grained models.

This regards, in particular, folding landscapes with characteristic barriers –

from the simple two-state characteristics with a single kinetic barrier,5 over
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folding across several barriers via weakly stable intermediate structures, to

folding into degenerate native states.6 Metastable conformations as in the

latter case are important for biological functions, where the local refolding

of protein segments is essential, as, e.g., in molecular motors.

3. A Particularly Simple Example: Two-State Folding

A few years ago, experimental evidence was found that classes of proteins

show particular simple folding characteristics, single exponential and two-

state folding.10 In the two-state folding process, the peptide is either in

an unfolded, denatured state or it possesses a native-like, folded structure.

In contrast to the barrier-free single-exponential folding, there exists an

unstable transition state to be passed in the two-state folding process. This

can nicely be seen in the exemplified chevron plot shown in Fig. 4, obtained

from Monte Carlo computer simulations of folding and unfolding events of

a mesoscopic protein model.5 In this plot, the mean first passage (MFP)

time τMFP (in Monte Carlo steps) is plotted versus temperature. The MFP

time is obtained by averaging the times passed in the folding process from

a random conformation to the stable fold over many folding trajectories.

MFT times for unfolding events can be estimated in a like manner, but

one starts from the native conformation and waits until the protein has

unfolded. A structure is defined to be folded, if it is structurally close to

the native conformation. A frequently used measure is the fraction Q of

already established native contacts (i.e., the number of residue pairs that

reside within the optimal van der Waals distance), compared to the total

number of contacts the native fold possesses. Thus, if Q > 0.5, the structure

is folded and unfolded if Q < 0.5. For Q = 0.5, the conformation is in the

transition state. Apparently, Q serves as a sort of order parameter.

The two branches in Fig. 4 belong to the folding and unfolding events.

With increasing temperature folding times grow, and unfolding is getting

slower with decreasing temperature. These two processes are in competition

with each other and the intersection point defines the folding transition tem-

perature. The whole process exhibits characteristics of first-order-like phase

transitions. At the intersection point, the ensembles of folded and unfolded

conformations coexist with equal weight. In the transition region, both

branches exhibit exponential behavior. Thus, τMFP is directly related to

exponential folding and unfolding rates kf,u ≈ 1/τf,uMFP ∼ exp(−εf,u/kBT ),

respectively, where the constants εf,u determine the kinetic folding (unfold-

ing) propensities. The dashed lines in Fig. 4 are tangents to the logarithmic

folding and unfolding curves at the transition state temperature.
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Fig. 4. Chevron plot of the mean-first passage times from folding (•) and unfolding (◦)
events at different temperatures. The hypothetic intersection point corresponds to the
transition state.5

4. Conclusion

Conformational transitions of macromolecular systems, in particular, pro-

teins, exhibit clear analogies to phase transitions in thermodynamics. The

main difference is that proteins are finite systems and a thermodynamic

limit does not exist. Nonetheless, the analysis of structure formation pro-

cesses in terms of an “order” parameter is also a very useful approach to a

better understanding of conformational transitions. In this context it also

turns out to be reasonable to introduce coarse-grained models where the

reduction to only relevant degrees of freedom allows for a more system-

atic analysis of characteristic features of protein folding processes than it is

typically possible with models containing specific properties of all atoms.
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We give an overview of the glassy wormlike chain model, which describes the
dynamics of a semiflexible polymer interacting with a surrounding sticky so-
lution. The model is then generalized to the Rouse chain and we compare the
macroscopic shear modulus.

Keywords: Wormlike chain; Glassy wormlike chain; Glassy rouse chain.

1. Introduction

The dynamics of single polymers in solutions is well understood in terms

of coarse grained models such as the Rouse/Zimm chain for flexible poly-

mers1 and the wormlike chain (WLC) for (locally) stiff polymers.2 While

the former is known to yield very generic universal predictions, the latter

has recently been demonstrated to encode a very rich dynamical behavior

as a consequence of the mechanical anisotropy and the ensuing competition

of transverse and longitudinal friction.3 Steric and enthalpic interactions

with a surrounding polymer solution lead to substantial modifications of

the free dynamics. For stiff polymers these could recently be captured im-

pressively4 by a very simple scheme based on the single polymer spectrum,

which we call the glassy wormlike chain (GWLC).5 The latter is obtained

by an exponential stretching of the WLC spectrum argued to represent the

effect of free energy barriers due to excluded volume constraints and sticky

interactions. Both types of interactions can be complex and are in fact much

more common in colloid and protein solutions than generally appreciated

by most physicists, who are mainly trained to deal with Lennard-Jones-

type interactions. Figure 1 depicts qualitatively what is meant by “sticky”

or “friction-type” interactions, which may be thermodynamically almost in-

significant while causing pronounced dynamical effects. In the following, we

summarize some salient consequences of such “unusual” interactions for the
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10 nm

V (r)

kBT

E

−U

Fig. 1. Schematic potential for sticky interactions between polymers. The depth U of
the potential gives Λ/Le = 1 + exp(−U).

WLC dynamics, before we explore the corresponding predictions for the

Rouse chain.

2. Dynamics of Flexible and Semiflexible Polymers

2.1. The wormlike chain

In the wormlike chain (WLC) model the polymer contour is represented

as a continuous space curve r(s). The nonlinear inextensibility constraint

is taken care of by introducing into the Hamiltonian a Lagrange multiplier

function f(s), which has the physical interpretation of a backbone tension.

In the weakly-bending rod limit,3 the polymer contour is parameterized

by small transverse deflections around the ground state of a straight line

(chosen as the z-axis): r(s, t) = [r⊥(s, t), s − r‖(s, t)]. The arc length con-

straint implies r′‖ = r′2⊥/2. To lowest order in an expansion in terms of the

transverse variables, longitudinal fluctuations can therefore be neglected,

i.e. the longitudinal equation of motion reduces to f = const. (= 0 for a

free polymer). The transverse equation of motion is given by3

ζ⊥∂tr⊥(s, t) = −κr′′′′⊥ (s, t) + [f(s, t)r′⊥(s, t)]′ + ξ⊥(s, t), (1)

with the bending rigidity κ, the transverse friction constant ζ⊥ and the

transverse Gaussian white noise ξ⊥. We note that the effect of an external

prestress σ can be included under the assumption that the tension has

equilibrated under a constant value f = 5σξ2 set by the external force.5

Introducing normal modes of (half) wavelength λp, the correlator of the

mode amplitudes ap is calculated,

〈ap,i(t)aq,j(0)〉 = δijδpq〈a2
p〉 exp(−t/τp). (2)
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In the last equation, the equilibrium mode amplitudes follow from the

equipartition theorem as 〈a2
p〉 = kBT/(π

4λ−4
p κ + π2λ−2

p f), and the relax-

ation times are defined as τp = ζ⊥/(π4λ−4
p κ+ π2λ−2

p f).

2.2. The Rouse chain

The equation of motion of the Rouse chain is1

ζ
∂rn(t)

∂t
= k

∂2rn(t)

∂n2
+ ξn(t), (3)

where ζ, k and ξ represent effective coarse grained friction and spring co-

efficients and thermal Gaussian noise, respectively, and n is a fictitious

monomer index. The equation is solved by introducing normal modes with

amplitudes ap obeying

〈ap,i(t)aq,j(0)〉 = δpqδij
N2kBT

π2kp2
exp(−t/τp), (p > 0) (4)

with the mode relaxation time τp = N2ζ/2π2kp2.

3. The Glassy Wormlike Chain (GWLC)

The GWLC model is obtained from the WLC by an exponential stretch-

ing of the relaxation spectrum. The strategy is reminiscent of the generic

trap models6 underlying soft glassy rheology,7 but concerns the equilibrium

dynamics of a test chain in solution, here. We distinguish two major con-

tributions to the slowdown of the polymer dynamics by the surroundings:

steric (excluded volume) interactions and sticky interactions with the neigh-

boring chain. The GWLC is a WLC with the relaxation times for all its

eigenmodes of wavelength λp ≡ L/p > Le ≡ L/pe (Le is the entanglement

length) – modified according to

τp → τ̃p =

{ τp (p > pe)

τp exp(N ′
pF) (p < pe)

τp exp(NpE +N ′
pF) (p < pΛ ≤ pe)

. (5)

Here

N ′
p ≡ (pe/p)

4 − 1 = (λp/Le)
4 − 1, (6)

Np ≡ pΛ/p− 1 = λp/Λ − 1. (7)

One can think of N ′
p and Np as the number of entanglements or sticky

interactions per wavelength respectively. The dimensionless parameters F
and E represent the corresponding free energy barriers (cf. Fig. 1) in units of
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Fig. 2. Left : G′, G′′(ω) of a GWLC with steric interactions and Le/Λ = 0.7. Right :
GRC with ξ/Rg = 0.15. Both figures show the same values of E and F : F = 0, E = 0
(dash-dotted lines), F = 0.1 and E = 0 (solid lines), 10 (dashed lines) and 25 (dotted
lines).

thermal energy kBT . The relaxation of a mode necessitates the creation of

free volume, Vλ ∝ λ4, the number N ′
p of effective entanglements is defined

as (Vλ/VLe)− 1. In general the polymer can be completely sticky, in which

case Λ = Le, or its contacts with the surroundings may be partially sticky,

which corresponds to Λ > Le. Under equilibrium conditions, one expects

Le/Λ = 1 + exp(−U).

In the following we compare the shear modulus for the GWLC which

derives from the complex susceptibility α⋆f (ω) of the test polymer (of

length L) under affine deformation on scales longer than Λ.8 The ex-

pression for the shear modulus under a constant external prestress f is

G⋆f (ω) = L/5ξ2α⋆f (ω), where ξ2 is the mesh size, L the length of the poly-

mer and

α⋆f (ω) =
L4

kBT ℓ2pπ
4

∞∑

p=1

p4

(p4 + p2f/fL)2
1

(1 + iωτ̃p/2)
. (8)

We denote by fL = κπ2/L2 the Euler force of a polymer of length L. In the

remainder of the discussion we assume f = 0.

As a consequence of the strong exponential stretching, the dependence

of the complex shear modulus on frequency is essentially logarithmic for

small frequencies. However, over small frequency ranges the modulus locally

looks like a power-law, as familiar from the soft glassy rheology,7,9 where

G,G′′(ω) ∝ ωx−1 with x very close to 1. The asymptotic relation between

E and the apparent power-law exponent x − 1 for E → ∞ and ωτΛ ≪
1 is x − 1 ∼ 3/E , and for the loss angle δ ∼ 5/E (we remark that the

limits E → ∞ and ω → 0 do not commute). Figure 2 shows the frequency-

dependent macroscopic shear modulus of a GWLC with and without steric

interactions.
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Fig. 3. G′(ω), G′′(ω) of a GWLC for varying Le/Λ and for E = 30, F = 0.1. Le/Λ = 0
(solid lines), 0.5 (dashed lines), 1.0 (dotted lines).

In Fig. 3 the dependence of the moduli on the ratio Le/Λ is shown. It

can be seen that the finite value of this ratio (0 < Le/Λ < 1) determines

the width of the frequency interval where the modulus exhibits a strongly

curved shape for intermediate values of ω. This interval is followed (for

ωτe ≪ exp{−F [(Λ/Le)
4 − 1]}) by a regime, where for Le ≃ Λ the local

power-law behavior is clearly visible (due to the dominant contribution of

E ≫ F).

4. The Glassy Rouse Chain

In the spirit of the above discussed GWLC model it is straightforward to

apply the same prescriptions for the relaxation times to the Rouse model

of flexible polymers (the Glassy Rouse chain), to include the interactions

of the test chain with the surrounding polymer network. The role of the

entanglement length is now played by the mesh size ξ (which is also the

wavelength of mode number pξ). The well known expression for the shear

modulus1 is easily generalized, by the modification of

τp → τ̃p =

{
τp (p > pξ)

τp exp(NpE +N ′
pF) (p < pξ).

(9)

We define

Np =
λp
ξ

− 1, (10)

N ′
p =

Vp
ξ3

− 1, (11)

as the number of sticky contacts and the number of entanglements, respec-

tively. The relations λp ≡ Rg/
√
p and Vp ≡ (Rg/

√
p)3 hold. pξ is related



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

542 J. Glaser, C. Hubert, and K. Kroy

to the radius of gyration via pξ = R2
g/ξ

2. Figure 2 shows the predicted

modulus of a GRC.

5. Conclusion

Traditionally the viscoelastic rheological response of flexible and semiflexi-

ble polymers has been discussed on the basis of the tube idea.1,10–12 More

recently, the GWLC idea has been shown to provide a very successful al-

ternative description of the plateau regime for stiff biopolymers. In the

present contribution we have compared these predictions to predictions ob-

tained with the model of a glassy Rouse chain, which we constructed in

close analogy to the GWLC. It appears to be a promising task to compare

the results of the GRC to experiments in the future.
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We investigate the effect of hydrodynamic interactions on the non-equilibrium
dynamics of an ideal flexible polymer pulled by a constant force applied at
one polymer end using the perturbation theory. For moderate force, if the
polymer elongation is small, the hydrodynamic interactions are not screened
and the velocity and the longitudinal elongation of the polymer are computed
using the renormalization group method. For large chain lengths and a finite
force the hydrodynamic interactions are only partially screened, which in three
dimensions results in unusual logarithmic corrections to the velocity and the
longitudinal elongation.
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malization group.

1. Introduction

Recent advances in experimental techniques make it possible to explore the

motion of individual polymers under hydrodynamic flow, thermal noise, or

external fields. For instance, Chu et al.1–3 experimentally studied the behav-

ior of polymers in different flow conditions with the emphasis on biological

applications. See also related theoretical studies.4,5

In neglecting the hydrodynamic interactions, i.e., in the Rouse theory,

the average velocity and the elongation of a chain pulled at one end are

given by expressions

vz ≃ F

f0N
, 〈rz(0, t) − rz(L, t)〉 =

FLl

2dkBT
, (1)

where d is the dimensionality, F is the pulling force, and f0 denotes the

monomer friction coefficient. For small forces the polymer is expected to
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have the shape of coil with the consequence that the hydrodynamic inter-

action is not screened, and the velocity is described by Stokes formula

vz ≃ 1

6πηsRh
F (2)

with Rh ≃ l
√
N being the hydrodynamic radius of the polymer, and ηs is

the solvent viscosity. In the present work we calculate the first-order correc-

tions to the velocity and the longitudinal elongation. The renormalization

group method allows us to establish the behavior of the quantities under

consideration for moderate forces. We also show that in d = 3 the first-

order corrections to the velocity and the longitudinal size of the polymer in

powers of the hydrodynamic interactions logarithmically depend on the pa-

rameter βF
√
lL/2d, which demonstrates that hydrodynamic interactions

are only partially screened for a long polymer pulled at finite force.

2. Computation of the Velocity and the Longitudinal

Elongation

Using the Kirkwood diffusion equation (see Ref. 6 for details) we can cal-

culate the velocity and the longitudinal elongation of the polymer chain up

to the first order in hydrodynamic interaction. To first order in powers of

the hydrodynamic interaction the velocity is given by

vzc(t) =
〈ξzk=0(t)〉√

Lt
=

F

f0N

(
1 +

1

22

f0
dηs

(
d

2πl

)d/2
L2−d/2

×
∫ 1

0

dx2

∫ x2

0

dx1
A(y)

(x2 − x1)d/2−1
+ · · ·

)
, (3)

where the function A(y) and its argument y are respectively given by

A(y) =
(d− 1)(d− 2)

y4
e−y

2 − (d− 1)
(
d− 2 − 2y2

)

yd

×
(

4 − d

2
Γ

(
d− 4

2
, y2

)
+ Γ

(
d− 2

2

))
, (4)

y = βF

√
lL

2d
(x2 − x1)

1/2(1 − x2 + x1

2
). (5)

Γ(a, z) =
∫∞
z dt t

a−1e−t is the incomplete gamma function. The function

A(y) behaves for small and large arguments as

A(y) ≃





8(d−1)
d(d−2)−

8(d−1)
d(d+2)y

2+ 4(d−1)
(d+2)(d+4)y

4+· · ·, y ≪ 1,

(d−1)(2y2+2−d)
yd Γ

(
d−2
2

)
+ 2(d−1)

y4 e−y
2

+· · ·, y ≫ 1.
(6)
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Integrations over x1 and x2 in Eq. (3), which can be carried out in the limit

F → 0, yield
∫ 1

0

dx2

∫ x2

0

dx1
A(0)

(x2 − x1)d/2−1
=

4

(6 − d)(4 − d)
A(0)

d∼4→ 2

4 − d
A(0). (7)

Note that the behavior of the first-order correction to the velocity in the

vicinity of four dimensions, which is given by the last expression, plays an

important role in the renormalization group analysis of the velocity.

The longitudinal size of the polymer is computed as

δrz =
FLl

2dkBT

(
1 − 1

22

f0
dηs

(
d

2πl

)d/2
L2−d/2Br(F̃ ) + · · ·

)
, (8)

where δrz = 〈rz(0, t)−rz(L, t)〉, F̃ = βF
√

lL
2d , and

Br(F̃ ) =

∫ 1

0

dx2

∫ x2

0

dx1
(2x2 − 1)A(y)

(x2 − x1)d/2−1
. (9)

The computation of integrals in Eq. (9) over x1 and x2 for a small force

yields Br(F → 0) = 4
(8−d)(6−d)A(0). The finiteness of the latter at four

dimensions means in the context of the renormalization group method that

the parameters F , L, l, and T appearing in the prefactor of Eq. (8) do not

renormalize. The only quantity which renormalizes is the monomer friction

coefficient.

3. Results

3.1. Small elongation

The first-order perturbational correction to the velocity is the starting point

to perform the renormalization group (RG) analysis, which enables one

to take into account the effect of hydrodynamic interaction beyond the

first-order. To regularize the theory the 1/(4 − d) poles in perturbation

expansions have to be removed by an appropriate renormalization of the

friction coefficient. In the limit of a small pulling force the renormalized

friction coefficient is derived from (3) as

f = f0(1 − 3

2ε
ξ0(L

ε/2 − λε/2) + · · · ) (10)

where ξ0 = (f0/(ηsd))(d/(2πl))
d/2 is the expansion parameter of pertur-

bation series in powers of the hydrodynamic interactions, and ε = 4 − d.

The cutoff excludes the hydrodynamic interactions between monomers sep-

arated along the chain by the contour length less than λ, |s1 − s2| < λ.
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The renormalization of the friction coefficient (10) obtained from Eq. (3)

coincides with that obtained by studying different problems in polymer dy-

namics.7–9 The renormalization of the friction coefficient and the strength

of the hydrodynamic interaction w0 = f0
ηsd

( d
2πl )

d/2Lε/2 due to an infinitesi-

mal change of the cutoff are given by differential equations. To the one-loop

order one obtains

λ′
∂f

∂λ′
=

3

4
w, λ′

∂w

∂λ′
=
ε

2
w − 3

4
w2 + ... ≡ β(w) (11)

with the dimensionless effective coupling constant w = (f/(ηsd))

(d/(2πl))d/2λ′ε/2. The solutions of the equations in (11) read

f =
f0

1 + 3
2εξ0(λ

ε/2
m − λε/2)

, w =
f

ηsd
(
d

2πl
)d/2λε/2m . (12)

It follows from (12) that at large λm, w approaches the fixed-point value

w∗ = 2ε/3, which corresponds to the zero point of the Gell-Mann–Low

function β(w). At the fixed-point the effective friction coefficient depends

on λm as power law λ
−ε/2
m . At low forces, λm is equal to L, so that the

renormalized (effective) friction coefficient scales as f = w∗ηsld/2L−ε/2.
The drift velocity behaves consequently as

vzc ≃ F

fN
≃ F

ηs(Ll)d/2−1
, (13)

which agrees in d = 3 with the Stokes formula (2).

The inspection of the first-order correction to the longitudinal size of the

polymer yields that it is finite in four dimensions. This is what is expected,

because the friction coefficient, which is the only quantity to renormalize,

does not appear in the zero-order correction to the longitudinal size of

the polymer. Thus, the RG prediction for the longitudinal size consists in

replacing the bare expansion parameter in Eq. (8) by the renormalized one.

For small forces the velocity and the elongation are given in the renor-

malized theory by expressions

vzc =
F

fN
(1 +

1

4
wBv(βF

√
lL/2d) + · · · ), (14)

δrz =
FLl

2dkBT
(1 − 1

4
wBr(βF

√
lL/2d) + · · · ). (15)

The function Bv(F̃ ) in Eq. (14) is defined by the expression Bv(F̃ ) =∫ 1

0
dx2

∫ x2

0
dx1

A(y)−A(0)
(x2−x1)d/2−1 . The effective expansion parameter w is a small

number (∼ O(ǫ)), so that the expansions (14) and (15) are reliable.
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3.2. Large elongation

To estimate the integrals in (3) and (9) for large forces we use the asymptotic

expression ofA(y) given by Eq. (6). To prevent the divergence in the integral

over t = x2−x1 from the integration region t = 0, we introduce a cutoff t0 ≃
6/Llβ2F 2. The evaluation of the integrals over t and x2 can be performed

analytically and gives for d = 3

vzc =
F

f0N

(
1 + cvξ0L

1/2 ln(βF (Ll)
1/2

) ln βF (Ll)1/2

3

βF (Ll)
1/2

+ · · ·
)
, (16)

where cv is a numerical constant. We would like to stress that the integral in

Eq. (3) computed numerically can be approximately fitted with (ln F̃ )1.72/F̃

instead of the estimate given by Eq. (16). The difference is due to the

complicated form of the expression for y in Eq. (5).

For large F and finite L we arrive at the Rouse result. However, for

large L and finite F the correction increases logarithmically with L, and

will become large for large L. Unfortunately, there are no analytical means

to study the effect of the whole perturbation expansion on vzc in this case.

The extrapolation of (16), which consists in disregarding in the bracket of

Eq. (16), yields

vzc ≃
kBT

ηsNl2
ln(βF (Ll)

1/2
) ln

βF (Ll)
1/2

3
. (17)

Equation (17) shows that in this regime (finite F and large L) the hydrody-

namic interactions determine the behavior of the polymer. The friction co-

efficient drops in the expression of the velocity in this regime. Note that the

logarithmic dependencies of vzc on the force does not allow to write Eq. (17)

in the form of Eq. (1) with some effective friction coefficient. Equation (17)

can be formally obtained from Eq. (1) by simultaneous replacements

f0 → f ≃ lηs/ ln(βF (Ll)
1/2

), F → kBT

l
ln
βF (Ll)

1/2

3
. (18)

The “renormalized” friction coefficient in Eq. (18) resembles to some extent

the friction coefficient, Lηs/ ln(L/l), of a slender body (a cylinder of length

L and cross section radius l, L ≫ l) in a flow.10,11 However, the elongated

polymer chain is different from a rod, and the comparison is only qualitative.

A similar computation of the first-order correction to the chain size

yields

δrz =
FLl

2dkBT



1 − crξ0L
1/2

(ln βF (Ll)1/2

3 − 2) ln
(
βF (Ll)

1/2
)

βF (Ll)1/2
+ · · ·



 .
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Note that the integral in Eq. (9) computed numerically can be approxi-

mately fitted with (ln F̃ )2.48/F̃ instead of the analytical estimate in the

above equation. For large L and finite F the first-order correction to the

longitudinal size depends logarithmically on L.

4. Summary

To summarize, we have studied the drift of an ideal polymer driven by a

constant force applied at one polymer end using perturbation expansions in

powers of hydrodynamic interactions. The renormalization group method

permits to compute the velocity and the longitudinal elongation of the

polymer for moderate forces. For large L but finite force, the regime which

we have studied for d = 3, the hydrodynamic interactions are partially

screened. The first-order corrections to vzc and 〈rz(0, t)−rz(L, t)〉 depend

logarithmically on L.
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We analyze the impact of a porous medium (structural disorder) on the scaling
of the partition function of a star polymer immersed in a good solvent. We
show that corresponding scaling exponents change if the disorder is long-range-
correlated and calculate the exponents in the new universality class. A notable
finding is that star and chain polymers react in qualitatively different manner
on the presence of disorder: the corresponding scaling exponents increase for
chains and decrease for stars. We discuss the physical consequences of this
difference.
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1. Introduction

Polymer theory may serve as an archetype of an approach where the appli-

cation of the path integral formalism leads both to a quantitative under-

standing of a whole range of physical, chemical, and biological phenomena
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a. b.

Fig. 1. Solution of star and chain polymers (blue on-line) in a good solvent immersed in
a porous medium (black). We consider the disorder that characterizes pores (impurities)
distribution as uncorrelated (a) or correlated (b). For a d-dimensional system, disorder
is called long range correlated if the impurity-impurity pair correlation function decays
for large distances r as g(r) ∼ r−a with a < d.

as well as to their accurate quantitative description.1–3 Most directly this

is shown by the Edwards model that describes a polymer chain in terms of

a path integral and takes into account chain connectivity and self-avoiding

interaction.3 A textbook derivation maps this simple two-parameter model

to them = 0 de Gennes limit4 of the O(m) symmetric field theory. Standard

field theoretical tools explain the origin of the scaling laws that govern poly-

mer structural behaviour and allow to calculate the exponents that govern

these scaling laws with high accuracy.

One of the generalizations of the above approach extends the theory

to describe polymers of complex structure that form networks of intercon-

nected polymer chains.5 The intrinsic exponents that govern the scaling of

a polymer network are uniquely defined by those of its constituents, star-

like subunits known as star polymers6 (see Fig. 1). The exponents that

govern the scaling of star polymers are universal in that they depend on

space dimension d and star functionality f only (the number of chains

attached to a common center).a Currently, star polymers are synthesized

with high functionalities and form well-defined objects with interesting in-

dustrial, technological, and experimental applications.7

In this paper we attract attention to another recent development in the

analysis of the scaling properties of branched polymers.8,9 Our analysis con-

aNote, that for f = 1, f = 2 a chain polymer is recovered.
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cerns the impact of structural disorder on the scaling of polymer stars and

chains. For lattice models, where polymers are viewed as self-avoiding walks

(SAW) this type of disorder may be realized by forbidding the SAW to visit

certain lattice sites, which might be interpreted as lattice dilution. For real

polymers in solvents, structural disorder may be implemented by filling a

porous medium by a solvent with immersed polymers as shown in Fig. 1. As

follows from our analysis sketched below, for long-range-correlated disorder

the polymer behaviour displays a new universality, different from that of a

SAW on a regular (undiluted) lattice. A notable consequence is that star

and chain polymers react in qualitatively different manner on the presence

of disorder: the corresponding scaling exponents increase for the chains and

decrease for the stars. We discuss to which physical consequences such a

difference in behaviour may lead.

2. Model and Method

The starting point of our analysis is the Edwards continuous chain model,

generalized to describe a branched polymer structure, a star polymer. We

describe the conformation of each arm of the star by a path ra(s), parame-

terized by 0 ≤ s ≤ Sa, a = 1, 2, . . . , f (Sa, the Gaussian surface of the a-th

arm is related to the contour length of the chain), ra(0), corresponds to the

central point. The partition function of the system is defined by the path

integral:5

Z{Sa} =

∫
D[r1, . . . , rf ] exp

[
− Hf

kBT

] f∏

a=2

δd(ra(0) − r1(0)). (1)

Here, the product of δ-functions ensures the star-like configuration of the

set of f polymer chains described by the Hamiltonian:

Hf

kBT
=

1

2

f∑

a=1

∫ Sa

0

d s

(
d r(s)

ds

)2

+
u0

4!

f∑

a,b=1

∫ Sa

0

ds

∫ Sb

0

ds′δd(ra(s)−rb(s
′)).

(2)

The first term on the r.h.s. of (2) presents chain connectivity whereas the

second term describes an excluded volume interaction. Instead of intro-

ducing structural disorder directly into Eq. (1), we make use of its field

theoretical representation. The corresponding derivations are described in

details in Refs. 5,8. The relevant steps read:

(i) we map the continuous chain model (1) onto the m = 0 limit of O(m)

symmetric field theory by a familiar Laplace transform1 in the Gaussian

surface variables Sa to conjugated chemical potentials (mass variables) µa.
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In this procedure, the product of δ-functions in (1) is represented by a

composite operator of a product of f m-component fields

∑

{k}

m∑

i1,...,if=1

N i1,...,ifφi1k1 . . . φ
if
kf
. (3)

Here, N i1,...,if is a traceless tensor, φi is the i-th component of the m-vector

field φ and in the sum over wave vectors {k} is restricted by momentum

conservation;

(ii) we introduce quenched random-temperature-like disorder shifting µa →
µa + δµa(x) by random variables δµa(x). These have zero mean and corre-

lations that decay at large distances as a power law:11

〈δµa(x)δµa(y)〉 ∼ |x− y|−a. (4)

Here, 〈. . . 〉 stands for the configurational average over spatially homoge-

neous and isotropic disorder and the exponent a governs the correlation

decay. As seen below, this leads to long range correlated disorder effects for

a < d;

(iii) to perform the configurational average of the free energy, we make

use of the replica method resulting in a field theoretical Lagrangean of two

couplings u0, w0:

L =
1

2

n∑

α=1

∑

k

(µ2
0 + k2)(φαk )2 +

u0

4!

n∑

α=1

∑

{k}

(
φαk1 · φαk2

) (
φαk3 · φαk4

)
+

w0

4!

n∑

α,β=1

∑

{k}
|k1+k2|a−d

(
φαk1 · φαk2

) (
φβk3 · φ

β
k4

)
. (5)

Note that the evaluation of the theory (5) involves a simultaneous polymer

(m = 0) and replica (n = 0) limit. It is this anticipated double limit that

allows us8 to write the Lagrangean in terms of two coupling only. A third

coupling appears11 for m 6= 0.

We apply the field theoretical renormalization group (RG) approach to

extract the universal content of (5). In this approach, the change of the cou-

plings u,w under renormalization defines a flow in parametric space, gov-

erned by corresponding β-functions βu(u,w), βw(u,w). The fixed points

(FPs) u∗, w∗ of this flow are the solutions to the system of equations:

βu(u
∗, w∗) = 0, βw(u∗, w∗) = 0. If a stable FP exists and is accessible,

it determines the scaling behaviour of the polymer system. In particular,

for a single polymer star of f arms of equal length N in a good solvent the
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P P

LR

G G

LR

w w

u u

a. b.

Fig. 2. Fixed points G (Gaussian), P (pure) and LR (long range) of the RG flow in the
plane of the two couplings u,w. The stable FP is shown by a square. (a) uncorrelated
disorder a > d: P (u 6= 0, w = 0) is stable. (b) correlated disorder a < d: LR (u 6= 0, w 6=
0) is stable. Crossover occurs at a = d (c.f. Fig. 1).

partition sum (number of possible configurations) scales as

ZN,f ∼ eµNfNγf−1, N → ∞, (6)

with a non-universal fugacity eµ and the universal star exponent γf .
6 The

latter is uniquely defined by the stable FP value of the anomalous dimension

associated with the composite operator (3). We make use of two comple-

mentary perturbation theory expansions to calculate coordinates of the FPs

and values of the exponents. In a first approximation we apply an expan-

sion in11 ε = 4− d and δ = 4− a which allows for a qualitative description

of the phenomena. In a further approach we apply perturbation theory in

the renormalized couplings u and w evaluated at fixed dimension d = 3

for a series of fixed values of the correlation parameter a.12 In the latter

case we proceed within a two-loop approximation refining the analysis by

a resummation of the divergent RG series (see Refs. 8–10 for details). The

FP picture that arises from our calculations is shown qualitatively in Fig. 2.

Both calculation schemes display a range alower(d) < a < aupper(d) of val-

ues for a where the long-range-correlated FP (LR, u 6= 0, w 6= 0) is stable

and governs polymer scaling. For a < alower, no stable FP is found. This

has been interpreted8 as a collapse of a polymer coil for strongly corre-

lated disorder. For a > aupper the pure FP (P, u 6= 0, w = 0) is stable

and polymer scaling is not perturbed by disorder. As far as power counting
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Fig. 3. Exponent γf of 3D polymer stars with f arms in a good solvent. Solid lines and
filled squares indicate uncorrelated disorder, dashed lines δ = 1.1 and open squares a =
2.9 correlated disorder; lines: first-order ε, δ results; open, resp. filled, squares: second-

resp. third-order resummed results for fixed d, a.

implies that the w-term in (5) is irrelevant in the RG sense for a ≥ d it

is natural to identify aupper = d. Nonetheless, in first-order approximation

of the ε, δ-expansion one finds that the LR FP is stable in the unphysical

region d < a < 2 + d/2. Our two-loop calculations at fixed d, a for d = 3,

however, result in aupper = 3 = d, alower = 2.2 allowing for direct physical

interpretations.

3. Scaling Exponents

Qualitatively, the impact of disorder can be seen already from the first-order

ε, δ results. Comparing the γf exponent (6) for the cases when the structural

disorder is absent (or is short-range-correlated, Fig. 1a),6 γ
(0)
f = 1− εf(f −

3)/16, and when it is long-range-correlated (Fig. 1b),9 γ
(δ)
f = 1−δf(f−3)/8

we find:

∆γf ≡ γ
(δ)
f − γ

(0)
f =

f(f − 3)

16
(ε− 2δ), ε/2 < δ < ε. (7)

As one can see from this estimate, the exponent difference changes sign at

f± = 3. The two-loop calculations slightly shift this result towards f± ≤ 3

while otherwise confirming the overall picture with more accurate numeri-

cal values for the exponents.9,10 In Fig. 3 we plot the first-order ε, δ curves
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for γf together with the resummed two-loop estimates for d = 3. A com-

plete account of the numerical values of the exponents is given in Ref. 9. A

prominent feature that follows from these results is that the effect of long-

range-correlated disorder on polymer chains and polymer stars is qualita-

tively different. Whereas correlated disorder leads to an increase of γf for

chain polymers (i.e. for f = 1, f = 2), the same type of disorder decreases

the γf exponent for the proper star polymers (f ≥ 3). Below we discuss

some possible consequences of this difference. For f > 2 we also observe

that γf decreases monotonically as function of f for any valid value of a

in the same way as it does for polymers in a good solvent: γ
(a)
f1

> γ
(a)
f2

for

2 < f1 < f2. Furthermore, within the accuracy the data confirms a convex-

ity from below of this function for valid values of a as well as for the ε, δ

expansion. The latter property ensures that polymer stars remain mutually

repulsive in correlated disorder.13,14

4. Conclusions and Outlook

It has been recognized by now that star exponents come into play for

the qualitative description and quantitative of different phenomena, where

statistics of branched self-avoiding and random walks is involved. The ex-

amples of such phenomena include short-range interaction of branched poly-

mers in a good solvent,15 diffusion-controlled reactions in the presence of

polymers,16 and, more generally, they are part of a multifractal description

of diffusion limited growth in a Laplacian field.17 Recently, star exponents

have been used to estimate the thermal denaturation transition of DNA.18

Our analysis opens a way to consider the impact of long-range-correlated

disorder on the above phenomena.

A somewhat surprising effect that results from our calculations concerns

the static separation in a solution of diluted chains and star polymers of

equal molecular weight inside a porous medium. Following the estimates of

the star exponents we predict that in a correlated medium star polymers

will exert a higher osmotic pressure than chain polymers and in general

higher branched star polymers will be expelled more strongly from the

correlated porous medium. On the opposite, polymer chains will prefer a

stronger correlated medium to a less or uncorrelated medium of the same

density.9

A generalization of our approach to the case of star polymers built from

chains of different species14 will be presented elsewhere.19
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1. Introduction

In this work the dynamics of a chain consisting of a set of small particles

attached to the ends of segments of fixed length is studied. The chain fluc-

tuates at constant temperature in some viscous medium. For simplicity, all

interactions among the particles have been switched off and the number

of space dimensions has been limited to two. A chain of this kind may be

regarded as a system of particles performing a random walk and subjected

to rigid constraints which simulate the presence of the segments. In the

limit in which the chain becomes a continuous system, its behavior may

be described by a probability function Ψ given in the path integral form.

Ψ measures the probability that a fluctuating chain passes from an initial

spatial conformation to a final one in a given interval of time. An expression

of the probability function is obtained by inserting in the path integral of

a system of brownian particles suitable Dirac delta functions which impose

the rigid constraints on the trajectories of the particles. It is shown that
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Ψ coincides with the partition function of a field theory which is a gener-

alization of the nonlinear sigma model in two dimensions. The probability

function is then computed explicitly in the semi-classical approximation for

a ring-shaped chain. The behavior of the chain at both long and short scales

of time and distances is investigated. The connection between the general-

ized nonlinear sigma model presented here and the Rouse model is briefly

discussed.

2. Behavior of a Chain at Short and Long Scales of Time

and Distance

In this section it will be addressed the problem of describing the dynamics of

a random chain subjected to thermal fluctuations at constant temperature

T . The strategy in order to treat this problem is to regard the chain as a

set of N particles of equal mass m and performing a random walk while

subjected to constraints of the kind Rn = 0. Here Rn is a given functional

of the coordinates of the particles. For instance, if we imagine that the

particles are attached at the ends of segments of constant length a, then

Rn =
|Rn(t) − Rn−1(t)|2

a2
− 1 n = 2, . . . , N , (1)

where the Rn(t)’s for n = 1, . . . , N are the radius vectors of the particles.

We require that at the instants t = ti, tf the n−th particle is located respec-

tively at the initial point Ri,n and at the final point Rf,n. For simplicity,

the interactions among particles are switched off. As a consequence, the

probability function ΨN of the system under consideration is obtained fol-

lowing an approach which is commonly applied in the statistical mechanics

of polymers.1–3 The approach consists in the insertion in the path integral

of N particles performing a free random walk a set of Dirac δ−functions

which enforce the constraints Rn = 0:

ΨN =

∫

R1(tf )=Rf,1
R1(ti)=Ri,1

dR1(t) · · ·
∫

RN (tf )=Rf,N
RN (ti)=Ri,N

dRn(t) exp

{
−

N∑

n=1

∫ tf

ti

Ṙ2
n(t)
4D dt

}

×
∏

n

δ(Rn) . (2)

The coefficient D in the above equation is the diffusion constant.

The continuous limit,4 in which N goes to infinity, while the masses m

and the average distance between two neighboring particles on the chain

tend to zero, gives as a result the probability function Ψ = limN→∞ ΨN of
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a continuous chain:

Ψ =

∫

R(tf ,s)=Rf (s)

R(ti,s)=Ri(s)

DR(t, s) exp

{
−c
∫ tf

ti

dt

∫ L

0

dsṘ2

}
∏

s

δ(R) (3)

with c = M/4kT τL. M is the total mass of the chain, L is its length and k

denotes the Boltzmann constant. Finally the relaxation time τ character-

izes the rate of the decay of the drift velocity of the particles composing the

chain. Let us note that in the continuous limit the discrete vector bonds

Rn(t) have been replaced by the continuous fields R(t, s), where s repre-

sents the arc-length of the chain. Physically, Ψ gives the probability that

a fluctuating chain passes from an initial spatial conformation Ri(s) to a

final one Rf (s) in a given interval of time ∆t = tf − ti.

In the following, we will choose a continuous version of the constraints

of the form:

R =

∣∣∣∣
1

s0

∫ s0

−s0
ds′A(s′) (R(t, s+ s′) − R(t, s))

∣∣∣∣
2

− a2 = 0 . (4)

In the above equation we have introduced two new lengths scales. a is the

smallest scale of lengths at our disposal. It can be identified with the length

of the segments of the chain. s0 is an intermediate length scale such that

a≪ s0 ≪ L . (5)

Finally, A(s′) is a function of s′ normalized in a such a way that:

1

s0

∫ s0

−s0
A(s′)ds′ = 1 . (6)

The insertion of the δ-function δ(R) in the path integral (3) is related to

the internal forces among the beads composing the chain which are needed

to impose the constraints. The function A(s′) determines the range r of

these interactions. For A(s′) = 1/2, for instance, r = 2s0. If we choose

instead A(s′) = s0δ(s
′ − a), then r = a. This corresponds to very short

range interactions.

It is possible to show that the Rouse model can be obtained from the

path integral (3) by decreasing the resolution with which the spatial struc-

ture of the chain is resolved and looking simultaneously at the fluctuations

of the chain over long time-scales. The resolution is decreased by putting

A(s′) = 1/2 in Eq. (4). This is tantamount to consider interactions between

chain segments which are averaged over the intermediate scale of distance

2s0. To restrict oneself to the long time-scale behavior of the chain, one
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may proceed as in Ref. 5, Section 4.1, p. 93. We skip the derivation of the

Rouse model6 starting from Eq. (3). The details can be found in Ref. 7.

Since the Rouse model has already been extensively studied in the lit-

erature,5 we will concentrate instead to the behavior of the chain at short

scales of times and distances. To observe the motion of the chain at the

smallest available scale of distances, i. e. the segment length a, we choose

r = a by putting: A(s′) = s0δ(s
′ − a). As a consequence, the constraint

(4) becomes |R(t, s+ a) − R(t, s)|2 − a2 = 0. Dividing both members of

the above equation by a2 and supposing that a is very small, we get up to

higher order terms in a the relation:
∣∣∂R
∂s

∣∣2 − 1 = 0. In the limit a = 0, this

is exactly the continuous version of the condition which has been imposed

to the chain in Eq. (1). It is also easy to check that the probability function

Ψ becomes in this special case:

Ψ =

∫

R(tf ,s)=Rf (s)

R(ti,s)=Ri(s)

DRDλ exp

{
−c
∫ tf

ti

dt

∫ L

0

dsṘ2

}

× exp

{
i

∫ tf

ti

dt

∫ L

0

dsλ

(∣∣∣∣
∂R

∂s

∣∣∣∣
2

− 1

)}
. (7)

In Eq. (7) the Lagrange multiplier λ has been introduced in order to impose

the constraints using the Fourier representation of the δ−function δ(
∣∣∂R
∂s

∣∣2−
1). The model described by Eq. (7) will be called here the generalized

nonlinear sigma model (GNLSM) due to its close resemblance to a two-

dimensional nonlinear sigma model.

3. GNLSM in Semi-Classical Approximation

In the following, we study small gaussian fluctuations of the field R(t, s) on

the background of a classical solution. For simplicity, we treat only the case

of a two dimensional chain. Due to the compatibility with the constraints,

it is possible to show that, in absence of external sources, the classical

equations of motion admit just two kinds of solutions:

(1) Static solutions in which λ = 0 and R(t, s) =
∫ s
0
du(cosϕ(u), sinϕ(u)),

ϕ(u) being an arbitrary differentiable function of u.

(2) Static solutions in which λ = const and R(t, s) = (0, s). This corre-

sponds to a static classical configuration confined on the y−axis.

In computing the probability function Ψ of the chain in the semi-classical

approximation, boundary terms may appear in the action functional, which

complicate the calculations considerably. To avoid such terms, we restrict
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ourselves to the following two cases: a) Closed chains satisfying the bound-

ary conditions R(t, 0) = R(t, L) and b) Open chains in which both ends

are fixed.

Let us give at this point the explicit formula of the probability function

Ψ in case a):

Ψ =

∫
Dδλ e−

R tf
ti

dtdt′
R
L
0
dsG(t,t′)

»
−4κ2δλ(t,s)

„
∂2

∂s2 − (ϕ′(s))2
«
δλ(t′,s)

–

× e−
1
κ

R tf
ti

dt
R
L
0
ds[M2L Ṙ2

cl] . (8)

In the above equation the constant κ = 2kT τ fulfills the same role as the

Planck constant in quantum mechanics. Moreover, δλ is a small fluctuation

of the Lagrange multiplier λ on the background of the classical solution

λ = 0 and it satisfies trivial boundary conditions in t and s. Finally G(t, t′)

is a Green function satisfying the equation M
L
∂2G(t,t′)
∂t2 = −δ(t − t′). If we

choose, for instance, Dirichlet boundary conditions for G(t, t′) at both ini-

tial and final time ti and tf , Ψ measures the probability that starting from

some static conformation Ri(s) the fluctuating chain ends up at the time tf
in the same conformation. This is useful to test the stability of a given con-

formation with respect to the thermodynamic fluctuations which attempt

to reshape the chain.

4. Conclusions

This work may be considered as the ideal continuation of the seminal paper

of Edwards and Goodyear of Ref. 8, in which the problem of a chain sub-

jected to the constraints (1) has been investigated using the Langevin equa-

tions. With respect to Ref. 8, our approach based on the Fokker–Planck–

Smoluchowski equations provides a path integral and field theoretical for-

mulation of the dynamics of a freely jointed chain in the continuous limit.

The GNLSM obtained here makes possible the application of field theoret-

ical techniques to the study of the fluctuations of a freely jointed chain. We

recall that in deriving the GNLSM the contribution of the hydrodynamic

interactions has been neglected. This limits the validity of this model to the

following cases:

a) The viscosity of the fluid is large, so that the motion of the particles

composing the chain is slow.

b) The temperature is low, so that once again the motion of the chain is

slow.
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The semi-classical approximation used in order to derive the probability

function Ψ is valid in the case in which the parameter κ defined at the

end of the previous section is small. This parameter depends essentially on

the temperature T and on the relaxation time τ . Since τ is inversely pro-

portional to the viscosity, it is reasonable to assume that the semiclassical

approach can be applied to a cold isolated chain or to an isolated chain in

a very viscous solution.
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1. Introduction

In this brief report the dynamics of a chain fluctuating in some medium

at fixed temperature T is discussed. The three-dimensional case is partic-

ularly interesting, because it allows to study the topological entanglement

of two or more chains. The problem of the topological entanglement of two

chains has been investigated for a long time in the statistical mechanics of

polymers, see for instance Ref. 2 and references therein. If the topological

constraints which limit the fluctuations of the chains are described by us-

ing the Gauss linking number, the probability distribution of the system

turns out to be equivalent to the partition function of a zero-component

Landau–Ginzburg model interacting with a pair of Chern–Simons fields.

The analogous problem in polymer dynamics has not yet been solved. Here
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we show that the probability function of the system of two chains in the

presence of topological constraints may be simplified thanks to the intro-

duction of a Chern–Simons field theory also in the case of dynamics. Finally,

we provide a formula for the probability function of a chain which can form

only discrete angles with respect to the z−axis.

2. A Model of Two Topologically Entangled Chains

We would like to treat the dynamics of a chain fluctuating in some medium

at constant temperature T . In Ref. 1 (see also Ref. 3) the case of a two-

dimensional chain has been discussed. The approach presented in those ref-

erences can however be extended to any dimension. Let us consider the prob-

ability function Ψ which measures the probability that a D−dimensional

continuous chain starting from a given spatial configuration Ri(s) arrives

after a time tf − ti to a final configuration Rf (s). The chain is regarded as

the continuous limit of a discrete chain consisting of particles connected to-

gether with segments of fixed length. In the continuous limit, the constraints

arising due to the presence of the segments take the form:
∣∣∣∂R(t,s)

∂s

∣∣∣
2

= 1.

Then, an expression of Ψ in terms of path integrals may be written as

follows:

Ψ =

∫

R(tf ,s)=Rf (s)

R(ti,s)=Ri(s)

DRDλ exp
{
−c
∫ tf
ti
dt
∫ L
0 dsṘ2

}

× exp
{
i
∫ tf
ti
dt
∫ L
0 dsλ

(∣∣∂R
∂s

∣∣2 − 1
)}

(1)

where the fields R(t, s) represent D−dimensional vectors. Moreover c =

M/4kBTτL, where M is the total mass of the chain, L is its length and kB
denotes the Boltzmann constant. Finally, the relaxation time τ character-

izes the rate of the decay of the drift velocity of the particles composing the

chain. In Eq. (1) the Lagrange multiplier λ has been introduced in order to

impose the constraints using the Fourier representation of the δ−function

δ(
∣∣∂R
∂s

∣∣2 − 1). The model described by Eq. (1) will be called here the gen-

eralized nonlinear sigma model (GNLSM) due to its close resemblance to

a two-dimensional nonlinear sigma model. Let us note that the holonomic

constraint R2 = 1 of the nonlinear sigma model has been replaced here by

a nonholonomic constraint.

In the following, we will restrict ourselves to the physically relevant

case D = 3. The three-dimensional case is particularly interesting because

it allows the introduction of topological relations. To this purpose, let us

imagine two closed chains C1 and C2 of lengths L1 and L2, respectively. The
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trajectories of the two chains are described by the two vectors R1(t, s1) and

R2(t, s2) where 0 ≤ s1 ≤ L1 and 0 ≤ s2 ≤ L2. The simplest way to impose

topological constraints on two closed trajectories is to use the Gauss linking

number χ: χ(t, C1, C2) = 1
4π

∮
C1
dR1 ·

∮
C2
dR2× (R1−R2)

|R1−R2|3 . If the trajectories

of the chains were impenetrable, then χ would not depend on time, since it

is not possible to change the topological configuration of a system of knots if

their trajectories are not allowed to cross themselves. However, since we are

not going to introduce interactions between the two chains, we just require

that, during the time tf − ti, the average value of the Gauss linking number

is an arbitrary constantm, i. e.m = 1
tf−ti

∫ tf
ti
χ(t, C1, C2)dt. It is possible to

show that the probability function of two chains whose trajectories satisfy

the above topological constraint is given by:

Ψ(C1, C2) =

∫
D(fields)e−(S1+S2)eiSCS+ iµ

2

R
+∞
−∞ dξ

R
d3xJiAi , (2)

where D(fields) =
∏2
i=1 DRiDλiDAi,

Si =
∫ tf
ti
dt
∫ L
0
dsi

[
cṘ2

i + iλi

(∣∣∂Ri

∂s

∣∣2 − 1
)]
, i = 1, 2, (3)

SCS =
1

tf − ti

∫ +∞

−∞
dξ

∫
d3xA1(ξ,x) · (∇x × A2(ξ,x)), (4)

Ji(ξ,x) =

∫ tf

ti

dt

∫ Li

0

dsiδ(ξ − t)
∂Ri(t, si)

∂si
δ(3)(x − Ri(t, si)), i = 1, 2.

(5)

3. Chain with Constant Angles of Bending

To conclude, we would like to mention the interesting case in which the

chain is forced to form with the z−axis only the two fixed angles α and

π − α.4 If there are no interactions depending on the z degree of freedom,

it turns out that this problem can be reduced to a two-dimensional one.

Since in this work interactions are not considered, the probability function

of the chain may be written as follows:

Ψ3d
α,π−α =

∫
DxDy exp {−Sα,π−α} δ((∂sx)2 + (∂sy)

2 − tan2 α) (6)

where Sα,π−α = c sin2 α
∫ tf
ti
dt
∫ L
0 ds

[
ẋ2 + ẏ2

]
.
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4. Conclusions

In this work the dynamics of a D−dimensional chain has been investigated.

The probability function Ψ of this system is equivalent to the partition func-

tion of a generalized nonlinear sigma model. Next, the fluctuations of two

topologically entangled chains have been discussed. Analogously to what

happens in the case of statistical mechanics,5,6 the complexities connected

with the handling of the Gauss linking number may be partly eliminated

with the introduction of Chern-Simons fields, which decouple the interac-

tions of topological origin between the chains.7 Still, one has to perform a

path integration over the trajectories of each chain separately. In statisti-

cal mechanics, this is equivalent to compute the path integral of a particle

immersed in a magnetic field. In dynamics, the particle is replaced by a

two-dimensional field R(t, s). To evaluate such path integral is a compli-

cated task. Finally, the problem of a three-dimensional chain admitting

only fixed angles with respect to the z−axis is reduced to the problem

of a two-dimensional chain, in a way which is similar to the reduction of

the statistical mechanics of a directed polymer to the random walk of a

two-dimensional particle.
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1. Introduction

Proteins and DNA’s are observed to assume a unique shape or conformation

before they can carry out their biological functions. Although it is known

that information encoded along the length of a biopolymer is responsible

for a particular conformation, the theory and dynamics of how a distinct

conformation could arise is still not completely understood. It remains a

theoretical challenge to come up with a model that could elucidate how a

linear information can give rise to a three-dimensional shape for chain-like

macromolecules.

A biopolymer with endpoints at r0 and r1 may be viewed as composed of

N repeating units or monomers, each of length l (e.g., the amino acids that

make up a protein). Each repeating unit is allowed to rotate as a freely

hinged rod to allow for bending and twisting, such that the biopolymer

of length L = Nl is flexible enough to assume different conformations. A

mathematical description of this pictorial representation of a biopolymer

has, in fact, been investigated in the early works of S. F. Edwards,1 as well

as by S. Prager and H. L. Frisch,2 where various paths of a random walk,

or Brownian motion, represent possible conformations of a biopolymer. In

this paper, we follow this approach for a biopolymer modelled by Brownian



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

568 C. C. Bernido and M. V. Carpio-Bernido

paths3–5 using the conditional probability density function P (r1, t | r0, 0)

which solves the Fokker-Planck equation.

2. Path-Integral Representation

Designating the length △s travelled in time, τ << 1 as, △s = vτ << 1,

where v is the average speed of the random motion, the solution of the

Fokker-Planck equation is written as a path integral,

P (r1, L | r0, 0) =

∫
exp



− 3

2l

L∫

0

[
dr

ds
− l

3D
A

]2
ds



D [r] , (1)

where we defined, l = 3D/v, with a dimension of length, and L the total

path length. The probability density function, Eq. (1), is evaluated over all

paths r(s) such that r(0) = r0 and r(L) = r1, with 0 ≤ s ≤ L.

To investigate helical structures, let us employ the circular cylindrical

coordinates r = (ρ, ϑ, z). In the paper by F. W. Wiegel6 for a polymer

represented by a random walk, he showed that a polymer subjected to a

potential V (ρ) winds around the z-axis at a distance ρ = R, where R is a

minimum of the potential. This holds true for any interaction potential V (ρ)

at low temperatures. Employing this result, we simplify the study of the

winding behavior of polymers by projecting the random walk on the ρ− ϑ

plane. One then considers a chain which lies on the plane perpendicular

to the z-axis, with endpoints at ρ0 = (ρ0, ϑ0) and ρ1 = (ρ1, ϑ1). In this

scenario, Wiegel noted that a potential V (ρ), with a minimum at ρ = R,

leads to polymer conformations on the plane confined to a narrow strip in

the immediate vicinity of a circle of radius R. For ρ = (R, ϑ), the probability

function corresponding to Eq. (1) becomes,

P (ϑ1, ϑ0) =

∫
exp



−1

l

L∫

0

[
R

(
dϑ

ds

)
− l

2D
f (s)

]2
ds



D[dϑ]. (2)

Here, the drift coefficient is taken to be length-dependent, i.e., A =f (s)

to account for effects arising from interaction of the amino acid with the

aqueous environment at each length segment. The variable ϑ parameterized

in terms of a Brownian motion B is given by,

ϑ(L) = ϑ0 +
(√

l/R
)∫ L

0

ω(s) ds, (3)
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where, ω(s) = dB/ds, is a Gaussian white noise variable.7 This parame-

terization leads to a white noise functional as an integrand in Eq. (2). Its

evaluation follows the Hida-Streit white noise path integral method which

has been applied to quantum mechanical systems.3

3. Winding Probabilities

The path integral Eq. (2), with the parameterization, Eq. (3), can be eval-

uated using the T -transform in white noise calculus.7 This results in,3,8

P (ϑ1, ϑ0) =

+∞∑

n=−∞
Pn, (4)

where Pn is the probability function for n-times winding. The probability

that a polymer chain on the plane winds n-times around the z -axis is given

by, W (n,L) = Pn/P , and has the form,

W (n,L) = R

√
4π

Ll

exp



−R2

Ll

(
2πn+ l

2DR

L∫
0

f ds

)2




θ3

(
l

4DR

L∫
0

f ds

) , (5)

where, for an arbitrary initial point we have set, ϑ0 = ϑ1. Here, θ3(u) is the

theta function9 with u = (l/4DR)
∫
f ds.

4. Features of the Model

Physical consequences can be derived from the model and compared with

experimental observations. Aside from the Brownian motion inherent in the

formalism, we discuss below other features of the model.

4.1. Chirality

If we designate a polymer chain which winds counterclockwise (n > 0) as

left-handed, and the one which winds clockwise (n < 0) as right-handed,

then the winding probability W (n,L) will depend on the handedness, or

chirality of the polymer.4 From (5), the effect of chirality becomes evident

since, W (−n)/W (n) = exp
[
(4πn/L)

∫
f ds

]
. We note that when the drift

coefficient f (s) is zero, the winding probability W (n,L), Eq. (5), becomes

independent of chirality, or the sign of n.
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Fig. 1. Solid line is for n = 300, open box for n = 5000.

4.2. Conformation arising from linear data

The behavior of the winding probability W (n,L), Eq. (5), is greatly influ-

enced by the form of the drift coefficient f (s). The f (s), on the other hand,

can assume values which differ from monomer to monomer as the variable s

(0 ≤ s ≤ L) runs along the length of the polymer. We therefore have a situ-

ation where f (s), which carries linear information encoded throughout the

length L of the polymer, modulates the shape of a biopolymer. What is the

exact form of the drift coefficient f (s)? This would, for example, depend

on the sequence of amino acids that link up to form a protein, as well as

each monomer’s interaction with the aqueous environment and neighboring

monomers. We can expand the drift coefficient f (s) in terms of a complete

set of orthonormal functions, for example,

f (s) =

∞∑

m=0

kmαmLm (αms) , (6)

where Lm are the Laguerre polynomials, and km and αm are constants. The

constants km and αm may be chosen to best reflect the linear data along

the length of the biopolymer.

4.3. Biopolymers overwind

Let us consider the first four terms of Eq. (6), i.e., we take km = k=constant

for m = 0, ..., 3, and km = 0 for other values of m. Using R = 1 nm, l = 0.34

nm, αm = 1/m, and (k/D) = 105, Figure 1 shows a graph of the winding
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Fig. 2. Two peaks show where a helix is likely to form.

probability W (n,L) vs. L for two values of the winding number: n = 300

(solid line) and n = 5, 000 (open box).

Clearly, for shorter lengths L a lesser winding (n = 300) for the polymer

dominates. For higher values of L, however, a higher winding is favored

(n = 5, 000) and an overwinding of the polymer is expected. Beyond a

critical value of the length L, the lower winding regains dominance and an

unwinding should occur.5 The overwinding of biopolymers when stretched

until a critical length is reached has also been shown by experiments.10,11

4.4. Helix-turn-helix structural motif

A structural motif commonly found in biopolymers, such as proteins, is

the helix-turn-helix which can also be demonstrated in the present model.

Taking again the first four terms of the expansion in Eq. (6), we look at the

graph of W (n,L) vs. L, Figure 2, for n = 300 and (k/D) = 105.5.

The two peaks in the graph show the location where a helix is most

probable to form. These two peaks are separated by a domain where helices

are strongly inhibited. This scenario highly suggests the formation of a

helix-turn-helix structural motif.8

5. Conclusion

In this paper, we presented a stochastic path integral model which ex-

hibits biomechanical properties of chain-like macromolecules. In particular,

experimentally-based features of the model include: (a) a Brownian motion;

(b) formation of a helical structure; (c) chirality; (d) information encoded
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along the length of a polymer; (e) overwinding behavior when stretched;

and (f) the formation of a helix-turn-helix structural motif. Future work

would focus on other forms of the drift coefficient f (s).
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The Feynman path integral for the quantum mechanical propagator is inter-
preted as the T-transform (infinite dimensional generalized Fourier transform
in the Hida calculus) of a suitable functional in the space of Hida white noise
distributions. Essential features of the approach are given and applications in
the evaluation of various path integrals are noted.

Keywords: White noise calculus; Propagator.

1. Introduction

The path integral for various quantum mechanical and stochastic systems

can be evaluated using the Hida white noise calculus.1,2 In this mathe-

matically well-founded construction of path integrals introduced by Hida

and Streit,3 there is no analytic continuation to imaginary time, or imag-

inary mass, and no time-slicing procedure. In particular, the white noise

interpretation of the Feynman path integral given by

KV (x, t | x0, t0) =

∫
D [x(t)] exp

{
i

~

∫ t

t0

[m
2
ẋ2(t) − V (x)

]
dt

}
, (1)

particularly highlights the need to shift from classical mathematical meth-

ods to modern infinite dimensional analysis. (We note at this point that

the Hida calculus differs from the use of white noise in Parisi-Wu stochastic

quantization.4) This shift is illustrated by the comparison in Table 1.

The propagator in Eq. (1) is directly obtained from the T -transform

(infinite dimensional generalized Fourier transform) of a well-defined func-

tional in white noise space.3,6 The additional appeal of this approach, aside

from being mathematically well-defined, is that it could handle various sys-
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Table 1. Comparison of finite and infinite dimensional calculus.

Finite Infinite

Independent variable xj White Noise: ω(τ)
Coordinate system (x1, ..., xn) {ω(t); t ∈ R}

Function(al) f(x1, ..., xn) Φ (ω(t); t ∈ R)
Space Rn Distributions: S∗

Measure Lebesgue: dx Gaussian: dµ(ω)
Transform Fourier T-transform

R

e(i<ω,ξ>)Φ (ω) dµ(ω)

tems such as those with locally singular potentials like the Dirac delta func-

tion,11,13 the harmonic3 and time-dependent anharmonic oscillators,9 the

Morse potential,12 particle in a uniform magnetic field,10 a particle in a cir-

cle,5,14 the Aharonov-Bohm set-up,14 particle in a box,14 and non-smooth

and rapidly growing potentials.7

The approach appears to be versatile enough as a practical tool

for physicists, and investigation has also been done for the non-

relativistic problem of a quantum particle on the half-line, R+ =

{x | 0 ≤ x < ∞}, with the general boundary condition,15[
α∂xK

β/α (x, t | x0, t0) − β Kβ/α (x, t | x0, t0)
]
x=0

= 0. The ratio, γ =

β/α, gives continuous spectra for γ > 0, and a bound state for γ < 0.

Recently, the white noise path integral has also been applied to relativistic

quantum systems16 as well as in investigations of biopolymer conforma-

tions.17,18

2. White Noise Path Integrals

In the Hida-Streit approach, the paths are parameterized starting at some

initial point x0 and propagating in Brownian fluctuations B(t) as,

x (t) = x0 + (~/m)
1
2B(t) = x0 + (~/m)

1
2

t∫

t0

ω (s) ds , (2)

where ω (s) is a white noise variable. With this parameterization, the Feyn-

man integral for a free particle,1,3,6 for instance, becomes (let m = 1),

K (x, t | x0, t0) =

∫
I0 (x, t | x0, t0) δ (x(t) − x) dµ (ω) (3)

where the Donsker-Dirac delta function fixes the endpoint of the fluctuating
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paths at x, the dµ (ω) is the Gaussian white noise measure, N a normaliza-

tion factor, and the Gauss kernel:1,13

I0 (x, t | x0, t0) = N exp

(
i+ 1

2

∫

R

ω2 (τ) dτ

)
, (4)

is a generalized white noise functional in the Hida white noise space, i.e.,

I0 ∈ (S)∗, for the Gel’fand triple, (S) ⊂ (L2) ⊂ (S)∗. The integral, Eq.

(3), is just a T -transform which yields the free particle propagator,

K (x, t | x0, t0) =
1√

2πi~ |t− t0|
exp

[
i (x− x0)

2

2~ |t− t0|

]
. (5)

In the presence of a potential V (x (τ)), the interaction can be incorpo-

rated within the framework by considering the white noise functional for

the interaction part of the Feynman integrand,

IV = I0 (x, t | x0, t0) δ (x(t) − x) exp


−i

t∫

t0

V (x (τ)) dτ


 . (6)

By expressing the exponential in a power series, the useful theorem of Khan-

dekar and Streit11,13 on the generalized Dyson series for the propagator is

obtained, i.e., IV exists as a Hida distribution. In the case of the particle

on the half-line with general boundary conditions, the Feynman integrand

is given by the white noise functional,

Iδ = I0 [δ (x (t) − x) + δ (x (t) + x)] e−
i
~
γ

R
δ(x)dτ (7)

with the propagator as the T−transform,15 TIδ(0) ≡ Kβ/α
δ

(x, t | x0, 0) :

TIδ(0) =
1√
2πit

(
e
i
2t (x−x0)

2

+ e
i
2t (x+x0)

2
)
− γeγ(|x|+|x0|)+(iγ2t/2)

×Erfc

[( |x| + |x0|√
2it

)
+ γ

√
it

2

]
. (8)

3. Conclusion

The Feynman integral for the quantum mechanical propagator is the T -

transform of well-defined generalized white noise functionals. The mathe-

matically precise formulation with the explicit evaluation of the propagators



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

576 M. V. Carpio-Bernido and C. C. Bernido

in closed form allows the possibility of many applications. The extension of

the study to general boundary conditions for different geometries and higher

dimensions would also be interesting and useful for other applications.
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The function of biopolymers depends to a large part on their shape statis-
tics, on length scales ranging from one to thousands of monomers. I present a
continuous model in which the equilibrium ensemble of macromolecular con-
formations is generated by a random walk with values in the Euclidean group.
It includes local bending, twisting, stretching and shearing modes. The model
exhibits helical structure on an intermediate length scale, while in the limit of
long chains, the well-known worm-like chain behavior is recovered.
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1. The Rigid Base Pair Model

DNA is arguably the most important, and probably the best investigated

biological macromolecule.a An appropriate description of its conformations

depends on the desired level of detail. On a length scale of a few nm, a

particularly useful approximation consists in disregarding all internal de-

formations of the Watson–Crick base-pairs. In the resulting model,1 each

base-pair is considered as rigid body. The DNA molecule thus becomes

a rigid base-pair (or rigid body) chain (rbc). While the rbc can describe

local elasticity in great detail, its relation to intermediate and large-scale

conformations of DNA is not immediate. This article aims at clarifying

this point by establishing and parameterizing the corresponding continu-

ous chain model.

In local coordinates, the energy function for weak elastic deformation

of a rbc with n+ 1 base-pairs interacting only with nearest neighbors, is a

aThe following considerations apply to general linear chain molecules with monomers
modeled as rigid bodies. However, only for double-stranded DNA are experimental elastic
parameter sets available to date, so this example is used exclusively.
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sum of quadratic base-pair step energies:b

E = 1/2

n−1∑

i=0

ξkii+1Sklξ
l
ii+1. (1)

Here, the six-dimensional coordinate vector ξii+1 describes the relative ori-

entation and position of the base-pairs i and i+ 1. It is defined such that

the relaxed conformation corresponds to all ξk = 0. The stiffness matrix S

is a symmetric, positive definite 6 × 6 matrix, and in thermal equilibrium

〈ξkii+1ξ
l
jj+1〉 = δij(S

−1)kl. Both the relaxed conformation and S generally

depend on the chemical identity of the bases i, i+1. Here only the homoge-

neous case is treated for simplicity. This does include repetitive sequences

with short period as shown below.

2. Matrix Representation

To efficiently describe rigid body conformations, let’s adopt a representation

of the Special Euclidean Group SE (3) which is widely used in mechanical

engineering.2 The conformation in space of base-pair j with respect to base-

pair i is given by a rotation matrix Rij and a translation vector pij , which

we arrange into a 4 × 4 “g-matrix”, gij =
[
Rij pij
0 0 0 1

]
. The unit element will

be denoted by e = gii. A suitable choice of local step coordinates is given

by3

gii+1 = g0 exp[ξkii+1Xk], (2)

where g0 is the g-matrix of the relaxed conformation, Xk are the infinitesi-

mal matrix generators spanning the Lie algebra se(3), and exp is the matrix

exponentialc. The shorthand exp[ξ] = exp[ξiXi] is useful.

3. Combination Formula

Let Ad denote the adjoint representation, so that (Adg)
k
lXk = gXlg

−1.

One can then see that exp[ξkXk]g0 = g0 exp[(Ad−1g0 ξ)
kXk]. Using this

commutation rule repeatedly on a rbc with steps of the form (2),

g0n = gn0 exp[Ad1−ng0 ξ01] exp[Ad2−ng0 ξ12] · · · exp[ξkn−1nXk]. (3)

We write this as a singe effective step of the form g0n = gn0 exp[ξ0n]. Using

a Baker-Campbell-Hausdorff formula on (3), ξ0n =
∑n

j=1 Adj−ng0 ξj−1j +

bSummation over upper/lower index pairs.
cexp is also the exponential map in the Lie group sense.
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O(ξ)2, where the higher order terms consist of (nested) commutators of

the statistically independent step deformations ξj−1j . As a result, one ob-

tain combination formulas which are valid up to correction terms of size

O(n〈ξkξl〉)2:

〈ξ0n〉 = 0 and 〈ξk0nξl0n〉 =
n∑

j=1

(Adj−ng0)
k

k′(S
−1)k

′l′(Adj−ng0)
l

l′ . (4)

4. Continuous Interpolation

We now construct a continuous process g(s) on SE (3) which interpolates a

given discrete rbc with energy (1). I.e., whenever s reaches integer values

s = i, the conformation statistics of g(i) should match with those of g0i.

This process will be called continuous rigid base-pair chain (crbc).

We start with an ordinary Brownian motion Ξ(s) = sξ0 + Φ(s) on the

vector space se(3), where ξ0 is a constant drift, 〈Φk(s)〉 = 0, 〈Φk(s)Φl(s′)〉 =

min(s, s′)Ckl, with positive definite 6 × 6 covariance C. From Ξ, one gets

a Brownian motion g(s) on the group space by taking the stochastic expo-

nential,4–7 which is defined as the solution of

dg(s) = g(s)Xk ◦ dΞk(s), g(0) = e. (5)

In other words, g(s) is driven by the left translated increments of Ξ.d

To relate g(s) to the original discrete rbc, we need an appropriate lim-

iting procedure. So let’s define for m,M ∈ N the discrete process g(M) by

g(M)(0) = e and

g(M)(m+1
M ) = g(M)(mM ) exp[ 1

M ξ0] exp[Φ(m+1
M ) − Φ(mM )]. (6)

That is, finite increments of the form (2) and of ‘size’ 1
M are successively

multiplied on the right. Using an approximation result5,7 for the stochastic

exponential one can show that g(M)(mM ) converges to g(s) in the continuum

limite.

On the other hand, proceeding as in Section 3 to combine the finite

increments of g(M)(1), and then again taking the continuum limit, one

obtains g(1) = exp[ξ0] exp[ξcon] where up to terms of order O(Cij)2,

〈ξcon〉 = 0, 〈ξkconξlcon〉 =

∫ 1

s=0

(Ads−1 exp[sξ0])
k

k′C
k′l′(Ads−1 exp[sξ0])

l

l′ .

(7)

dThe stochastic differential equation (5) needs to be interpreted in the Stratonovich
sense. Interestingly, the drift correction of the equivalent Ito equation cannot be written
as a linear combination of generators Xk!
eM → ∞, m

M
→ s.
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Fig. 1. Left: a thermal conformation of a rbc with repeating sequence CCCCCCTTTAA,
showing the superhelical scale ssh ∼150 base-pairs. Right: cross-over of the correspond-
ing crbc mean square end-to-end distance (solid) from a local effective worm-like chain
(dotted) to a different long-scale effective worm-like chain (dashed) behavior at ssh.

We can thus relate the crbc to the discrete rbc by matching the lowest

moments of ξii+1 with those of ξcon. That is, the crbc coefficients ξ0 and C

are determined by solving g0 = exp[ξ0], and 〈ξkconξlcon〉 = S−1, respectively.

An application is shown in Fig. 1. Here, a particular 11-bp sequence

repeat was combined into a single compound step using (4). The helical

period ∼150 bp of the resulting homogeneous rbc is the superhelical period

of the original DNA. After continuous interpolation using (7), the mean

square end-to-end distance ‖p‖2(s) can be computed analytically8 starting

from (5).
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In recent years the Continuous Time Random Walk (CTRW) has been used to
model anomalous diffusion in a variety of complex systems. Since this process
is non-Markovian, the knowledge of single time probability distributions is not
sufficient to characterize the CTRW. Using the method of subordination we
construct an extension of the Wiener path integral for Brownian motion to
CTRW processes. This contribution is a step towards a path integral formula-
tion of CTRWs.
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1. Introduction

Some 40 years ago the Continuous Time Random Walk (CTRW) was intro-

duced by Montroll and Weiss as an extension to the ordinary random walk.1

Instead of successive jumps with definite jumpwidth, the CTRW is subject

to fluctuating jumplengths as well as random waiting times between the

jumps. These random variables are drawn from two probability distribu-

tions for the jumplength ψ(η) and for the waiting times ω(τ) respectively.

The CTRW exhibits strong non-Markovian and non-Gaussian behavior and

leads in the diffusion limit either to sub- or super-diffusive properties, de-

pending on the jumplength- and waitingtime distributions. The time evo-

lution of the probability distribution (PDF) of a CTRW-process can be

described with the help of fractional calculus and leads to fractional gener-

alizations of PDF-evolution equations.2

In recent years many physical, chemical, biological and medical systems

which exhibit ’Anomalous Diffusion’ have been modelled using the mathe-

matical theory of CTRWs.2,3

Since it lacks the Markov-property, the knowledge of single-time PDFs is
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X(s) t(s)

Fig. 1. The processes X(s) and t(s).

not sufficient to fully characterize a CTRW. Using the method of subordi-

nation and applying an idea of Fogedby to describe CTRWs4 we perform a

step towards a path integral formulation of CTRW processes. As a result we

obtain an extension of the Wiener measure leading to anomalous behavior

of the transition amplitudes.

2. Fogeby’s Formulation of CTRWs

In contrast to the classical description of CTRWs based on a Master equa-

tion by Montroll and Weiss, Fogedby considered a realization of a CTRW

based on a system of coupled Langevin equations4

dx(s)

ds
= F (x) + η(s),

dt(s)

ds
= τ(s) . (1)

The random walk is in this case parametrized via an ’internal’ variable

s. For continuous random walks the variable s can be understood as an

’internal time’ The position of the walker is described by the first equation

in Eq. (1). The second process assigns to each s a physical ’wall-clock’

time t. The coupled process describes the CTRW via the transformation

x(t) = x(s(t)).

From now on we assume that η(s) are Gaussian random numbers, so

that the probability density f0(x, s) is described by a generic Fokker-Planck

equation. Due to causality τ(s) has to be positive. They are usually assumed

to be Lévy distributed, where the distribution has to be fully skewed to

ensure that t(s) is non-decreasing.5 The solution to the coupled system (1)

x(t) = x(s(t)) has been obtained in Ref. 6:

f(x, t) = f(x, s(t)) =

∫ ∞

0

h(s, t)f0(x, s) ds . (2)

Therefore the distribution h(s, t) of the inverse process s(t) has to be cal-

culated. This can be done analytically and the resulting distribution is
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called inverse Lévy distribution.6 Recently this concept has been extended

to position-velocity space.7

3. Towards a Path-Integral Formulation of the CTRW

It is now straightforward to extend this concept to N -point probability

distributions. Corresponding to Eq. (2) we can formulate the two point pdf

f(x2, t2;x1, t1) =

∫ ∞

0

ds1

∫ ∞

0

ds2h(s2, t2; s1, t1)f0(x2, s2;x1s1) . (3)

For detailed results concerning the two point PDFs of CTRWs see Ref. 8.

An important point to mention is that the s(t)-process is neither station-

ary nor Markovian. For this reason the multi-point probability distributions

h(s2, t2; s1, t1) do not factorize.

If we assume the noise in Eq. (1) to be Gaussian and neglect the determin-

istic drift, we are now able to write down the probability to find a path

which passes through gates ai, bi (i.e. ai ≤ xi ≤ bi) at time ti

P (a1 ≤ x(t1) ≤ b1; . . . aN ≤ x(tN ) ≤ bN) = (4)

T (si)

∫ ∞

0

ds1 . . .

∫ ∞

0

dsNh(tN − tN−1, sN − sN−1; . . . ; t1, s1)

×
∫ b1

a1

dx1 . . .

∫ bN

aN

dxNf(xN − xN−1, sN − sN−1; . . . ;x1, s1) .

Here T (si) is a time-ordering operator which ensures that for i < j, si ≤ sj .

In the discrete case, this is achieved by a multidimensional Heavyside-

function. Without this timeordering we would have an overcounting of con-

tributing paths that violate causality. Due to the assumed Gaussianity of

the x(s)-process the PDF for this process factorizes and due to the sta-

tionarity we can rearrange the order of integration. After letting the width

of the gates go to 0 and taking the limits (si − si−1) → 0 and N → ∞ a

Wiener measure is obtained for this process.

4. A Generalization of the Wiener Path Integral

As has already been pointed out the subordination process s(t) in Fogedby’s

approach is non-Markovian. For this reason we now leave the lines of

Fogedby and assume the PDF h(tN − tN−1, sN − sN−1; . . . ; t1, s1) to be

separable. Clearly this violates Fogedby’s description of CTRWs, but nev-

ertheless leads to an interesting generalization of the Wiener path integral:



September 4, 2008 23:2 WSPC - Proceedings Trim Size: 9in x 6in pi07

584 S. Eule and R. Friedrich

P (a1 ≤ x(t1) ≤ b1; . . . aN ≤ x(tN ) ≤ bN) = (5)

T (si)

∫ ∞

0

ds1 . . .

∫ ∞

0

dsNh(tN − tN−1, sN − sN−1) . . . h(t1, s1) ×

×
∫ b1

a1

dx1 . . .

∫ bN

aN

dxNf(xN − xN−1, sN − sN−1) . . . f(x1, s1) .

Furthermore, we want to assume the process to be stationary, so we can

rearrange the order of integration. If we now narrow the gates to 0 and take

the limits (si − si−1) → 0 and N → ∞ we obtain

P (x(t)) = lim
∆s→0

lim
N→∞

∞∏
j=1

(6)

×
[sj−1∫

0

h(tj − tj−1, sj − sj−1)f(xj − xj−1, sj − sj−1) dsj

]
dxj .

Here we set s0 = ∞ for the first limit of integration. The expression in

brackets can be expressed in terms of Fox-functions for an inverse Lévy-

type process s(t). For s(t) = t the PDF h(s, t) becomes a delta distribution

h(s, t) = δ(s− t) and Eq. (6) reduces to the Wiener path integral. The limit

procedure in Eq. (6) has to be investigated further. Furthermore the form

of the time-ordering operator in the continuum-limit is not clear.

5. Conclusions

We have presented an extension of the Wiener path integral. To this end

we presented a stochastic process termed Continuous Time Random Walk

(CTRW) and an approach to this process via two coupled Langevin equa-

tions. We have presented an exact expression for a path of a CTRW. Fur-

thermore we have obtained a generalization of the Wiener path integral

based on the idea of subordination.
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The scaling behavior of linear polymers in disordered media, modelled by
self-avoiding walks (SAWs) on the backbone of percolation clusters in two,
three and four dimensions is studied by numerical simulations. We apply the
pruned-enriched Rosenbluth chain-growth method (PERM). Our numerical re-
sults bring about the estimates of critical exponents, governing the scaling laws
of disorder averages of the configurational properties of SAWs.
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The model of a self-avoiding walk (SAW) on a regular lattice is one of

the most successful in describing the universal configurational properties of

polymer chains in good solvent.1 In particular, the average square end-to-

end distance 〈R2〉 of a SAW with N steps obeys the scaling law

〈R2〉 ∼ N2νSAW , (1)

where νSAW is an universal exponent depending on the space dimension d.

A question of great interest is how linear polymers behave in a disor-

dered porous medium, which in the language of SAWs can be modelled by a

structurally disordered lattice. In the present study, we consider the partic-

ular case when the underlying lattice is exactly at the percolation threshold.

In this regime the scaling law (1) holds with an exponent νpc 6= νSAW.2–8

Note that the percolation cluster itself is a fractal with fractal dimension

dependent on the space dimension d.

To date there do not exist many works dedicated to Monte Carlo (MC)

simulations of our problem and they do still exhibit some controversies.

Early MC studies of SAW statistics on disordered (diluted) lattices at the

percolation threshold indicate the rather surprising result that in two di-
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mensions the critical exponent νpc is not different from the pure lattice

value. Later, some numerical uncertainties were corrected and the value for

νpc found in two dimensions is in a new universality class. This result has

been confirmed in a more accurate study by Grassberger.3 In the case of

three and four dimensions, there also exist estimates indicating a new uni-

versality class,2 but no satisfactory numerical values have been obtained so

far.

Here we use the pruned-enriched Rosenbluth method (PERM) for grow-

ing chains, based on the original Rosenbluth-Rosenbluth (RR) algorithm9

combined with enrichment strategies. PERM suppresses the weight fluctua-

tions of the growing chain by pruning configurations with too small weights,

and by enriching the sample with copies of high-weight configurations.10

This is performed by choosing thresholds W<
n and W>

n depending on the

estimate of the partition sums of n-monomer chains. If the current weight

Wn of an n-monomer chain is less than W<
n , this low-weight chain is pruned

with probability 1/2, otherwise it is kept and its weight is doubled. If Wn

exceeds W>
n , the configuration is doubled and the weight of each copy is

taken as half the original weight. For updating the threshold values we ap-

ply similar rules as in Ref. 11: W>
n = C(Zn/Z1)(cn/c1)

2 and W<
n = 0.2W>

n ,

where cn denotes the number of created chains having length n, and the

parameter C controls the pruning-enrichment statistics.

Studying properties of percolative lattices, one encounters two possible

statistical averages. In the first one considers only incipient percolation

clusters, whereas the other statistical ensemble includes all the clusters

which can be found on a percolative lattice. For the ensemble of all clusters,

the SAW can start on any of the clusters, and for a N -step SAW, performed

on the ith cluster, we have 〈R2〉 ∼ l2i , where li is the average size of the

ith cluster. In what follows, we will be interested in the former case, that

is, we perform averaging on the backbone of the percolation cluster which

is defined as follows. Assume that each bond (or site) of the cluster is a

resistor and that an external potential drop is applied at two ends of the

cluster. The backbone is the subset of the cluster consisting of all bonds (or

sites) through which the current flows, i.e., it is the structure left when all

“dangling ends” are eliminated from the cluster.

To extract the backbone of the percolation cluster, we use the algorithm

first introduced in Ref. 14. As starting point we choose the “seed” of the

cluster, and apply the PERM algorithm, taking into account, that a SAW

can have its steps only on the sites belonging to the cluster. Final results are

found by averaging over all generated clusters, i.e., over different realizations
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Table 1. The exponent νpc for a SAW on a percolation cluster. MC: Monte Carlo
simulations, EE: exact enumerations, RG: field-theoretic renormalization group. The
first line shows νSAW for SAWs on the regular lattice (d=2 (Ref. 12), d=3 (Ref. 13)).

d 2 3 4 5 6

νSAW 3/4 0.5882(11) 1/2 1/2 1/2

EE Ref. 5 0.770(5) 0.660(5)
Ref. 6 0.778(15) 0.66(1)

RG Ref. 7 0.785 0.678 0.595 0.536 1/2

MC Ref. 2 0.77(1)
Ref. 3 0.783(3)

our results 0.782 ± 0.003 0.667 ± 0.003 0.586 ± 0.003

of disorder. That is, the case of so-called “quenched disorder” is considered,

where the average over different realizations of disorder is taken after the

configurational average has been performed. We use lattices of size up to

Lmax = 300, 200, 50 in d = 2, 3, 4, respectively, and performed averages over

1000 clusters in each case.

To estimate critical exponents, a linear extrapolation with lower cutoff

for the number of steps Nmin is used. The results of fitting the data for

〈r(N)〉 with r ≡
√
R2 on the backbone of percolation clusters are presented

in Table 1. Note, that in percolation theory the upper critical dimension

is dc = 6, and thus our result for the exponent νpc in d = 4 dimensions is

non-trivial.

Since we can only construct lattices of a finite size L, it is not possible to

perform very long SAWs on it. For each L, the scaling (1) holds only up to

some “marginal” number of SAW steps Nmarg, as is shown in Fig. 1(a). Let

us assume that Nmarg ∼ Lω, and that for a SAW confined inside a lattice

of size L finite-size scaling holds:

〈r〉 ∼ Nνg(
N

Lω
), (2)

where g(x) = const when N ≪ Lω so that Eq. (1) is recovered. The

crossover occurs at 〈r〉 ∼ L,N = Nmarg, which leads to ω = 1/ν.

Having estimated values for the critical exponent νpc , we can proceed

with testing the finite-size scaling assumption (2): the data for different

lattice sizes L collapse indeed onto a single curve if we have found the

correct values for the critical exponents, as is demonstrated in Fig. 1(b).

To conclude, we obtained numerical estimates for exponents governing

the configurational properties of SAWs on diluted lattices at the percolation

threshold in d = 2, 3, 4. The statistical averaging was performed on the

backbone of the incipient percolation cluster. The results obtained describe
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Fig. 1. (a) Mean squared end-to-end distance vs number of steps on a double logarithmic
scale for SAWs on the backbone of percolation clusters in d = 2. The lattice size L
increases from below: L = 50, 80, 100, 150, 200. (b) The scaling function g(N/Lω) =
N−ν〈r〉 as a function of its argument at data collapse for three different lattice sizes
L = 100, 150, 200.

scaling of SAWs in a new universality class.
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It is shown that superpositions of path integrals with arbitrary Hamilto-
nians and different scaling parameters v (“variances”) obey the Chapman-
Kolmogorov relation for Markovian processes if and only if the corresponding
smearing distributions for v have a specific functional form. Ensuing“smearing”
distributions substantially simplify the coupled system of Fokker-Planck equa-
tions for smeared and unsmeared conditional probabilities. Simple application
in financial models with stochastic volatility is presented.
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1. Introduction

One often encounters in practical applications probabilities formulated as

a superposition (or “smearing”) of path integrals (PI) of the form

P (xb, tb|xa, ta) =

∫ ∞

0

dv ω(v, tba)

∫ x(tb)=xb

x(ta)=xa

DxDp e
R tb
ta

dτ(ipẋ−vH(p,x)). (1)

Here ω(v, tba) is some positive, continuous and normalizable function on

R+× R+ with tba = tb − ta being the time difference. Examples of (1) can

be found in financial markets,1,2 in polymer physics,1,3 in superstatistics,4,5

etc.

Whenever a smeared PI fulfills the Chapman-Kolmogorov equation

(CKE) for continuous Markovian processes, the Feynman-Kac formula

guarantees that such a superposition itself can be written as PI, i.e.

P (xb, tb|xa, ta) =

∫ x(tb)=xb

x(ta)=xa

DxDp e
R tb
ta

dτ(ipẋ−H̄(p,x)) . (2)
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The new Hamiltonian H̄ typically depends on first few momenta of ω(v, t).

Under normal circumstances, the smeared PI does not saturate CKE

for Markovian processes, in fact, ad hoc choices of smearing distributions

typically introduce memory into a dynamics. Our goal here will be to isolate

the general class of continuous smearing distributions that conserve CKE.

In Ref. 7 we have shown that ensuing distributions have important applica-

tions in evaluations of PI or in simplifications of the associated stochastic

differential equations. In this note we shall briefly present the latter ap-

plication. On the way we also mention a simple implication in economical

models with stochastic volatility.

2. Most General Class of Smearing Distributions

We look for ω(v, t) fulfilling CKE for any intermediate time tc:

P (xb, tb|xa, ta) =

∫ ∞

−∞
dxP (xb, tb|x, tc)P (x, tc|xa, ta) . (3)

It can be shown7 that Eq. (3) is fulfilled only when the integral equation
∫ z

0

dz′ ω(z′, t) aω

(
a(z − z′),

t

a

)
= b ω

(
bz,

t

b

)
, (4)

(a, b ∈ R+ and 1+1/a = 1/b) holds. By defining the Laplace image function

ω̃ as

ω̃(ξ, t) =

∫ ∞

0

dz e−ξzω(z, t), Re ξ > 0 , (5)

Eq. (4) can be equivalently formulated as the functional equation for ω̃

ω̃(ξ, t) ω̃

(
ξ

a
,
t

a

)
= ω̃

(
ξ

b
,
t

b

)
. (6)

Assumed normalizability and positivity of ω(v, t) implies that smearing

distributions are always Laplace transformable. After setting α = 1/a we

get

ω̃(ξ, t) ω̃(αξ, αt) = ω̃(ξ + αξ, t+ αt) . (7)

This equation can be solved by iterations. An explicit general solution of

Eq. (7) was found in Ref. 7 and it reads

ω̃(ξ, t) =

{
[G(ξ/t)]t, when t 6= 0 ,

κξ, when t = 0 .
(8)
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G(x) is an arbitrary continuous function of x. Constant κ is determined

through the initial-time value of ω(v, t). In particular, t → 0 solution (cf.,

Eq. (8)) gives

lim
τ→0

ω(v, τ) = θ(v + log κ)δ(v + log κ) = δ+(v + log κ) . (9)

Let us also notice that (7) implies ω̃(ζ, τ) > 0 for all τ and ζ which gives

G(x) > 0 for all x. This allows us to write

[G(ζ/τ)]τ = e−F (ζ/τ)τ . (10)

Here F (x) is some continuous function of x. Final ω(v, t) can be obtained via

real Laplace’s inverse transformation known as Post’s inversion formula:6

ω(v, t) = lim
k→∞

(−1)k

k!

(
k

v

)k+1
∂kω̃(x, t)

∂xk

∣∣∣∣
x=k/v

. (11)

Real inverse transform (11) is essential because the solution of the functional

equation (7) was found only for real variables in ω̃(ξ, t). In fact, complex

functional equations are notoriously difficult to solve.

We finally point out that the result (8) is true also in the case when

vH(p, x) = vH1(p, x) +H2(p, x), such that [H1, H2] = 0.

3. Explicit Form of H̄

To find H̄ we use Post’s formula (11) which directly gives

P (xb, tb;xa, ta)

= − lim
k→∞

∫ ∞

0

dx
(−x)k−1

(k − 1)!

∂kω̃(x, t)

∂xk

∫ x(tb)=xb

x(ta)=xa

DxDp e
R tb
ta

dτ (ipẋ−kH/x)

=

∫ x(tb)=xb

x(ta)=xa

DxDp
[∫ ∞

0

dy ω(y, t) e−y
R tb
ta

dτH

]
ei

R tb
ta

dτ pẋ

=

∫ x(tb)=xb

x(ta)=xa

DxDp e
R tb
ta

dτ (ipẋ−F (H)) . (12)

In passing from second to third line we have used the asymptotic expansion

of the modified Bessel function Kk(
√
kx) for large k. On the last line we

have utilized the definition of the Laplace image. Result (12) thus allows to

identify H̄ with F (H). Let us finally mention that the normalization

1 =

∫ ∞

0

dv ω(v, t) = ω̃(0, t) (13)

implies that F (0) = 0.
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4. Kramers-Moyal Expansion for ω(v, t)

Let us now mention a simple application in stochastic processes. To this

end we notice that both P (xb, tb|xa, ta) and

Pv(xb, tb|xa, ta) ≡
∫ x(tb)=xb

x(ta)=xa

DxDp e
R tb
ta

dτ(ipẋ−vH), (14)

fulfil CKE, so they can be alternatively evaluated by solving Kramers-

Moyal’s (KM) equations:1,8

∂

∂tb
P (xb, tb|xa, ta) = LKM P (xb, tb|xa, ta) , (15)

∂

∂tb
Pv(xb, tb|xa, ta) = L

v
KM Pv(xb, tb|xa, ta) , (16)

where the KM operator LKM is

LKM =

∞∑

n=1

(
− ∂

∂xb

)n
D(n)(xb, tb) , (17)

and similarly for LvKM . The coefficients D(n) and D
(n)
v are defined through

the corresponding short-time transitional probabilities, so e.g., D
(n)
v (x, t) is

D(n)
v (x, t) =

1

n!
lim
τ→0

1

τ

∫ ∞

−∞
dy (y − x)nPv(y, t+ τ |x, t) . (18)

Equation (16) can be cast into an equivalent (and more convenient) system

of equations. For this we rewrite (4) as

ω(z, t) =

∫ ∞

0

dz′ ω(z′, t′)Pω(z, t|z′, t′) , (19)

with the conditional probability

Pω(z, t|z′, t′) =
t

t− t′
θ(tz − t′z′)ω

(
tz − t′z′

t− t′
, t− t′

)
,

∫ ∞

0

dz Pω(z, t|z′, t′) = 1 , lim
τ→0

Pω(z, t+ τ |z′, t) = δ+(z − z′) . (20)

Equations (19) and (20) ensure that the transition probability Pω(z, t|z′, t′)
obeys CKE for a Markovian process. Since the process is Markovian, we can

define KM coefficients K(n) in the usual way as

K(n)(v, t) = lim
τ→0

1

n!τ

∫ ∞

−∞
dx (x− v)nPω(x, t+ τ |v, t) . (21)
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From ensuing CKE for a short-time transition probability one may directly

write down the KM equation for ω(v, tba)

∂

∂tba
ω(v, tba) = L

(ω)
KM ω(v, tba) , L

(ω)
KM =

∞∑

n=1

(
− ∂

∂v

)n
K(n)(v, tba) . (22)

In cases when both (16) and (22) are naturally or artificially truncated at

n = 2 one gets two coupled Fokker-Planck equations

∂

∂t
ω(v, t) = L

(ω)
FP ω(v, t),

∂

∂tb
Pv(xb, tb|xa, ta) = L

v
FP Pv(xb, tb|xa, ta), (23)

L
(ω)
FP = L

(ω)
KM (n = 1, 2) , L

v
FP = L

v
KM (n = 1, 2) .

On the level of sample paths the system (23) is represented by two coupled

Itō’s stochastic differential equations

dxb = D(1)
v (xb, tb) dtb +

√
2D

(2)
v (xb, tb) dW1 ,

dv = K(1)(v, tba) dtba +
√

2K(2)(v, tba) dW2 . (24)

Here W1(tb) and W2(tba) are respective Wiener processes.

5. Economical Models with Stochastic Volatility

Note that in (24) the dynamics of the variance v is explicitly separated

from the dynamics of xb. This is a desirable starting point, for instance, in

option pricing models.1 As a simple illustration we discuss the stochastic

volatility model presented in Ref. 2. To this end take G to be

G(x) =

(
b

x+ b

)c
, b ∈ R

+; c ∈ R
+
0 . (25)

This gives

ω̃(ζ, t) =

(
bt

ζ + bt

)ct
⇒ ω(v, t) =

(bt)ctvct−1

Γ(ct)
e−btv . (26)

F (0) = 0 as it should. Distribution (26) corresponds to the Gamma distri-

bution2,9 fbt,ct(v). The Hamiltonian H̄ associated with (26) reads

H̄(p, x) = v̄b log

(
H(p, x)

b
+ 1

)
, (27)

where v̄ = c/b is the mean of ω(v, t). As H we use the Hamiltonian from

Refs. 1,2 which has the form p2/2+ip(r/v−1/2), r is a constant. This choice

ensures that Pv(xb, tb|xa, ta) represents a riskfree martingale distribution.1

Full discussion of this model without truncation is presented in Ref. 2.
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We consider here the truncated-level description that is epitomized by

Itō’s stochastic equations (24). The corresponding drift and diffusion coef-

ficients D
(1)
v and D

(2)
v are then (cf. Eq. (18))

D(1)
v (x, tb) =

(
r − v

2

)
, D(2)

v (x, tb) =
v

2
. (28)

For the coefficients K(n) an explicit computation gives

K(1)(v, tba) =
1

tba
(v̄ − v) , K(2)(v, tba) =

1

t2ba

c

2b2
. (29)

Consequently, the Itō’s system takes the form

dxb =
(
r − v

2

)
dtb +

√
v dW1, dv =

1

tba
(v̄ − v) dtba +

1

tba

√
v̄

b
dW2. (30)

Let us now view xb as a logarithm of a stock price S, and v and r as the

corresponding variance and drift. If, in addition, we replace for large tab the

quantity
√
v̄ with

√
v, the systems (30) reduce to

dS = rS dtb +
√
vS dW1 , dv = γ (v̄ − v) dtba + ε

√
v dW2 . (31)

The system of equations (30) corresponds to Heston’s stochastic volatil-

ity model,1,10 with mean-reversion speed γ = 1/tba and volatility ε =

1/(tba
√
b).
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Faculté des Sciences
Université de Buea
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