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Preface

In numerous systems of both living and nonliving nature complex spatio-tem-
poral or functional patterns of self-organization processes are ubiquitous. They
are extremely important in physics, chemistry, biology, medicine, as well as in
the engineering, and even in the social sciences. Over the past several decades
understanding such self-organization processes has not only changed physics,
but has also led to improvements in our daily life. Hermann Haken, who cel-
ebrated his 85th birthday in 2012, is an internationally recognized pioneer in
this respect, having laid the mathematical-physical basis for describing and an-
alyzing self-organization processes with his fundamental theory of Synergetics.
Haken successfully applied synergetic methods to investigate the laser and other
physical systems, as well as in studies on the brain. Since it was founded, this
truly interdisciplinary field has experienced a rapid growth, both in terms of the
mathematical-physical methodology and the success that has been achieved by
applying it to a diversity of different fields of research. On all length scales and in
all areas of human life - from the quantum level right up to the spread of disease
over air traffic junctions - self-organization and complex dynamics behaviour
have turned out to play a key role. A more in-depth understanding of these pro-
cesses will allow the development of diverse methods of control with which we
can attempt to master the complexity of these systems. The potential of practical
applications can certainly be enhanced if the different disciplines share their ad-
vanced and sophisticated methods, as well as their experiences with each other.
Therefore, the International Symposium Self-Organization in Complex Sys-
tems: The Past, Present, and Future of Synergetics was organized at the
Hanse-Wissenschaftskolleg, an Institute of Advanced Studies in Delmenhorst
(Germany), in the period November 13-16, 2012. The Symposium covered the
research field Synergetics as a whole, ranging from basic methods to concrete
applications, by taking advantage of its interdisciplinary impact. Moreover, by
combining a historical review with a present status report the Symposium gave
young scientists an understanding of the allure and potency of this branch of
research as well as its applicability in the future. In total the Symposium had 60
participants from, besides Germany, several European countries and the United
States, among them 22 senior scientists delivering invited talks and 22 junior
scientists presenting poster contributions. The present volume consists of the
material of most of the invited talks as well as a selection from the posters at
this meeting, and is published in the Series Understanding Complex Sys-
tems of the Springer Publishing Company. Additional information about the
Symposium is available at the homepage

http://www-user.rhrk.uni-kl.de/~apelster/Haken/index.html

which contains, in particular, the booklet with abstracts of all contributions, the
slides of the invited talks and a gallery with 260 pictures.
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VIII Preface

The quest for common and universal principles of self-organization in com-
plex systems was clearly demonstrated by the wide range of interdisciplinary
topics covered by the Symposium. At the beginning, complexity in the realm
of classical physics was illustrated by the still open problem of turbulence in
fluids which was presented both from an experimental and a theoretical point of
view by Joachim Peinke and Siegfried Grossmann, respectively. While the former
talk emphasized the present search for stochastic models to describe experimen-
tal data for turbulent and turbulence driven systems, the latter presentation
informed about recent results regarding the flow organization in highly turbu-
lent thermal convection. Another highlight was the investigation of nonlinear
dynamical systems in general and the control of their bifurcations in particular
via noise and time delays, which were covered by Axel Hutt and Eckehard Schöll.
Here the impact of additive noise towards tuning the stability of nonlinear sys-
tems as well as the control of self-organizing complex systems and networks with
time delay were analyzed in detail. This discussion was amplified by the treat-
ment of statistical properties of time-dependent linear and nonlinear oscillators
by Marko Robnik. A historical review of the widespread applications of Syner-
getics in the realm of chemical reactions was delivered by Peter Plath. There the
phenomena of self-organization and pattern formation were crucial, for instance,
for the successful description of oscillating chemical reactions and reactions with
limit-cycle behaviour. Even more complex dynamics were presented by Lisa Bor-
land who addressed the highly topical issue of the physics of finance. Following
the spirit of Synergetics, she showed that time series of financial data exhibit
highly nontrivial statistical properties which can be captured by more or less re-
alistic models. They reveal cooperative effects of collective behaviour which turn
out to lie at the root of many interesting phenomena of the financial markets.

Another branch of complexity was provided by a series of invited talks on
quantum many-body systems. At first, quantum statistical problems were dis-
cussed in the talks by Fritz Haake on quantum chaotic equilibration in the ab-
sence of dissipation and by Günter Mahler on the emerging field of quantum
thermodynamics. Whereas Haake compared the interdependence of classical and
quantum dynamics by means of the concrete paradigmatic example of the Dicke
model, where a large spin is coupled to an oscillator, Mahler focused on the
general philosophical question how a qualitatively different type of behaviour
may systematically emerge from the underlying quantum substrate. Afterwards,
Cun-Zheng Ning reported on the trailblazer of Synergetics by discussing the
spectacular properties of nanolasers and their experimental realization. In par-
ticular, the process of miniaturization recently led to the invention of many
microcavity lasers such as photonic crystal lasers, distributed feedback lasers,
and nanowire lasers with different properties. Another manifestation of light
was introduced by Martin Weitz who reported on the spectacular recent exper-
iment on the Bose-Einstein condensation of photons in a dye-filled microcavity
at room temperature. The cavity mirrors provide both a confining potential and
a non-vanishing effective photon mass, making the system formally equivalent
to a two-dimensional gas of trapped, massive bosons. Inherently nonlinear mat-
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Preface IX

ter waves were then the topics of the subsequent presentations on the theory
of Bose-Einstein condensates. Günter Wunner reported about the possibility to
realize parity-time-symmetric Bose-Einstein condensates in a double-well poten-
tial landscape. Despite the mutual presence of loss and gain stable condensates
emerge which should be observable in an experiment. Quantum phase transitions
of bosons in optical lattices were described by Axel Pelster within a Ginzburg-
Landau theory. Here, the theoretical tools for analyzing non-equilibrium phase
transitions in the realm of Synergetics turned out to be also applicable to the
newly emerging field of phase transitions at zero temperature which are driven
by quantum fluctuations.

An essential part of the Synergetics Symposium was devoted to the flourish-
ing field of self-organization in neuroscience. Most prominently featured the talk
by Hermann Haken, who discussed the brain both as a synergetic and a phys-
ical system. Despite the huge complexity of the brain due to the large number
of neurons and their connections at the microsopic level, several enlightening
neurophysiological experiments can be already understood at the macroscopic
level with the choice of appropriate order parameters. Complementary to that
approach Gerhard Roth described the psychological subject of personality devel-
opment as a process of self-organization in terms of neurophysiology. Spectacular
insights in treating brain diseases based on synergetic principles were described
by Peter Tass. He demonstrated that coordinated reset neuromodulation allows
unlearning pathological neuronal synchrony such as Parkinson’s disease and tin-
nitus. Subsequently, Günter Schiepek demonstrated convincingly that Synerget-
ics has now many indispensable applications in psychology. He reported about
exciting progress in applying the physical concepts of phase transitions and criti-
cal instabilities to psychotherapeutic processes. Afterwards, functional properties
of brain dynamics were modelled both in space and time by synergetic networks
in the presentation by Viktor Jirsa. His workhorse was the connectivity matrix
of the brain whose spatial components are defined by the underlying anatomi-
cal connections, whereas its temporal components are determined by the neural
time delays. Afterwards, Andreas Daffertshofer discussed the related topic of
the dynamics of synchrony and information processing in the nervous system.
To this end he analyzed in detail within a Kuramoto-like network model how
the phase dynamics of coupled neural oscillators depend on the corresponding
amplitude changes. In contrast to that Aneta Stefanovska analyzed organic body
functions with synergetic methods. To this end she introduced the new concept
of a chronotaxic system as a model system far from thermodynamic equilibrium
which adjusts its clocks. Finally, Till Frank transferred the fundamental concepts
for the synergetic computer to the possible emergence of physical intelligence.
He concluded with the statement that the synergetic computer defines a sub-
class of intelligent physical systems with many possible applications in the field
of artificial intelligence.

All these invited talks about the present-day research status of Synergetics
were completed by three historical contributions. At first Hermann Haken de-
livered obituaries for two of his former students and coworkers Arne Wunderlin
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X Preface

and Rudolf Friedrich who had died untimely in 2012. Furthermore, the evening
lecture of Bernd Kröger highlighted the scientific life of Hermann Haken from
different personal angles. Therein, the emphasis was to give special attention to
the roadmap to Synergetics in the period from 1950 to 1983. Another impres-
sive historical retrospect was provided by Cun-Zheng Ning who reflected upon
personal memories how Synergetics was introduced in China. In particular, he
concluded that the gradual spreading of ideas of self-organization in China at the
beginning of the eighties in the last century definitely catalyzed and contributed
to a gradual opening of the scientific China to the western world.

The organizers of the Symposium gratefully acknowledge generous financial
support from the Volkswagen Foundation. In particular, we thank its program
director Ulrike Bischler for her continuous moral support during all stages of
the organization. The purpose of the Symposium to reveal future trends in the
interdisciplinary research field of synergetics fitted perfectly into the general
present-day guidelines of the Volkswagen Foundation. Furthermore, it should
be recalled that the Volkswagen Foundation supported substantially Hermann
Haken’s outstanding research in the past. First, Synergetics was endorsed in its
initial phase as an unconventional project by the Volkswagen Foundation from
1976 until 1980. Afterwards, Hermann Haken was asked by the Volkswagen Foun-
dation to submit a proposal for a priority programme on Synergetics which was
then funded from 1980 until 1990, final projects even expired only in 1991. With
this the Volkswagen Foundation can claim to have contributed a large part of
the financial foundations to the overwhelming scientific success of Synergetics
in the different disciplines. The Symposium at the Hanse-Wissenschaftskolleg
represented also for the Volkswagen Foundation a unique opportunity to re-
flect upon this past success more than 20 years after the synergetics funding
ended, and to extrapolate them to future trends via a careful synopsis of the
present research status. Also to this end the organizers of the Symposium pub-
lish the collected plenary lectures and selected poster contributions in form of the
present Proceedings Book. We thank Thomas Ditzinger from the Springer Pub-
lishing Company for his kind assistance. Finally, we express our deepest gratitude
to the Hanse-Wissenschaftskolleg in Delmenhorst (Germany) which provided a
truly perfect and stimulating environment for such an international and inter-
disciplinary meeting. In particular, we thank the administrator Christina Thiel
and the scientific manager Wolfgang Stenzel for their efficient assistance in all
organizational matters.

Axel Pelster Technische Universität Kaiserslautern (Germany),
Fellow at the Hanse-Wissenschaftskolleg

during the winter terms 2011-12 and 2012-13
Günter Wunner Universität Stuttgart (Germany)
July 2014
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in Highly Turbulent Thermal Convection
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Dedication
Ladies and Gentlemen, dear colleagues and friends, it is with my greatest plea-
sure to address our Nestor and always stimulating academic advisor, Professor
Hermann Haken, with my sincerest congratulations on the occasion of his 85th
birthday. I wish to express my warmest thanks and appreciation for his leader-
ship and his guidance.
Thank you, Hermann, for being our ideal over all the years, kindly accept all
my, all our best wishes for you!

Abstract. Recent surprising results on very large Rayleigh-number ther-
mal convection are presented and discussed. For Rayleigh numbers be-
yond about 1014 the scaling of the Nusselt number as well as the profiles
are determined by turbulent boundary layers, though these are extremely
thin. The theoretical interpretation is well consistent with the experimen-
tal data measured with the high pressure convection facility in Göttingen
by Guenter Ahlers et al.

Keywords: Turbulence, Rayleigh-Bénard, thermal convection, log-layer,
log-profiles, Nusselt-number, scaling

The results which I shall present have been obtained in close cooperation with
the following colleagues: Detlef Lohse, Twente. – Experiment: Guenter Ahlers,
Santa Barbara; Eberhard Bodenschatz, Göttingen; Denis Funfschilling, Nancy;
Xiao-Zhou He, Göttingen; Ke-Qing Xia, Hong Kong; Quan Zhou, Shanghai. –
Direct Numerical Simulation: Erwin van der Poel, Twente; Kazuyazu Sugiyama,
Riken; Richard J. A. M. Stevens, Baltimore and Twente; Roberto Verzicco, Roma
and Twente.

1 Introduction

Turbulent Rayleigh-Bénard convection has been the Drosophila of the physics
of fluids for many decades, starting with the famous analytical calculation of
© Springer International Publishing Switzerland 2016 3
A. Pelster and G. Wunner (eds.), Selforganization in Complex Systems:
The Past, Present, and Future of Synergetics, Understanding Complex Systems,
DOI: 10.1007/978-3-319-27635-9_1
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4 S. Grossmann

the linear instability at the critical Rayleigh number Rac = 1708. The Rayleigh
number is defined as usual, Ra = gβpL

3Δ/(νκ); g is the gravitational acceler-
ation, βp the isobaric expansion coefficient, L the height of the sample, and Δ
the temperature difference between the hotter bottom and the colder top plates;
ν and κ denote the kinematic viscosity and the temperature diffusivity, consid-
ered as temperature independent under present experimental conditions. Over
the last decade experimental, theoretical, and numerical results have converged
up to a Rayleigh number Ra ∼ 1012. – One of the quite unexpected findings
is that even for such large Ra the boundary layers are still of Prandtl-Blasius,
i. e., of laminar type, although time dependent. – In 2001 we had predicted
that the transition to a turbulent boundary layer occurs around Ra = 1014 (for
gases), cf. [1]. Recently Ahlers et al. [2] indeed have experimentally found this
laminar-turbulent transition at this very high Ra. Here due to a sufficiently large
shear in the extremely thin boundary layers these eventually become turbulent,
leading to a much stronger increase of the heat transfer with increasing Ra as
in the laminar, the classical range below this turbulence onset. – In Grossmann
and Lohse [3] we have calculated an effective scaling law Nu ∼ Ra0.38 for this
ultimate regime by extending the unified scaling theory [4], [1], [5], [6], which
determines the scaling behavior of the heat current Nu as well as the thermal
wind amplitude Re as functions of the control parameters Rayleigh and Prandtl
number Ra and Pr. Here the Prandtl number characterizes the fluid, Pr = ν/κ,
Nu = Q/(κΔL−1) describes the non-dimensionalized heat current density Q,
and Re = UL/ν is the non-dimensionalized amplitude U of the convection (or
wind) in the Rayleigh-Bénard container.

2 The Ultimate State of Thermal Convection for Very
Large Rayleigh Numbers

Having explored strong thermal convection as described in the introduction we
now also look at the local flow properties such as the (vertical) temperature
profile. This turns out to show logarithmic dependence with distance z from the
heated bottom and the cooled top plates [7]. This so called law of the wall and its
properties as functions of the control parameters has been derived and analyzed
in [8].

As a previously not yet studied surprise we have noticed the log-law in the
classical regime below O(1014) too, cf. above reference [7], apparently meaning
that a turbulent bulk of thermal flow for Ra beyond the structure formation
regime as observed at lower Ra, can well coexist with still laminar boundary
layers. The notion laminar apparently has to be extended to time dependence
on the gross convective time scale [9].

In the talk some of these self-organized flow structures in strongly driven ther-
mal convection have been detailed together with some overview. The reader, who
is interested in the development which lead to all the recent insight, is referred
to reference [10]. A recent summarizing overview on the experimental details for
the high pressure convection facility, known as the Göttingen Uboot, is provided
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in [11]. The measurement of the wind amplitude U , non-dimensionalized as the
Reynolds number Re = UL/ν, the second important response of the Rayleigh-
Bénard heat flow experiment besides the heat current Nu, is described in [12].
As an overview on Rayleigh-Bénard flow reference [13] is recommended.

Some more details of the talk are: As in most, if not all, laboratory fluid
flows the boundary layers are of utmost importance also in thermal convection.
Although the flow – in particular also in the boundary layers – is time dependent
for not too small Rayleigh numbers Ra, we have learned meanwhile, cf. [9], the
surprising lecture that nevertheless the boundary layers have profile features of
laminar flow; laminar in the sense that they satisfy the Prandtl boundary layer
equations. Thus laminar does not mean time independent!

The validity of the Prandtl boundary layer equations quantitatively means
that the velocity (”kinetic”) boundary layer thickness δ scales with the wind
amplitude U or Re = UL/ν in the container as δ = a/

√
Re. The empirical

constant a in Rayleigh-Bénard flow in containers of width to height ratio (so
called aspect ratio) of order 1 has been found as a = 0.5. Since the wind along
the plates fluctuates locally and temporally in strength, so does δ fluctuate; but
experiment as well as theory have confirmed that on the respective local δ-scale
the profile is excellently of Prandtl-type.

The shear across the boundary layer can be quantified by a shear Reynolds
number Res = Uδ/ν. This then for laminar boundary layers is Res = a

√
Re.

Now, if this boundary layer shear exceeds a certain range of size, say an interval
around some Re∗s, the boundary layer becomes turbulent. Re∗s is not sharp, since
onset of turbulence in shear flow depends on the type of disturbances. Empirical
results for Re∗s for various macroscopic flows give values in the range of about 320
to 420, meaning that Re has to exceed a Re∗ = (Re∗s/a)

2 = 4.1×105−7.1×105.
The wind before transition according to [4] to [6] is Re = 0.346Ra4/9Pr−2/3.
Therefore the onset of turbulence in the boundary layers of thermal flow in
gases, having Pr = 0.84, is expected (and has been predicted cf. [1] !) in the
range Ra∗ = 3.7 × 1013 − 1.3 × 1014. This is well confirmed meanwhile by the
Ahlers et al. experiments.

To give some numbers: The Prandtl boundary layer thickness at turbulence
onset is (using above formulas) δ∗/L = 8 × 10−4 − 6 × 10−4, which in the
Göttingen high pressure convection facility, the Uboot device, of L = 2.24 m
height is δ∗ = 1.8 mm to 1.3 mm, very small indeed. Also after turbulence onset
there is a linear layer in the immediate vicinity of the plates, known as the
linear viscous sublayer, followed – after a transitional buffer range – by the log-
law profile, called the ”law of the wall”. The viscous sublayer width z∗ = ν/u∗ is
determined by the turbulent fluctuation amplitude u∗, defined (and measured)
by the kinematic shear stress or drag at the wall (plate).

u2
∗ = σxz(0) = pxz(0)/ρ = ν∂zUx(0) . (1)

The turbulent fluctuation amplitude u∗ is the key quantity for turbulent flows.
E. g., u2

∗/U
2 is the friction coefficient; u∗ also determines the turbulent transport

coefficients νturb = κ̄zu∗ and κturb = κ̄θzu∗ as well as the local turbulent dissi-
pation rate εu(z) = u3∗/(κ̄z). The empirical constant κ̄ is called the von Kármán
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6 S. Grossmann

constant, whose value in many flows is κ̄ = 0.4. – We have calculated u∗ in [3]
for a homogeneous plate to be the solution of the transcendental equation

u∗
U

=
κ̄

ln(Reu∗
U

1
b )

. (2)

Here Bu = κ̄−1ln(b−1) is called the profile constant of the log-law of the wall.
– Calculating from this equation the thickness of the linear sublayer we obtain
that z∗/L is of order 0.5 × 10−4 and thus an order of magnitude smaller than
the laminar Prandtl width δ. In particular in the high Ra Uboot device it is
z∗ ≈ 0.11mm.

The measured profile, see [7], i. e., the log-law of the wall, can be parametrized
in the form

〈T (z)〉 − Tm

Δ
= A · ln

( z
L

)
+B , (3)

with Tm the arithmetic mean temperature between the bottom and top plates.
This profile in vertical, z direction has been measured at about 10.1 cm off the
side wall. Direct numerical simulations allow to calculate the profile also for
all other wall distances but yet for smaller Ra, up to O(1013). In [8] we have
succeeded to evaluate the parameters A and B = ln2 · A and find

A = − κ

κ̄θ

Nu

u∗L
≈ − 1

2κ̄

u∗
U
≈ −0.038 . (4)

A depends on Ra very weakly only, A ∝ Ra−0.043, and it depends on the distance
r from the wall center, its magnitude |A| increasing with distance r. We explain
this by the decrease of the plate parallel velocity component U=̂Ux(r) with
distance r from center; this interpretation is quantitatively well consistent with
the experimental data.

All these theoretical results originate from a Reynolds stress plus mixing
length ansatz in the time averaged Boussinesq equation, as detailed in [8]. The
main issue is u′θ′ ≈ −κturb(z)∂zθ. Surprisingly enough the numerical values of
the characteristic parameters as κ̄ and Bu are rather near to those, which have
been determined for flows along plates, in channels, and through pipes.

As I have demonstrated, there is quite a lot of exciting and surprising new
insight into thermal convection at very large Rayleigh numbers Ra and its flow
organization, but still much more has to be explored.
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Abstract. The work illustrates a recent analysis technique that demon-
strates that external periodic input affects the stability of the time-
averaged nonlinear dynamics of a delayed system. At first, the article
introduces the fundamental elements of delayed differential equations
and then applies these to a nonlinear delayed problem close to a trans-
critical bifurcation. We observe a shift of stability in the system induced
by the fast periodic driving.

Keywords: slaving principle, center manifold theorem, delay equations,
bifurcation theory

1 Introduction

Self-interactions are one of the fundamental components of complex systems.
The consideration of these reentrant contributions, oftentimes exhibiting some
form of latency or delay, play an important role in numerous areas of research
(lasers, machining, chemistry, control), especially in models of biological sys-
tems. As such, over the last decades, retarded dynamical systems have been
used to successfully describe physiological systems like the eye light pupil re-
flex [1], blood circulation [2] or postural motor control [3]. The influence of
time lags is also ubiquitous in neuroscience, where various feedback loops have
been exposed throughout neural circuitry. It has indeed been shown that delays
play many important functional roles in neural systems and constitute one of the
main mechanism underlying network synchronization and spatio-temporal activ-
ity patterns [4–7]. Over the past years, the question as to how spatio-temporal
forcing interacts with retarded dynamics has received a vivid interest. The exact
function of delays in the integration of temporally fluctuating temporal signals
is still unknown, mainly because of the lack of tools the dynamical systems
theory provides for the study of the stability of non-homogeneous and/or non-
autonomous problems.
© Springer International Publishing Switzerland 2016 8
A. Pelster and G. Wunner (eds.), Selforganization in Complex Systems:
The Past, Present, and Future of Synergetics, Understanding Complex Systems,
DOI: 10.1007/978-3-319-27635-9_2
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The center manifold theorem and the slaving principle have proven to be pow-
erful tools in this task, and since then they have been successfully applied to
many non-driven delayed problems [8–13]. The slaving principle may be seen as
the physical equivalent, i.e. the representation in nature, of the major statement
of the center manifold theorem. In this context, the center manifold theorem
represents a promising candidate in the approach of the non-autonomous cases.
However, the question whether the center manifold theorem may be extended to
non-autonomous, i.e. forced, delayed problems is currently left poorly addressed.
They are indeed indications that center manifolds do exist in infinite dimensional
non-autonomous dynamical systems [14]. Furthermore, stochastic center man-
ifold theory has been established in non-delayed noisy systems [15–17], and a
similar approach has been used in the numerical analysis of non-linear ODEs,
subject of time-dependent forcing, providing accurate results. However, as the
need to analyse forced system arises, it is still unfortunately unclear how to ap-
ply and compute center manifolds for non-autonomous delayed feedback systems
and to expose the underlying mechanism by which the unstable modes govern
the dynamics. A solution to this problem would greatly enhance the possibilities
of theoretical analysis of delayed systems, of prime importance in mathematical
neuroscience and related fields.

In the following, we present a method that allows to compute center manifolds
of delayed system with time-dependent driving. We first outline the fundamental
elements of delay-differential equations and the corresponding center manifold
reduction in delayed systems, summarizing the detailed discussions of [18, 10,
19–21]. We then present results for a periodically driven delayed model with
quadratic non-linearity, and show that it describes accuratly the dynamics near
a transcritical instability.

2 General treatment of autonomous DDEs

Consider the general autonomous scalar delay differential equation,

ẋ(t) = f(x(t), x(t − τ)) = L({x(t), x(t − τ)}) + F ({x(t), x(t − τ)}), (1)

where L is a linear function with L(0)=0, and where F is a non linear and
sufficiently smooth function, satisfying F (0) = DF (0) = 0. Both linear and non-
linear parts of this system may contain delayed components. In the following,
we will consider the control parameter ε and investigate the stability of Eq.(1)
unfolded around the point ε = 0. It will prove convenient to work with the
augmented system

ẋ(t) = f(x(t), x(t − τ), ε) = L(x(t), x(t − τ), ε) + F (x(t), x(t − τ)ε). (2)

dε

dt
= 0.

This allows to take immediately into account the role played by the parameters
in subsequent derivations.
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10 A. Hutt and J. Lefebvre

2.1 The embedding

In order to consider solutions x(t) of Eq. (1) for t ≥ 0, one needs a complete
description of initial value problem, corresponding to the retarded dynamics into
the interval [−τ, 0]. This criterion implies that the map from the interval [−τ, 0]
into R is not injective. Consequently, the system of Eq. (1) has ill-defined initial
conditions, and uniqueness of solutions is not guaranteed [10]. It is therefore
imperative to consider Eq. (1) in an appropriate phase space which would ensure
its self-consistency. To take into account the continuous dependence of the flow
x(t) on the retarded dynamics, we introduce the parameter θ with −τ ≤ θ ≤ 0
and the new variable zt(θ) ∈ �2, so that

zt(θ) ≡ (x(t+ θ), ε)T . (3)

Based on this definition, an appropriate phase space can be shown to be the
Banach space of continuous maps C ≡ C([−τ, 0],R× R) [10, 21]. Reformulating
Eq.(1) to take into account the continuous dependence of the flow on θ, we
formally obtain

[
dx(t + θ)

dt
,
dε

dt
]T =

d

dt
zt(θ) ≡ lim

δt→0

(zt(θ + δt))− zt(θ)

δt
, (4)

where we will distinguish instantaneous and retarded dynamics. For −τ ≤ θ < 0,
expanding around δt = 0 to first order yields [10]

d

dt
zt(θ) = lim

δt→0

zt(θ) +
∂zt(θ)
∂(θ) δt− zt(θ)

δt
=

∂zt(θ)

∂θ
. (5)

On the other hand, if θ = 0, we simply get

d

dt
zt(0) = (

dx(t)

dt
,
dε

dt
)T = (f(x(t), x(t − τ)), 0)T = (L[zt] + F [zt], 0)

T . (6)

It is important to note that L[zt] and F [zt] are functionals. For instance, L[zt]
may be written as [10]

L[zt] =

∫ 0

−τ

zt(θ)ω(θ)zt(θ)dθ =

∫ 0

−τ

dη[θ]zt(θ), (7)

with the density function ω(θ). For the scalar DDE and a single parameter, ω(θ)
is a 2x2-matrix.

We may conveniently summarize these specific cases by writing the system
of Eq. (1) in C as a infinite dimensional ODE,

d

dt
zt(θ) = A(zt(θ)) +XoF [zt(θ)], (8)

where the infinitesimal generator A is defined by [10]

A(zt(θ)) ≡
∂zt(θ)

∂θ
+Xo(L[zt]−

∂zt(θ)

∂θ
|θ=0]. (9)
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The connection function Xo(θ) allows the simultaneous treatment of the cases
τ ≤ θ < 0 and θ = 0. It is defined ad hoc by

Xo(θ) =

{
0 −τ ≤ θ < 0

I θ = 0.

Hence, the dynamics of (x(t + θ), ε)T = zt(θ) is governed by the infinite di-
mensional ODE in Eq. (8) appropriately defined in C and parameterized by θ.

2.2 Spectral analysis

Let us investigate the spectrum σ(A) of the linear operator A taken from Eq.(9).
To this end, we consider the linearized problem of Eq. (8)

d

dt
zt(θ) = A(zt(θ)). (10)

Substituting the ansatz zt(θ) = φ(θ)eλt at θ = 0 yields the eigenvalue problem,

L[zt]− λzt(0) = (L[zt]− λI)φ(0) ≡ Δ(λ)φ(0) = 0. (11)

Here φ(θ) is the eigenvector associated with the Lyapunov exponent λ. The
spectrum of A is defined by σ(A) = {λ ∈ C|Δ(λ) = 0}. For −τ ≤ θ < 0, we
obtain an ODE on θ that defines the eigenvectors

λφ(θ)eλt = φ′(θ)eλt, (12)

where φ′(θ) denotes the derivative of φ with respect to θ.

A solution of Eq.(12) is φ(θ) = φ(0)eλθ. Hence, for all the eigenvalues λi ∈ σ(A),
one finds an associated eigenvector φi(θ), which constitutes a basis Φ(θ) =
[φ1(θ), φ2(θ), ...]. This basis spans C, and as such, we can choose to write any
state vector v ∈ C in terms of the eigenbasis of A.

However, it is possible that the basis Φ is neither orthogonal or normalized.
Thus, consider the adjoint basis Ψ †(s) = [ψ†

1(s), ψ
†
2(s), ...] where ψ

†
i (s) are eigen-

vectors of the adjoint linear problem

d

dt
yt(s) = A†(yt)) = −A(yt) =

{
−∂yt(s)

∂s 0 > s ≥ τ

−L[yt] s = 0.
(13)

Note that the adjoint problem of Eq.(10) is found to be the foward problem,
with t→ −t [18, 10]. To ensure the bi-orthonormality of the eigenbases of A and
A†, we further normalize the adjoint basis by

Ψ(θ) = (Ψ †(θ), Φ(θ))−1
Ψ †(θ), (14)
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where we introduce the bilinear form operator ( , ) in C, defined by

(a(θ), b(θ)) ≡ a(0)b(0)−
∫ θ

0

dθ′
∫ 0

−ξ

dξ[dη(θ′)]a(ξ − θ′)b(ξ), (15)

with the measure dη′(θ) defined in Eq. (7). This bi-linear form is playing the role
of the dot product in the space of functions. Normalizing the eigenbases provides

(Ψ, Φ)(θ) = I.

Considering the previous results, an arbitrary state vector v = v(θ) can be
expressed in terms of the eigenbasis of (10) as

v(θ) = Φ(θ)(Ψ(θ), v(θ)).

2.3 Phase space decomposition and subspace dynamics

A well chosen decomposition of the spectrum can play a fundamental role char-
acterizing instabilities of Eq. (8). Indeed, in the vicinity of an instability, we
might assume, without loss of generality, that a finite number of Lyapunov ex-
ponents cross the imaginary axis while changing a control parameter and all
other exponents are bounded to the left-hand plane. These bifurcating, or un-
stable exponents near the transition point introduce a very slow time scale,
while the stable components relax much faster to their steady state. As a conse-
quence, after a sufficiently long time, the dynamics of the system is essentially
determined by the slow unstable modes: this is the essence of the slaving prin-
ciple [12]. Indeed, one can choose σU (A) ≡ {λ ∈ C|Re(λ) = 0} which leads
to C = U + S, where S = U . The space U is the eigenspace spanned by the
eigenvectors associated with unstable Lyapunov exponents. These eigenvectors
constitute a basis of U , namely ΦU (θ) ⊂ Φ(θ). This implies that there exists a
complementary subspace S, spanned by ΦS , associated with stable Lyapunov
exponents i.e. σS(A) ≡ {λ ∈ C|Re(λ) < 0}. Here, we label U the subspace
spanned by the unstable eigenmodes i.e. for which the eigenvalue have a zero
real part, which is analogous to the center subspace, but only the terminology
differ. Following the discussion in the previous section, one can project the state
vector zt(θ) governed by (8) with respect to the unstable basis ΦU (θ),

Ut(θ) = ΦU (θ)(ΨU(θ), zt(θ)) = ΦU (θ)(u(t), ε)T , (16)

where (u(t), ε)T = (ΨU(θ), zt(θ)) is a vector containing the expansion ampli-
tudes of zt(θ) with respect to the unstable eigenbasis ΦU (θ). According to this
phase space decomposition, the state vector zt(θ) may be separated into two
disjoint elements, its stable and unstable components in S and U , respectively.
Consequently we can write zt(θ) = Ut(θ) + st(θ), where

st(θ) = zt(θ)− ΦU (θ)(ΨU (θ), zt(θ)) ≡ ΦS(θ)(ΨS(θ), zt(θ)). (17)
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Following this separation, we can project the dynamics of Eq.(3) in S and U , by
applying the projector (16) to Eq.(8), to obtain

ΦU (θ)(ΨU(θ),
d

dt
zt(θ)) = ΦU (θ)(ΨU (θ),A(zt(θ)))

+ ΦU (θ)(ΨU (θ), XoF [zt]). (18)

Using the linearity of the bilinear form Eq.(15), the left hand side is just

ΦU (θ)(ΨU (θ),
d

dt
zt(θ)) =

d

dt
ΦU (θ)(ΨU(θ), zt(θ)) (19)

≡ d

dt
Ut(θ). (20)

The projection of the linear operator A is simply

ΦU (θ)(ΨU(θ),A(zt(θ))) = ΦU(θ)(ΨU (θ),A(Ut(θ))) + ΦU (θ)(ΨU (θ),A(st(θ))).

Then, we find with Eq.(11),

ΦU (θ)(ΨU(θ),A(Ut(θ))) = ΦU (θ)(ΨU (θ), ΛUUt(θ))), (21)

where ΛU is a diagonal matrix with entries being the elements of σU (A).

Computing the term ΦU (θ)(ΨU(θ),A(st(θ))) uses the biorthonormality of the
stable and unstable eigenbases. In the same spirit as in the case of the stable
mode projection in equation Eq.(16), the stable component st(θ) ∈ S of the
state vector zt(θ) may be written with respect to the eigenbasis of S,

St(θ) = ΦS(θ)(ΨS(θ), zt(θ)). (22)

Using this fact, along with (ΨU ,ΦS) = 0 yields

ΦU (θ)(ΨU (θ),A(st(θ))) = 0. (23)

Thus, grouping the projection over the elements in U and S in Eq.(21) and
Eq.(23) gives the projected linear component of Eq.(8)

ΦU (θ)(ΨU(θ),A(zt(θ))) = ΦU (θ)(ΨU (θ), ΛUUt(θ))) = ΛUUt(θ). (24)

The projection over the non-linear component XoF [zt] of Eq.(8) is computed
from Eq.(15), and reads

ΦU (θ)(ΨU (θ), XoF [zt]) = ΦU (θ)ΨU (0)F [zt]. (25)

Thus, combining Eq. (24) and Eq. (25) for zt(θ) = ΦU (θ)(u(t), ε)T +st(θ), yields
the dynamics of the unstable modes of Eq. (3)

U � du(t)

dt
= ΛUu(t) + ΨU(0)F [ΦUu(t) + st(θ)] (26)

U � dε

dt
= 0.
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Using the same approach, we apply the operator (I − ΦU (θ)(ΨU(θ), · ) to the
state vector zt(θ) of Eq. (8) to obtain the complementary dynamics of the stable
modes in S

S � d

dt
st(θ) = A(st(θ)) + (Xo − ΦU (θ)ΨU (0))F [ΦUu(t) + st]. (27)

2.4 The time-independent center manifold reduction

The manipulations described above can be seen as a procedure first identifying
the stable and unstable manifolds, and secondly writing down the dynamics of
Eq.(1) in U and S explicitly. The key idea behind this projection is first that one
can reduce the dynamics of the infinite dimensional system in Eq. (8) onto the
finite dimensional center eigenspace in Eq.(26) by applying the center manifold
theorem, and second to get rid of delays. It provides a useful analysis platform
on which one can investigate dynamic instabilities using the standard tools of
linear analysis of ODEs.

Bifurcations are characterized by unstable Lyapunov exponents (i.e. exhibiting a
zero-real part), or equivalently by a non-empty unstable eigenspace. The precise
point in parameter space where σU (A) �= ∅ is called the instability threshold, and
can be quantitatively described by maxε Re(λ) = 0|λ ∈ σ(A). When this critical
point is reached, the center manifold theorem applies, and the stable modes in
S are slaved by the dynamics of the unstable modes in U [12]. Then

st(θ) = h(θ, u(t), ε), (28)

holds true. Consequently, the unstable modes are further described by the order
parameter equation (OPE)

du

dt
= ΛUu+ ΨU (0)F [Φu+ h(u)]. (29)

While in the vicinity of an instability and given that the functional h(u) is known,
this system captures the dynamics of Eq.(1) entirely. Delayed components are not
present anymore, and the dimensionality of this representation is finite, making
the OPE very useful in the treatment of non linear DDEs. Most importantly, it
is possible to reconstruct the flow x(t) of the original delayed system of Eq.(1)
solely from the unstable modes by

xr(t) = ΦU (0)u(t) + h(0, u(t), ε). (30)

Although the center manifold theorem ensures that the functional h(θ, u(t), ε)
exists, it is typically not unique and usually challenging to compute explicitly.
Such a derivation is often realized using algebraic manipulation softwares, and
other methods [20, 19].
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The reconstructed flow of xr(t) converges to the original flow x(t) as the mani-
fold h(θ, u) gets closer to its exact form. Since ds/dt = Duh(u)(du(t)/dt) from
Eq.(28), the center manifold satisfies the implicit relationship

Duh(θ, u, ε)[Λu + ΨU (0)F [Φu+ h(u)] =

A(h(u)) + (Xo − ΦU (θ)ΨU (0))F [ΦUu+ h(u)] , (31)

taking into account Eqs. (26) and (27). Here Du denotes the partial derivative
with respect to u.

A typical ansatz to compute h(θ, u, ε) is a polynomial expansion in powers of
u and the control parameter ε. Then sorting the terms by orders of ε and u
yields a set of first order linear differential equations in each of the polynomial
coefficients for −τ ≤ θ < 0. The initial conditions of these are fixed by solving
Eq.(31) for θ = 0. The dimensionality of the differential equations in each the
coefficients is the same as the codimension of the bifurcation considered. With
this ansatz, one can compute h up to any desired accuracy, by computing higher
orders coefficients in the expansion and , hence, make xr(t) as close as desired
to x(t). However, for most applications an expansion to low order is sufficient.

2.5 The time-dependent center manifold reduction

Now consider the non-autonomous DDE

ẋ(t) = f(x(t), x(t− τ), t) = L({x(t), x(t− τ)})+F ({x(t), x(t− τ)})+ I(t). (32)

Equation (32) is a non-autonomous delay-differential equation and it is a chal-
lenging problem to find conditions for its stability. Close to a bifurcation point,
the analysis of such DDEs has attracted increasing attention in the last years, e.g.
considering more general [18, 22], deterministic [23, 24] or stochastic forces [25,
26]. The approach discussed in the previous sections cannot, formally, be used
since the origin is no longer a fixed point and the eigenbases definition and asso-
ciated phase space decomposition are not valid anymore. In addition, by virtue
of the new time scales introduced by the external input, it is more difficult to
identify separate time scales which is necessary in the center manifold technique.

However, when the driving I(t) is small and fast compared to the relatively slow
unstable modes, one may consider the fixed point of the autonomous system of
Eq. (1) for the analysis of Eq. (32). This step is reasonable since previous stud-
ies on nonlinear delayed systems have shown that such driven delayed systems
are stable under certain conditions in the sense of Input-to-state Stability [27].
One can then use the spectrum and subspace eigenbases from the autonomous

pelster@zedat.fu-berlin.de



16 A. Hutt and J. Lefebvre

system to project the dynamics of the non-autonmous system of Eq. (32) and
subsequently obtain the non-stationary version of Eqs. (26)-(27)

U � du(t)

dt
= ΛUu(t) + ΨU (0)F (ΦU (θ)u(t) + st(θ)) + ΨU (0)I(t) (33)

S � d

dt
st(θ) = Ast(θ) + (Xo − ΦU (θ)ΨU (0))[F (ΦU (θ)u(t) + st(θ)) + I(t)].

This result has been demonstrated formally in the case of linear non-autonomous
delayed system [18]. Hence the approximation is reasonable since the amplitude
of both the stable and unstable modes in the vicinity of an instability can be
taken arbitrarily small by adjusting the control parameter, making the non-linear
component F small enough. In other words, close to the origin, the nonlinear
dynamics of the system is close to its linear dynamics.

To reduce the dimensionality of the system from infinity to few modes, we pro-
ceed with the asumption that the center manifold theorem still applies close to
the instability and that the functional h exhibits an explicit time dependence
now. This assumption has been considered successfully in non-delayed systems
for quasi-periodic input [28]. Moreover the existence of time-dependent center
manifolds in non-delayed systems has been proven for stochastic inputs I(t) [15].
Accordingly we choose

st(θ) = h(θ, u(t), ε, t) . (34)

As in the case of autonomous systems, the functional h has yet to be at least
approximated, to be of any use in the analysis of Eq.(32). In particular, now the
manifold h(θ, u, ε, t) satisfies

Duh(θ, u, ε, t)[Λu+ ΨU (0)F [ΦUu(t) + h(u, ε, t)] + ΨU (0)I(t)] +
∂h(θ, u, ε, t)

∂t
= A(h(u, ε, t)) + (Xo − ΦU (θ)ΨU (0)) (F [ΦUu(t) + h(u, ε, t)] + I(t)) . (35)

As an ansatz, we add a time-dependent correction ht to the expansion used
in the autonomous case, such that the time-dependence in the center manifold
takes the form of a fast additive perturbation

h(θ, u, t, t′) = hn(θ, ε, u) + ht(θ, t) +O(m > n;u, ε, t), (36)

where O(m;u, ε, t) denotes terms of order of magnitude m in u, ε and the time-
dependent contribution. The ansatz of Eq. (36) assumes that the autonomous
center manifold hn of order n and the correction term ht have similar order of
magnitude. In the following we assume O(ht) = 2 and the order of hn may be
n = 2 or n = 3. This ansatz implies time-dependent corrections that are small
compared to the amplitude of the unstable modes. This ansatz is analogous to
the one used by [28] for forced non-linear ODEs, which proved to accurately
reproduce the dynamics for various types of driving.
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Moreover, Eq. (36) assumes that, to second order, the center manifold has a
separable form in time t and modes u which facilitates the resolution of the
resulting ODE system for −τ ≤ θ < 0. Indeed, the substitution of this ansatz
in Eq. (35) up to quadratic order, i.e. n = 2 leads to the same set of differential
equations as the autonomous problem, with the notable exception of an addi-
tional slow equation in ht(θ, t) of order 2. The terms in ht are decoupled from
the autonomous contribution hn(θ, u) and obey

∂ht(θ, t)

∂t
=

∂ht(θ, t)

∂θ
− Φ(θ)Ψ(0)I(t) . (37)

Here we chose O(I(t)) = 2 Equation (37) is a linear first order non-homogeneous
partial differential equation of the time correction coefficient ht, which may be
solved using the method of characteristics, given that I(t) and the entries of the
bases Φ(θ) and Ψ(θ) are smooth enough. To solve Eq. (37), we have to distinguish
the two cases:

– for t + θ ≤ 0, Eq. (37) is an intial value-problem with the history function
g(t) , − τ ≤ t ≤ 0, i.e. ht(θ, 0) = g(θ). Then the method of characteristics
leads to

ht(θ, t) = −
∫ t

0

Φ(t+ θ − s)Ψ(0)I(s)ds+H(θ + t) , t+ θ < 0, (38)

with H(θ) = g(θ). We point out that this solutins holds for the time interval
t ∈ [0;−θ] only.

– for t+ θ > 0, Eq. (37) is a boundary value-problem at θ = 0 and we find by
the method of characteristics

ht(θ, t) = −
∫ −θ

0

Φ(−s)Ψ(0)I(t + θ + s)ds+H(θ + t) . (39)

Indeed, writing Eq.(35) for θ = 0 yields

∂ht(0, t)

∂t
= L[ht(t)] + (1− Φ(0)Ψ(0)) I(t) . (40)

According to Eq.(39), we may write ht(θ, t) = r(θ, t) + H(t + θ), where

r(θ, t) = −
∫ −θ

0
Φ(−s)Ψ(0)I(t+ θ+ s)ds. Then inserting this expression into

(40) leads to

∂H(t)

∂t
= L[H(t)] + L[r(t)] + (1− Φ(0)Ψ(0)) I(t) . (41)

Recall that L[H(t)] is a functional of H(θ + t) and thus L[H(t)] may depend
on H(t) and H(t− τ). Similarly L[r(t)] is a functional of r(θ, t). Given that the
functional r(θ, t) is known and the linear term contains retarded terms, Eq.(41)
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is a non-autonomous linear delay-differential equation in H which can be solved
analytically [18, 29].

The approach illustrates the hypothesis that the non-autonomous case can be
analyzed, in lowest order approximation, by a fast and small time-dependent
correction on the center manifold. Higher degrees of accuracy than the second
order could be achieved by proceeding to higher order terms in both modes and
time dependent components of h(θ, u, ε, t) in Eq.(36). The time-mode separable
form, i.e. the separation of the mode-dependent part ha and the time-dependent
part ht, combined with the time-scale separation asumption allows to compute
higher order terms in the modes expansion, while keeping the time-dependent
component to second order. The subsequent section examines the hypotheses
made and the corresponding results by applying the method to a specific exam-
ple.

3 The asymmetrical transcritical bifurcation

To validate our approach, let us apply the procedure discussed in the previous
sections to a non-autonomous delayed differential equation with quadratic non-
linearity near a codimension 1 instability. The system we consider reads

dx(t)

dt
= −x(t)−R1x(t − τ)−R2x

2(t− τ) + I(t), (42)

with the augmented system

dx(t)

dt
= −x(t) + x(t− τ) − εx(t− τ)−R2x

2(t− τ) + I(t)

dε

dt
= 0, (43)

where we introduced the control parameter ε ≡ R1 + 1. Applying the steps
described in the previous section we obtain the reduced dynamics [30]

du(t)

dt
=

1

1 + τ
F [u(t) + st] +

1

1 + τ
I(t)

dε(t)

dt
= 0 (44)

d

dt
st(θ) = A(st) +

(
Xo −

1

1 + τ

)
(F [u(t) + st] + I(t)).

Now applying the center manifold theorem implies that the functional h depends
on time explicitely and with the separation ansatz 36 ht obeys

∂ht

∂t
=

∂ht

∂θ
− 1

1 + τ
I(t) . (45)
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Then Eqs.(38), (39) lead to the solutions

ht(θ, t) = − 1

1 + τ

∫ t

0

I(s)ds+H(θ + t) , t ≤ −θ

(46)

ht(θ, t) = − 1

1 + τ

∫ −θ

0

I(t+ θ + s)ds+H(θ + t) , t > −θ,

with the initial condition H(θ) = g(θ). Substituting these results into Eq.(41)
yields the evolution equation of H(t), t ≥ 0 for θ = 0

dH

dt
= −H(t) +H(t− τ)− 1

1 + τ

∫ τ

0

I(t− τ + s)ds+
τ

1 + τ
I(t) . (47)

We point out, that the last two terms may be viewed as an external driving
and the linear terms are the same as the linear terms in the original system. By
virtue of the spectrum of the linear operator the linear system in H(t) in (47)
is marginally stable close to the stability threshold (the maximum Lyapunov
exponent is close to zero). The other Lyapunov exponents have negative real
parts and their contribution vanish for large times.

To verify these results, let us consider the periodic driving I(t) = Io sin(wot),
whose amplitude Io is small compared to the amplitude u(t) and whose oscil-
lation period is short compared to the slow evolution of u(t). The autonomous
components of the center manifold were found previously. The time-dependent
correction is given by Eq.(46)

ht(θ, t) = H(t+ θ) +
Io

wo(1 + τ)
(cos(wot)− 1) , t ≤ −θ

(48)

ht(θ, t) = H(t+ θ) +
Io

wo(1 + τ)
(cos(wot)− cos(wo(t+ θ))) , t > θ .

Assuming the initial function g(t) = 0, − τ ≤ t ≤ 0, and for large times t→∞,
the solution of (47) reads

H(t) = − Ioτ

(1 + τ)2wo
(cos(wot− 1))

+
τIo

w2
o(1 + τ)2

(sin(wot)− sin(wo(t− τ)) − sin(woτ))

+R1(Io, wo) sin(wot) +R2(Io, wo) cos(wot). (49)

with constants R1(Io, wo) and R2(Io, wo) depending on the stimulus frequency
wo, the input strength Io and the delay τ .
Taking into account the time-dependence of the center manifold gives access to
more than just the good reconstruction of the systems dynamics. In general, non-
autonomous components play a major role in the stability of dynamical systems,
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especially in the vicinity of dynamic instabilities, i.e. in the presence of different
time scales [17, 31]. Therefore, the study of time-corrected center manifolds yield
details about input-induced bifurcations. Let us investigate the interaction of the
input I(t) with the transcritical bifurcation studied.

Based on the calculations in the previous section, we may write the order pa-
rameter equation as

du(t)

dt
=

1

1 + τ

(
−ε(u+ h(−τ, u, t))−R2(u + h(−τ, u, t))2 + I(t)

)
, (50)

where we omitted the trivial dynamics of the control parameter ε. Over a finite
time interval, we might time-average both sides of Eq.(50) to obtain

〈
du(t)

dt

〉
=

1

1 + τ
(〈I(t)〉 − ε 〈u〉 − ε 〈h(−τ, u, t))〉

−R2

〈
u2
〉
− 2R2 〈uh(−τ, u, t))〉 −R2

〈
h(−τ, u, t)2

〉)
, (51)

where the time averaging operator 〈·〉 is defined over an interval T by

〈·〉 = 1

T

∫ t+T

t

( · )dt.

Following the time scale separation issued by the center manifold theorem and
the OPE, the input I(t) is considered fast, compared to the unstable mode
u(t). Hence, for T sufficiently small, u(t) is approximately constant, and we
may consequently write 〈u(t)〉 ≈ u(t). Thus, if the input is chosen such that
〈I(t)〉 = 0, Eq.(51) may be written as

〈
du(t)

dt

〉
= − 1

1 + τ
R2

(
u2 +

(
ε

R2
+ 2 〈h(−τ, u, t)〉

)
u

+

(
ε

R2
〈h(−τ, u, t)〉+

〈
h(−τ, u, t)2

〉))
. (52)

Because of the separation of the time scales, the fixed points of the averaged
equation correspond to the fixed points of Eq.(50). Inserting the stable manifold
h(−τ, u, t) with the terms in Eqs. (48) and (49) found in section 3, we gain the

stationary states by setting
〈

du(t)
dt

〉
= 0. In addition the focus to the solutions

close to the origin, leads to the stationary states

uo =
1

2A0 + 2A1 〈ht〉

(
− (B0 +B1 〈ht〉)

±
√
(B0 +B1 〈ht〉)2 − 4(A0 + A1 〈ht〉) 〈h2

t , 〉,
)

(53)

with functions A0 = A0(ε), A1 = A1(ε), B0 = B0(ε), B1 = B1(ε) and ht =
ht(−τ, t). Since the external input can be viewed as a a linear superposition of
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oscillations according to Fourier theory and hence ht exhibits oscillations with
the same frequencies, it is reasonable to assume that 〈ht〉 ≈ 0. This assumption
implies that the time-average window T is smaller than the period of the slowest
Fourier component in the input. Then we find

uo =
1

2A0

(
−B0 ±

√
B2

0 − 4A0 〈h2
t .〉
)

(54)

with
〈
h2
t

〉
≥ 0. If

〈
h2
t

〉
= 0, then I(t) = 0 and uo = 0, −B0/A0 ≈ −ε×const and

the origin uo is the only stationary solution for ε = 0. In contrast, if
〈
h2
t

〉
> 0

for I(t) �= 0 and the origin is not a stationary solution of the dynamics. New
equilibria are moved to εmin,1 > 0, εmin,2 < 0. These solutions are roots of the
polynomial B2

0(ε)− 4A0(ε)
〈
h2
t

〉
= 0. These results demonstrate that the exter-

nal input destroys stationary states, that existed without external input, and
breaks the symmetry of the transcritical bifurcation: the external input changes
the stability of the system.

To verify these analytical results, we choose the averaging interval as the pe-
riod of one input cycle i.e. T = 2π/wo so that 〈I(t)〉 = 0. Considering the

full terms in Eq. (52) and by setting
〈

du(t)
dt

〉
= 0, we may find the stationary

states numerically, see Fig. 1. We immediately see that whenever
〈
h2
t

〉
> 0, the

symmetry of transcritical bifurcation is broken, and we obtain a imperfect bi-
furcation scenario. This symmetry breaking replaces the intersecting branches
by two disjoint saddle-node curves. In order for the order parameter equation
to capture this particular bifurcation diagram, the precision of the center man-
ifold h(θ, t, u) is very important. The time-corrected center manifold brings a
considerable amount of accuracy to the OPE, not only by adjusting the phase
but also the amplitude of the system’s response. Fig. 1 shows how the OPE
with time-dependent center manifold reproduces the bifurcation diagram of the
original DDE with an improved accuracy compared to the same problem but
without any time-dependency on the center manifold.

4 Concluding Remarks

In this essay, we showed that the dynamics of a non-autonomous delayed feed-
back system could be captured by center manifold reduction. This is made pos-
sible by allowing an explicit time dependence of the manifold, taking the form of
an additive time-dependent correction to the non-driven problem. We illustrated
the approach by considering a scalar delay differential equation with quadratic
non-linearity, driven by an additive time-periodic term, in the vicinity of a tran-
scritical bifurcations. Numerical experiments are in good agreements with the
analytical results. Higher degrees of accuracy could be reached by considering
higher order terms in both time and mode dependent components of the center
manifold.
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Fig. 1. Bifurcation diagram of the averaged order parameter equation. (a) Comparison
of the basins of atttaction of the original DDE for different Io with those predicted ap-
plying the proposed time-dependent center manifold reduction. The fixed point curves
(solid and dashed lines) of the averaged OPE in Eq.(53) delimits the basins of at-
traction of the original system (42) shown in tones of shaded gray for different input
amplitudes. The input amplitudes have been set to Io = 0.05 (stationary solutions 1
and basin of attraction in light gray), Io = 0.1 (stationary solutions 2 and basin of
attraction in gray) and Io = 0.3 (stationary solutions 2 and basin of attraction in dark
gray). As the input amplitude increases i.e. Io > 0, the basin of attraction of the stable
fixed points splits and exhibit a band of unstable initial conditions, indicating that the
input induces an imperfect transcritical bifurcation. In this case, the stable and unsta-
ble branches do not meet at ε = 0 as expected and are replaced by two saddle nodes
bifurcations. (b) Plot of the fixed point curves predicted by the averaging of the orig-
inal system (42) where a standard transcritical case is predicted. This result does not
correspond to the dynamics of the original system. In contrast, the fixed point curves
(53) of the averaged order parameter equation using time-dependent center manifold
show saddle node bifurcations for different input amplitudes, delimiting the basins of
attraction of the original system accurately for Io = 0.05 and Io = 0.1. For Io = 0.3, the
input amplitudes becomes large compared to the unstable mode amplitude. Additional
parameters are wo = 15, τ = 2.0, R2 = 1.5

It is still unclear how the initial conditions of the original DDE are mapped
to those of the OPE. There appears to be discrepancy at t = 0 between the re-
constructed and original flow of the system considered in this example, that we
corrected manually to match the initial conditions of both the OPE and DDE.
This deviations seems to be due to the yet unknown map from the interval [−τ, 0]
to the initial value problem x(0) = xo, induced by the projection onto stable
and unstable subspaces. This discrepancy usually decays numerically with the
transients. A tentative solution to this problem would require a consideration of
the individual stable modes initial value problems, an information that appears
to be lost with the application of the center manifold theorem and following
approximations.
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The time-dependent correction considered here is appropriate for additive driv-
ing only, as no time-mode mixing is present at lowest order. We might conse-
quently expect that mutiplicative time-dependent forcing would require a dif-
ferent working ansatz, which would not allow a separation between autonomous
and non-autonomous problems, as the example detailed here shows. This case
would invariably lead to more involving calculations.
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Abstract. We discuss synchronization and desynchronization transi-
tions in networks of delay-coupled excitable systems. These transitions
arise in response to varying the balance of excitatory and inhibitory cou-
plings in a small-world topology. To describe the local dynamics, we use
generic models for type-I excitability, which arises close to a saddle-node
bifurcation on an invariant cycle (SNIC or SNIPER), and for type-II ex-
citability, which occurs close to a Hopf bifurcation (FitzHugh-Nagumo
model). For large delay times both type-I and type-II systems behave
in a similar way. This is different for small delay times, where in case
of type-I excitability we find novel multiple transitions between synchro-
nization and desynchronization, when the fraction of inhibitory links is
increased. In contrast, only a single desynchronization transition occurs
for the FitzHugh-Nagumo model (type-II excitability) for all values of
the delay time.

Keywords: complex networks, delayed coupling, synchronization, exci-
tatory and inhibitory balancing, type-I and type-II excitability, small-
world

1 Introduction

The control of the dynamics on complex networks has recently gained much inter-
est within the interdisciplinary field of control of nonlinear dynamical systems [1].
Synchronization phenomena in networks are of great importance [2–5] in many
areas ranging from physics and chemistry to biology and engineering. Chaos
synchronization of lasers, for instance, may lead to new secure communication
schemes [6–8]. The synchronization of neurons is believed to play a crucial role in
the brain under normal conditions, for instance in the context of cognition, per-
ception, and learning [9–12], and under pathological conditions such as epilepsy
© Springer International Publishing Switzerland 2016 25
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[13] and Parkinson’s disease [14]. Time-delay effects are a key issue in realis-
tic networks. For example, the finite propagation time of light between coupled
semiconductor lasers [15–19] significantly influences the dynamics. Similar effects
occur in neuronal [20–23] and biological [24, 25] networks. The importance of the
effect of delay on synchronization in neural networks was already pointed out by
Hermann Haken in his early pioneering work on brain dynamics [26, 9]. There
exist different forms of synchronization, i.e., complete or isochronous (zero-lag)
synchronization, generalized synchronization, cluster or group synchronization,
and many other forms. Chimera states, where a network of identical oscillators
splits into distinct coexisting domains of coherent (phase-locked) and incoherent
(desynchronized) behavior, have gained much attention recently [27–34].

To determine the stability of a synchronized state in a network of identical
units, a powerful method has been developed [35], i.e., the master stability func-
tion (MSF). This approach has been extended to networks with coupling delays
[36–41], where the MSF depends non-trivially on delay times.

In this chapter we review recent work on synchronization and desynchroniza-
tion transitions in delay-coupled networks and how they are influenced by the
ratio between the number of excitatory and inhibitory links [42, 43]. The issue
of balancing excitation and inhibition in neuronal networks has recently found
great interest in the neurodynamics community [44–47]. In general, the stabil-
ity of synchronization depends in a complicated way on the local dynamics of
the nodes and the coupling topology. However, for large coupling delays syn-
chronizability relates in a simple way to the spectral properties of the network
topology, characterized by the eigenvalue spectrum of the coupling matrix. The
MSF used to determine the stability of synchronous solutions has a universal
structure in the limit of large delay: it is rotationally symmetric and increases
monotonically with the radius in the complex plane. This allows for a universal
classification of networks with respect to synchronization properties [39]. For
smaller coupling delays the synchronization properties depend in a more subtle
way upon the local dynamics, and the details of the network topology. Various
cluster-synchronization states, where certain clusters inside the network show
isochronous synchronization, can be realized by tuning the coupling parameters
such as the coupling phase, coupling strength, and delay time [37, 41]. To find
appropriate values of these control parameters, the speed-gradient method from
control theory can be applied to achieve a desired state of generalized synchrony
(adaptive synchronization) [48].

We consider two generic types of local dynamics of the nodes, namely type-
I excitable dynamics (near a saddle-node bifurcation on an invariant cycle, or
saddle-node infinite period (SNIPER) bifurcation), and type-II excitable dynam-
ics (near a Hopf bifurcation, described, e.g., by the FitzHugh-Nagumo model).
Transitions between synchronization and desynchronization can be induced by
introducing inhibitory links into a regular excitatory network with a probability
p, and by changing the balance between excitatory and inhibitory links [42, 43].
The type of network we primarily focus on in our investigations is the small-world
(SW) network [49], which has a short average path distance between nodes, as
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well as a large degree of clustering (in other words, many triangles in the network
structure). These properties are found in many kinds of real-world structures,
such as the collaboration between film actors, power grids, the World Wide Web
and social relationships [49, 50, 3, 4]. In particular, large-scale cortical networks
also show these properties [51, 52]. The brain has an architecture enabling both
efficient global and local communication between neurons [53], which is captured
well by the SW model.

Inhibition plays an important role in the nervous system [54]. Here, when
constructing a network we begin with a regular ring network of excitatory links
and, as in Ref. [42, 43], we add long-range inhibitory links into the network
structure. This creates a SW network of the form proposed in Ref. [55].

In the following section, we introduce the model and the network topologies
considered in the present study. In Sec. 3 we use the master stability function to
investigate the stability of arbitrary synchronized networks with given coupling
parameters (i.e. the coupling strength and the length of delay between coupled
nodes). The MSF is calculated in Sec. 4 for networks coupled within a range of
small delay time and coupling strength, which reveals the existence of synchro-
nized states that have different stability conditions compared to coupling with
larger delay times. The implications these results may have for specific complex
networks are discussed in Sec. 5.

2 Models

In order to model excitability, the system must have a rest state, which corre-
sponds to a stable fixed point. Small perturbations from the rest state can lead
to a large excursion in the phase space, i.e., the emission of a spike (excited
state), before returning to the rest state. In the context of neurodynamics, this
is the firing state of the neuron [56].

Neurons can exhibit different excitability properties, depending upon the bi-
furcation scenario from the excitable to the oscillatory regime. In 1948, Hodgkin
classified two types of neural excitability [57]:

Type-I neurons can generate action potentials of arbitrarily low frequency.
This kind of behavior occurs near a saddle-node infinite period (SNIPER) bifur-
cation, also known as the SNIC bifurcation (saddle-node bifurcation on invariant
cycle). The arbitrarily low frequency coincides with the period of the limit cycle
going to infinity as the bifurcation parameter approaches a critical value, where
the bifurcation occurs.

Type-II neurons are associated with a supercritical Hopf bifurcation. The
frequencies of the action potentials remain within a certain non-zero range, while
the amplitude of the limit cycle approaches zero with the bifurcation parameter.

As our model for type-I excitability we consider a generic normal form of a
SNIPER bifurcation:

f(x) =

(
ẋ
ẏ

)
=

(
x(1 − x2 − y2) + y(x− b)
y(1− x2 − y2)− x(x − b)

)
, (1)
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which reads in polar coordinates (x = r cosϕ, y = r sinϕ):

ṙ = r
(
1− r2

)
(2)

ϕ̇ = b− r cosϕ. (3)

b > 0 is the bifurcation parameter that influences the type of dynamics and
determines where in the (x, y)-plane the fixed points are located, as discussed
below. This model was used by Haken and coworkers [58, 59] for the first demon-
stration of coherence resonance [60], which occurs in excitable nonlinear systems
if noise is added; it denotes the counterintuitive effect that the coherence of noise-
induced oscillations is optimal for a certain finite noise intensity. Combining this
effect with time-delayed feedback, the coherence resonance can be conveniently
controlled [61, 62].

Here we focus on the deterministic dynamics of excitable elements (neurons)
coupled with time delay τ in a network. We consider the dynamics of a network
of N elements (labelled i = 1, ..., N) given by:

ẋi = f(xi) + σ
N∑
j=1

GijH(xj(t− τ)− xi(t)), (4)

where f(xi) is the local dynamics as described by Eq. (1) for each element xi =
(xi, yi). Gij determines the matrix G for the network structure, showing which
elements are coupling together, and H is the coupling function. H is taken to
be the 2× 2 identity matrix; this means that the x-variable at time t is coupled
with the x-variable at time t − τ , the y-variable at time t is coupled with the
y-variable at time t − τ , but there is no cross-coupling between the x- and y-
variable. The coupling parameters, which are identical for all connections, are
the coupling strength σ and delay time τ .

For synchronous dynamics, the 2(N − 1) constraints xs ≡ x1 = x2 =
· · · = xN define a 2-dimensional synchronization manifold (SM) within the 2N -
dimensional phase space and the coupled system is reduced to an effective single
system with feedback:

ẋs = f(xs) + σH(xs(t− τ) − xs(t)), (5)

with unity row sum
∑

j Gij = 1, so that the nodes all receive the same level of
input while they are synchronized. Any non-unity but constant row sum can be
rescaled using the coupling strength σ.

Without delay, while the bifurcation parameter b < 1, there exists an unstable
focus at the origin, as well as a saddle point and a stable node situated on the
unit circle at (xi, yi) = (b,

√
1− b2) and (b,−

√
1− b2), respectively. At b = 1

the saddle point and stable node collide, so that for b > 1 a limit cycle exists
along the unit circle. In the case of b < 1 (excitable regime), a perturbation
which pushes the system from the stable node beyond the saddle point can
result in a single oscillation along the unit circle. Delayed coupling can induce
a homoclinic bifurcation, such that a limit cycle is produced that bypasses the
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saddle point and stable node [61, 62]. Here, we will consider the excitable regime
with b = 0.95 and investigate for which topologies the synchronized dynamics of
complex networks is stable.

Next, as a paradigmatic model for type-II excitability we consider the Fitz-
Hugh-Nagumo (FHN) model [63, 64], which exhibits a supercritical Hopf bifur-
cation:

f(x) =

(
˙εx
ẏ

)
=

(
xi − x3

i

3 − yi
xi + a

)
, (6)

where x and y denote the activator and inhibitor variables, respectively. The
parameter a determines the threshold of excitability. A single FHN oscillator is
excitable for a > 1 and exhibits self-sustained periodic firing beyond the Hopf
bifurcation at a = 1. Here, we will focus on the excitable regime with a = 1.3.
The time-scale parameter ε is chosen as ε = 0.01. The coupling function H is
chosen with components H11 = 1/ε and zero otherwise.

In this chapter, complex small-world (SW) networks are considered, which
we construct as a variation to the method proposed in Ref. [49], introduced
in Refs. [55, 65]: (i) Each of the N nodes in a one-dimensional ring is given
excitatory links to its k nearest neighbors on each side. Note that in terms of the
matrix G, an excitatory link between the ith and jth node means that Gij > 0,
while for an inhibitory link Gij < 0. (ii) For each of the kN links we add with a
probability of p another inhibitory link with strength -1 between two randomly
chosen nodes (i.e. on average pkN randomly distributed inhibitory links). (iii)
Self-coupling and multiple links between the same two nodes are not allowed.
(iv) Finally, the entries in each row of G are normalized to ensure a unity row
sum. If a row sum is equal to zero, then the network realization is discarded.

In the following, we determine the stability of the synchronized dynamics
and compare the synchronization/desynchronization transitions for different lo-
cal dynamics.

3 Stability of Synchronization

In the master stability approach [35], the stability of a synchronized state is
determined by splitting the stability problem into a topological part, which is
determined by the eigenvalues of the coupling matrix G, and a dynamical part,
which is given for an arbitrary network by the master stability equation

δẋ(t) = [Df(xs)− σH]δx(t) + (α+ iβ)Hδx(t− τ), (7)

which is found by linearizing Eq. (4) around Eq. (5) and is used to calculate
the largest Lyapunov exponent Λ(α, β, σ, τ), called the master stability function
(MSF). Here δx is the perturbation of x away from the SM (i.e. x = xs + δx)
and Df(xs) is the Jacobian matrix of Eq. (1) evaluated on the SM. Important
for this approach is that, whereas one can calculate Lyapunov exponents for a
specific network topology using the eigenvalues of the matrix G, one considers
here a continuous complex parameter α+ iβ representing the complex plane of
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30 E. Schöll et al.

Fig. 1. MSF Λ for the SNIPER model (type-I excitability) for coupling parameters
σ = 0.3 and (a) τ = 10, (b) τ = 7, (c) τ = 6.5, and (d) τ = 6. α and β are the real
and imaginary parts of the scaled eigenvalues of the coupling matrix, σνk, respectively,
and Λ is the largest Lyapunov exponent. White dots in panel (a) represent the scaled
eigenvalues of a unidirectional ring of 11 nodes (σν1, . . . , σν11). b = 0.95.

possible eigenvalues scaled by the coupling strength σ (i.e. α+ iβ is a continuous
parametrization of σνj , where νj are the eigenvalues of G, j = 1, ..., N). Thus,
one can calculate the Lyapunov exponents for a region of the (α, β)-plane which
gives sub-regions of stability, where Λ < 0, and instability, where Λ > 0. It is
then easy to compare the synchronous stability of various networks by simply
observing whether any of their eigenvalues fall inside an unstable region of the
(α, β)-plane. If all the eigenvalues lie within stable regions, then perturbations
away from the SM will decay exponentially.

Because of the unity row sum condition, G always has an eigenvalue ν1 = 1.
This longitudinal eigenvalue (all others are called transversal) corresponds to
perturbations within the SM and Λ(σν1, 0, σ, τ) is always zero because we are
looking at periodic dynamics. As such, it is only the transversal eigenvalues that
are important for determining the stability of synchronization.

Figure 1(a) shows the MSF of the SNIPER model (type-I excitability) with
coupling parameters σ = 0.3 and τ = 10. The white dots represent the eigen-
values of the matrix G for a unidirectional ring of 11 nodes. All eigenvalues are
within the stable region of the MSF, thus the synchronization of all 11 nodes
coupled with these parameters is stable.
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According to Ref. [39], for τ in the order of the system’s characteristic time
scale (in this case, the period of the oscillations) and above, the MSF will al-
ways tend towards a rotational symmetry. Examples such as the one above in
Fig. 1(a) confirm these general findings for the SNIPER model. When calculat-
ing MSFs for a large fixed τ while varying σ it becomes evident that the size of
the stable region is scaled by σ, so that the stable region can be estimated very
well by the circle S((0, 0), σ) (that is, a circle centered at the origin with a ra-
dius σ). Changes in large values of τ , however, despite influencing the Lyapunov
exponents quantitatively, do not affect the shape of the stable region.

This rotational symmetry of the MSF was also found for type-II neurons,
modelled as FitzHugh-Nagumo oscillators by Eq.(6) [42], see Fig. 2. In this case
σ and τ do not affect whether the eigenvalues fit into the stable region of the
MSF, so that only the topology of a network is important for the stability of its
synchronization. Furthermore, because Gershgorin’s circle theorem [66] guaran-
tees that the eigenvalues of a network’s coupling matrix with no self-coupling
and purely excitatory coupling (i.e. Gii = 0 and Gij ≥ 0, 1 ≤ i, j ≤ N) lie within
the unit circle on the complex plane, the synchronization of such a network will
always be stable. Finally, if additional inhibitory links are introduced with prob-
ability p to construct a SW network as described in Sec. 2, phase transitions
from stable to unstable synchronization are found with increasing probability of
inhibition p [42]. It should be noted from a comparison of Figs. 1 and 2 that all
these results apply for the SNIPER neurons only with sufficiently large τ .

As an example, Fig. 3 shows two realizations of the SW coupling scheme
with N = 20, k = 2, and p = 0.05 (panels (a) and (b)) and the corresponding
eigenvalues of the coupling matrix depicted in the plot of the MSF in the complex
(α, β)-plane (panels (c) and (d)). It can be seen that in panel (c) all eigenvalues
lie in the stability domain, and hence synchronization is stable, whereas in panel
(d) one eigenvalue lies outside the stability domain, leading to desynchronization.
A statistical analysis for a large number of realizations can predict transitions
from stable synchronization to desynchronization, as will be discussed in detail
in Sec. 5 below.

4 Small delay times

If the delay time is not large enough, type-I excitability (SNIPER model) dis-
plays a distinctly different behavior than type-II excitability (FHN model): the
rotational symmetry of the MSF no longer holds. In fact, while reducing τ one
can witness how the rotational symmetry begins to break down. This is depicted
in Fig. 1. For a constant coupling strength of σ = 0.3, the MSFs are numerically
calculated for decreasing delay times. While at τ = 10 the MSF still has its
circular form (Fig. 1(a)), when decreasing τ , the stable (i.e. dark blue/green)
region of the MSF begins to show signs of deformation. By τ = 7 (see Fig. 1(b))
the stable region is clearly larger than the unit circle scaled by σ = 0.3 and has
definitely lost its rotational symmetry. By τ = 6.5 (see Fig. 1(c)) the stable re-
gion has already split into two disconnected regions. Letting τ decrease further,
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Fig. 2. Same as in Fig. 1 for the FitzHugh-Nagumo model (type-II excitability, a = 1.3,
ε = 0.01) for coupling parameters σ = 0.3 and (a) τ = 10, (b) τ = 7, (c) τ = 6.5, and
(d) τ = 6.

the stable regions become increasingly smaller (see Fig. 1(d)). Note that the
delay-induced limit cycle coexists alongside the stable fixed point and whether
it is reached or not is therefore dependent on initial conditions. For τ less than
about 4 (not shown here), the coupling is no longer able to induce the homoclinic
bifurcation that creates the limit cycle at all (as discussed in Sec. 2), in other
words, the neurons no longer oscillate. Instead, all solutions approach the stable
fixed point.

It is now obvious that, in this regime of small delay, small changes in τ can
have a great impact on the stability. The seemingly sudden change in the MSFs
in Fig. 1 between τ = 7 and τ = 6.5 can be traced back to a qualitative change
at a critical value τc, which will be discussed below. Except for this value, the
boundary of stability evolves continuously with τ . This becomes clear by plotting
the MSF versus the real part α of the eigenvalue (with β = 0) for varying τ .
Taking this one slice of the eigenvalue plane gives a good indication of the growth
and decay of the stable region in the MSF while changing τ . Figure 4 shows the
MSF as a function of the real part α (β = 0) and the delay time τ , with fixed
coupling strength 0.3. This produces a MSF on an (α, τ)-plane, which can be
used for network topologies with a coupling matrix that yields real eigenvalues,
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Fig. 3. Synchronization and desynchronization in a small-world network (σ = 0.3,
τ = 1): (a) and (b) are two different realizations with N = 20, k = 2, and p = 0.005.
(c),(d): Master stability function Λ of the FitzHugh-Nagumo system (a = 1.3, ε = 0.01).
Dark gray (pink) circles in (c) and (d) mark transversal eigenvalues of the networks
shown in panels (a) and (b), respectively; light gray (turquoise) circle: longitudinal
eigenvalue.

e.g., symmetric matrices for undirected networks. In the following we restrict
ourselves to undirected networks.

The stability depends on both σ and τ . In Fig. 4 the vertical boundary line at
α = σ, corresponding to the longitudinal eigenvalue (i.e. ν1 = 1, where Λ = 0),
can be easily identified. It separates regimes of stable and unstable synchroniza-
tion. Another characteristic is that the τ -dependent MSF has a critical delay
time τc at which the stable region splits into two separate, disconnected regions.
For values above τc the stable region is found to the left of the longitudinal eigen-
value; whereas for values below τc there may be one stable region to the right
of the longitudinal eigenvalue and one to the left. τc seems to be an important
value, because it marks the most significant τ -dependent qualitative change in
the MSF. Ultimately, the MSF can be divided into three regimes of τ : (i) two
or more smaller separate regions of stability exist when τ < τc; (ii) one large
region of stability exists when τ > τc; (iii) the MSF has one rotationally sym-
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Fig. 4. MSF Λ of the SNIPER model (b = 0.95) for a fixed coupling strength σ = 0.3
in the plane of the real part α (β = 0) and the delay time τ . The horizontal red line
shows the position of the critical delay time τc.

metric region of stability in the limit of τ → ∞ (which holds already in good
approximation if τ is of the order of the intrinsic oscillation period or larger).

5 Multiple synchronization and desynchronization
transitions

An obvious observation is that networks with purely excitatory coupling, which
are always stable for large delay times as mentioned at the end of Sec. 3, may
not show stable synchronization for τ < τc. It was explained in Sec. 3 that
increasing the probability p of inhibitory links in the network can be a factor
leading to unstable synchronization. This occurs because a larger probability of
inhibition can push a part of the eigenvalue spectrum of any network beyond
the longitudinal eigenvalue at α = σ (because Gershgorin’s circle theorem no
longer guarantees that all eigenvalues stay within the unit circle) and into the
unstable region of the MSF. Now, in case of excitability of type-I for smaller τ ,
there may be a pocket of stability to the right of the longitudinal eigenvalue, so
that increasing inhibition can make the otherwise unstable synchronization of a
network stable.

This means that the transitions between stable and unstable synchronization
as a function of the probability of inhibition p discussed in Ref. [42] are no
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(a) (c) (e)

(b) (d) (f)

Fig. 5. Fraction of desynchronized networks f in dependence of the probability of
additional inhibitory links p for 500 realizations of networks of N = 200 with (a)
k = 20, (c) k = 40, and (e) k = 50. Corresponding eigenvalue spectra for (b) k = 20,
(d) k = 40, and (f) k = 50 with 100 realizations for each p value. Here the green shaded
regions represent the stable regions of the real part of the MSF typical for the SNIPER
model for large delay and for the FitzHugh-Nagumo system for both small and large
delay.

longer valid when τ is small in case of type-I excitability. The transitions are
now sensitive to the coupling parameters, not just the network parameters N
and k. Due to the multiple regions of stability, eigenvalues may wander in and
out of stable regions, while increasing the probability of inhibition p. For large τ ,
or for any τ in case of type-II excitability, increasing p in the SW network model
only results in one transition where the fraction of desynchronizing networks (i.e.
networks with unstable synchronization) f(p) switches from 0 to 1 (cf. Fig. 5).

For small τ , in case of excitability of type-I it is possible that f(p) jumps
back to 0, before increasing again to 1. This will occur if there is a separate
region of stability to the right side in the MSF that is large enough that all the
eigenvalues lying over there can fit inside.

The observation of multiple transitions between stable and unstable synchro-
nization can be explained by looking at the eigenvalue spectra for SW networks
for various p values. As discussed above in relation to the MSF method, each
network topology has a coupling matrix G, the eigenvalues from which can be
used to determine the stability of the network’s synchronized state. Because
the “short-cuts” in the SW network are randomly introduced, each network
with specific N , k and p values may have many realizations. By calculating the
eigenvalues for a large number of realizations of the SW network with certain
parameters (i.e. given N , k and p), one can find the bounds for the eigenvalue
spectra.
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Fig. 6. Spectra of eigenvalues ν of undirected small-world networks with N = 200 and
k = 20 and varying probability p of inhibitory links. 500 realizations of the eigenvalue
spectrum are plotted for each value of p.

Figure 6 displays the superimposed eigenvalue spectra of 500 realizations
for SW networks with parameters N = 200 and k = 20 (regular ring with
excitatory coupling of k nearest neighbors on either side) in dependence on
the probability of inhibition p. The longitudinal eigenvalues located at ν1 =
1 have been removed. One can see that the bounds for possible eigenvalues
shift depending on the value of p. One can also see how the spectra begin to
increasingly resemble the semicircular distribution [3] of a random network for
larger p values, where the networks have lost their SW properties. The change of
the eigenvalue spectrum with increasing p has been discussed in detail elsewhere
[43].

The eigenvalue spectra bridge the gap between observations of the MSF (i.e.
the dependence of the stability of synchronization on the eigenvalues) and what
is seen in these transitions (i.e. the dependence of stability on the network topol-
ogy). Increasing p allows isolated eigenvalues to increase in value and, in terms
of the MSF, shift their locations further to the right in the (α, β)-plane. This
is visualized in Fig. 7. Figures 7(b), (d) and (f) show the eigenvalue spectra for
SW networks with N = 200 elements and k = 20, 40, and 50, respectively.

Figures 7(a), (c) and (e) show the corresponding fraction of desynchronized
networks f in dependence on the probability of additional inhibitory links p.
Consider, for instance, SW networks with parameters N = 200 and k = 40.
In Fig. 7(c) f(p) is shown for the exemplary coupling parameters σ = 0.3 and
τ = 6.5 with a corresponding plot of eigenvalues in Fig. 7(d). Note that the grey
(green) shaded regions represent the stable regions of the line β = 0 on the (α, β)-
plane of the MSF for σ = 0.3 and τ = 6.5 (cf. Fig. 1(c)). For coupling parameters
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(a) (c) (e)

(b) (d) (f)

Fig. 7. Fraction of desynchronized networks f in dependence of the probability of
additional inhibitory links p for 500 realizations of networks of N = 200 with (a)
k = 20, (c) k = 40, and (e) k = 50 with σ = 0.3 and τ = 6.5. Corresponding eigenvalue
spectra for (b) k = 20, (d) k = 40, and (f) k = 50 with 100 realizations for each p
value. Here the green shaded regions represent the stable regions of the real part of the
MSF of the SNIPER model (b = 0.95).

where this region of stability is not large enough, f may briefly dip below 1
without decreasing to 0, because only some realizations may have eigenvalues
that fit inside the stable region. In Fig. 7(a) where k = 20, f dips down to 0.14,
because at most 14% of the realizations show stable synchronization (i.e. all
the eigenvalues are inside the stable region). If the distance between the larger
isolated eigenvalues matches the distance between stable regions (which is almost
the case in Fig. 7(b)), then the transition curve only just touches the f = 0 axis
at some value of p before increasing back to f = 1. Figure 7(e) is an example
where a further transition is possible, because not only do all eigenvalues begin
in stable regions at p = 0, but there is another regime of p where all eigenvalues
fit inside stable regions. Note that further types of transitions can also occur for
other network and coupling parameters.

The length of the transition from f = 0 to f = 1 is actually a measure of the
variance of the isolated eigenvalues for an ensemble of realizations. For example,
the variance of the isolated eigenvalues decreases as N is increased, so that the
length of transition will be shorter in larger networks, and the transition becomes
sharper.

When constructing a histogram of the eigenspectra for a particular value of
p, the larger isolated eigenvalues seen to the right, e.g., in Fig. 7(b), result in
small peaks of eigenvalues. See Fig. 8(a) for 1000 realizations of p = 0.2. For each
realization of many SW networks there are isolated eigenvalues that are larger
than most other eigenvalues in the spectrum. The small peaks of eigenvalues
result from perturbations in isolated eigenvalues. For comparison, Fig. 8(b) shows
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(a) (b) (c)

Fig. 8. (a), (b): Histograms (1000 bins) of eigenvalue spectra for 1000 realizations of
(a) SW networks and (b) random networks with the same number of nodes, the same
number of excitatory links and the same probability of inhibitory links (N = 100,
k = 10, p = 0.2). (c): The eigenvalue spectrum for a regular network with N = 100
and k = 10. νn is the nth eigenvalue, n = 1, . . . , N .

the reference case of 1000 random networks with the same number of nodes and
excitatory links and the same probability of inhibitory links as considered in
Fig. 8(a).

The spectrum of a regular ring network, i.e., a SW network with p = 0, can
be found analytically using the graph’s symmetry operations [67] and is given
by

νl =
1

k

k∑
j=1

cos

(
2πj

l

N

)
=

1

k

(
cos

(
kπ l

N

)
sin
(
(k + 1)π l

N

)

sin
(
π l

N

) − 1

)
, (8)

where l = 1, ..., N−1. Figure 8(c) shows this eigenspectrum for the p = 0 case. As
p is increased these eigenvalues will be slightly perturbed (in a random manner)
by the changing network structure, of which many realizations are possible. The
isolated eigenvalues to the right-hand side in Fig. 8(c) eventually evolve into
the smaller side peaks of eigenvalues in histograms for larger p as depicted in
Fig. 8(a) for p = 0.2. These peaks show the distribution of the eigenvalue under
the influence of the random nature of the SW “short-cuts” creation process –
which is why the smaller eigenvalue peaks can be approximated by a normal
distribution. To be precise, because the multiplicity of the above mentioned
isolated eigenvalues at p = 0 is 2, the smaller eigenvalue peaks are two normal
distributions that, at least for small p values, overlap each other to a large extent.
This is furthermore the reason why the desynchronization transitions observed
in Ref. [42] and Figs. 7(a), (c), and (e) look like the cumulative (integrated)
distribution function. They reflect how an increase of p brings the area of the
small eigenvalue peak accumulatively into the unstable region of the MSF.

To explain why the peaks wander with increasing p, consider not normalizing
the rows of matrix G, so that the row sums are not necessarily equal to 1. Then
the location of the longitudinal eigenvalue decreases with p, because it is equal
to the average row sum of G given by 2k(1−p). The locations of the other peaks
increase slightly to maintain the eigenvalue sum of zero; a result of the trace of
G being zero, since there is no self-feedback coupling. For large N this has only
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a small effect. Thus, scaling the eigenvalues so that the longitudinal eigenvalue
is always at 1 means that the transversal eigenvalues are multiplied by 1

2k(1−p) .

Accordingly they appear to increase with p, as seen in Figs. 7(b), (d) and (f).

6 Conclusion

We have investigated transitions between synchronization and desynchronization
in complex networks of delay-coupled excitable elements of type I and type II,
induced by varying the balance between excitatory and inhibitory couplings in a
small-world topology. In our analysis we have used the master stability function
approach. For large delay times it seems that both type-I neurons and type-II
neurons must fulfill similar topological conditions in the network to allow for a
stable synchronized state. This is different when considering small delay times.
In case of the SNIPER model (type-I excitability), for a range of small cou-
pling strengths and small delay times we have found novel multiple transitions
between synchronization and desynchronization, when the fraction of inhibitory
links is increased. This is different for the FitzHugh-Nagumo model (type-II
excitability), where only a single transition from synchronization to desynchro-
nization occurs for all values of the delay time. This can be explained by the
different nature of the stability domains of the master stability function which
consists of disconnected stability islands in case of type-I excitability for small
τ . A small world model for complex networks with regular excitatory couplings
and random inhibitory shortcuts has eigenvalue spectra with gaps between the
larger eigenvalues, so that histograms of many realizations reveal isolated peaks
of possible eigenvalues. Synchronization occurs whenever the domains of the
eigenvalues fall onto the stability islands. It was shown that, because of this,
small world networks can go through multiple transitions of synchronization
and desynchronization in dependence on the probability of inhibitory short-cuts
for the model of type-I excitability. Note that the same has also been shown for
the Stuart-Landau model in Ref. [43], demonstrating that multiple transitions
can also appear in networks of oscillatory nodes and are not limited to excitable
systems.
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41. Dahms, T., Lehnert, J., Schöll, E.: Cluster and group synchronization in delay-
coupled networks. Phys. Rev. E 86, 016202 (2012)
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Abstract. We consider 1D time dependent Hamilton systems and the
time evolution of initial microcanonical distributions. In linear oscillator
(LO) the distribution of energy is always arcsine distribution, and the
adiabatic invariant at the average energy (AIAE)(and thus the entropy)
always increases. In nonlinear (quartic) oscillator there are regimes of
slow driving where the AIAE can decrease, but increases for faster driv-
ing. Near the adiabatic regime the distribution is similar to arcsine distri-
bution; in general it depends on the dynamical details. We also consider
parametrically kicked systems. We prove for all homogeneous power-law
potentials that in a single parametric kick the AIAE always increases.
The approximation of one kick is good for times up to one oscillation
period. In LO only, due to isochronicity, an initial kick disperses the mi-
crocanonical distribution, but an antikick at the right phase can restore
it. The periodic parametric kicking is also studied. 1

Keywords: Time-dependent linear and nonlinear Hamiltonian oscilla-
tors, adiabatic invariants, statistical properties of the energy

1 Introduction

In recent years the general interest in time dependent (nonautonomous) dynam-
ical systems has increased a lot [1]. In this paper we consider time dependent
Hamilton systems, where many interesting questions about their statistical be-
haviour can be studied [2–5]. Whilst the energy of the system is not conserved,
the Liouville theorem of course still applies and thus the phase space volume
is preserved by the phase flow. Since the energy is changing in time, we would
like to have theoretical methods to calculate it for each particular initial con-
dition. But in the context of statistical mechanics we are interested also in the
behaviour of an ensemble of orbits, specified by - and emanating from - an en-
semble of initial conditions. One of the most natural and fundamental ensembles

1 It is my great pleasure to dedicate this work to Professor Hermann Haken on occas-
tion of his 85th birthday.
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is the microcanonical ensemble of initial conditions, where the initial energy is
sharply defined (Dirac delta function), but the distribution on the energy sur-
face is uniform. Such an ensemble is particularly natural in fully chaotic, ergodic,
systems. In case of full integrability of the initial (frozen) Hamiltonian system
one could also assume that the initial conditions are uniformly distributed on
an invariant torus, meaning that the canonical angles are uniformly distributed
on a torus, whilst the mixed type cases are more complex to define.

In this paper we shall treat time dependent Hamilton systems with only one
degree of freedom (1D), which (as frozen systems) are ergodic and integrable at
the same time, but still very rich in behaviour. The microcanonical ensemble of
initial conditions in this case is defined by the uniform distribution of the initial
canonical angle (of the frozen initial Hamilton system at the starting time) on the
interval [0, 2π), on the initial torus (contour of constant energy). Thus, from the
problem of a single dynamical system we come to the ensemble of (noninteract-
ing) systems, whose statistical properties we would like to understand, for each
particular preparation of the initial conditions, in our case the microcanonical
distribution. Such a procedure is valid in deriving the thermodynamic properties
of the macroscopic number of such noninteracting oscillators. For example, in
case of a point particle in a one dimensional box with moving wall, we can derive
the equilibrium ideal gas equation if we consider the adiabatic changes of the box.
Clearly, as particles in ideal gas are not interacting at all, one particle is enough
to derive the equation of state, by appropriate averaging over the ensemble of
particles and/or over time. For other oscillators a similar approach is possible
in general adiabatic and nonadiabatic (fast) changes, including the parametric
kicks (discontinuous jumps of the system parameter), where the system and its
transformations can be described statistically although far from equilibrium.

As the system evolves, we observe spreading of the energy distribution, due
to the different dependence of the energy on the initial angle for each particular
orbit. We seek the energy distribution at the later times, also in the asymptotic
limit (if it exists) when time goes to infinity. In case of the linear oscillator
we have the remarkable theorem, namely the distribution is universal for all
time dependences and rigorously given by the arcsine distribution [6], as derived
by Robnik and Romanovski with coworkers [7–11], and reviewed in the next
section. The average energy, the variance and all the higher moments of the
distribution function can be calculated analytically in closed form. In general
nonlinear systems the distribution of the energy can be just anything, depending
on the details of the system and its dynamics, and the analytical approach is
very difficult.

In general nonlinear parametrically driven systems the two most important
quantities are of course the average energy and the variance of the energy distri-
bution. We allow for entirely arbitrary time dependence of the Hamilton system,
through a parameter depending on time. This dependence could be adiabatic
(infinitely slow) in one extreme, or a parametric kick in another extreme, or
anything in between, including also the important special case of periodic de-
pendence. The properties of the energy distribution are closely linked to the
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question of the adiabatic invariants. In case of ideal adiabatic variation of the
Hamiltonian the energy is sharply defined at all times (a Dirac delta distribu-
tion), with zero variance, but of course energy is changing in time, however in
such a way, that the area inside the energy contour is preserved, which is precisely
the adiabatic invariant of the system. See e.g. [2] for one dimensional systems.
For the linear oscillator the adiabatic invariant was derived by Einstein in 1911
[12]. For multidimensional ergodic systems it has been proven by Paul Hertz [13]
in 1910 and commented by Einstein [14], that the phase space volume inside the
energy surface is the conserved quantity, the adiabatic invariant, which of course
includes the one dimensional case.

If the parametric driving law is not ideally adiabatic, but proceeds with a
finite speed, the energy distribution function spreads. The average energy and
the variance of the energy are relevant for the (non)preservation of the adiabatic
invariant. It is interesting from the point of view of the statistical mechanics
to ask, what is the value of the adiabatic invariant at the average energy of
the system as time goes on. The spread of the distribution of the adiabatic
invariant is related to the variance of the energy distribution. In the case of the
linear oscillator we have the remarkable theorem by Robnik and Romanovski
[7–11] that the adiabatic invariant at the average energy always increases, for
any variation of the frequency, except for the ideal adiabatic process, where
it is preserved. Thus in any nonadiabatic process, up to the other extreme of
parametric kick, we always find the increase of the adiabatic invariant. This is a
kind of irreversibility statement: the adiabatic invariant is the phase space area
inside the energy contour, thus proportional to the number of states in the sense
of statistical mechanics. The entropy of the system is just the logarithm of the
adiabatic invariant. Thus the entropy of the general parametrically driven linear
oscillator is on the average always increasing, except for the ideal adiabatic
changes where it is exactly preserved, and the process is reversible. We shall
present this rigorous statement in the next section, when reviewing the case of
the linear oscillator [11]. The linear oscillator is relatively easy to study in the
above context, because the linear phase flow is explicitly known, and can be
written down as a 2x2 matrix. Also, the flow map of the linear oscillator for any
time variation can be expressed by the WKB method to all orders [15, 7–9, 11],
and even just the leading order approximation works very well in the adiabatic
limit. A similar method, but only in the leading order, can be used for certain
nonlinear oscillators [16].

In nonlinear oscillators [17] the analysis is incomparably more difficult, just
because we do not know the global phase flow. Therefore some studies must be
performed numerically, which is still very difficult for accurate and long time in-
tegrations, whilst some others (like parametric kicking) can be done analytically.
It is very interesting to observe, as we shall see, that in nonlinear oscillators the
adiabatic invariant (and thus the entropy) of the initial microcanonical ensemble
at the average final energy can decrease in relatively slow processes, just due to
the nonlinearity. On the other hand, it nevertheless increases for sufficiently fast
changes. We conjecture this in single parametric kicks [17], which can be inves-
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tigated analytically and rigorously for a wide class of homogeneous power law
kinetic energy and homogeneous power law potentials [18], including the quartic
oscillator. The Conjecture is proven in this case.

The linear oscillator is characterized by the universal energy distribution,
whilst in nonlinear oscillators the underlying distribution can be just anything,
depending on the specific properties of the system. For example, in time pe-
riodic 1D systems we can find a wide spectrum of dynamical behaviour, from
integrability to ergodicity, or the generic KAM scenario in between. The most
important example is the kicked rotator (standard map), but there are many
other time periodic systems [19, 4] which we will discuss. 2

.

2 Review of the time dependent linear oscillator

2.1 The phase flow and the general considerations

We study 1D linear oscillator described by the Newton equation 3

q̈ + ω2(t)q = 0, (1)

starting with themicrocanonical distribution of the initial conditions, with initial
energy E0. Then we let the system evolve in time and calculate the probability
distribution P (E1) of the final energy E1. To describe P (E1) is in general a
difficult problem, but for the 1D parametrically driven linear oscillator (1) the
problem can be solved [7–9, 11]. 4 P (E1) is universal, as it does not depend on
any special properties of ω(t), but depends only on the final average energy Ē1.
It is the so-called arcsine distribution [6]

P (x) =
1

π
√
2μ2 − x2

, (2)

2 Time periodic systems are interesting also from the point of view of the Fermi accel-
eration, that is unlimited growth of the energy, in 1D systems and higher dimensions,
especially in time periodic (breathing) 2D billiard systems, which is a subject of very
intense study in the past few years [20], especially in numerical calculations, where
lots of interesting empirical material has accumulated, including the power law be-
haviours with universal scaling properties [22]. The first theoretical result on the
conformally breathing fully chaotic 2D billiard systems has been recently obtained
[20], where the acceleration exponent β = 1/6 has been derived, in perfect agreement
with at least three different 2D time periodic and fully chaotic billiard systems [21].

3 Given the general ω(t) the calculation of q(t) in closed form is unsolvable problem.
In the sense of mathematical physics (1) is exactly equivalent to the one-dimensional
stationary Schrödinger equation: the coordinate q appears instead of the probability
amplitude ψ, time t appears instead of the coordinate x and ω2(t) plays the role of
E −V (x) = energy – potential. If E is greater than any local maximum of V (x) then
the scattering problem is equivalent to our 1D harmonic oscillator problem.

4 We do not consider the external forcing, but the details can be found in [10].
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where x = E1 − Ē1 and μ2 is the variance.
We shall answer the questions as to when is the adiabatic invariant [14]

I = E(T )/ω(T ) conserved, and if it is not conserved, what is the variance μ2

of the energy, and the higher moments etc. By T we denote the length of the
time interval of the variation of the system parameter. We also introduce the
adiabatic parameter ε = 1/T . Then (the not sharply defined) ΔI in the
literature is proportional to μ, namely ΔI ≈ μ/ω. We use the powerful WKB
method [15] to calculate μ2 (see also the review [11]). It gives exact leading
asymptotic terms when T → ∞, and moreover, generally and in principle we
can do the expansion to all orders, exactly. Below we treat one exactly solvable
case, namely the model of linear ω2(t).

The Hamilton function H = H(q, p, t), whose numerical value E(t) at time t
is precisely the total energy of the system at time t, is

H =
p2

2M
+

1

2
Mω2(t)q2, (3)

where q, p,M, ω are the coordinate, the momentum, the mass and the frequency,
respectively. The dynamics is linear in q, p, but the dependence of the variance
μ2 on ω(t) is nonlinear. By the index 0 and 1 we denote the initial (t = t0) and
final (t = t1) value of the variables, and T = t1 − t0.

We consider the phase flow map

Φ :

(
q0
p0

)
�→
(
q1
p1

)
=

(
a b
c d

)(
q0
p0

)
. (4)

Since the system is Hamiltonian, Φ is a linear area preserving map with det(Φ) =
ad − bc = 1. Let E0 = H(q0, p0, t = t0) be the initial energy and E1 =
H(q1, p1, t = t1) be the final energy, that is,

E1 =
1

2

(
(cq0 + dp0)

2

M
+Mω2

1(aq0 + bp0)
2

)
. (5)

Introducing the new coordinates, namely the action I = E/ω and the angle φ,

q0 =

√
2E0

Mω2
0

cosφ, p0 =
√
2ME0 sinφ (6)

from (5) we obtain

E1 = E0(α cos2 φ+ β sin2 φ+ γ sin 2φ), (7)

where

α =
c2

M2ω2
0

+ a2
ω2
1

ω2
0

, β = d2 + ω2
1M

2b2, γ =
cd

Mω0
+ abM

ω2
1

ω0
. (8)

Given the uniform probability density of φ equal to 1/(2π), we can now calculate
the averages. Thus
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Ē1 =
1

2π

∮
E1dφ =

E0

2
(α+ β). (9)

That yields E1 − Ē1 = E0(δ cos 2φ+ γ sin 2φ) and

μ2 = (E1 − Ē1)2 =
E2

0

2

(
δ2 + γ2

)
=

E2
0

2

[(
Ē1

E0

)2

−
(
ω1

ω0

)2
]
, (10)

where we have denoted δ = (α − β)/2. As we shall see, in an ideal adiabatic
process μ = 0, and therefore E1 = Ē1 = ω1E0/ω0, and consequently P (E1) is a
delta function, P (E1) = δ(E1−ω1E0/ω0). In such case the adiabatic invariant is
preserved exactly, the final value of the adiabatic invariant I1 = E1/ω1 is equal
to the initial one I0 = E0/ω0.

As shown in [7–9], for details see also [11], the odd moments of P (E1) (2) van-
ish exactly (due to the symmetry) whilst the even moments are just proportional
to the powers of the variance μ2.

Expression (10) is positive definite by definition and this leads to the im-
portant conclusion: In full generality (no restrictions on the function ω(t)!) we
have always Ē1 ≥ E0ω1/ω0 and therefore the final value of the adiabatic in-
variant (for the average energy!) Ī1 = Ē1/ω1 is always greater or equal to the
initial value I0 = E0/ω0. In other words, the value of the adiabatic invariant at
the mean value of the energy never decreases, which is a kind of irreversibility
statement. Namely, the entropy of the system is just the logarithm of the phase
space volume, in our case the latter one is 2πI. Moreover, it is conserved only for
infinitely slow processes T = ∞, which is an ideal adiabatic process, for which
μ = 0. For periodic processes ω1 = ω0 we see that sampling at the same phase
of the period we always have Ē1 ≥ E0, so the mean energy never decreases.
The other extreme opposite to T =∞ is the instantaneous (T = 0) jump where
ω0 switches to ω1 discontinuously, whilst q and p remain continuous, and this
results in a = d = 1 and b = c = 0, and then we find

Ē1 =
E0

2
(
ω2
1

ω2
0

+ 1), μ2 =
E2

0

8

[
ω2
1

ω2
0

− 1

]2
. (11)

Now we calculate the flow map (4), namely its matrix elements a, b, c, d.
Starting from the Hamilton function (3) and its Newton equation (1) we consider
two linearly independent solutions ψ1(t) and ψ2(t) and introduce the matrix

Ψ(t) =

(
ψ1(t) ψ2(t)

Mψ̇1(t) Mψ̇2(t)

)
. (12)

Proceeding in the familiar way we find the phase flow map Φ, namely

Φ =

(
a b
c d

)
= Ψ(t1)Ψ

−1(t0). (13)

The derivation of the distribution function (2) in two different ways, namely first
via the characteristic function using all the moments, and, second, calculating it
directly algebraically, is given in [9, 11].
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2.2 An example: linear ω2(t)

For the linear model (exactly solvable in terms of Airy functions) defined by

ω2(t) =

⎧
⎨
⎩
ω2
0 if t ≤ 0

ω2
0 +

(ω2
1−ω2

0)
T t if 0 < t < T

ω2
1 if t ≥ T

(14)

we can show [11], for the initial energy E0 = 1, using the asymptotical properties
of the Airy functions, or using the WKB theory to the leading order, that when
ε� 1 the variance is given by

μ2 = (E1 − Ē1)2 ≈
ε2

128

(
9− 4

√
2 cos(

4 − 8
√
2

3 ε
)

)
, (15)

where ε = 1/T . Note that μ2 is oscillating faster and faster with ε going to zero,
which is the adiabatic limit, but in the mean it vanishes quadratically with ε.

In nonlinear systems the theory must be reformulated entirely and is the
subject of the next sections. 5

3 Time dependent nonlinear 1D Hamilton oscillators:
some generalities

As already announced, in the nonlinear 1D oscillators the universality of P (E1)
for an initial microcanonical ensemble is lost. In fact, as we shall see, it can
be just anything depending on the details in the phase space. The two main
quantities are the mean energy Ē1 and the variance μ2. The property of the
non-negative change of the adiabatic invariant at the average energy I(Ē1) upon
the variation of the system parameter is lost, in general. It is remarkable that
due to the nonlinearities for some slow processes the adiabatic invariant and
- its logarithm (the entropy) - can decrease, in contradistinction to the linear
oscillator case.

But the increase in the adiabatic invariant is definitely restored for sufficiently
large value of the adiabatic parameter ε, that means for a sufficiently fast change,
in particular in case of a parametric kick ε = ∞. One example of a parametric
kick was given above for the linear oscillator, see equation (11).

We now discuss some generalities. Let H(q, p, t0) be the initial Hamiltonian,
also expressed in terms of its action-angle variables (I0, θ0), so that the frozen
Hamiltonian H0 can be supposed to be a function of I0 alone, H0 = H0(I0, θ0) =
H0(I0). Let K0 be a contour of constant I0 and therefore also of constant initial
energy E0. The initial conditions are uniformly distributed on K0 w.r.t. θ0, with
the constant density 1/(2π). The area enclosed by K0 is A0 = 2πI0.

5 For the case of a separatrix crossing some interesting numerical results have been
obtained in [23], namely P (E1) there has a substantial structure and is by far not
so simple as (2).
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Now the Hamiltonian H(q, p, t) is allowed to evolve in time, and with it we
follow the evolution of the ensemble K0, as governed by the Hamilton equations
of motion. The final Hamiltonian at time t1 is H(q, p, t1), whose action-angle
variables (for the frozen Hamiltonian) are (I1, θ1), and we write H1 = H1(I1, θ1).
Under this process the curve K0 is mapped onto the curveK1, which is no longer
a curve of constant action I1 and also not of constant energy E1, but is enclosing
the same area A1 = A0 asK0, because the phase flow is area preserving, and also
is topologically equivalent to a circle. The pointwise mapping is thus completely
determined by the map I1 = I1(θ0), θ1 = θ1(θ0), both being periodic functions of
θ0, parameterized by the initial value of I0, or by the initial energy E0 = E0(I0).

Therefore, due to the periodicity, (I1, θ1) can be Fourier expanded in terms
of θ0, as follows

I1 =

∞∑
−∞

ame
imθ0 , θ1 = θ0 +

∞∑
−∞

bme
imθ0 , (16)

where the summation runs over all integers m, i2 = −1, and since (I1, θ1) must
be real valued, we have the condition for the I0-dependent Fourier coefficients
am = a∗−m and bm = b∗−m, where ∗ denotes the complex conjugation. If all b’s
vanish, we simply have the identity θ1 = θ0. Calculating the area A1 we have

A1 =

∫
I1 dθ1 = 2πa0 − 2πi

∞∑
−∞

amb−mm = 2πI0, (17)

which is indeed a real quantity, as it can be easily checked. The equation (17)
follows also from the symplectic condition (Poisson bracket), requiring that the
two pairs of variables are canonical ones, which also is the Jacobian determinant
of the mapping being equall to unity, as one can easily show. This condition
implies further restrictions on the Fourier coefficients, but they are difficult to
work out in general. Also, the single valuedness must be taken into account (the
curve K1 must have no self crossings). It seems that no general conclusions can
be drawn in this picture for completely general mappings (I0, θ0) → (I1, θ1),
Fourier represented in (16). Therefore we must conclude that in the general
nonlinear systems the universality of the distribution function from the linear
oscillator (2) is lost.

However, if the higher Fourier coefficients vanish, like in the case of the linear
oscillator, or can be neglected in the first approximation due to weak nonlinearity
or other reasons, keeping only the lowest two of them, we find the approximation
I1 = a0+a1e

iθ0+a−1e
−iθ0 . We see immediately that a0 is the average final action

a0 = Ī1, and writing a1 = ΔIeiα/2, we find

I1 = Ī1 +ΔI cos(θ0 + α). (18)

Assuming now that the angle θ0 is uniformly distributed on the interval (0, 2π)
with the density 1/(2π), we derive the probability density distribution
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P (I1) =
1

π

1√
(ΔI)2 − (I1 − Ī1)2

, (19)

where the variance of I1 is equal to (ΔI)2/2. This is indeed the universal dis-
tribution (2) found in the linear oscillator. The same distribution applies to the
energy if the variance is small, because then locally I and E are linearly related.
We conclude that in the nonlinear oscillators in the limit of small changes of the
adiabatic invariant, which means in the adiabatic limit, or in the case of weak
nonlinearity, the distribution of the final energies might be approximated by the
arcsine distribution function (2). This is not true in general, for fast changes.

4 Numerical calculations for the quartic oscillator in the
adiabatic regime

Due to the great theoretical difficulties in treating the general nonlinear systems
we have to resort to the highly accurate numerical calculations for some model
system, for which we choose the quartic oscillator defined by the Hamiltonian

H(q, p, t) =
1

2
p2 +

a(t)

4
q4, (20)

where ε = 1/T (the adiabatic parameter) is so far an arbitrary positive number,
and

a(t) =

⎧⎨
⎩

1 if t ≤ 0
1 + εt if 0 < t < T
2 if t ≥ T

. (21)

Although for some special families of a(t) analytic results have been obtained
[24, 25], the problem is in general not solvable. In order to solve the problem
in a reliable way, especially in the long time limit (adiabatic limit ε → 0), we
have implemented and tested the symplectic integrator (SI) of eighth order due
to McLachlan [26] and MacLachlan and Quispel [27]. We have carefully tested
and compared many other methods [17, 25]. In Fig. 1 we show the results of
calculations. The energy distribution function is different from (2), but similar,
as the system is close to the adiabatic regime.

The variance μ2 as a function of ε behaves very similarly as in the linear
oscillator, like in the example (15). The adiabatic invariant at the average energy
for slow processes ε ≤ 0.05 can decrease as shown in Fig. 2. At larger ε it
eventually increases [17].

5 Single parametric kick

From the adiabatic regime we now come to the opposite extreme, the instanta-
neous jump of the system parameter, the parametric kick. We state the Conjec-
ture of Papamikos and Robnik[17] that the value of the adiabatic invariant at
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Fig. 1. The energy distribution function for the quartic oscillator for the adiabatic
parameter ε = 0.01. Linear a(t) model. For comparison, the dashed curve is for the
linear oscillator (2) with the same mean energy and the same variance μ2.

the average energy always increases. We can prove this Conjecture for the spe-
cial family of homogenenous power laws for the kinetic energy and the potential
energy [17, 18], with the Hamilton function

H(q, p, a) =
p2n

2n
+

a

2m
q2m, (22)

where a is the family parameter, andm,n are a positive integers. The parametric
kick happens by the jump a0 → a1. In a straightforward calculation we show
that the average energy is equal to

〈E1〉 = E0

(
1 +

n(a1 − a0)

(m+ n)a0

)
. (23)

Calculating the action at the average final energy I1(〈E1〉) = I(〈E1〉), taking
a = a1, and denoting x = a1/a0, we obtain I1(〈E1〉) = I0fm(x), where the
universal function, indexed by m and n, is

fm,n(x) =

(
1 + n

m+n (x − 1)
)m+n

2mn

x
1

2m

. (24)

It has the minimum 1 at x = 1 (which means no change of the Hamiltonian at
all), but is otherwise greater than one for all values of the ratio x = a1/a0 ∈
(0,∞). Therefore, the action at the average final energy upon a parametric kick
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Fig. 2. The action difference I1(Ē1) − I0 for the quartic oscillator for the range ε ∈
[0, 0.05] for 1000 ensemble initial conditions at energy E0 = 1/4. Linear a(t) model.

in 2m-oscillator always increases. In the limit x→∞ it goes as fm,n(x) ∝ x
1
2n .

The special cases worth mentioning explicitly are the linear oscillator, m = 1,
n = 1, f1,1(x) = x+1

2
√
x
, which is equivalent to equation (11), and the quartic

oscillator m = 2,n = 1, f2,1(x) = (x3 + 2
3 )

3
4 /x

1
4 . In case m = ∞ we get a box

potential and there is no time dependence at all, and consequently f∞,n(x) = 1.
We have performed highly reliable and accurate numerical integrations using
the 8th order SI for the various oscillators m = 2, 3, 4, n = 1, and found perfect
agreement between the theory and numerics for a large value of the adiabatic
parameters ε = 1/T , where T is the time of linear variation of the parameter a(t)
defined in (21). The action jump formula (24) for the kicked system ε = ∞ or
T = 0 is exact only for the discontinuous jump, but it is surprising that it very
well describes the behaviour of I1(〈E1〉) at even finite values of ε, even down to
the order of about ε ≈ 1, which means about one cycle of the oscillator. Thus
we can conclude that qualitatively changes of the parameter on smaller or much
smaller time scales than one period of the oscillator manifest themselves almost
like a parametrically kicked system. This is demonstrated in Fig. 3. At ε = 10
we get already perfect agreement. For details see [17].

Thus for the nonlinear oscillators (22) we have proven the Conjecture of
positive jump of the action at the average final energy upon a single kick. The
property means that the entropy in such systems upon a kick increases on the
average, so we have some kind of irreversibility in the mean. The proof of the
general Conjecture is difficult.
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Fig. 3. The action ratio I1(Ē1)/I0 for the kicked quartic oscillator for ε = 1 (linear
model, numerical integration) versus x = a1/a0 for 1000 ensemble initial conditions at
energy E0 = 1/4 compared to f2,1(x).

6 Parametric kicking of the linear oscillator

6.1 The case of a kick and antikick

If the ω2(t) is a piecewise constant function, namely equal to ω2
0 up to time

t = 0, where it jumps to ω2
1 , (kick) and at time T jumps back to ω2

0 (antikick),
we can explicitly calculate the variance μ2

μ2 =
E2

0

2

(
1

4

(
ω2
1

ω2
0

− ω2
0

ω2
1

)2

sin4 ω1T +

(
ω1

ω0
− ω0

ω1

)2

cos2 ω1T sin2 ω1T

)
. (25)

In such case the variance μ2 is periodic and vanishes whenever φ1 = ω1T = nπ,
where n is any non-negative integer. This is a remarkable result: vanishing μ2

means that the system is back to the microcanonical ensemble. Thus we conclude
that the second kick, in this case antikick, can restore the original microcanonical
distribution of the energies if the antikick happens at the right phase. Other
details of double kicks can be found in [17].

6.2 The case of periodic kicking

The phase flow map Φ = Φn
1 (4) for n periods is a power of the maps for one

period Φ1. The determinant is always one, and thus everyhthing depends on the
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Fig. 4. The action ratio I1(Ē1)/I0 for the quartic oscillator for 1000 ensemble initial
conditions at energy E0 = 1/4, as a function of time T between the kick and antikick
a0 = 1, a1 = 2. We observe oscillations below 1 for small T , showing that in nonlinear
oscillators the action of the average final energy can decrease.

trace B of Φ1. If |B| is smaller or equal to 2 we have oscillatory behaviour, whilst
in case of |B| > 2 we have the unstable case of exponential growth of the energy
and also the adiabatic invariant: all matrix elements a, b, c and d grow as λn

1 ,
where λ1 > 1 is the larger solution of λ2 − Bλ + 1 = 0. Therefore, the mean
energy Ē1 grows as ∝ λ2n

1 and the variance μ2 grows as ∝ λ4n
1 .

7 Parametric kicking of the quartic oscillator

7.1 The case of a kick and antikick

The system is as in (20) with a = a0 for t ≤ 0, a = a1 for 0 ≤ t ≤ T , and
a = a0 for t ≥ T . Both, the action and μ2 at final average energy are oscillatory
functions of T , but not periodic. Moreover, the action is seen to decrease for
some small T (Fig.4). The variance μ2 (not shown) never gets down to μ2 = 0.
Both properties are due to the nonisochronicity, due to nonlinearity [17].

7.2 The case of periodic kicking

Like in case of the periodic kicking of the linear oscillator we now assume for
the quartic oscillator (20) that at time t = 0 we have a kick from a0 = 1 to
a1 = 2, which at time t = T jumps back to a0 = 1, and at time t = 2T back
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Fig. 5. The phase portrait of the phase space map Φ1 for the periodically kicked quartic
oscillator (a0 = 1, a1 = 2, T = 1).

to a1 = 2, and this period is repeating itself ad infinitum. The flow map for the
half period can be calculated analytically in terms of Jacobi elliptic functions
[17], and the flow map for one period Φ1 is just a product of the flow maps of
the two half periods. Then, the flow map as a function of number n of periods is
Φn = Φn

1 , and it is area preserving. There is a scaling property of the flow map
and as a consequence of that the topology of the phase portrait of such area
preserving map (q1, p1) = Φn(q0, p0) is the same for all T . Thus it is enough to
consider the case T = 1. The phase portrait of the map Φ1 is shown in Fig. 5.
We see the generic picture: some islands of stability and the surrounding chaotic
sea. If the initial conditions are chosen entirely inside an island of stability, we
shall see just the oscillatory regime. If the initial conditions are entirely or at
least partially in the chaotic sea, we shall see unlimited energy growth (Fermi
acceleration), because the chaotic sea is connected to infinity. But, of course, the
microcanonical ensemble will be typically of the mixed type.

If we choose the initial conditions on a contour of E0 = 1/4 for a0 = 1, a1 =
2, T = 1, we find that the average energy, the action and the variance are
growing approximately linearly with n up to about n ≈ 200, as shown for the
energy in Fig. 6.

Piecewise linear periodic driving of the quartic oscillator has also been ex-
tensively studied [28] and it is of the mixed type again, but with a denser set
of KAM invariant curves than in the periodic kicking, as the driving law has no
discontinuities any more, only discontinuities of the first derivative. The energy
distribution is then more like a Gaussian rather than arcsine.
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Fig. 6. The average energy Ē1 for the periodically kicked quartic oscillator for 1000
ensemble initial conditions at energy E0 = 1/4, as a function of discrete time n (number
of periods of the parameter a). The parameter values are a0 = 1, a1 = 2, T = 1. The
data are dots and the line connecting them is just to guide the eye.
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Abstract. I review historical chemical experiments in which the phe-
nomena of self-organisation and pattern formation were first observed. I
then review theoretical models for the description of oscillating chemi-
cal reactions and reactions with limit-cycle behaviour. Finally I discuss
a number of examples of chemical experiments for the explanation of
which the concepts of synergetics were of paramount importance.

Keywords: self-organisation, pattern formation, chemical experiments,
synergetics

1 Introduction

Hermann Haken who is among us fortunately (Fig. 1) can be called rightly so the
father of synergetics. His powerful definition of synergetics can be summarized in
the statement: ”What we are looking for that is the action of many sub-systems
in common, creating structures and new functions on a macroscopic scale” [1].
When explaining his ideas, he very often used the example of the Rayleigh-
Bénard instability. For sufficiently small temperature gradients the Fourier law
(1) governs the heat transport from the hot bottom of a vessel up to the cold
surface of the fluid.

∂T

∂t
= κ∇2 T ; κ > 0 . (1)

The subsystem of this randomly organized heat transport process consists of the
molecules which undergo uncorrelated Brownian motion in the fluid. However,
if the temperature gradient exceeds a critical value cooperative motion occurs
among the molecules, forming the new subsystem of ”droplets”, the motion of
which is caused by buoyant forces. In this way convection cells (Fig. 2) emerge in
the fluid, organizing the heat transport more effectively than thermal conduction.
For a chemist, it is really hard to gain an impression of this kind of movement in
the fluid. Fortunately, S. Großmann et al. [2] published a photo taken by Yibing
Do and Penger Tong which is of great visual impact illustrating the thermal flow
within the fluid by liquid crystals of temperature depending colourings.
© Springer International Publishing Switzerland 2016 59
A. Pelster and G. Wunner (eds.), Selforganization in Complex Systems:
The Past, Present, and Future of Synergetics, Understanding Complex Systems,
DOI: 10.1007/978-3-319-27635-9_5

pelster@zedat.fu-berlin.de



60 P. Plath

Fig. 1. Hermann
Haken Delmenhorst
2012.

Fig. 2. Rayleigh-
Bénard instability.

Fig. 3. Runge picture - pat-
tern formation by front in-
stabilities during chemical
reactions in filter paper.

2 Historical Experiments

2.1 Runge Pictures

In chemistry there exists a lot of historical experiments on pattern formations,
a long time before the idea of synergetics was developed by Hermann Haken.
Let me briefly sketch some of these remarkable investigations. One of these
experiments was carried out by the very successful industrial chemist F.F. Runge
(1794 - 1867) in his ”Chemische Produkte Fabrik” in Oranienburg, where he was
its technical director since 1850. He was very much involved in the isolation of
compounds which could be isolated from coal tar. In this way he detected phenol,
quinoline, pyrrole, and aniline, which became fundamental substances for dye
industry. This might be one of the reasons why he looked for inorganic mineral
colours and their behaviour with respect to colouring of papers and clothes.

He investigated chemical reaction front instabilities while carrying out the
reaction in the almost 2D space of filter papers. In contrast to grease or water
spots in our clothes the spreading fronts are of fractal shape instead of almost
cyclic form.

D(α) =
ln
∑n

i=1

√
r2i−1 + r2i − 2ri−1ri cos s− ln k

ln(1/s)
. (2)

Estimating the fractal dimension for the front in the Runge-picture shown above
(Fig. 3) using eq. (2), one obtains D(α) = 0.933. He published a series of reac-
tion pictures in his very illustrative books: ”Zur Farbenchemie - Musterbilder für
Freunde des Schönen und zum Gebrauch für Zeichner, Maler, Verzierer und Zeug-
drucker” (1850) and ”Bildungstrieb der Stoffe - Veranschaulicht in selbständig
gewachsenen Bildern” (1855) [3].

2.2 Liesegang Rings

At the end of the 19th century Raphael E. Liesegang (1896 - 1947) came forward
with another exciting pattern formation process (1896) - he detected precipita-
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Fig. 4. Liesegang screw in Agar-Agar gel in a test tube (vertically oriented) [5].

Fig. 5. Oscillating time-series of the dissolution
of chromium in mineral acids (experiment by Th.
Rabbow and P.J. Plath).

Fig. 6. Photograph of the
first produced chromium
pieces which Wi. Ostwald
used for his experiments in
1899 and 1900 [5].

tion patterns of inorganic reactions in gels [3, 4]. He presented his findings as a
working hypothesis for understanding standing waves in Crookes’ gas discharge
tubes (1879) (pattern formation in plasma instabilities) and called them ”A-
lines”. Dousing a glass plate with a gelatin solution containing small amounts
of potassium dichromate and putting some drops of silver-nitrate onto the stiff
gel, he found that the silver ions diffuse into the gel, forming precipitation rings
of silver-chromate. At that time he worked in the factory Ed. Liesegang OHG
of his father as an industrial chemist studying the production of photographic
layers. One can observe a lot of different patterns like spirals (Fig. 4) and rings
while performing precipitation reactions, for example in gels or sandstones un-
der various reaction conditions. The very small colloids of the precipitates which
are formed if the concentration product of the corresponding ions exceeds its
critical value are stabilized by the gel and can move for a short time without
decomposition. If they collide they may form aggregates which stick in the gel.
In this way precipitation patterns in the gel can be simulated effectively [6].

2.3 Oscillating dissolution of chromium

In 1900 Wilhelm Ostwald (1853 - 1932) published the first fundamental articles
[7] on the oscillating dissolution of chromium in sulfuric acid (cf. Fig. 5). For
his experiments he used the very first pieces of chromium (Fig. 6) which just
had been produced. Moreover, he developed the first thermostat, and a recorder
for documenting continuously and graphically his results. He was criticised very
much for his results, especially because of the fact that he could not reproduce
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Fig. 7. Copy of the original drawings of K.F. Bonhoeffer.

them with a chromium piece produced later on. But he was totally right! We
have reproduced his results with his original chromium pieces as well as with
pure chromium manufactured our days.

2.4 Lotka Model

In 1910 A.J. Lotka (1880 - 1949) published his article ”Zur Theorie der perio-
dischen Reaktionen” in the same journal ”Zeitschrift für physikalische Chemie”,
founded by Wilhelm Ostwald, in order to describe oscillating chemical reactions
in homogeneous systems [8]:

A+X1
k1−→ 2X1

X1 +X2
k2−→ 2X2

X2
k3−→ F

A −→ F (3)

dc1
dt

= k1cac1 − k2c1c2

dc2
dt

= k2c1c2 − k3c2 (4)

He solved these equations. His set of coupled differential equations is well
known in our days as Lotka-Volterra model.

2.5 K. F. Bonhoeffer - Electrochemical dissolution of iron

Working on the electrochemical dissolution of iron in nitric acid the physical-
chemist Karl F. Bonhoeffer (1899 - 1957) - brother of Dietrich Bonhoeffer (1906
- 1945), the protestant theologian - observed electrochemical oscillations and
described them by the zero isoclines of the well known system of differential
equations (5) [9]. In this way he used the idea of limit cycle behaviour (Fig. 7)
to describe periodic chemical reactions.

dx

dt
= −ax3 + bx+ c

dy

dt
= dx2 + ex− f (5)
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Fig. 8. Original drawing of the
limit cycle behaviour of the Brus-
selator [14].

Fig. 9. Graphs of the consecutive
reaction A → B → C [15].

2.6 Belousov - Zhabotinsky Reaction

All this and much more was known and had been published in famous journals
when Boris P. Belousov (1893 - 1970) detected chemical oscillations during the
cerium catalyzed bromation of citric acid in 1951 [10]. However, the study of pat-
tern formation in chemical systems did not belong to the main stream research
in chemistry, and therefore it is not astonishing that Belousov’s results were not
accepted in famous chemical journals in Russia until 1958, when Zhabotinsky
published new results on this reaction replacing the catalyst cerium with ferroine
and citric acid with malonic acid for better visualization. I have had similar ex-
periences in Germany (FRG) in the late seventies when we tried to publish our
first results on the oscillating Pd-catalysed methanol oxidation.

2.7 Ilya Prigogine - Brusselator

Working on the conflict between classical thermodynamics and real life evolu-
tion and pattern formation, Ilya Prigogine (1917 - 2003) [11, 12] developed the
concept of the export of entropy from a system under consideration to its sur-
rounding (1967/68). In this way, regarding open systems (6) and (7) (where A is
an equal constant and E can grow without limitation), he developed in 1977 a set
of kinetic equations which have an auto-catalytic reaction step: 2X + Y → 3X ,
in its corresponding set of chemical equations [13, 14]:

A→ X

2X + Y → 3X

B +X → Y +D

X → E (6)

dX

dt
= A+X2Y −BX −X

dY

dt
= BX −X2Y (7)

Such an auto-catalytic equation was very unusual for a chemist, who would
never write: 2X + Y → 3X , but Y → X . So it was very hard to understand
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the chemical background of this model at those times. However, he introduced
this description for constructing the non-linear ordinary differential equation (7),
which he needed for creating a limit-cycle (Fig. 8). Nevertheless, in the eighties,
his fruitful ansatz inspired a lot of chemists to look for similar auto-catalytic
reactions.

2.8 Text-book knowledge in 1960 - 1970

However, looking into famous physical chemical textbooks of the early seven-
ties, for example R. Brdička’s ”Basics of Physical Chemistry” [15], consecutive
reactions of the type A → B → C → · · · (cf. Fig. 9), were the most advanced
descriptions of the kinetics of open chemical systems at this time. The Michaelis-
Menten-kinetics of enzymatic reactions: E + S

→← ES→ E + P with E = enzyme,
S = substrate, and P = product, which is well known in bio-chemistry, is just a
special simplification of the more general consecutive reactions.

3 The early days of Synergetics

Remembering all these convincing findings it is astonishing that it took about
hundred years from their beginning that these ideas became united under one
roof by Hermann Haken when he created ”Synergetics” [16, 17] in the early
seventies.

In April 1972 he organized the first international ”Symposium on Syner-
getics” in Schloss Elmau, which is documented in the proceedings ”Synergetics
- Cooperative Phenomena in Multi-Component Systems” [18] which appeared
1973 with B.G. Teubner, Stuttgart. It needed some more years that this idea
maturated in the scientific community.

In May 1977 Hermann Haken organized a second international workshop
on synergetics at Schloss Elmau. There he stated ”Synergetics is a rather new
field of interdisciplinary research which studies the self-organized behaviour of
systems leading to the formation of structures functionings” [19].

Summer 1977 was just the date, when N. Jaeger and me at the physical
chemistry department of Bremen University became acquainted with the ideas
of structure formation in irreversible processes by the small book of Werner
Ebeling which had just appeared [20].

Two years later U.F. Franck and E. Wicke organized the first meeting of
the Bunsen-Gesellschaft für Physikalische Chemie on chemical oscillations in
Aachen (1979) (cf. Fig. 10) [21]. Meanwhile a lot of physical-chemists came up
with ideas like chemical oscillations, structure formation in irreversible processes,
etc., and they presented their first results on these topics to a wide spread au-
ditorium. Among them there were P. Gray (England), A. Zhabotinsky (USSR),
U.F. Franck, E. Wicke, and O.E. Rössler, who brought chaos to the chemists’
mind at first (Fig. 11). He formulated the powerful idea: ”Chaos can be realized
in simple chemical systems” [22]. This was very stimulating and inspiring to look
for chaos experimentally too.
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Fig. 10. U.F. Frank (very left) and O.E. Rössler (left on top) at the Discussion Meeting
”Kinetics of Physicochemical Oscillations” Aachen 1979.

Fig. 11. Chaotic oscillations of Eq. (9). Stereoscopic display (two parallel projections).
This is a copy of the original figure published by O.E. Rössler et al. [21].

ẋ = x(a1 − k−1x− z − y) + k−2y
2 + a1 ,

ẏ = y(x− k−2y − a5) + a2 ,

ż = z(a4 − x− k5x) + a3 . (8)

For this set of three non-linear kinetic equations (8) he offered a set of five chemi-
cal equations which can be interpreted conventionally by bi-molecular reactions.

Peter Gray from Leeds (Fig. 12) talked about the formation of ”mushroom
patterns” (Fig. 13) in the phase-space of chemical systems, while investigating
auto-catalytic reactions. He called this: ”classification of static instabilities”. All
these efforts are based upon the elementary approach to Thom’s catastrophe-
theory which also fills a whole chapter in Hermann Haken’s ”Introduction to
Synergetics” [1].
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Fig. 12. Peter Gray (right) [5].

Fig. 13. Mushroom pattern in
phase space [23].

4 Chemical experiments on synergetics

4.1 Heterogeneously catalysed methanol oxidation

We were very much fascinated by all these ideas! When we were working on the
heterogeneously catalysed methanol oxidation with Pd-supported catalysts [24,
25], H. Haken’s idea of synergetics described our observations by the cooperative
action of subsystems, and fitted very much to our perception [26]. Moreover, we
[27] observed sudden jumps in the temperature production during the long-time
run of the exothermic methanol oxidation reaction (9)

2CH3OH+O2 −→ HCOOCH3 + 2H2O+ΔH1

CH3OH+ 3/2O2 −→ CO2 +H2O+ΔH2 . (9)

The catalytic reaction took place at the reactor temperature of about 80◦C.
The stepwise reduction of the flow rate of the gaseous educts from 90 to 40
ml/min diminished the heat production, and thus the temperature difference
ΔT between the catalyst layer and the reactor temperature from 55◦C down to
about 35◦C. After five hours we stopped this procedure and let the reaction go
[27].

It took unbelievable 14 hours that the reaction system switched from the
reaction channel of the total oxidation to CO2 to the partial oxidation mechanism
of formic acid methyl ester HCOOCH3 accompanied by a sudden jump to lower
temperature production, see Fig. 14.

Hours later we thought the system is over and will never be able to be
activated again. This was an obvious error! Our traditionally trained chemical
intuition misled us. A detailed inspection concerning the ideas of synergetics led
to the hypothesis of a twofold cusp catastrophe, see Fig. 15. It was the bright
diploma student Anna Haberditzl who carried out all the exciting experiments
with unbelievable patience.

The other excellent student in our group at those times was Edith van Raaij.
She detected the first oscillation of the catalytic methanol oxidation (cf. Fig. 16)
and estimated experimentally the correlation between the time-series and un-
derlying chemistry of the oscillations [24, 25].
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Fig. 14. Long-time behaviour of
the Pd-catalysed methanol oxidat-
ion [27].

Fig. 15. Original sketch of the tra-
jectory of the catalysed methanol
oxidation onto a twofold folded 2D
manifold [27].

These investigations were continued by Peter Svensson, who found toroidal
oscillations [28] (Fig. 17) as well as experimental evidence of homoclinic chaos
and type-II intermittency in the heterogeneously catalysed methanol oxidation
[29]. At that time the phenomenology of this reaction was extremely fascinating,
especially because of the fact that maps for the different basins of attraction
were just discussed in synergetics. It was our aim to understand the possible
structures of motion in the correlated control space of this reaction.

4.2 Fractals and fractal growth

In one of the Synergetics conferences at Schloss Elmau, Heinz-Otto Peitgen in
1984 [30, 31] presented his very illustrative work on Benôıt Mandelbrot’s idea
of fractals [32]. Very soon it became clear that chaos and fractals belong to
each other. Nevertheless, it was hard to combine these ideas with chemistry,
up to the point that Kenneth Wilson [33] and Steven Wolfram [34] came up
with their cellular automata [35]. Now, as chemists we could easily correlate
figures of the two-dimensional electro-deposition of zinc between two immiscible
solutions (see Fig. 18) with the fractal growth of mathematical dendrites [31].
A real burst of new investigations on the fractal pattern formation in various
fields of physics [36] and chemistry [37] went off in the eighties. Surprisingly,
this idea helped us several years later to understand the structure formation
of beer foam [38], which resembles very much the construction of Apollonian
circles and spheres (Fig. 19). Both examples are understandable intuitively for
experimentally working chemists who are interested in fractals!
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Fig. 16. Two periodic oscillations of the Pd-catalysed methanol oxidation. a) methanol
1,9 Vol % / oxygen; 41 ml/min; b) methanol 1,9 Vol % / air; 19 ml /min. These
experiments have been carried out by Edith van Raaij [25].

Fig. 17. Toroidal oscillations of the heterogeneously Pd-catalysed methanol oxidation
[28].

Fig. 18. Fractal pattern formation
during electrochemical zinc depo-
sition [5].

Fig. 19. Apollonian structure of
bubbles in beer foam appears af-
ter the phase of drainage in the so
called rearrangement phase [38].
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Fig. 20. Solitary waves in the Be-
lousov-Zhabotinsky reaction per-
formed in a Petri dish. A single soli-
tary wave, a target pattern and a
rotating spiral is observable in dif-
ferent regions [5].

Fig. 21. Spirals during single crys-
tal catalysis of CO-oxidation on
Pt(110) [44].

4.3 Chemical waves in the BZ reaction

We remember the great potential of Fick’s second law for structure formation
if some critical values are exceeded. Now, combining Fick’s second law with
reaction equations a great variety of new structure formations should arise. Such
reaction-diffusion equations (10) played a very import role in development of
synergetics, since a local oscillation in an excitable chemical medium becomes a
chemical wave by diffusion. The most exciting example for this kind of structure
formation was the Belousov-Zhabotinsky reaction (BZR) [10]

∂ci
∂t

= fi(c1, c2, · · · , cn) +Di∇2ci . (10)

H. Haken used a picture of this kind of pattern formation in BZR for the cover
of his famous and wide spread book ”Erfolgsgeheimnisse der Natur” [16]. Self
exciting cyclic waves, so-called target patterns, cyclic waves in excited media,
and spiral waves can be observed, if one carries out this reaction in a thin layer,
for example in a Petri dish (cf. Fig. 20). With enormous effort this reaction has
been studied in all details theoretically as well as experimentally since decades.
The waves in BZR became a key phenomenon for a huge variety of similar pattern
formation processes [39, 40].

All these different patterns can be summarized by the idea of a solitary chem-
ical wave. In earlier times they have been named auto-waves by V.I. Krinsky [39].
Such waves annihilate if they collide and they cannot be reflected if they touch a
wall. Hans Meinhardt demonstrated the wide occurrence of chemical waves in his
very illustrative book ”The Algorithmic Beauty of Sea Shells” [41]. These waves
have been simulated successfully by reaction-diffusion equations of the type of
the activator-inhibitor model for example, but also by cellular automata mod-
els [42, 43]. However, the question remains what are the cooperative subsystems
which lead to the observed patterns.
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Fig. 22. Rudolf Friedrich 2007
during a talk in Bremen [46].

Fig. 23. Ripple formation in the side
wall created by water-jet cutting. Orig-
inal photo made by G. Radons and R.
Friedrich [45].

G. Ertl and his group observed spiral waves on the surfaces of Pd single
crystals during the catalytic oxidation of CO [44] (see Fig. 21). Although only
a few atoms and molecules, respectively, are the acting subsystems, these pro-
cesses could be modelled successfully by the reaction-diffusion systems which are
based on the Langmuir-Hinshelwood mechanism, extended to surface sub-layers
acting as storages for oxygen. In this way, we have an interesting situation: a
homogeneous system which has been modelled in a continuous space by differen-
tial equations as well as by discrete mathematics via cellular automata, and we
have a real discrete system in which pattern formation was modelled successfully
by differential equations. As a consequence, synergetics cannot be reduced onto
non-linear dynamics in terms of differential equations, which, however, obviously
are powerful tool.

4.4 Cutting processes - ripple formation

Günter Radons and the late Rudolf Friedrich (Fig. 22) applied synergetics to
the technical process of abrasive water-jet cutting [45], since ripple formation
can be observed in the side walls of the cuts (Fig. 23). This inspired us to look
for another technical process which was not well understood at the time: micro-
structuring by laser-jet-etching.

Thomas Rabbow investigated electrochemically the laser-jet-etching process
[47]. Depending on the feeding rate of the work piece he also observed ripple
formation in the trenches and their side walls (Fig. 24).

In this case electrochemical etching takes over the role of the abrasive material
used in water-jet cutting processes. Because of such similarities Rudolf Friedrich
insisted upon generalisation of these cutting processes in terms of synergetics.
Together we organized the 16th Winter-Seminar at Zeinisjoch 2004 ”Universelles
Verhalten bei Schneidprozessen” (Universal behaviour in cutting processes), in
order to discuss general principles of pattern formation in cutting processes.
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Fig. 24. Scanning electron micro-
scope (SEM) - top view - image of
a steel sample micro-structured by
Laser-Jet Etched method revealing
ripple formation in the side walls
[47].

Fig. 25. Temporal fractal struc-
ture formation; Experiment:
CO-oxidation in a micro-reactor;
Model: 100 coupled elementary-
reactors which are of about 1010

to 1011 Pd particles of almost the
same size each of them [50].

4.5 Chaos in the catalytic CO-Oxidation

The brilliant physico-chemist Karin Möller worked on the chaotic behaviour of
the heterogeneously catalysed CO-oxidation using Pd-loaded zeolites as support
catalysts [26, 48]. Together with Nils Jaeger, it was our aim to figure out what are
the acting subsystems which are responsible for the self-similar pattern forma-
tion of break-downs of conversion [49]. The palladium crystals, the Pd containing
zeolite crystals, or even parts of the catalyst layer came into consideration as
candidates for subsystems. Simulations were carried out carefully by Carsten
Ballandis and compared with a huge amount of very exact new measurements
(Fig. 25), leading to the surprising result that sets of Pd-particles of almost the
same size form the cooperating subsystems which cause the self-similar tempo-
ral patterns of the time series [50]. This is due to the fact that the Pd-particles
undergo phase transitions depending upon their size, which is characteristic of
nano-particles. The exothermic CO-oxidation causes a heating up of the parti-
cles. The smaller the particles are, the higher is the resulting temperature of
the particles. In this way they undergo the phase transition from palladium Pd
to palladium oxide PdO earlier than the larger particles. The catalysis stops
when the particle is in the PdO state where the particle cools down again. The
coupling between all the particles of almost the same size is realized by the effec-
tive CO concentration in the catalyst layer or the reactor volume, respectively.
In this way primitive elementary reactors are formed each of them containing
about 1011 Pd-particles. These primitive elementary reactors take over the role
of the cooperating units for the catalytic reaction in the sense of synergetics.
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Groups of insignificantly larger primitive elementary reactors become entrained
temporarily, forming elementary reactors. The fractal character of the time series
results from the cooperation of these elementary reactors [49].

5 Conclusive remarks

Once, when we met during the ”Winterseminar at Zeinisjoch”, discussing chem-
ical pattern formation, it was Arne Wunderlin who put forward the - for syner-
getics - fundamental request, namely, to look for the optimally cooperating sub-
systems which guarantee that the observed patterns can be described correctly.
A fallback onto standard models like atoms, molecules, or the corresponding av-
eraged concentrations might not be useful in any case. In chemistry, one also has
to look for larger entities like droplets in Rayleigh-Bénard systems - we agreed
on this. Chemically spoken, regions reacting synchronously might be the most
suitable entities even for so-called homogeneous reaction systems, especially if
they are not ”well stirred”. In case of the heterogeneously Pd-catalysed CO-
oxidation we have provided the evidence of such synchronously acting particles,
which together form the subsystems - the primitive elementary reactors - we
looked for.
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Abstract. Exploring the dynamics of financial time-series is an exciting
and interesting challenge because of the many truly complex interactions
that underly the price formation process. In this contribution we describe
some of the anomalous statistical features of such time-series and review
models of the price dynamics both across time and across the universe
of stocks. In particular we discuss a non-Gaussian statistical feedback
process of stock returns which we have developed over the past years
with the particular application of option pricing. We then discuss a co-
operative model for the correlations of stock dynamics which has its
roots in the field of synergetics. In all cases numerical simulations and
comparisons with real data are presented.

Keywords: finance, fat-tails, long-range memory, statistical feedback,
correlation dynamics

1 Introduction

The field of finance is one with a rich history of its own. Yet in recent years it has
attracted more and more people with scientific backgrounds, especially from the
field of physics. This is not only due to the fact that physicists are particularly
well-equipped to tackle many of the challenges of mathematical finance which
provides alternative career paths on Wall Street, but also because vast amounts
of financial data are now available. Nearly every transaction on a tick-by-tick
basis for thousands of stocks and other financial instruments is being recorded
electronically as we speak, resulting in something akin to a huge data-base of one
of the most complex systems we can imagine. Hardly the result of a controlled
experiment in a physics lab, the price formation process of a publicly traded
asset is clearly the product of a multitude of evasive interactions. Individuals
around the globe post orders to buy or sell a particular stock at a particular
price. Transactions are cleared at a certain price at a given time, either by
passing through the hands of a specialist on the trading floor, or automatically
on the many electronic markets which have sprouted in recent years. Apart from
fundamental properties of the company whose stock is being traded, factors
such as supply and demand clearly must affect the price of stocks, as well as
general trends in the particular industry in question. Stock specific events, such
© Springer International Publishing Switzerland 2016 75
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as mergers and acquisitions, have a big impact, as do world events, such as wars,
terrorist attacks, and natural disasters. A recent example of this are the dramatic
events seen in 2007 and 2008 which are perhaps due to fundamental flaws in our
credit-based economy. The current European debt crisis is another example.

Stocks are traded for the most part on a central limit order book, such as
the New York Stock Exchange. Modeling the intricate dynamics and micro-
structure of this order book is a field of study which has gotten some traction
in recent years [1, 2]. When comparing to physics, that level of description can
be seen as the microscopic level. However, it is often more tractable to use a
mesoscopic description which aims at describing the price process as a stochastic
Langevin equation where the key feature is how to capture the volatility, or
noise, that drives the process. This is the most important effect since stock price
changes (or returns) form moment to moment are essentially unpredictable so
the deterministic part of the equation is less interesting (though of course, if you
can predict it ever so slightly then you might become quite wealthy!)

For many years and in a large body of the financial literature, the random
nature of price time-series was modeled by most as a simple Brownian motion.
The first to propose such a model was Bachelier in his thesis in 1900, which lay
largely undiscovered until much later when Black and Scholes wrote their famous
paper in 1973 based on a very similar model. They made important contributions
in particular to the pricing of options, for which they received the Nobel Price
[3]. Options are traded instruments that give the right, not the obligation, to
buy a stock at a later date at a certain price, called the strike price. In Black
and Scholes work the log price is assumed to follow a Gaussian distribution and
even today many trading assumptions and risk control notions are based off of
that prior.

However, in more recent years there has been a large body of work which
- in quite some detail and statistical accuracy due largely to the vast amount
of observations available - has been able to document that the time-series of
financial market data show some intriguing statistical properties, which deviate
quite substantially from the Gaussian assumption. These features are referred to
as stylized facts (cf [4, 5]). It is interesting to note that many of the stylized facts
appear to be universal, in the sense that they are exhibited by a vast variety of
financial instruments, as different as commodities like wheat, currencies such as
the Euro-Dollar rate, and individual stocks. Some are also exhibited over various
periods of history (and so can be seen as stationary), others are exhibited on
a multiple of time-scales (and so can be seen as self-similar). Other interesting
properties pertain to the dynamics and statistics of the cross-section of financial
instruments. Ultimately, the goal is to comprehend and model the joint stochastic
process of the price formation dynamics of the collection of stocks across time,
so investigating various statistical properties both across time and across stocks
is essential. The challenge then lies in coming up with a model that captures the
dynamics inherent in the data. In addition, it is desirable that such a model is
somewhat intuitive, parsimonious, and analytically tractable.
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In this chapter we shall review a class of models that we have proposed in
recent years, aimed at modeling the stock price dynamics in such a way as to
capture as many of the statistical properties of real financial data as possible.
We also show how these models could be used for important applications such
as the pricing of options and other derivative instruments. In the first part we
focus on financial time-series, and in the second part we look at cross-sectional
dynamics across a universe of stocks. In all cases we shall see that notions of
nonlinear cooperative feedback appear to be essential ingredients of this very
complex real-world system.

2 Stylized Facts across Time

2.1 Returns

While a random walk with Gaussian noise will show fluctuations that are rel-
atively constant over time, the case is quite different for a time-series of stock
returns, usually defined as relative price changes or log price changes. As shown
in Figure 1, there appear to be intermittent clusters of higher versus lower mag-
nitude returns. This phenomenon is known as volatility clustering, and we will
look at that in more detail further along. The probability distribution of these
financial returns are typically fat-tailed. In fact, it has been shown that the dis-
tribution of both intra-day and daily returns can be very well fit by a power-law
tail of about -3 (referred to by some as the cubic law of finance [6]). This tail
index is consistent with that of a Tsallis distribution [7] with index q in the range
1.4-1.5, which fits very well to that of the returns (Figure 2). We shall work a
lot with this class of distributions (which are equivalent to Student-t distribu-
tions), because this very same distribution fits to returns from a wide variety
of financial instruments, such as stocks, currencies and commodities, with much
the same q-index. Furthermore, this fat-tailed nature of returns holds for data
from several different geographic regions such as North America, Japan and Eu-
rope. Because of this rather universal behavior, the non-Gaussian distribution
is an important stylized fact. Clearly then, any model of financial data should
try to capture at least this important feature. A related stylized fact is consti-
tuted by the observation that, as the time lag over which returns are calculated
in increased, this power-law behavior of the distribution of returns persists for
quite a while, decaying slowly to a Gaussian distribution as the lag increases,
becoming indistinguishable from the Gaussian as the lag approaches something
on the order of a few months [5].

2.2 Volatility

Volatility is typically defined as the square root of the squared variation of re-
turns. Obviously, this definition is not unique because one can choose to calculate
the squared variation over an arbitrary historical period. As it turns out, the sta-
tistical properties of volatility will not be too sensitive to this exact choice. What
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Fig. 1. Market Returns (bottom) and from our multi-time scale model (top)

do we know about volatility? Why do we care? In order to answer these ques-
tions, our view is to stand back a bit, and let the data speak. Are there consistent
patterns in the statistical properties of the data? Are they universal? If financial
data were Gaussian distributed, then the volatility would be the standard devi-
ation of that distribution. In fact, this assumption is still made both by many
practitioners and in many theoretical works in mathematical finance, although
there is the increasing awareness of the shortfalls of such an assumption. In prac-
tice, for example, the devastating effects of the Gaussian assumption were seen
in August of 2007 and October of 2008, when investors panicked claiming that
25-sigma events were wiping them out. In fact, these types of statements are
only true if the underlying distribution is assumed to be Gaussian. If a heavy
tailed distribution such as the Tsallis with q = 1.4 or 1.5 is assumed, then the
behavior of the markets as we have seen them in recent years is to be expected,
with a probability of about one or two extreme events per decade. Clearly it
is extremely important for hedging and risk control purposes to have a richer
understanding of volatility.

Data shows that time series of the volatility of the Dow Jones index for the
past century exhibits clear periods of lower and higher volatility, typically clus-
tered together. Note that while the distribution of returns is fat-tailed, volatility
itself follows a close-to log-normal distribution. Interestingly, the same type of
statistics is valid for volatility calculated every 5 minutes intra-day, implying a
self-similar structure.The fact that volatility is self-similar on different timescales
is a universal feature. The clustering feature that is observed is a signature that
there is memory inherent in volatility; if volatility is high, it will persist for a
while. This memory can be quantified by looking at the autocorrelation of volatil-
ity over increasing time lags. Such an analysis shows that there is a persistence
which decays as a power law as the lag increases. There is also the feature of
causality in the structure of volatility. In other words, some statistical properties
of future volatility conditioned on past volatility are not invariant to reversing
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Fig. 2. The distribution of returns is well fit by a Tsallis distribution

the time order of a volatility time series. This reinforces the notion of memory
and a dependency of volatility on its own past behavior. Another stylized fact
of volatility that exhibits some asymmetry is the so-called leverage effect, which
describes the positive correlation between negative returns and volatility; large
negative price drops will give rise to subsequently higher volatility.

Some other interesting statistical features relate to the conditional volatility.
Specifically, if you look at the probability of observing a volatility of a certain
magnitude given that a volatility shock larger than some threshold was just
observed, you will see something that translates into an Omori law for volatility.
Just as earthquakes are followed by aftershocks, so are volatility shocks followed
by other larger than normal shocks.

3 Stock Price Models

Several different models [8–10] have been proposed in an attempt to capture
fat tails and volatility clustering which don’t exist in the Gaussian Bachelier
or Black-Scholes model. Popular approaches include Levy processes, which in-
duce jumps and thus fat tails on short time- scales, but convolve too quickly to
the Gaussian distribution as the time-scale increases. Stochastic volatility mod-
els, such as the Heston model where the volatility is assumed to follow its own
mean-reverting stochastic process, reproduce fat tails, but not the long memory
observed in the data. The same holds true for the simplest of Engle’s Nobel prize
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winning GARCH models in which the volatility is essentially an autoregressive
function of past returns. Multifractal stochastic volatility models (similar to cas-
cade models of turbulent flow) are another promising candidate [11], reproducing
many of the stylized facts, lacking mainly in that they are strictly time reversal
symmetric in contrast to empirical evidence. In addition, most of the above men-
tioned models are difficult if not impossible to deal with analytically. Analytic
tractability is desirable for reasons such as efficiently calculating the fair price of
options or other financial derivatives which in their own right are traded globally
in high volumes and will be discussed in more detail later on. For now we focus
on presenting a somewhat realistic model of stock returns themselves which we
developed a few years ago [12–14]

3.1 A Non-Gaussian Model of Returns

The standard Black-Scholes stock price model reads

dS = μSdt+ σSdω (1)

where dω represents a zero mean Brownian random noise correlated in time t as

< dω(t)dω(t′) >F= δ(t− t′), (2)

Here, μ represents the rate of return and σ the volatility of log stock returns.
This model implies that stock returns follow a lognormal distribution, which is
only an approximate description of the actual situation. Furthermore, there is
no memory in this process as it is purely Markovian. As already mentioned, it is
observed that the power-law statistics of the distributions of real returns are very
stable, well-fit by a Tsallis distribution of index q = 1.4 for returns taken over
time-scales ranging from minutes to weeks, only slowly converging to Gaussian
statistics for very long time-scales. Here we review a model of the underlying
stock which is consistent with the returns distribution.

Our model bases on the non-Gaussian model [12, 13], where it was proposed
that the fluctuations driving stock returns could be modeled by a statistical
feedback process, namely:

dS = μSdt+ σSdΩ (3)

where
dΩ = P (Ω)

1−q
2 dω. (4)

In this equation, P corresponds to the probability distribution of Ω, which si-
multaneously evolves according to the corresponding nonlinear Fokker-Planck
equation [15, 16]

∂P

∂t
=

∂P 2−q

∂Ω2
. (5)

The index q will be taken q ≥ 1. It can be solved exactly yielding

P =
1

Z(t)
(1 − (1− q)β(t)Ω(t))

1
1−q (6)
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The exact form of the coefficients Z and β are given in [13].
Eq. (6) recovers a Gaussian in the limit q → 1 while exhibiting power law

tails for q > 1. In that case, our model is exactly equivalent to the Black-Scholes
model.

The statistical feedback term P can be seen as capturing the market senti-
ment. Intuitively, this means that if the market players observe unusually high
deviations of Ω (which is essentially equal to the de-trended and normalized log
stock price) from the mean, then the effective volatility will be high because in
such cases P (Ω) is small, and the exponent 1−q a negative number. Conversely,
traders will react more moderately if Ω is close to its more typical or less extreme
values. As a result, the model exhibits intermittent behavior consistent with that
observed in the effective volatility of markets. To incorporate the subtle effect
of skew and the stylized fact known as the leverage effect, we further extend the
stock price process as in [14].

4 Option Pricing

Once a model of stock price dynamics is proposed, it can be used for various
applications such as estimating and managing risk, or for pricing derivative in-
struments, such as options. Options are financial derivatives which in their own
right are traded globally in high volumes. They fill important financial functions
with respect to hedging and risk control, as well as offer purely speculative op-
portunities. In short, options are financial instruments which depend in some
contingent fashion on the underlying stock or other asset class. The simplest
example is perhaps the European call option. This is the right (not obligation)
to buy a stock at a certain price (called the strike K) at a certain time (called
the expiration T ) in the future.

Contracts similar to options were exploited already by the Romans and story
has it that Thales the Greek mathematician used call options on olives to make a
huge profit when he had reason to believe that the harvest would be particularly
good. In Holland in the 1600s, tulip options were traded quite a bit by speculators
prior to the famous tulip bubble. But it wasn’t until 1974 that the fair price of
options could be calculated somewhat reliably with the publication of the Nobel-
prize winning Black-Scholes formula. This is still the most widely used option
pricing model, not because of its accuracy (since it is based on a Gaussian model
for stock returns which, as we discussed above, is unrealistic) but rather due to its
mathematical tractability (which exists due to the same Gaussian assumptions).
In fact, an impressive school of mathematical finance has been developed over the
past three decades, and is based largely on notions stemming from the famous
Black-Scholes paradigm.

Because real stock returns exhibit fat tails, yet the Black-Scholes pricing
formula is based on a Gaussian distribution for returns, the probability that
the stock price will expire at strikes far from its current price will be under-
estimated. Traders seem to correct for this intuitively; for the Black-Scholes
model to match empirical option prices, higher volatilities must be used the
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farther away the strike price is from the current stock price value. A plot of
these Black-Scholes implied volatilities as a function of the strike price is thus
not constant but instead most typically a convex shape, often referred to as the
volatility smile. This way of representing option prices in terms of the Black-
Scholes volatility is so widely used that prices are often quoted just in terms of
this quantity, most often referred to simply as the vol.

The property that the Black-Scholes volatility exhibits a smile or skew shape
that slowly flattens out as the time to expiration increases is the most impor-
tant stylized fact of options. Many of the more realistic models convolve way
too quickly to yield a Gaussian distribution although they might reproduce fat
tails over a small time-scale. One of the nice properties of our statistical feed-
back models is just this slow convolution to a Gaussian. Hence, option pricing
based on this model could be quite interesting. Another challenge with many
models is related to notions pertaining to the definition of a unique equivalent
martingale measure. Defining such a measure was the key ingredient in Black
and Scholes seminal work, but many more complicated models that deviate from
the Gaussian have often failed. Indeed, we were able to find such a unique equiv-
alent Martingale measure for Eq(1), and this resulted in the ability to obtain
closed-form solutions for pricing European call options. The price f of such an
option is given by its expectation value in a risk-free (martingale) world as

f = E[e−rT max[S(T )−K, 0]] (7)

where r is the risk-free rate. Assuming that S follows Eq(3) we obtain [13, 14]

f = S0

∫ d2

d1

exp

{
σΩT −

σ2

2
[1− (1− q)(β(T )Ω2

T )]

}

Pq(ΩT )dΩT − e−rTK

∫ d2

d1

Pq(ΩT )dΩT (8)

with Pq as in Eq. (6) and the explicit form of the coefficients given in [14]. These
formulae are analytically tractable and converge to the Black-Scholes equation
as q → 1. However, for q > 1 they incorporate the effects of fatter tails. We
also found option pricing formaulae for the generalized model with skew [14],
and further work was done by [17]. Since a value of q = 1.4 nicely fits real
returns over short to intermediate time horizons, this model is clearly more
realistic than the standard Gaussian model. Using that particular value of q as
calibrated from the historical returns distribution, fair prices of options can be
calculated easily and compared with empirical traded option prices, exhibiting
a very good agreement. In particular, while the Black-Scholes equation must
use a different value of the volatility for each value of the option strike price in
order to reproduce theoretical values which match empirical ones, the q = 1.4
model uses just one value of the volatility parameter across all strikes. One can
calculate the Black-Scholes implied volatilities corresponding to the theoretical
values based on the q = 1.4 model, and a comparison of this with the volatility
smile observed in the market will reflect how closely the q = 1.4 model fits real
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Fig. 3. Implied Black-Scholes volalities from the q = 1.4 model mactch extremely well
to real traded values

prices. Excellent agreement over several expirations (time horizons) can be seen
in Figure 3.

5 The Multi Time-Scale Model

Although very successful for pricing options, the statistical feedback model is still
not entirely realistic. The main reason is that there is one single characteristic
time in that model, and in particular the effective volatility at each time is
related to the conditional probability of observing an outcome of the process at
time t given what was observed at time t = 0. For option pricing this is perfectly
reasonable because one is interested in the probability of the price reaching a
certain value at some time in the future, based entirely on ones knowledge now.
But this is a shortcoming as a model of real stock returns. In particular, in real
markets, traders drive the price of the stock based on their own trading horizon.
There are traders who react to each tick the stock makes, ranging to those
reacting to what they believe is relevant on the horizon of a year or more, and of
course, there is the entire spectrum in-between. Therefore, an optimal model of
real price movements should attempt to capture this existence of multiple time-
scales and long-range memory. We shall now show how we extend the above
model to include multiple time-scales.

The effective volatility term P 1/(1−q) in the statistical feedback model Eq(3)
can be rewritten in the form

√
N ′(1− (1− q)β′(Ω(t) −Ω(0))2) (9)

by inserting the expression for P explicitly. where N ′ and β′ are time-dependent
constants. In this form it is clear that the volatility depends on the change in
log-price at time t to the initial time t0, since Ω is essentially the log of the price.
A natural extension is to generalize to include feedback over not just one but
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many time-scales, as discussed in [18]). The random return is constructed as the
product of a time dependent volatility σi and a random variable ωi of zero mean
and unit variance:

dyi = μdt+ σidωi (10)

where μ is the average drift, which we will set to zero in the sequel, meaning
that we measure all returns relative to the average drift. The volatility is written
to include feedback over multiple time-scales (i− j).

σk
i = σ0

√√√√1 + g

∞∑
j=1

1

(i − j)γ
(yki − ykj )

2 (11)

where i corresponds to time. The parameter g is a coupling constant that controls
the strength of the feedback, σ0 is the baseline volatility and γ is a factor that
determines the decay rate of memory in the system which can also be seen as
the relative importance between short-term and long-term traders. This model
is well-defined as soon as

∑∞
j=0

g
i−j

γ < 1 or approximately that g
1−γ < 1 and

γ > 1 [18]. The model can be calibrated to real stock data yielding γ = 1.15 and
g = 0.12, and it is seen that all of the main stylized facts of stock returns are
reproduced. Interestingly, the model also shows multi-fractal scaling akin to that
seen in turbulent systems, although there is no explicit multi-fractality injected
in the model. These results are discussed in [18]. In Figure(1) a simulation of
that model is shown. The process describes real data very well, with obvious
periods of lower and higher volatility clustering together.

6 Statistical Signatures across Stocks : Self-orgnaization
of correlation

Up until now we have been focused on understanding and modeling the dynam-
ics of stock returns across time. However, in order to grasp properties of the
full joint stochastic process driving markets we turn our attention to the cross-
sectional dynamics, across a universe of stocks at any given point in time. Along
these lines, there have in recent years been several studies which focus on explor-
ing the structure and dynamics of correlations across the different stocks that
comprise the market [19–25]. In particular, these models and analysis explore
correlations during market stress or times of bubbles, panic and crashes. This
is important because it is under such extreme scenarios that investors are at
most risk; their usual models and world-views might break down and the results
could be devastating as seen in August 2007, October 2008, or during the so
called Flash Crash of May 2010. Some of our contributions in this area [24, 25]
has been to see if there are any particular cross-sectional statistical signatures
in these periods of market panic. To get a grasp on the cross-sectional distri-
bution of stock returns at a given time point, we can look at moments such as
the mean, standard deviation, skew and kurtosis. We then look at these as a
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Fig. 4. Statistical signatures in normal and panic times

function of time. The standard deviation of returns is widely referred to as dis-
persion. Calculated across a universe of 1500 US stocks and plotted out for the
time period 1993 - 2009, it is striking to see that the dispersion gets relatively
big during the time periods defined as panic according to the discussion above.
However, the more striking discovery is to plot out the cross-sectional kurtosis
alongside the dispersion, or together with market returns (Figure (5)). Even by
eye it is quite clear that there is a strong negative correlation between the two
quantities, which is in fact about −25%. In times of panic, dispersion is high
yet excess kurtosis practically vanishes. In more normal times, the dispersion is
lower but the cross-sectional excess kurtosis is typically very high.

We want a model that can explain all of these findings, namely to preserve
the fat-tailed time series properties of stocks, but which gives rise to the remark-
able reduction in kurtosis and increase in correlations, cross-sectionally, that are
characteristic of market panic. In such times, dispersion is high yet kurtosis is
low, which implies that the data are more Gaussian in times of panic. This can
be explained partially by the fact that the volatilities of the individual stocks
are higher yet more alike in times of panic, a statement that is borne out by the
data [24]. This might be one effect contributing to our findings, but we believe
that the behavior of cross-sectional correlations is what drives the statistical
signatures that we found. As a proxy for the collective behavior of all stocks in
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the market, we define the following quantity

s =
sup − sdown

sup + sdown
(12)

where sup is the number of stocks that have positive returns over a given interval,
and sdownis the number of stocks that have negative moves on that same interval
(for example a day). If s = 0 then roughly the same number of stocks moved up as
down, and the assumption is that the stocks had little co-movement and so were
uncorrelated. If all stocks move together either up or down, though, the value
of s will be +1 or -1 and the stocks will have high correlation. So, the following
picture emerges: If s = 0 there is no correlation, and we are in a disordered
state. However if s �= 0 then there is correlation and we are in an ordered state.
We will now make a leap and borrow some terminology from physics. We shall
call s the order parameter. It is a macroscopic parameter that tells us whether
there is order and correlation in the system, or not. In physics, in particular in
the field of non-equilibrium thermodynamics and synergetics [26], the concept of
the order parameter is often used to describe systems that exhibit spontaneous
self-organization. Examples range from chemical kinetics to laser dynamics, from
fluid dynamics to biological systems; from collective behavior in both the animal
and human world to cloud formation. To illustrate the concept, let us look at an
example which should be familiar and intuitive to most, namely magnetism.

In a ferromagnetic system, the total magnetic moment depends on the orien-
tation of the individual magnetic spins comprising the system. It is proportional
to the quantity

m =
mup −mdown

mup +mdown
(13)

where mup and mdown denote the number of spins lined up and down respec-
tively. The distribution of possible outcomes of this macroscopic quantity is given
by

P (m) = N exp(F (m,T )) (14)

where T is the temperature, N is a normalization factor and F is the free energy
of the system. Depending on the value of T , the magnetic system will either be
in an ordered or disorderd state. Assuming one can perform a Taylor expansion
of F and invoking symmetry arguments, the corresponding Langevin equation
takes the form

dm

dt
= −a

2
m− b

4
m3 +Wt (15)

where Wt is thermal noise. The coefficient a can be written as

a = α(T − Tc) (16)

where Tc is the so-called critical temperature. One can envision these dynamics
as motion in a potential well V given by V (m) = −F (m). If T > Tc, the only
minimum is the trivial one at m = 0. However, for T < Tc there are two real
roots appearing, yielding non-zero values of m. Clearly, m can be positive or
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negative, depending on which minima is reached by the system. This is referred
to as symmetry breaking. Due to the noise, the dynamics can also drive m
from one minimum to the other. Because the value of T determines whether the
system is in the disordered state (m = 0) or the ordered state (m �= 0), it is
called the control parameter. The probability distribution of the system in the
disordered state will be a unimodal one, while the probability distribution of m
in the ordered state will be bimodal. As T passes from above to below Tc, or vice-
versa, there is clearly a phase transition: the state of the system is drastically
altered. In this type of symmetric system, the phase transition is referred to as
a second order one.

In the current setting, we make an analogy between the variable s and the
magnetic moment m. We have observed rather drastic changes in the cross-
sectional distribution of stocks in the times of panic versus more normal market
conditions [24]. Histograms of s in both periods show that in normal times, s is
unimodal, and in panic times we obtain a bimodal distribution consistent with
the frame-work of a phase transition leading to self-organization in panic times
(see Figure 4).

We postulate that the dynamics of s be given by

ds

dt
= −a

2
s− b

4
s3 +Wt. (17)

We propose that
a = σc − σ0 (18)

where Wt is a Gaussian noise term and σ0 corresponds to the baseline volatility
level of stocks. This volatility is assumed constant across all instruments, and
essentially measures the general uncertainty in the environment, so in this sense
acts much as the temperature in the magnetic system. Note that it is the feedback
effects in the system which induce stock-specific variations in volatility over time,
and can largely explain most of the excess volatility observed in stock time-
series, whereas the parameter σ0 is not driving the stock-specific dynamics, but
simply describes a ”global” level of risk. The quantity σc would correspond to
a critical level of uncertainty, below which the market is in a normal phase, and
above which we have the onset of panic. Much as in the case of ferromagnetism,
where the control parameter T can be tuned externally above or below the
critical temperature, in our model the uncertainty level σ0 captures the external
environment. In a sense it represents the general perception of risk in the public
mind. Our hypothesis is then that financial markets appear to exhibit a phase
transition from the disordered to ordered state, after crossing a critical level of
risk perception. Putting the dynamics together, we have the multi time-scale
feedback process for each stock k

dyki = σk
i dω

k
i (19)

with k = 1 · · ·N , and the volatility of each stock k given by Eq(11) The random
variables ωk

i are drawn from a Gaussian distribution, uncorrelated in time such
that < ωk

i ω
k
i+τ >= δ(i− (i+τ))τ , yet amongst themselves at a given time point
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Fig. 5. Results of the simulation of the joint process

i across stocks k, they are correlated with correlation |s|. The macroscopic order
parameter s is therefore just a signature of the cross-stock correlations, whose
dynamic behavior manifests itself in the order parameter equation

ds

dt
= −a

2
s− b

4
s3 +Wt. (20)

The coefficients must always be such that |s| ≤ 1 which can be imposed by
running the dynamics of s on a real valued variable ŝ such that s = tanh(ŝ).

What do we expect to see from this model? We have already seen that across
time, it models very well many properties of real financial time-series. Across
stocks, if σ0 < σc, correlations fluctuate around s = 0 and we expect to see a
unimodal distribution of s. The cross-sectional kurtosis should be rather high
since there is no mechanism to cause either stocks or stock volatilities to have
any co-movement at all, so at each time point it is as if the cross-sectional returns
are drawn from a Gaussian process with stochastic volatility, yielding a fat-tailed
distribution as the superposition. Then as the market crashes with σ0 > σc, the
system enters a phase transition. The order parameter s becomes s �= 0 and the
system enters the ordered phase with high co-movement. Because the random
variables ωk

i are now correlated across stocks, cross-sectional returns will be more
similar and the distribution will have lower kurtosis. Additionally, due to the fact
that the phase transition is triggered by an external shock in volatility, all stocks
will tend to have higher volatilities and higher cross-sectional dispersion.
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Simulations of this model for the joint stochastic process of stocks were per-
formed and we refer the reader to [24] for details on the implimentation. Here we
provide a summary. The baseline volatility was assumed to be σ = 0.2, and at
a certain time a volatility shock σshock = 0.6 (consistent with levels observed in
the VIX volatility index in late 2008) was applied to the system (see Figure 5).
This induced the phase transition from the disordered state where correlation
among stocks are relatively low, centered around zero, to a highly ordered state
where the correlations are different from zero. We found that the main features
of financial markets are captured within this framework. The order parameter s
goes from 0 (the disordered state) to s ≈ 0.8 ( the ordered state) at the time of
the volatility shock. When the shock subsides, it returns to the disordered state
again. As expected, the market volatility rises when s is in the ordered state,
which corresponds to the panic phase. In addition, the cross-sectional dispersion
rises during the market panic, while the cross-sectional kurtosis drops close to
zero. The correlation between the two quantities is in this example −17%, consis-
tent with empirical observations that also showed a strong negative correlation.
Histograms corresponding to the distribution of the order parameter s in the
normal market phase as well as in the panic phase are in excellent agreement
with the empirical observations of the real market data, namely unimodal in the
normal phase, and clearly bimodal during the panic time. Encouraged by these
findings we extended this joint stochastic model to include skew and explored
its self-similar properties on different time-scales, as presented in [25]. Further
studies of interest in a similar vein were done by others [19].

7 Conclusion

We have reviewed the anomalous features inherent in financial data across time
and across stocks, which reflect the very complex and nonlinear interactions
leading to price formation in financial markets. Our approach has been to propose
models that intuitively capture the dynamics that could be at play, and to verify
them in that they can reproduce the observed statistical signatures and stylized
facts, also in derivative markets such as options. Common to all our studies is
that cooperative effects, memory and nonlinear feedback appear at play, so many
interesting techniques for the field of statistical physics and synergetics can be
applied. Continuously evolving and changing, the field of finance will certainly
continue to pose interesting challenges for scientists and practitioners alike for
years to come.
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Abstract. Any attempt to provide a foundation of thermodynamics
faces this central question: how come that a qualitatively different type
of behavior emerges (as an effective description) from the underlying
physical substrate?
Quantum thermodynamics is able to show that the partitioning of a
closed quantum system into a smaller and a significantly larger part typ-
ically gives rise to thermal properties of the former, even though the sys-
tem as a whole continues to exhibit unitary motion. Being based on en-
tanglement, this feature may show up already in rather small total quan-
tum systems, the dynamics of which can still be solved exactly. Further-
more, it allows for nano-thermodynamics, an entirely self-contradictory
concept in the classical regime.
This picture differes substantially from the classical (statistical) descrip-
tion: It is not the system as such, which is thermal; rather it is made
thermal by its environment. Thermal behavior is thus “apparent” only,
i.e. dependent on the way the observer chooses to look. A much closer
look would make the thermal properties disappear – just like a portrait
will become unrecognizable after focusing on individual pixels. However,
that very type of “looking” has to be included as part of the detailed
modeling. Operational quantum thermodynamics establishes an intuitive
link between the new quantum and the old classical description.

Keywords: Partitions, entanglement, typicality, Hilbert-space statis-
tics, thermal attractor, quantum measurement

1 Introduction

1.1 Concepts

Compared to synergetics as a truely interdisciplinary field [1], quantum thermo-
dynamics focusses on a much more restrictive theme – though fundamental in
its own right.

Despite these obvious differences in scale a common set of concepts can be rec-
ognized to enter both fields: This set includes, in particular, hierarchical aspects
(slow/fast variables, macro/micro-descriptions, relevant subspaces), interrelated
© Springer International Publishing Switzerland 2016 93
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with the extensive use of effective descriptions (coarse-graining, emergence, uni-
versality, control parameters).

It has long since been realized that physical phenomena are not just “out
there” but depend on the approrpiate level of description. Simplifications (based
on relevance concepts) and models (declaring certain constraints as given) are
the tools for intuitive understanding. These effective theories [2] try to capture
what is relevant in a given physical domain.

Effective theories are “closed”, i.e., they do not require the explicit input of
more detailed descriptions , except for the fit of some phenomenological param-
eters. This “closure” is quite remarkable and firther underlines the usefulness of
approaches on different hierarchical levels.

“Brute force” numerical studies may establish valuable tests and help to
find convincing effective descriptions, but cannot be a substitute for “qualitative
modeling”. In this context one may recall a comment by Picasso: “Art is a lie
that helps us see the truth” [3].

1.2 Operationality

Information, quantum dynamics, and thermodynamics are the basic input for
the study of quantum thermodynamic processes. Remarkably, these three fields
are particularly suitable for for an operational approach. In fact, the concept
of information can hardly be introduced without reference to communicating
agents. Observational quantum mechanics with its focus on measurementand
statistical features differs substantially from “abstract”(isolated) quantum me-
chanics. Thermodynamics can be seen as a control theory, its main laws as
statements about what can be done by agents equipped with limited resources.
And operations/descriptions eventually provide links between the three fields.

1.3 Contextuality

A common thread running through both synergetics and quantum thermody-
namics is contextuality.

In quantum physics contextuality has a rather dramatic significance: The
Kochen-Specker theorem [4] demonstrates that we arrive at a paradox (within
the rules of quantum mechanics), if we assume that all possible experimentally
answerable questions that can be asked about a given quantum system have def-
inite yes/no answers. As a consequence the answer to a certain question depends
on the context (of other questions having been posed).

A somewhat different type of contextuality is related to the choice of par-
titions. While also operational in nature, this choice has nothing to do with
actual measurement results as such, but rather concerns the mere possibility for
selecting global or local questions, respectively. A bi-partite scenario underlies
the emergence of local thermal behavior [5].
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2 Hilbert-space

The state space of quantum physics is a complex vector-space, the so-called
Hilbert-space H (of dimension d). Each quantum system μ, μ = A,B, . . . con-
tributes its own Hilbert-space, H(μ). A vector (“pure state”) in such a space
is conveniently written in Dirac-notation as ψ(μ) → |ψ(μ) > with the com-
plex conjugate ψ∗(μ) →< ψ(μ)|. The vectors are taken to be normalized, i.e.,
< ψ(μ)|ψ(μ) >= 1. The Hilbert-space can be spanned by a set of orthogonal
basis vectors, |f (j)(μ) >, j = 1, 2, . . . d(μ). In order to specify such a set (for
Hilbert-space μ) consider the eigen-equation of some properly chosen operator
F̂ (μ) with

F̂ (μ)|f (j)(μ) >= Fj(μ)|f (j)(μ) > . (1)

This is still entirely abstract; we postpone the specificatiom of model classes we
have in mind.

2.1 Partitioning

A classical particle is described by d = 6 coordinates, 3 position and 3 momentum
coordinates. For a composite system (N particles) the respective space is a direct
sum, the so-called Γ -space. Its dimension is

D =

N∑
μ=1

d(μ) = 6N . (2)

It scales linearly with N .

Definition 1 (Tensor space). In quantum mechanics each subsystem μ brings
its own Hilbert-space of dimension d(μ). For a composite system the total Hilbert-
space is thus a direct product (or tensor-) space of dimension

D =

N∏
μ=1

d(μ) . (3)

For d(μ) = d one finds D = dN , i.e., the total dimension scales exponentially
with N . Typical Hilbert-spaces become incredibly huge indeed.

Definition 2 (Product representation). A convenient set of basis vectors
for a composite system are product states. For N = 2 and if F̂ (A) and F̂ (B)
are complete operators within their respective subspace, A, B, the completeness
relation reads

1̂ = 1̂(A)⊗ 1̂(B) =

d(A)∑
i=1

d(B)∑
j=1

|f (i)(A), f (j)(B) >< f (i)(A), f (j)(B)| . (4)
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Any pure state for such a bi-partite system can thus be represented in terms of
those product-states, |f (i)(A) > ⊗|f (j)(B) >= |f (i)(A), f (j)(B) >, as

|ψ(A,B) > =

d(A)∑
i=1

d(B)∑
j=1

|f (i)(A), f (j)(B) > ψij ,

ψij = < f (i)(A), f (j)(B)|ψ(A,B) > . (5)

This is easily generalized to N = 3, 4, . . . .

The opposite to composition is partitioning:

Definition 3 (“Virtual” partitioning). Consider a total Hilbert-space of di-
mension d. If d is a prime number, the system is necessarily elementary. Other-
wise it has a non-trivial prime-factorization[8]

d =

r∏
j=1

q
nj

j . (6)

The number of such elementary subsystems, each of some prime-factor dimen-
sion qj, would be given by

Nd =

r∑
j=1

nj . (7)

Definition 4 (Operationally accessible partitioning). For a concrete sys-
tem Ĥ living in such a product-Hilbert-space of dimension d only a fraction of
those elementary subsystems will be ”real”, i.e. correspond to operationally well-
defined and accessible subunits. Its number, N ≤ Nd, and type is not an absolute
property of the system but contextual. It defines a kind of reference frame. Each
such unit is characterized by a (classical) index, ν = A,B,C, . . . . The index
serves as a kind of address.
For example, a Hilbert-space with Nd = 3 may be described as a single sys-
tem, N = 1, (ABC), as a bi-partite system, N=2, (A)(BC) or (AB)(C) or as
N = Nd, (A)(B)(C). This is more than a formal aspect. While all these decom-
positions are formally equivalent, i.e., span the same total space, they give rise
to different phenomena in terms of inter-subsystem correlations (entanglement).
Different decompositions also lead to different notations for states: |k(ABC) >
or |k(A);m(BC) > or |k(A);m(B);n(C) >, where the parameters k,m, n specify
the respective (sub-) states.

2.2 Typicality

We first note that the study of thermodynamic behavior is intimately related
to typicality [6]: We are not so much concerned with specific models and spe-
cific states, but rather with typical models and typical states. Indeed, we know
that thermal properties are not guaranteed; nevertheless, we want to argue that
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under given (rather weak) constraints thermal behavior will be “likely”. As a
consequence, we do not need to run tests for each case in question (which would
often be very hard to do) but instead base our judgement on mere probability
of being correct (accepting occasional failures).

So what are “typical properties” of pure states? Underlying is subjective igno-
rance about the actual state, which is conveniently represented by an ensemble.
Typical – in agreement with its colloquial meaning – are then properties, which
occur for “almost all” ensemble members. In order to quantify such a behav-
ior one needs to define a pure-state distribution function (cf. [5]). A convenient
way to proceed is to introduce a specific parametrization for the pure states in
question, with respect to a given basis set.

Definition 5 (Parametrization of pure states). Any pure state |φ > in a
given d-dimensional Hilbert-space (for the moment we suppress index μ) can be
written in that basis |f (j) > as

|φ >=

d∑
j=1

(ηj + iξj)|f (j) > . (8)

Here, ηj , ξj are 2d real parameters. The normalization condition reads

G(η1, ξ1, η2, ξ2, . . . ηd, ξd) =

d∑
j=1

(η2j + ξ2j ) = 1 . (9)

The corresponding pure state distribution does not relate to a concrete physi-
cal scenario like a thermal equilibrium state. There should be no bias, except
symmetry (see below).

Definition 6 (Pure-state distribution w). The distribution function para-
metrized as w(η1, ξ1, . . . ηd, ξd, ) may now be considered a “prior” in the sense
of Bayesian statistics. A simple way to arrive at this distribution is to apply
the maximum entropy principle (MEP) subject to the single macro-constraint
(norm)

G =

∫
ddηddξw(η1, ξ1, . . . ηd, ξd)

d∑
j=1

(η2j + ξ2j ) = const. (10)

This procedure immediately leads to the Gaussian [7]

w(η1, ξ1, . . . ηd, ξd) =

(
1

√
πγ

)2d

exp (−G(η1, ξ1, . . . ηd, ξd)/γ) (11)

We note that this distribution fulfills the normalization condition on average
only. This deficiency can be cured in the asymptotic limit for large d, if we set
γ = 1/d. In this limit the fluctuations of G become negligible.
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Alternatively, the above result can be obtained by requiring the distribution
function w(η1, ξ2, . . . ηd, ξd) to be invariant under unitary transformations [5].
The choice of the underlying representation is arbitrqary should thus not matter.

According to eq.(11) an unbiased ensemble of pure states is characterized
by the distribution function w(η1, ξ1, . . . ηd, ξd). This function allows us to de-
fine Hilbert-space averages of any function h(|φ >) = h(η1, ξ1, . . . ηd, ξd) as an
integral over the 2d- dimensional parameter-space:

h =

∫
w(η1, ξ1, . . . ηd, ξd)h(η1, ξ1, . . . ηd, ξd)d

dηddξ . (12)

Likewise one can define higher moments. Recall that this Hilbert-space statistics
reflects subjective ignorance (an entirely classical concept); it has nothing to do
with the statistical features of quantum mechanics proper.

3 Hilbert-space average method (HAM)

3.1 Landscapes

Proposition 1 (Hilbert-space average method (HAM)).
The function h(|φ >) can be visualized as a “landscape” over its 2d-dimensional

parameter-space. We can approximate

h(|φ >) = h(η1, ξ1, . . . ηd, ξd) ≈ h (13)

provided that landscape of h is “flat” enough.

In particular let us consider some operator Ŷ acting on the Hilbert-space H. Its
eigen-representation reads

Ŷ =
∑
k

Yk|y(k) >< y(k)| . (14)

We are free to take these eigenfunctions as the basis for the ensemble of pure
states |φ > and their distribution w,

|φ >=

d∑
j=1

(ηj + iξj)|y(j) > . (15)

The expectation value of Ŷ with resepct to |φ > is an example for h(|φ >); its
Hilbert-space average is

h = < φ|Ŷ |φ > = < Y > =
∑
j

Yj(η2j + ξ2j ) =
1

d
Tr{Ŷ } . (16)

In the last step we have used that by symmetry and normalization η2j = ξ2j =
1/(2d). Correspondingly one finds for

< Y >2 =
1

d(d+ 1)

(
Tr{Ŷ 2}+ Tr{Ŷ }2

)
(17)
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(for details see [5]), which allows us to introduce the Hilbert-space variance

Δ2(< Y >) =
1

d+ 1

(
Tr{Ŷ 2}/d− Tr{Ŷ }2/d2

)
. (18)

HAM is thus justified for Ŷ , if

Δ(< Y >) � < Y > . (19)

Definition 7 (Accessible region (AR)). Unless the system is non-integrable,
the Hilbert-space accessible from some initially prepared state may severely be
constrained by various constants of motion. The system will never be able to
leave the respective subspace.

While the distinction between integrable and non-integrable models is often
considered essential for the resulting statistical behavior, it is of minor concern
here. We simply have to make sure that certain conditions of subsystem dimen-
sions and weak inter-subsystem couplings are obeyed. The arguments in terms of
HAM then go through.

3.2 Embedded system A(B): thermalizing environment

We now turn to a bi-partite quantum system A(B) with Hilbert-space dimension
d(A,B) = dAdB. Here A is the embedded system of interest; to stress this func-
tional asymmetry only B is written in parenthesis. Thermalizing environments
B are the prime target of quantum thermodynamics: Here one is concerned with
the question under which conditions an embedding quantum system is able to
impart thermal properties on the embedded system A.

A simple argument can be based on Hilbert-space statistics (cf. [5]): Here we
consider a closed bi-partite system A(B) under energy-exchange; the subsystem
A is taken to be a spin. We apply HAM for Ŷ → Ĥ , and accept that the
Hamiltonian Ĥ is not complete: degeneracies will show up.

Example 1 (Equilibrium via energy exchange). We take system A to be a two-
level system with energy-splitting ΔE and B to be a multi-level system with
states |j, k(B) >, where k describes the degeneracies, k = 1, 2, . . . gj . (The de-
generacy structure will turn out to be essential!) We single out two energy bands,
j = 0 and j+1 = 1, and assume weak (resonant) interaction between A and B,
E1−E0 = ΔE. The total energy of the system (A,B) is taken to be ΔE. Energy
conservation then induces a correlation between allowed states in A and B, i.e.,
not all d(A,B) states of the product-space are accessible. The accessible region
AR can be projected out via the follwing two projectors,

P̂0 = |0(A) >< 0(A)| ⊗
g1∑
k=1

|1, k(B) >< 1, k(B)| ,

P̂1 = |1(A) >< 1(A)| ⊗
g0∑

m=1

|0,m(B) >< 0,m(B)| . (20)
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The accessible Hilbert-space has dimension dacc(A,B) = g0+ g1. The respective
occupation probabilities < P0 >,< P1 >, averaged according to HAM, eq.(16),
are then found to be

< P0 > =
Tr{P̂0}
d(B)

=
g1

g0 + g1
, (21)

< P1 > =
Tr{P̂1}
d(B)

=
g0

g0 + g1
. (22)

The relative variance, Δ(< Pμ >)/< Pμ > scales with 1/dacc(B).

For dacc(B)� 1 HAM is thus justified (i.e. the above properties are typical)
and the expected equilibrium state of A reflects the degeneracy structure of the
embedding subsystem B.

Definition 8 (Embedding temperature). Even though the embedding sys-
tem B is not a bath (i.e., is not in a stationary thermal state) the smaller sub-
system A may be said to be in a thermal state with temperature T (A),

ΔE

kBT (A)
= ln

(
< P0 >

< P1 >

)
= ln

(
g1
g0

)
. (23)

This effective temperature will be called “embedding temperature”, as it derives
from the degeneracy structure of the quantum environment B with respect to the
transition energy ΔE selected by A. In general, a different subsystem A (different
transition energy) will have a different embedding temperature even within the
same B.

On the other hand, different embeddings B will lead to different temperatures
T (A) for given A. In particular, for g0 = g1 one finds

< P0 > = < P1 > ≈ 0, 5 . (24)

so that T (A) =∞. For g0 = 1� g1

< P0 > ≈ 1 , < P1 > ≈ 0 . (25)

This would imply T (A) = 0, apparently giving a simple route to zero tempera-
ture.

Remark 1 (Embedding temperature and third law). For the weak coupling con-
dition to be valid in the limit T (A) → 0, the interaction energy must be small
compared to the energy of subsystem A, which approaches zero. As the thermal
relaxation time depends on the interaction strength, this essentially means that
the time to reach thermal equilibrium would go to infinity. In this sense the
third law is saved: There is no efficient process to reach the absolute zero of
temperature.
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Remark 2 (Negative temperature). Negative embedding temperatures obtain for
g1 < g0. Such a degeneracy structure can be realized by means of a cluster of
non-interacting (identical) spins in the high energy regime. For g1 → 1� g0 one
would get T (A)→ −0 (total inversion).

For such special Hamilton models (with bounded spectrum) embedding tem-
peratures can be positive or negative: they both characterize possible equilibrium
states.

Proposition 2 (Embedding temperature versus bath temperature).
Consider a more general environment B with discrete energy-spectrum {Ej, j =
1, 2, . . . } and respective degeneracies gj. Furthermore, let this system be in a
thermal state with partition sum Z(B) and temperature β(B) = 1/kBT (B),

ρ̂equ(B) =
1

Z(B)

∑
j

exp (−β(B)Ej)

gj∑
k=1

|j, k(B) >< j, k(B)| . (26)

Then consider a two-level system A in its excited state |1(A) >, which is weakly
coupled to B. What will now be the effect of B on A?

Energy conservation implies that the initial pure state |1(A); j,m(B) > with
1 ≤ m ≤ gj would preferably be coupled to |0(A); j+1, k(B) > with 1 ≤ k ≤ gj+1,
so that – under HAM – the equilibrium state is expected to be

< P0 >j =
Tr{P̂0}
dj(C)

=
gj+1

gj + gj+1
, (27)

< P1 >j =
Tr{P̂1}
dj(C)

=
gj

gj + gj+1
. (28)

But in addition to taking the quantum expectation value and to apply the HAM we
have now, in a third step, to perform a thermal averaging over the environmental
states j:

ρ̂equ(A) =
1

Z(B)

∑
j

gj exp (−β(B)Ej)×

{< P0 >j |0(A) >< 0(A)|+< P1 >j |1(A) >< 1(A)|} . (29)

In general, this equation lacks a clear interpretation. For more transparent re-
sults specific models are needed about the environmental spectrum Ej and the
degeneracy gj.

For the following we assume for the environment B an equidistant spectrum,

Ej = jΔE . (30)

All transitions between adjacent levels are thus resonant with the two-level sys-
tem A. The following examples concern the degeneracy of B.
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Example 2 (Exponential degeneracy). We assume

gj = exp (γjΔE) , (31)

γ is a real positive parameter. Then

< P0 > =
1

1 + exp (−γΔE)
, (32)

< P1 > =
1

1 + exp (γΔE)
, (33)

independent of j. The resulting temperature is ΔE/kBT (A) = γ �= β(B).

Example 3 (Binomial degeneracy).

gj =

(
n

j

)
=

n!

(n− j)!j!
(34)

Here, n is an integer > 0; for an intuitive realization we could think of an
environment consisting of n non-interacting spins with identical energy splitting
ΔE. One then finds,

< P0 >j =
n− j

n+ 1
, (35)

< P1 >j =
j + 1

n+ 1
. (36)

Here we have made use of the identity

(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
. (37)

After thermal averaging over the various bands j and with the partition sum

Z(B) =

n∑
j=0

(
n

j

)
exp (−β(B)jΔE) = (1 + exp (−β(B)ΔE))

n
(38)

one gets in the thermodynamic limit, n→∞,

β(A) ≈ β(B) . (39)

In this case there is no conflict between embedding temperature and the bath
temperature.

Both degeneracy models are idealized; deviations from the strict exponential
form appear to be mandatory, though.
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4 Observational quantum-thermodynamics

Quantum-thermodynamic settings do not include the observer: No means what-
soever are provided to transfer information to the outside world. In that sense
the scenarios are similar to those studied in abstract quantum theory, i.e. based
on isolated systems. It thus appears quite natural to add a section on obser-
vational quantum thermodynamics, just as we would have to add a section on
observational quantum mechanics. In either case observation requires additional
physical interactions: The act of observation tends to influence the observed.

In the following we will be concerned with a thermal system under permanent
(“stroboscopic”) supervision [9].

4.1 Periodic measurements

We will be concerned with the following bi-partite system

Ĥ(AB) =
δ(A)

2
σ̂3(A) + Ĥ0(B) + V̂ (BB) + λV̂ (AB) . (40)

The environment B consists of n� 1 spins. The corresponding product states

|ψ(B) >= |m(1),m(2), . . . ,m(n) > m(μ) = ∓1 , (41)

are eigenfunctions to Ĥ0(B) with eigenvalues Ek(B) = δ(B)k, where k denotes
the number of spins in state m = 1. For given band-index k all the states,
|nk >,nk = 1, 2, . . . gk, have the same energy. Now focus on some index k0, the
“working point” in energy-space. For n > k0 � 1 the binomial degeneracies (cf.
Example 3) can be approximated by

gk ≈ g0 exp (β(k0)Ek) , (42)

β(k0) ≈
1

δ(B)
ln (

n

k0
− 1) . (43)

Due to the weak interaction V̂ (BB), each degenerate energy-level k becomes a
band of width Δεk � δ(B).

The interaction between subsystem A and B is scaled by the strength factor
λ and given by

V̂ (AB) = σ̂1(A)⊗ Î(AB) , (44)

Î(AB) =
∑
k

∑
nk,mk+1

Ck+1,k(nk,mk+1)|nk > < mk+1|+ c.c. . (45)

Here c.c. means complex conjugate term to be added. Only transitions between
next neighbor bands are allowed. The coupling parameters Ck+1,k(nk,mk+1)
form a set of hermitian matrices Ci,j(a, b). The respective entries are taken from

a Gaussian distribution normalized to |Ci,j(a, b)|2 =
√
(gigj).

Note that this random-matrix model (for the subsystem-interaction) is an
essential ingredient: in this way the Hamilton-model represents a whole class
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of models rather than one given variant. Indeed, one can show that different
realizations typically lead to the same desired behavior, eq.(50). (This does not
exclude the existence of very special interaction types which would violate this
simple picture. )

The total state will be written as

ρ̂(AB) = ρ̂(A)⊗ ρ̂(B)− Ĉ(AB) , (46)

ρ̂(A) = TrB{ρ̂(AB)} ρ̂(B) = TrA{ρ̂(AB)} . (47)

Here Ĉ(AB) specifies the correlation between A and B, i.e., the deviation from
product-form. Let the initial state at time t0 have zero correlation; in particular,
we start from the special product-state

ρ̂(AB; t0) = ρ̂(A; t0)⊗ ρ̂(B; k0) , (48)

ρ̂(B; k0) ≡
1

gk0

gk0∑
nk0=1

|nk0 > < nk0 | . (49)

Resonance will be assumed, i.e., δ(B) = δ(A) = δ. Then the subsystem B acts
as a thermalizing environment, correlation Ĉ(AB) builts up, and A relaxes to a
state with temperature

1

kBT (A)
= β(A) = β(k0) , (50)

independent of the initial state of A. Up to this point this is just a typical scenario
for quantum thermodynamics. The relaxation time scales with the interaction
strength between system and environment.

Now we intend to retrieve information about A. This could be done in two
different ways: Direct measurements on A or indirect measurements via B ex-
ploiting the correlation between A and B.

Measuring the energy of subsystem A directly would mean to find it in the
ground- or excited state with probability Pm(A) given by the thermal distri-
bution. Immediately after measurement the subsystem would be found in the
respective energy eigenstate |m(A) >,m∓ 1. This momentary state and the as-
sociated information gain would not last for long, though: With the embedding
still present system A would again relax to its equilibrium state.

We switch now to the indirect measurement scenario. We restrict ourselves to
the measurement of the band-index, k i.e., to an incomplete measurement. The
projection by P̂k1(B) at time t1 = t0+Δt also influences subsystem A (co-jump,
cf. [10]):

ρ̂′(A; t1) =
TrB{P̂k1(B)ρ̂(AB; t1}
TrB{P̂k1(B)ρ̂(B; t1)}

(51)

= ρ̂(A; t1) +
TrB{P̂k1(B)Ĉ(AB; t1}
TrB{P̂k1(B)ρ̂(B; t1)}

. (52)
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Fig. 1. Subsystem A subject to periodic measurements of the environment B [9]: single
trajectory ρ00(t) (solid line) and ensemble avarage ρ00(t) (broken line). Chosen param-
eters: δ = 0.8u, β = 0.75u−1, λ = 4 × 10−3u, Δt = 2u−1, u = arbitrary energy unit.
Initial state: unperturbed attractor.

After measurement we simplify the total state as the product state

ρ̂(AB; t1) ≈ ρ̂′(A; t1)⊗ ρ̂(B; k1) . (53)

This is an approximation as, due to the incomplete measurement, some cor-
relations between A and B could still have survived. The whole process is now
iterated: unitary evolution steps of durationΔt are interrupted by instantaneous
measurement projections as described above. The result is a stochastic trajectory
as shown in Fig. 1.

These trajectories correspond to the classical statistical idea that the ther-
mal system is always in some well-defined state, but “fluctuates” between those
such that the time-average is identical with the ensemble average. We now in-
vestigate the ensemble-average over such trajectories after a certain number of
measurements (i.e. after the memory about the inital state has been lost). The
result represents an attractor state, which can be expressed analytically as [9]

ρ00(Δt) =
exp (−βδ/2) sin2 δΔt+ exp (βδ/2)δ2(Δt)2

2 coshβδ/2(sin2 δΔt+ δ2(Δt)2)
. (54)

The corresponding function is shown in Fig. 2.
This attractor state can alternatively be calculated as a time-average over a

single trajectory; it has two remarkable bounds:

lim
Δt→0

ρ00(Δt) = 1/2 . (55)

This lower bound means that for very rapid repetitions of measurements the
system eventually heats up to T (A) → ∞. Only apparently is this in conflict
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Fig. 2. Attractor for subsystem A depending on the time Δt between periodic mea-
surements on B. Parameters as before. Broken line: upper bound and unperturbed
attractor [9].

with the so-called Zeno effect, i.e. the freezing-in of the original state under
“continuous” measurement: Indeed, for Δt → 0 it would take infinitely long to
reach that attractor state.

An upper bound for ρ00 is reached for

Δt =
nπ

δ
n = 1, 2, . . . . (56)

This bound corresponds to kBT (A) = 1/β(k0). Remarkably, this is the same
temperature subsystem A would gain in the absence of any measurements. At
these waiting times one finds a strict correlation between measuring the band-
index k to have gone up by 1 (compared to its previous value) or down by 1 and
the state of A: For “up” A is in the ground state, for “down” A is in the excited
state. This is the strict “measurement logic”. It guarantees that our information
retrieval “makes sense”.

For Δt → 0, on the other hand, the correlation goes to zero: System B has
no (useful) information about A. The measurements of the environment B only
lead to an additional perturbation of A.

Observational quantum-thermodynamics thus provides an interesting link
between the abstract thermal properties, which are stationary, and the mea-
sured thermal properties, which are fluctuating. The long-time average and the
ensemble average of the latter agree with the former result, provided the mea-
surement is run under optimal conditions, i.e. there is a clear measurement logic
(in which case the information gained is “useful”). While measurement interac-
tions mean perturbations – indeed, the observed local dynamics is stochastic,
the unobserved dynamics stationary – the underlying thermal parameters turn
out to be the same.
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5 Summary

We have started from (abstract) Hilbert-space and used partitioning as a kind
of external reference frame. This frame defines the notion of local versus global
properties.

The parametrization of pure states (for the total system) allows to introduce
functions on this parameter-space; examples are expectation-values of operators.
These functions can be visualized as “landscapes”. Flat landscapes may well be
approximated by the respective average value, the so-called Hilbert-space average
(HAM). This average is then “typical”. Rarely will we find large deviations. A
simple analogue would be the height within the Netherlands (average applicable)
versus the height in Switzerland (average does not give a good predictor for one’s
actual height).

Typicality can be extended to composite quantum systems: For bi-partite
systems in a pure state the local entropy of the smaller subsystem is found to
be typically maximum (confirming entanglement as a typical feature).

These feartures do not depend on details of the Hamilton-model considered.
Such details constrain the motion in Hilbert-space: In fact, the accessible region
is, in general, much different from the total region (due to conservation laws).

It turns out that for weak coupling and for the environment B being suffi-
ciently larger than the embedded system A, the latter exhibits thermal behavior
(canonical distribution).

The effective dynamics for the embedded system shows irreversibility (relax-
ation into an equilibrium state), even though the total dynamics continues to
be unitary. This underlines the fact that the thermal properties of A are emer-
gent and contextual; they are absent from the point of view of the unpartitioned
description.

The equilibrium state is quasi-stationary (temporal fluctuations occur as fi-
nite size effects) and characterized by a temperature.

Periodic observation of the environment allows to re-interprete the equilib-
rium state of the embedded system in terms of a time average over measure-
ment results. Under ideal conditions this time-average approaches the ensemble-
average (ergodicity); the resulting value is the same as obtained without obser-
vation. There is a “peaceful coexistence” between the classical and the quantum
picture.

This coexistence has remarkable consequences: Without it a quasi-classical
understanding of thermal phenomena would not have been possible, thus block-
ing scientific progress in this field at a time when quantum mechanics was un-
known yet. On the other hand, the discussion of “quantum corrections” proper
– based on quantum thermodynamics – will not be straight-forward but will
require detailed analysis based on the formulation of pertinent quantum models.

Acknowledgments. I thank Hermann Haken for numerous and very valuable
discussions.
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Abstract. The laser is a prototypical non-equilibrium and self-
organizing system that led to the birth of synergetics, and thus con-
sidered the trailblazer of synergetics by Prof. Haken. The field of laser
science and technology today is as active and exciting as it has ever
been since the invention of lasers in 1960’s and the trailblazing days
in late 1970s. One of the constant themes of research in semiconduc-
tor lasers has been size miniaturization, which has led to the invention
of many ever smaller lasers. But miniaturization using pure dielectric
cavities encountered significant barriers due to the constraint of wave-
length or the diffraction limit. To reduce the size of semiconductor lasers
further into the nanoscale or deep sub-wavelength scale, metallic and
surface-plasmon-polariton (SPP) waveguides were proposed and demon-
strated experimentally in the last few years. Since then, such nanolasers
have attracted a great deal of attention. Rapid progress has been made
in various aspects of nanoscale lasers. After some brief introduction and
personal reminiscences, this paper will discuss recent progress in experi-
mental and theoretical studies of semiconductor nanolasers. We will first
discuss various mechanisms of wave confinement at nanoscale. Major
progress will be reviewed including the first experimental demonstration
of continuous wave operation of sub-wavelength cavity lasers at room
temperature. Future prospects of the further size reduction and remain-
ing challenges will be discussed.

Keywords: Nanolasers, Semiconductor Lasers, Plasmonics, Waveguide,
Surface Plasmon Polaritons

1 Introduction: The Laser, Synergetics and Personal
Reminiscences

It is a great pleasure and honour for me to present a talk which resulted in
this article at the Symposium celebrating the 85th birthday of Prof. Haken. In
addition to the discussions about nanolasers, I would also use this opportunity
to reminisce about my interactions with Prof. Haken and my time in Stuttgart
to illustrate Prof. Haken’s influences on me. This also gives me an opportunity
to express my great appreciation and admiration of Prof. Haken for all the helps
© Springer International Publishing Switzerland 2016 109
A. Pelster and G. Wunner (eds.), Selforganization in Complex Systems:
The Past, Present, and Future of Synergetics, Understanding Complex Systems,
DOI: 10.1007/978-3-319-27635-9_8
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and support he provided to me, for being a mentor and a world-class scien-
tist that has directly and indirectly influenced me and my scientific career. In
1980’s when I entered my graduate study, the larger field around synergetics,
self-organization, instabilities, chaos and nonlinear dynamics was a highly active
area of research. I was fortunate enough to have met Prof. Haken in the right
time of my career. I was a first year graduate student in 1982 at the Northwest-
ern University (NWU) in Xi’an, China when Prof. Haken was invited there to
give a series of lectures on synergetics. His trip was part of the overall plans of
the Chinese Physical Society to introduce the most recent progress then in the
world in the field of non-equilibrium statistical physics into China. The lectures
were attended by researchers and graduate students across China. Since I was
one of the only two graduate students in the area of non-equilibrium statistical
physics from the host university, I had the unique opportunity to interact with
Prof. Haken regularly during his two week stay in Xi’an. I benefited greatly from
his lectures and decided to do a thesis on stability and non-equilibrium phase
transitions in a two-mode laser with a saturable absorber as my master thesis.
Later on, I was more than fortunate to travel for the first time in my life outside
China when Prof. Haken invited me for a three-month visit to his Institute of
Theoretical Physics and Synergetics in Stuttgart. The visit eventually led to my
acceptance as one of his PhD students. That was more than a dream coming
true, since I never before thought that I would get a chance to do a PhD. Now
I was doing it in one of the best groups in the world. It was the freest time I
enjoyed ever in my career so far, and I could work on almost any topics of my in-
terest. Prof. Haken was always supportive. Guided by my interest in synergetics
and lasers, my choice of research topics was mostly centered around instabilities
and nonlinear dynamics of various lasers using the methods of synergetics. It
was also one of the most productive periods and we were able to accomplished
a few things and some of them have later attracted a great deal of interests,
even till today. One of the first problems I encountered was how to deal with the
arbitrary form of the order parameter ( or Ginzburg-Landau) equations. While
the Ginzburg-Landau equations for the Hopf-bifurcation typically takes the nor-
mal form for systems with a certain symmetry, they take a more arbitrary form
for many systems without such symmetry or for spatial independent systems,
after the application of the slaving principle [1, 2]. The general analysis of such
non-normal form becomes difficult. Using a general nonlinear transformation due
to Poincare, a nonlinear Ginzburg-Landau equation of quite general form can
be transformed into the corresponding normal forms, depending on the type of
instabilities or bifurcations. Such a combination of slaving-principle based re-
duction and subsequent nonlinear transformation turned out to be a powerful
approach. I was able to apply this combination to carry out nonlinear analysis
near various instabilities in different systems, including lasers with detuning and
two-photon laser systems [3, 4].

The laser instability study, together with the great freedom I enjoyed in
Prof. Haken’s group also led to an interesting and unexpected development. The
freedom allowed me to follow the new developments in other fields of study
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that were not apparently related to my own research. In late 1980’s and early
1990’s, Berry’s phase [5] was a topic of great interest. Berry’s phase was initially
discovered in a linear Hamiltonian system and was quickly extended to linear
non-Hermitian systems. While studying the Hopf-bifurcation (or self-pulsing in-
stability) in lasers, I realized that the phase behaviour of the laser field in the
self-pulsing regime showed an anholonomic behaviour that is the hallmark of the
Berry phase: In addition to a periodic part, the phase also contains a drift part.
Thus when the intensity goes through a period in a pulsation, the phase does
not come back to the starting value. The similarity to Berry’s phase was not
entirely surprising, since the U(1) gauge invariance in the laser field is the same
as the phase arbitrariness in the wave functions of the Schroedinger equation.
Despite the similarity in phenomenology, the mathematics that was used to de-
scribe the Berry’s phase was not applicable to lasers in a self-pulsation mode.
Fundamentally, the two types of the systems could not be more different: one be-
ing linear Hamiltonian systems, the other nonlinear open or synergetic systems
showing periodic and chaotic attractors under sustained external pumping. The
language used to describe the anholonomy was valid only for the conservative
systems where the length of the vectors is conserved. Even though I was able
to show all the phenomenological similarities to the Berry phase and to identify
the type of dissipative systems that would show such phase anholonomy [6, 7],a
more formal mathematical analogy was missing for almost two years. Convinced
by the existence of a more profound link, I worked on and off for two years
on this and was eventually able to show [8, 9] in a more general fashion that
a geometric phase with all the properties of the Berry phase could be defined
for a class of nonlinear dissipative systems with certain symmetries. These sym-
metries lead to the existence of what we called cyclic attractors in dissipative
systems, for which geometric phases can be defined. Exactly as in the case of
Hamiltonian systems, the total phase accumulated in a period of intensity pulsa-
tion can be decomposed into two parts, one determined by the system dynamics
called dynamical phase, and the other given by a closed-loop line-integral along
the trajectory or on an attractor, thus a pure geometrical quantity, called ge-
ometric phase. Independently but a bit later, similar mathematical structures
for geometric phase were also studied by Landsberg [10] for dissipative systems.
The theory of geometric phase in nonlinear dissipative systems is now sometimes
known as Landsberg-Ning-Haken formalism [11]. Later, Rudolf Friedrich and I
were able to generalize the existence of geometric phase to a more general situ-
ation of synergetic systems with continuous symmetries [9, 12]. Such geometric
phases in dissipative systems later attracted significant interests and are still
actively pursued [11]. During the process, I was to a large degree inspired by
the spirit of synergetics and the work of Prof. Haken, who has explored the
analogy and similarity of different systems to a masterful degree, especially in
his generalization of phase transitions in equilibrium systems to non-equilibrium
systems, the very essence of synergetics. In a sense, our generalization of the
Berry phase from linear Hamiltonian systems to non-equilibrium and nonlinear
systems displaying self-organization followed the very tradition of synergetics.
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I finished my PhD in 1991 in a rather difficult time. Several historical world
events “conspired” to make my next career move very difficult: the end of the cold
war that led to the budget reduction for basic research in the west, the German
reunification that required the shift of the research funding from the west to
east as part of the “Aufbau Ost”, the world-wide economical recession, and most
importantly for me, the 1989 student event and the resulting unstable political
situation in China. It was again Prof. Haken’s great kindness and generosity that
allowed me to continue my research in Stuttgart. Despite the unprecedented
difficult funding situation also (or even) in his group, he was able to secure
a position for me under the SFB project, then on-going in Stuttgart. While
half-heartedly working on the optical switching of organic molecules for the
SFB project, I was fascinated by the phenomenon of stochastic resonance and
collaborated with Prof. Gang Hu on this topic for quite sometime. One of the
major results of this collaboration was our realization of a new phenomenon [13],
what we called then stochastic resonance without external force or signal. This
phenomenon, later studied in 1997 under “coherence resonance” [14], has now
become one of the most widely studied topics in the area of dynamical systems
with noise, including in lasers.

The technical focus of this article is about the laser, a field of study that
played a special role in Prof. Haken’s distinguished career among a long list of
fields, in which he has made pioneering and enduring contributions, as partly
reflected in the other articles of this volume. When the laser was first invented
in 1960s, engineers were busy searching for all possible new applications, while
marvelled by the wonderful properties that the new kind of light possessed and
promised. For physicists such as Hermann Haken, there were many fundamental
questions to be answered. Chief among them was: what was the fundamental
difference between this new type of light and the light from a regular lamp. In
one of his earlier papers [19] (more generally see his famous monograph of Laser
Theory [18]), he was able to show using the first-principle approach that the
fundamental difference between a broadband thermal lamp and a laser source
can be seen in the expectation value of the field operator, which was zero for the
former and non-zero for the latter. The nonlinear Langevin equations they devel-
oped have since became the hallmark of the Stuttgart School. As a theoretical
physicist, he quickly recognized further that the laser represented a new type
of systems with special characters: The laser was an open system in the sense
of thermodynamics where external pumping was essential and the interaction
with the outside world in terms of various reservoirs were unavoidable. At the
same time, both subsystems that interact with each other in a nonlinear way,
the light field and the matter (atoms, molecules, or semiconductors)needed to
be treated quantum mechanically. In other words, the laser represented a unique
system where several important ingredients were present such as openness to
the outside world and the presence of noise, in addition to being far away from
equilibrium, non-linear, dissipative, and quantum mechanical. For such a sys-
tem, proper theoretical tools and mathematical methods had to be developed.
It was during this highly fruitful endeavour that Prof. Haken quickly established
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the Stuttgart School as one of the key centres of laser research in the world. The
efforts culminated to his first book as a volume in the celebrated Encyclopaedia
of Physics [18], which has long become one of the standard texts on the quantum
theory of lasers. It was also during this process that he realized that the physics,
the general principles, and the mathematical methods they had developed were
much more general than being only applicable to lasers. This more general pur-
suit that originated from the laser study has led to the establishment of the
interdisciplinary science Synergetics [1, 2, 15, 16]. Thus the laser is considered as
the trailblazer of synergetics by Prof. Haken [17].

One type of lasers that were studied in 1960s by Prof. Haken and his wife [20]
and more extensively together with Prof. Haug [21] was semiconductor lasers.
It was only natural that Prof. Haken wanted to develop a first principle theory
for semiconductor lasers, since he had made a name for himself in developing
quantum field theory for solids, especially through his work on polarons and
excitons, prior to his arrival in Stuttgart and had developed the quantum theory
for atomic and solid state lasers in the first few years of his time in Stuttgart.
Right after the first experimental demonstration of semiconductor lasers [35–37]
in 1962, they published their theory in the following year [20], where they deter-
mined the photon density and operating frequency of a semiconductor laser in
the steady state, especially the dependence of frequency on Fermi levels (inver-
sion). One of the important results from their free-carrier version of the quantum
theory was what is now known as the linewidth enhancement factor. The paper
by Haug and Haken [21] was the first to derive the linewidth of a semiconductor
laser from the quantum Langevin equations. Even though they did not analyse
more quantitatively the effective of such linewidth, the Hakens correctly pointed
out the effects of carrier density on linewidth of semiconductor lasers, as the
paper [20] explicitly states (directly translated from German): “The dependence
of laser frequency on the inversion naturally leads to a finite linewidth as a re-
sult of Fermi level fluctuation”. It was later realized by Henry [22] that such a
linewidth enhancement is much larger than was first assumed as in the case of
atomic lasers or in solid state lasers. Now this factor plays an important role in
understanding the linewidth and other important properties of semiconductor
lasers.

My experiences with laser physics and synergetics during my PhD research
in Stuttgart and the “mandatory” study of Prof. Haken’s book on the quantum
field theory of solids [23] by all PhD students at Haken’s Institute for their
oral exam were of great help later when I took my first position in the US
at the University of Arizona. At the time in Tucson, the microscopic theory of
semiconductor lasers was further developed and applied to various semiconductor
quantum structures, including various Coulomb interactions [24, 25]. During the
almost 20 years since I left Stuttgart, I have been involved in the studies of
various semiconductor nanostructures and lasers. Time and again, I found that
the various earlier papers of Prof. Haken are of great relevance for my research.
More directly, the experience and knowledge I gained in Stuttgart have been
always important. One of the important topics at the frontier of semiconductor
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laser research nowadays is nanolasers, or the study of the semiconductor laser
miniaturization down to nanometer scale. This would be the focus of the my
discussion in the remaining part of this article.

2 Nanolasers

Nanolasers [26] refer in general to lasers with sizes of sub-wavelengths in all
three dimensions, or a total volume smaller than the wavelength cubed. The
wavelengths here mean those in vacuum presently, even though wavelengths in
media are more physically relevant. But the length scales at the vacuum wave-
lengths are the immediate goal of miniaturization to achieve. Such nanolasers
are often only possible with semiconductors as the gain media, and thus the field
is a natural evolution of the research on semiconductor lasers. One of the driv-
ing forces behind nanolaser research is the potential photonic integrated circuits
(ICs) on a semiconductor chip for various information technology related appli-
cations, much similar to the IC technology in micro-electronics for our current
computer chips. Such nano-photonic IC systems can potentially significantly ex-
pand the capability of electronic ICs in computing and communication. Current
mainstream semiconductor lasers, while the smallest compared to other types of
lasers such as gas or solid state lasers, are still too large for such nanophotonic
ICs, and much larger compared to the sizes of the electronic devices. Thus fur-
ther size reduction of semiconductor lasers can potentially impact photonics ICs
in general, future information technology as well as other on-chip applications
such as detection and sensing.

Research on nanolasers can be viewed as part of the overall trend of semicon-
ductor laser miniaturization over the last 50 years since they were first demon-
strated [35–37]. As we know, the radiative efficiency of a photonic device is pro-
portional to the product of the photonic density of states (PDOS) and electronic
density of states (EDOS). Thus tailoring the both densities of states has been
an important part of research on quantum engineering from both electronic and
photonic points of view. From the electronics point of view, tremendous progress
in fabrication and crystal growth technologies over the last several decades have
enabled dimensionality reduction from bulk semiconductors to quantum wells
(2D), quantum wires (1D), and to quantum dots (0D). As shown in Fig. 1, such
evolution allows the better tailoring of electronic states and positioning them in
energy space where they are needed, thus avoiding the waster of charge carriers
that would not be utilized in optical transitions. From the photonics point of
view, the smaller size of laser cavities allows fewer modes within the optical gain
spectrum, as shown in Fig. 2. Obviously, the ideal situation would be to align
the single cavity mode in Fig. 2 with a single electronic state in Fig. 1, with both
densities of states very sharply aligned, allowing the most efficient lasers to be
made. Another manifestation of such cavity size reduction can be seen from the
Purcell factor that expresses the enhancement of radiative process in a cavity
relative to that in the free space:
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Fig. 1. Schematic of electronic density of states (EDOS)for the bulk (3D), quantum
well (2D), quantum wire (1D) and quantum dot (0D) semiconductors.

Fp =
ρcavph

ρfreeph

=
3

4π2

λ3

Vc
Q (1)

where λ is the wavelength in the medium and Q and Vc are the cavity quality
factor and volume, respectively. Obviously, the smaller the cavity volume is and
the larger the cavity Q is, the stronger the Purcell enhancement is. Thus size
reduction, in addition to benefiting the large scale integration of the photonic
ICs, has an added advantage of making the radiative process more efficient.
One of the important questions of current interest is: to what degree can a
semiconductor laser be miniaturized or if there is an ultimate limit to such size
reduction [26]. Wave confinement in a waveguide or cavity is achieved by the
refractive index profile and the larger the index contrast is, the stronger the
wave confinement and the smaller a cavity can be made. Thus one approach to
nanolasers over the last 10 plus years has been to use semiconductor nanowires
[27, 28] with a very large index contrast between that of a semiconductor and
air. Strong wave confinement enables a nanowire of 100s nanometer in diameter
to act as a laser gain medium and cavity at the same time. While this is still
an active area of research, such pure dielectric or semiconductor structures can
not support a lasing mode when the diameter becomes too small. It is easy to
see that a pure semiconductor-based or semiconductor-dielectric laser structure
would not allow much size reduction below the limit of half-wavelength (in the
medium), the so-called diffraction limit. Thus alternative approach was needed.
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Fig. 2. Schematic of photonic density of states (PDOS)for a 3D cavity with reducing
size from top to bottom. The PDOS for free space is also indicated by the parabolic
curve in each panel for comparison.

3 Metallic or Plasmonic Structures as Nanolaser Cavities

While studying the means to improve the wave confinement with nanowires of
small diameters [29, 30], we realized [31] that the plasmonic effect in metals such
as silver can act as a means to strongly guide optical modes in a semiconductor-
core metal-shell structure. Plasmonic effects had received great attention as a
means for nanoscale focusing and confinement of light for sometime [53–56, 60,
57–59]. Most of such studies are concerned about the small confinement in metal-
dielectric structures where the associated large loss is not addressed, with some
more recent exceptions [31, 39, 65, 66], where plasmonic structures were consid-
ered together with semiconductor gain materials. One of the key questions for
using plasmonic or metallic cavities for nanolasers is if it is possible to over-
come the large metal loss by the gain in a semiconductor. Another is a feasible
design integrating the semiconductor gain with metal confinement structures
in a fabrication compatible manner. By using a semiconductor-core metal-shell
structure as a model system, the possibility of over-compensating plasmonic loss
in the metal shell by the optical gain in the semiconductor core was first stud-
ied [31] in a wide spectral range including plasmonic resonance. It was shown
that such over-compensation is possible for a few modes near the “cut-off” fre-
quencies, and especially near the surface plasmon resonance [42, 26], despite the
large Joule loss in the metal. Independently, the similar structures were fabri-
cated by Hill et al. [32], who demonstrated experimentally that such core-shell
structure can indeed enable lasing with a core-diameter as small as 200 nm.
This was the smallest semiconductor laser in this wavelength range at that time.
Since then many variations have been investigated experimentally and theoret-
ically [41, 43–47,66, 48], and the core-shell structure has now been established
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Fig. 3. Dispersion of wave-propagation at a semiconductor-silver interface (z-
direction)with semiconductor dielectric constant taken to be 12. k0 = ω/c. Horizontal
and vertical dashed lines indicate the wavevector in uniform semiconductor and the
surface plasmon resonance, respectively

as a prototypical metallic cavity structure for nanolasers. Incidentally, it is in-
teresting to note that prior to the publications of papers [31, 32] in 2007, all
the micro- and nanolasers used pure semiconductor or dielectric cavities. Af-
ter 2007, most, if not all, of the nanoscale lasers have metallic or plasmonic
structures as the essential part of the cavities or main mechanisms for light
confinement. The wide adoption of metallic or plasmonic cavities represents a
paradigm shift in the development of semiconductor lasers towards dramatic size
reduction. The basic idea of nanoscale confinement of optical modes by metallic
structures can be seen from Fig. 3, where dispersion of wave propagation along
a silver-semiconductor interface is plotted. The horizontal and vertical dashed
lines indicate two limiting cases when the wave propagation is mostly dielectric,
or plasmonic, respectively. In the first case, the metal plays the role of a per-
fect reflector and wave energy lies predominately outside the metal, while in the
latter case, surface plasmons are fully excited and no photons are involved. As
indicated by the arrow, the plasmonic effects, or “plasmonicity” thus increases
from left to right as we approach the surface plasmon resonance. Thus we can
roughly divide the frequency range below plasmon resonance into three regions
as indicated in the figure: the low frequency region is a mostly dielectric regime,
while near the surface plasmon resonance we have almost pure plasmonic ex-
citation. In the intermediate regime, there is a wide region of different degrees
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Fig. 4. Comparison of mode profiles in two types of slab wave-guides: Left: sil-
ver/semiconductor/silver with varying thickness of semiconductor core (dielectric con-
stant 12); Middle: Similar to left but with silver replaced by air; Right: optical con-
finement factor that defines modal gain of the wave-guide, see [26, 34] for definition
of the confinement factor. All thickness w is measured in the unit of λ0/2n where
λ0 = 1.55μm and n = 3.46 is the refractive index of the semiconductor.

of mixture of photon and SP modes. Coherent oscillators in the regime near
SP resonance has been termed SPASER [33]. The entire range of the dispersion
relation can be explored for reducing wave guide beyond the diffraction limit,
with different physics mechanisms, different degrees of confinement, and different
amount of loss associated. The reason for reduced confinement near plasmon res-
onance can be illustrated by the rapid increase of kz. A kz roughly 15 times the
wave vector in vacuum can be achieved near resonance. This increase in kz can
be viewed as a similar reduction of effective wavelengths, explaining the mech-
anism of size reduction. To illustrate the confinement in the case of dielectric
approximation, or “photonic” regime in Fig. 3, we compare two slab waveguides:
a) silver/semiconductor/silver sandwich structure and b) air/semiconductor/air
structure. Fig. 4 shows the E-field profile across the waveguide a) (left) and
waveguide b) (middle). As is clearly visible there, very good confinement can be
always maintained in the case of metal cladding down to core width of 0.5λ0/2n,
while the wave-guiding becomes quite poor in the case of air cladding (middle).
To compare the two cases more quantitatively for the effective modal gain, we
show in the right side of Fig. 4 the comparison of the confinement factor [26,
34], which determines the actual gain of a confined mode. It is interesting to
see that as the core width decreases below λ0/2n, the confinement factor for the
waveguide with air cladding decreases rapidly, while the one with metal cladding
increases significantly, due to the deteriorating transverse wave confinement in
the first case, and the relative improvement of confinement in the case of metal
cladding. Similar conclusions can be drawn also in the case of circular geometry.
Fig. 5 shows the comparison of spatial patterns of a few modes around wave-
length of 1.5μm for a cylindrical core-shell structure with silver or air cladding.
As we see, the air cladding structure has very high Q when the core diameter is
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Fig. 5. Comparison of several modes at wavelengths around 1.5 μm. Top row: semi-
conductor (dielectric constant ε = 12) disk surrounded by air. Bottom row: Semi-
conductor disk surrounded by silver. Despite significant loss at the near-infrared and
smaller diameters, all silver-clad structures give larger cavity Q than high index con-
trast semiconductor-air structure with R = 350nm. R: radius of the semiconductor
disk,m: mode index, λ: wavelength in vacuum.

large. However, with the reduction of core size, the Q factor for the air cladding
decreases rapidly due to the increased radiative loss from the sides. For example,
all the structures with metal cladding shown in Fig. 5(b) have core diameters
smaller than that of the last one in the top row (with air cladding). But all
those core-shell structures in (b) have much larger Q values than the last one in
(a). In the cases of Fig. 5 and Fig. 4, the modes with metallic confinement are
more dielectric modes or “photonic” as indicated in Fig. 3 (low energy regime).
The advantages of such modes are the relatively low loss compared to the SPP
regime or SPASER regime, but still with significant size reduction below the typ-
ically diffraction limit. The situations near SP resonance are described in several
other papers [31, 26]. There is an interesting, but not yet completely resolved,
issue of which regime is ultimately more beneficial for making smaller and more
efficient nanolasers. The SPASER regime is extremely interesting, where coher-
ent electronic motion could be potentially achieved through stimulated energy
transfer between excited dipoles and oscillating plasmons [26] by optical means.
Even though such spaser generation is in general dark, the dipole or multipole
emissions of such stimulated oscillating plasmons could eventually emit photon
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Fig. 6. Comparison of Poynting vectors (Sz) in core-shell structures with a
semiconductor-metal or semiconductor-air [31, 26]. Dielectric constant of semiconduc-
tor is assumed to be (ε = 12) and metal being silver. The fractions of the Poynting
vector inside the core and metal are 1.28 and -0.28 respectively, while they are 0.09
inside and 0.91 outside the core, respectively, for the semiconductor-air structure.

fields to outside. Several experiments [47, 48] intended to demonstrate such a
spaser and have shown interesting results. So far, coherent oscillation of a sur-
face plasmon mode has not been measured directly, even though the associated
photon modes were characterized. It is also interesting to establish the relation-
ship between the properties of oscillating plasmons generated this way and the
properties of photons emitted by such coherent plasmons.

For many applications that require conventional lasers but at nanoscale, the
intermediate regime denoted by “SPP” in Fig. 3 is of great relevance. In this
mixture-regime of SPPs, one can benefit from the much smaller confinement of
plasmons, but can also detect the radiation of the photon waves at the same time.
Fig. 6 shows transverse profile of the Poynting vector in a core-shell structure
[31], similar to the situation shown in Fig. 5, but operating in the “SPP” regime.
As can be seen, the profile with metal cladding shows localization at the core-shell
interface. The overall confinement is much better than that with air cladding.
This vast SPP regime of operating wavelengths has yet to be fully explored for
nanolaser applications.

4 Recent Progress

Since the first feasibility study [31] and the initial demonstration of metallic
cavity nanolases by Hill et al. [32], great progress has been made in a short period
of 5 years. The initial demonstration used a cylindrical structure with a diameter
of the core in the range of 240-280 nm. While this was an impressive small
size, the core diameter is somewhat larger than the so-called diffraction limit of
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λ0/2neff = 220nm or more accurately the minimum diameter of λ0/(πneff ) =
146nm where λ0 = 1400nm is the wavelength of operation in vacuum and neff

the effective index of refraction. To demonstrate the benefit and the irreplaceable
role of metallic cavity and to beat the diffraction limit, a rectangular pillar
structure was fabricated [40] such that the diffraction limit can be approached at
least in one space direction, with the dimensions in other directions large enough
to guarantee the existence of modes and the low enough threshold. The thinnest
structure of this rectangular pillar has a thickness of 80-90 nm with a length of 6
micron. The total optical thickness of the device is: 90ns+2×20nd+2×20nmnm,
where we assumed a metal layer penetration of 20 nm and include dielectric
layers of 20 nm on either side of the semiconductor pillar. The effective indices
of refraction for semiconductor (ns), dielectrics (SiN,nd), and metal (Ag, nm) are
assumed to be 3.1, 2.0 and 2.0, respectively. The total optical thickness of 400
nm is still smaller than the half-wavelength, 670 nm. This result has significance
at several levels: 1) This was the first demonstration of a laser whose size in
any dimension was below the half-wavelength (or diffraction) limit. 2) At the
thickness of 80-90 nm, it is obvious that the structure is not enough to guide
an optical mode to lase without metal cladding layers, thus demonstrating the
necessity of metal cavity; 3)It is possible to over-compensate the metal loss to
achieve lasing even with such thin semiconductor at the near infrared wavelength.

While such result was very encouraging, the operating temperature of these
lasers was still too low (below 70 K)for such devices to have any practical ap-
plications. More importantly, there remained a more fundamental question: Is it
possible for such nanolasers to ever operate at room temperature? This question
is not only important for such nanolasers, it is also relevant for all the research
activities around optical meta-materials where composite structures of metals
and semiconductors are indispensable. The reason is that metal loss increases
significantly with temperature due to increased phonon generation and the laser
threshold will become too high to reach. The high injection level below threshold
will also raise the temperature at device core, further decreasing the material
gain and increasing the metal loss. It is therefore possible that such negative feed-
back would make such device impossible to work at room temperature. Thus it
has been a challenge for the last few years to raise the operating temperature
and to eventually achieve room temperature operation of sub-wavelength lasers.

In 2011, we were able to demonstrate several metallic-cavity lasers operat-
ing at 260 K [61]. Lasers with a total cavity volumes of 0.96λ3

0 or 0.78λ3
0 were

shown lasing in continuous-wave (CW) mode under DC electrical injection up
to 260 K. The laser linewidth was around 1-2 nm at the highest pumping level,
representing a 3-7 times reduction of linewidth from the value below the lasing
threshold. The device performance was further improved recently such that the
operating at room temperature was demonstrated for several devices [50] with
the smallest one having a volume of 0.42λ3

0. The linewidth of around 3-4 nm
was however somewhat broad, considered too wider for such wavelength ranges.
It was noted that overheating was the main reason that the devices could not
operate at higher pumping, thus preventing better performances. A more sig-
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nificant improvement of device performance was demonstrated more recently,
[62–64] thanks to a modified design with somewhat thicker SiN insulating layer,
improved surface treatment, better Ag deposition that led to large grain sizes
on the order of device sizes. The most important indication of the performance
improvement was the reduction of linewidth down to 0.5 nm at room tempera-
ture under continuous wave operation condition. This corresponds to a Q-factor
under lasing condition of 3182, as compared to the Q of the empty cavity of 235.
The device volume was 0.67λ3

0. This represents an unambiguous demonstration
of the final goal of such sub-wavelength scale nanolasers. Such demonstration
moves the nanolaser technology one step forward on the path of eventual ap-
plications. This might also have important implications to other meta-material
related researches where metal-semiconductor composite structures are often
used and where compensation of metal loss at room temperature is necessary.

5 Outlook

Nanolasers with sizes smaller than the operating wavelength in all three dimen-
sions have attracted a great deal of attention over the last 6 years, since the
proposal of the semiconductor-metal core-shell structures [31] and the first ex-
perimental realization [32]. Tremendous progress has been achieved in a short
time span in theoretical understanding, device design, fabrication and charac-
terization. Many design variations have been proposed and demonstrated. In the
course of development of semiconductor lasers over the last 50 years, there have
been a few paradigm shifts, the metallic cavity nanolaser being the most recent
one. Such paradigm shifts have impacted significantly new design and develop-
ment of better, smaller, and more efficient semiconductor lasers. Even though
chip-scale integration and applications of semiconductor lasers have been pro-
posed for a long time, the metallic cavity nanolasers represent a potential op-
portunity for such integration, since the smallest such nanolasers are already
comparable with the modern day transistors in sizes. But before such chip-scale
integrated nanophotonics becomes a reality, many challenges remain to be over-
come. Chief among them are the followings:

• To achieve long lifetime operation: Even though the room temperature op-
eration has been demonstrated, the lifetime is still too short due to high
threshold and the associated severe heat generation. Further improvement in
every step of the fabrication process is essential, from wafer growth, electron-
beam lithography, various etching steps, interface and surface treatments,
and deposition of dielectric and metallic layers, to achieve reduced thresh-
old, reduced heat generation, and thus longer lifetime operation. Due to the
small size of devices, any small error in fabrication would have a relatively
large adverse effects on device performance. Thus perfection of fabrication
is indispensable.

• To improve device efficiency: Currently the device efficiency is still too low
and below 1% at low temperature and still lower at room temperature. Such
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low efficiency is detrimental to on-chip applications due to wasted energy
and heat generation. With improved fabrication and lower threshold, the
efficiency will improve. New device design with better heat removal would
further improve device efficiency. Even though the downsides associated with
metals are known, but there are also upsides that have not been taken ad-
vantage of, such as the close proximity of metal layers to the active gain
regions, which should facilitate more efficient heat removal. New designs
taking advantage of such metal proximity should help improve the device
efficiency. The replacement of poor thermal conducting dielectric materials
by high quality semiconductor layers proposed recently [67] should improve
many aspects of device performance.

• To further explore the siza reduction: Currently the smallest nanolaser of
this type of design have volumes on the order of a fraction of in-vacuum
wavelength cubed. Eventually it might be necessary to reduce the size even
further to below the diffraction limit in all three dimensions. It is also inter-
esting to see if there is a size limit to such down-scaling. Recently this was
studied [67] with a more realistic design using a sandwich structure involving
a single GaAs or InGaAs quantum well with AlGaAs barrier and sandwiched
between two thin silver layer. It was shown that it is realistically possible
to reduce the size down to as small as 1.5× 10−4λ3

0, or with a physical size
around 10−4 or 10−5(μm)3. This would correspond to a few percent of the
diffraction-limited volume (λ0/2n)

3, where n is the index of refraction.

• To achieve efficient coupling and improve directionality: Even though such
nanolasers are not intended for applications involving long distance free space
coupling, far-field and near field patterns are important for short distance
or direct near-field coupling. Due to the small size, the far-field emission
angles can be as large as 90 degree [67]. Thus it is important to design struc-
tures that have small far-field lobes, or direct coupling through integration
with a Si-waveguide [68] has to be adopted, as is shown recently through a
simulation and design study.

• To reduce metal loss or to find alternative plasmonic structures: Metal loss
remains one of the most important issues for such nanolasers, especially near
the plasmonic resonance. Another related issue is that most of the metals are
currently not grown with the typical epitaxial techniques used for growing
semiconductors, even though some more recent research has demonstrated
the usage of epitaxial metal [70]. Typical evaporation or sputtering tech-
niques do not produce single crystal metals, thus exasperating the metal
loss. A more preferred approach would be to use heavily doped semicon-
ductors as plasmonic materials, as in the case of heavily doped InAs, which
was studied recently [67]. There are several advantages of using such doped
semiconductors including epitaxial compatibility with the growth of other
semiconductors for gain regions, ability of growing the entire device in a
single monolithic fashion, smaller plasmonic loss, and the tunability of plas-
monic resonance after the fabrication of structure. All these advantages are
expected to lead to smaller and better plasmonic or metallic nanolasers.

pelster@zedat.fu-berlin.de



124 C.-Z. Ning

To conclude, it is fitting to point out the link of nanolaser with synergetics
and an important consequence of the laser size reduction to nanoscale. As we
mentioned, phase transition analogy between equilibrium and non-equilibrium
systems has been an important aspect of synergetics. It is known that equilib-
rium phase transition requires a critical dimensionality and system size. While in
the past such phase transition analogy has been mostly studied for large lasers,
it is now possible to examine the phase transition properties more closely in the
case of nanolasers. The relevant system size important for phase transition in
the case of nanolasers seems to be the cavity size. The laser threshold is often
characterized by a rapid super-linear increase of output intensity (L) as input
current (I) is increased, or L ∝ Is, where the scaling index s is a measure of the
sharpness of the transition. s changes from 20 to 1 when spontaneous emission
factor changes from 0.001 for relatively large lasers to 1 [69] for extremely small
lasers. It is known that the sharpness of the laser threshold transition is inversely
proportional to spontaneous emission factor into lasing mode, which is in turn
inversely proportional to the cavity size. Thus the sharpness of the threshold
transition is proportional to the volume of the laser cavity. For nanolasers with
ever decreasing cavity size, the spontaneous emission factor asymptotically ap-
proaches 1. In such a limit, s→ 1 and a nanolaser becomes a thresholdless device.
The disappearance of a well-defined transition threshold in a nanolaser is again
analogous to the situation in thermal equilibrium of a small size system. It is
however, important to point out that such thresholdlessness does not mean that
the laser threshold becomes zero, or thresholdless is not equal to threshold-zero.
It simply means that a nanolaser in that limit is no longer a threshold device.
The properties of light emission changes continuously as pumping is increased.
The simple L-I curve is no longer enough to tell the change of the basic laser
properties. More refined measurement, such as the second order correlation func-
tion is needed to characterize such continuous change of the laser properties [71].
It is therefore interesting to study how the results and conclusions of synergetics
can be extended to nanoscale non-equilibrium systems, such as nanolasers.
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Abstract. The Gross-Pitaevskii equation for a Bose-Einstein conden-
sate in a PT -symmetric double-well potential is investigated theoreti-
cally. An in- and outcoupling of atoms is modelled by an antisymmet-
ric imaginary potential rendering the Hamiltonian non-Hermitian. Sta-
tionary states with real energies and PT -symmetric wave functions are
found, which proves that Bose-Einstein condensates are a good candidate
for a first experimental verification of a PT -symmetric quantum system.
Time-resolved calculations demonstrate typical effects only observable in
PT -symmetric potentials, viz. an oscillation of the condensate’s proba-
bility density between these wells with an oscillation frequency critically
depending on the strength of the in- and outcoupling. PT -broken eigen-
states with complex energy eigenvalues are also solutions of the time-
independent Gross-Pitaevskii equation but are not true stationary states
of its time-dependent counterpart. The comparison of a one-dimensional
and a three-dimensional calculation shows that it is possible to extract
highly precise quantitative results for a fully three-dimensional physical
setup from a simple one-dimensional description.

Keywords: Bose-Einstein condensates, PT symmetry, Gross-Pitaevskii
equation, stationary states, dynamics

1 Introduction

Mainly due to the experimental accessibility, which became possible very re-
cently [1, 2], non-Hermitian PT -symmetric quantum mechanics has gained an
increasing attention over the last years [1–17]. It describes physical systems gov-
erned by a complex Hamiltonian which is not Hermitian but fulfils parity-time
symmetry. This means that the Hamiltonian remains invariant under the com-
bined action of the parity (P) and time reversal (T ) operators, i.e. [PT , H ] = 0,
with

Px = −x , Pp = −p (1a)

T x = x , T p = −p , T i = −i . (1b)
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In spite of their non-Hermiticity these Hamiltonians possess real energy spectra
for properly chosen physical parameters. Besides the emergence of real energy
eigenvalues, phenomena are observable which are only possible in non-Hermitian
systems and not known in Hermitian quantum mechanics describing the spectra
of bound states. The most striking effects are connected with so-called excep-
tional points [18], i.e. isolated points in the physical parameter space at which
two or even more solutions pass through a branch point singularity, where both
the energies and the wave functions of the two states become identical.

Bender and Boettcher introduced a simple and instructive model that covers
all interesting features of a PT -symmetric quantum system [3]. It consists of the
Hamiltonian

H = p2 − (ix)N , (2)

where N is allowed to assume the value of any real number. In a very simple cal-
culation it can be confirmed that [PT , H ] = 0, i.e. this Hamiltonian is PT sym-
metric. Evidently, N = 2 represents the harmonic oscillator, of which we know
that its spectrum is real and positive. Bender and Boettcher found that this fact
remains true for all N ≥ 2, however, if N is reduced below 2 one observes that
successively one pair of consecutive eigenvalues after the other passes through
a branch point singularity. Beyond the branch point both eigenvalues become
complex and complex conjugate. This eigenvalue structure already describes the
typical behaviour of parameter-dependent PT -symmetric Hamiltonians.

In the wake of the discovery of Bender and Boettcher, a large number of sys-
tems with PT -symmetric Hamiltonians have become the subject of theoretical
and experimental studies. It is no surprise that the most sophisticated experi-
mental progress in the investigation of PT -symmetric physical systems has been
achieved in optics [5, 7, 9, 12, 15, 16, 19]. The gain and loss contributions required
to set up a non-Hermitian PT -symmetric system can be implemented, e.g. with
optical pumping (gain) and absorptive media (loss), i.e. by exploiting well es-
tablished techniques.

Due to the well known analogy that the wave equation for the transverse
electric field mode is formally equivalent to a one-dimensional Schrödinger equa-
tion these optical systems can be considered as a simulation of the motion of
a quantum particle in a potential of the form V (x) = −k2n2(x), where n is
the (complex) refractive index. However, these studies cannot completely sub-
stitute studies of quantum systems, and the verification of PT symmetry in a
true quantum system is highly desirable. Klaiman et al. [9] proposed a quantum
analogue to the optical experiments consisting of a Bose-Einstein condensate in
a double-well potential. The gain and loss terms could be realised by coherently
removing atoms from one well and injecting atoms into the other.

At sufficiently low temperatures one may assume that all atoms of a dilute
gas of weakly interacting Bosons trapped in an optical potential are in their
ground state. Then the system can be well described by the Gross-Pitaevskii
equation [20, 21], i.e. the Hartree approximation of the corresponding many-
particle equation, where all single-particle orbitals are given by the same state.
In a particle number scaled form and in appropriate units the Gross-Pitaevskii
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equation reads

iψ̇(x, t) =
(
−Δ+ V (x)− g|ψ(x, t)|2

)
ψ(x, t) . (3)

The trapping potential for the atoms is described by V (x). Additionally, the
atoms interact via the short-range van der Waals force, of which a description
with an s-wave scattering process is sufficient in the dilute gas. Its strength g is
determined by the scattering length.

It is the scattering term −g|ψ(x, t)|2 which needs a further consideration
since it leads to a crucial modification of the Schrödinger equation. The Gross-
Pitaevskii equation (3) is nonlinear in the wave function. This has direct con-
sequences for the PT symmetry of the system. For a PT -symmetric system
we require, as mentioned above, [PT , H ] = 0. Since the kinetic energy term
in the Hamiltonian is always PT symmetric one directly obtains the necessary
condition for the potential,

V ∗(−x) = V (x) . (4)

This has also to be fulfilled by the scattering term. Thus, for the total Hamilto-
nian to be PT symmetric the square modulus of the wave function which is the
solution of the Gross-Pitaevskii equation has to be a symmetric function of x.

In previous studies of PT -symmetric systems with nonlinearity it was found
that the nonlinearity not necessarily destroys the appearance of real eigenvalues
in the spectrum or their coalescence in branch point singularities. Indeed, PT -
symmetric eigenstates with real energies have been found for a non-Hermitian
Bose-Hubbard model [10, 11, 22], quantum mechanical model potentials [8], opti-
cal waveguide structures [7, 15], and for Bose-Einstein condensate in an idealised
double-δ trap [23, 24], or in a spatially extended double well [25].

In this article we will solve the Gross-Pitaevskii equation for a Bose-Einstein
condensate in a double well with antisymmetric imaginary potential contribu-
tions describing effectively gain and loss processes. We show that it exhibits PT -
symmetric solutions, which is important because PT -symmetric wave functions
always have a square modulus which is a symmetric function of the coordinate x.
A Bose-Einstein condensate is a fully three-dimensional object, however, for the
investigation of the PT symmetry only a gain-loss profile in one spatial direction
is required. Thus, one may assume that it is sufficient to reduce the theoretical
description to one dimension without losing any relevant information. We will
demonstrate that this is exactly the case. But the correspondence of the one- and
three-dimensional solutions we obtain is even stronger. We show that the solution
of a Gross-Pitaevskii equation with adequately rescaled nonlinearity is capable
of providing quantitatively correct predictions for the fully three-dimensional
treatment. By the variation of the trap frequencies it will always be possible to
realise a regime in which the influence of the two additional dimensions can be
obtained without any explicit calculation. Furthermore, we show that a stable
dynamics of condensate wave functions is possible in the system with gain and
loss. This will be crucial for an experimental observability.
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Fig. 1. Visualisation of the PT -symmetric external potential in x direction. The real
part (solid line) defines the confinement of the condensed atom cloud, and the imaginary
part (dashed line) describes the in-/outcoupling of atoms.

In Sect. 2 we present the system and the corresponding Gross-Pitaevskii
equation. Additionally, we introduce two numerical methods for the calculation
of the stationary states. Then we discuss the numerical results for the energy
eigenvalues and investigate quantitatively the quality of one-dimensional model
calculations for the fully three-dimensional condensate in Sect. 3. Finally, we
study the stability of the condensate with numerically accurate dynamical com-
putations in Sect. 4. Conclusions are drawn in Sect. 5.

2 Theoretical description of the Bose-Einstein condensate
in the double well

2.1 Gross-Pitaevskii equation

The Bose-Einstein condensate of atoms with mass m is, in the mean-field limit,
described by the Gross-Pitaevskii equation (3), where we assume a potential of
the form

V (x) =
m

2
ω2
xx

2 +
m

2
ω2
y,z(y

2 + z2) + v0e
−σx2

+ iΓxe−ρx2

. (5)

It consists of a three-dimensional harmonic trap with trapping frequencies ωx

for the x direction and ωy,z for the two remaining spatial coordinates. To form
a double well it is superimposed with a Gaussian barrier in x direction. This
results in the one-dimensional projection of the potential as shown in Fig. 1. It
is obvious that the barrier has its maximum at x = 0. Its height is v0 and the
width of the Gaussian is given by σ. The imaginary contribution of strength Γ
is an effective description of a gain or loss of atoms. As can be confirmed by a
simple calculation the external potential (5) is PT symmetric.
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The coherent addition and removal of atoms proposed by Klaiman et al. [9]
can in principle be achieved by several methods. For example, appropriate laser
setups forming Bragg beams may be exploited to actively transport atoms from
a reservoir to one of the wells and to eject atoms from the other [26, 27]. The
reservoir can be a third well or a completely independent trap geometry. One
may also imagine a geometry with multiple wells in a row. If these wells are
close enough such that the condensate’s probability density may tunnel from
one well to its neighbouring well a flow of particles with a defined direction
could be generated by different potential offsets for the single wells. However, in
this article we concentrate on the effects of the PT -symmetric external potential
and will keep the equations as simple as possible. Thus, we adopt the formalism
used for the optical systems [5, 7, 9, 12, 15, 16, 19], where a complex refractive
index was used, and simulate an outcoupling of atoms with a negative imaginary
potential contribution in the left well, whereas a positive imaginary part in
the right well reflects in incoupling of atoms. Since the potential affects the
probability amplitude of the whole condensate the physical interpretation is a
coherent coupling, which is in agreement with our physical interpretation of
the process since we do not consider individual atoms but a macroscopic wave
function of the condensed phase.

With the length scale a0 =
√
�/2mωx defined by the trap frequency in

the direction of the double well and the unit of energy E0 = �
2/2ma20 the

dimensionless potential assumes the form

V (x) =
1

4
x2 +

1

4
ω2
y,z(y

2 + z2) + v0e
−σx2

+ iΓxe−ρx2

. (6)

Then the dynamics is governed by the time-dependent Gross-Pitaevskii equation
(3). To obtain stationary solutions we solve its time-independent variant, viz.

(
−Δ+ V (x)− g|φ(x)|2

)
φ(x) = μφ(x) , (7)

where the chemical potential μ has been introduced with the usual ansatz
ψ(x, t) = φ(x)e−iμt. For all calculations we keep the parameters v0 = 4 and
σ = 0.5 fixed. The width parameter ρ of the imaginary gain-loss potential is
chosen to be

ρ =
σ

2 ln(4v0σ)
. (8)

This choice guarantees that the extrema of the real and imaginary potential parts
coincide, as is illustrated in Fig. 1. A one-dimensional description is obtained
with the potential

V (x) =
1

4
x2 + v0e

−σx2

+ iΓxe−ρx2

, (9)

in which only the x direction is considered and all y and z terms are removed.
Obviously it contains all the relevant information about the PT symmetry.
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2.2 Numerical methods

We apply two independent methods to solve the time-dependent and time-
independent Gross-Pitaevskii equations (3) and (7). Our first method is a Gaus-
sian variational approach [28, 29] based on the idea to restrict the wave function
to a Gaussian form, viz.

ψ(z,x) =

NG∑
k=1

e−[A
k
x(x−qkx)

2+Ak
y,z(y

2+z2)]eip
k
x(x−qkx)−ϕk

. (10)

Within this approach the dynamics is described by the small set of variational
parameters

z(t) =
{
Ak

x(t), A
k
y,z(t), q

k
x(t), p

k
x(t), ϕ

k
}
. (11)

The most simple ansatz is a superposition of two Gaussian wave functions, each
of them located in one of the wells, i.e. NG = 2 in (10). Then the real coordinates
q1x, q

2
x, p

1
x and p2x determine the positions and momenta of the Gaussians. The

widths of the Gaussians are given by the complex parameters A1
x, A

2
x, A

1
y,z and

A2
y,z, where we chose identical widths for the y and z directions, in agreement

with the symmetry of the external potential (5). Finally, the complex quantities
ϕ1 and ϕ2 determine the amplitudes and phases.

The application of the McLachlan time-dependent variational principle [30],

δI = δ||iχ(z(t),x) −Hψ(z(t),x)||2 !
= 0 , (12)

leads to a set of ordinary differential equations for the parameters (11) after the
variation with respect to χ and the subsequent replacement ψ̇ ≡ χ. Stationary
states or solutions of the time-independent Gross-Pitaevskii equation (7) are
found if the conditions Ȧk

x = Ȧk
y,z = q̇kx = ṗkx = 0, and ϕ̇1 = ϕ̇2 are fulfilled. A

detailed explanation of the procedure can be found in reference [25].
The advantage of the Gaussian variational method is its high scalability, i.e.

the difference of the numerical costs between the one- and three-dimensional
descriptions is very moderate. Nevertheless, it provides highly precise solutions
[31–33]. However, since in this analysis of PT -symmetric Bose-Einstein conden-
sates the method is applied for the first time to nonlinear complex potentials
we compare its results to numerically exact solutions of the Gross-Pitaevskii
equation in one dimension. To obtain the numerically exact stationary states
the wave functions are integrated outward from x = 0 in positive and negative
direction using a Runge-Kutta algorithm. The initial values Reψ(0), ψ′(0) ∈ C,
and μ ∈ C are chosen such that the wave functions are square integrable
(ψ(∞) → 0, ψ(−∞) → 0) and normalised ||ψ|| = 1. For numerically exact
dynamical calculations we apply the split-operator method.

3 Stationary states

3.1 General behaviour of the solutions

Fig. 2 shows the results of the solution of the Gross-Pitaevskii equation (7). Let
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Fig. 2. Real and imaginary parts of the energy eigenvalues μ of the stationary Gross-
Pitaevskii equation (7) as a function of the the gain-loss parameter Γ . The Gaussian
approximation (solid lines) and the numerically exact solutions (dashed lines) show
an excellent agreement. In the left panel, g increases from top to bottom, in the right
panel from right to left.

us first concentrate on the linear case g = 0, which exhibits the typical behaviour
known from other PT -symmetric systems (top curve in the left panel and right-
most curve in the right panel). Below a critical value ΓEP ≈ 0.04 of the gain-loss
parameter Γ we find two real eigenvalues, corresponding to a ground state with
completely symmetric wave function for Γ = 0 and an excited state, of which
the wave function is completely antisymmetric for Γ = 0. At ΓEP ≈ 0.04 the two
solutions merge in an exceptional point, where we have confirmed that indeed
the wave functions become identical. Increasing Γ further we obtain two complex
conjugate solutions. One also notes that the agreement between the Gaussian
approximation and the numerically exact solution is excellent.

Obviously the real eigenvalues do not vanish in the case g �= 0. This is
an important result since it indicates a persistence of the PT symmetry in
the nonlinear quantum system. Non-decaying states are present. However, if we
want to be sure about the symmetry we have to look at the wave functions.
As mentioned in the introduction the PT symmetry of the Gross-Pitaevskii
equation (7) depends on its solution, or, to be more precise, on the shape of the
wave function’s square modulus. It has to be a symmetric function of x. Is this
the case? The answer to this question is given in Figs. 3(a) and (b), which show
the wave functions belonging to both real eigenvalues for g = 0.2 and Γ = 0.03.
The square moduli are symmetric functions of x. This confirms that the case of
exact PT symmetry is fulfilled.

There are also, as in the linear case, states with complex eigenvalues. From
linear PT -symmetric models we know that these complex eigenvalue solutions
belong to PT -broken wave functions. This behaviour is also found in our case,
cf. Figs. 3(c) and (d). This has crucial impact on the nonlinear Gross-Pitaevskii
equation. Since the square moduli of the wave functions are not symmetric func-
tions of x the PT symmetry of the Hamiltonian is destroyed.
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Fig. 3. The wave functions of the ground (a) and the excited (b) eigenstates with real
eigenvalues possess symmetric square moduli, and thus correspond to the case of exact
PT symmetry. By contrast, the wave functions of the complex eigenvalue solutions with
negative (c) and positive (d) imaginary part do not have symmetric square moduli. All
wave functions are shown for g = 0.2 and Γ = 0.03. Since there are almost no visible
differences between the variational Gaussian and the numerically exact solutions only
the variational wave functions are drawn.

In Fig. 2 we observe a further crucial difference between the linear and the
nonlinear system. In the linear case g = 0 the two complex eigenvalue solutions
emerge exactly at the value ΓEP at which the non-decaying eigenstates with real
eigenvalues vanish. This does not hold for the nonlinear system, i.e. for g �= 0. In
the latter case the complex eigenvalue solutions are born at a value Γc < ΓEP. At
the exceptional point ΓEP only the real eigenvalue states vanish and new complex
solutions do not appear. It is known that this unusual bifurcation scenario has
its origin in the non-analyticity of the Gross-Pitaevskii equation [25, 34], which
is a topic of ongoing research.

3.2 Importance of the one-dimensional solutions

Since only the x coordinate is relevant for the PT symmetry of the potential
(5) it is not surprising that the one-dimensional calculations considered so far
already cover qualitatively all relevant effects. However, we want to go one step
further and ask whether the one-dimensional calculations are also capable of
providing precise quantitative predictions for a completely three-dimensional
setup. To do so, we investigate simple but plausible assumptions on the two
remaining directions and their influence on the energy eigenvalues.

The first effect of the two additional directions is clearly the interaction of
the atoms in the condensate with the trapping potentials defined by the trap fre-
quency ωy,z in (6). If we assume that only the ground state of the corresponding
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Fig. 4. The real (a) and nonvanishing imaginary (b) parts of the energy eigenval-
ues of the one-dimensional model (dashed lines) are compared with the fully three-
dimensional calculations (solid lines). One observes a very good quantitative descrip-
tion by the simple one-dimensional treatment of the system. The differences can hardly
be seen in the graph. Again, in the left panel, g increases from top to bottom, and in
the right panel from right to left.

oscillators is occupied, which is reasonable in the condensed phase, we obtain an
energy shift by a value of Δμ = ωy,z = 2 in the units introduced in Sect. 2.1.

Since the Gross-Pitaevskii equation (7) contains also the nonlinear scattering
term we have to take into account the normalisation integral for the energy
contribution of the s-wave contact interaction. An estimate of the difference
between the one- and three-dimensional contact energies can be extracted from
its expectation value. We wish to describe the three-dimensional setup by an
equivalent one-dimensional model, and thus we demand that the expectation
values of both contact energies are identical, viz.

∫

R3

dx dy dz g3D|ψ3D(x)|4 !
=

∫

R

dx g1D|ψ1D(x)|4 . (13)

This leads to the relation

g3D =
4π

ωy,z
g1D (14)

between the value g1D which has to be used in the one-dimensional model in
order that it results in the same contact energy as a three-dimensional wave
function with g3D. Again, we assumed that the harmonic oscillator ground state
with its wave function ψ0 is a good approximation for the directions y and z.
Furthermore, we used the product ansatz

ψ3D(x) ≈ ψ1D(x)ψ0(y)ψ0(z) . (15)

Of course, these simple considerations are only correct in the linear form of
the Gross-Pitaevskii equation (7), with g = 0. However, in Fig. 4 we observe
a remarkable agreement between the one-dimensional results based on the sim-
ple assumptions and the results of the fully three-dimensional calculations even
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Fig. 5. Real part of the ratio (16) as a function of ωy,z for the ground state ψg,
the excited state ψe, and the PT -broken states ψn/p. All calculations are carried out
for a nonlinearity of g3D = 1.2π/ωy,z, i.e. g1D = 0.3. For higher values of ωy,z the
ratio converges to unity, i. e. the agreement between the solutions in one and three
dimensions becomes better and better. The PT -symmetric solutions converge faster
than the PT -broken solutions.

for nonlinearities as large as g1D ≈ 0.3. It is almost impossible to identify the
differences.

In a further step one may assume that the one-dimensional description even
becomes better when the geometry of the setup is designed to favour the spa-
tial extension in only the x direction. The previous calculations for the three-
dimensional potential were carried out with a constant trapping frequency of
ωy,z = 2. The trapping frequencies influence the condensate’s shape, and thus
it is expected that they have an impact on how precise the stationary solutions
in one dimension can be transferred to solutions in three dimensions. The limit
ωy,z →∞ effectively describes the one-dimensional potential because the widths
of the wave function in y and z directions must vanish. Therefore the behaviour
in the three-dimensional potential can be predicted more accurately by the one-
dimensional solutions for higher values of ωy,z. Figure 5 confirms the convergence
of the energy eigenvalues in the three-dimensional potential to the solutions in
one dimension with increasing ωy,z. What is shown is the value of the ratio

μ3D −Δμ

μ1D
=

μ3D − ωy,z

μ1D
. (16)

If the solutions in three dimensions are exactly described by the product ansatz
(15) the ratio will be equal to one. Indeed, we observe convergence to unity for
increasing values of ωy,z.

The convergence in the limit ωy,z → ∞ is expected. What is, however, of
greater interest is, at which values of the trapping frequencies the one-dimensional
model becomes sufficiently accurate. We see from Figure 5 that in particular for
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the stationary solutions with real eigenvalues, i.e. the PT -symmetric states, one
has rapid convergence. To achieve a good agreement between the solutions in
one and three dimensions it is obviously sufficient to choose a trapping frequency
ωy,z which is larger than that for the x direction, i.e. in the units used for our
calculation ωy,z > 1. This is remarkable since this does by far not mean that
we are investigating a quasi one-dimensional setup. The spatial extension in y
and z directions may be comparable to that in x direction and it is still possi-
ble to extract quantitatively correct values from a simple and numerically less
expensive one-dimensional calculation.

4 Dynamics of the condensate

Before we investigate the temporal evolution of the wave functions we have to
note an important consequence of the nonlinear system with gain and loss. In
Sect. 3.1 we observed PT -broken solutions with complex energy eigenvalues and
called them stationary states. From the point of view of the time-dependent
Gross-Pitaevskii equation (3) this is not correct. The consequence of the imag-
inary parts of the energies is a decay or growth of the state’s probability am-
plitude. This affects the scattering term −g|ψ|2, and introduces an explicit time
dependence into the nonlinear Hamiltonian. Thus, these states cannot be con-
sidered to be true stationary solutions of the time-dependent Gross-Pitaevskii
equation. Strictly speaking, they lose their physical relevance. We will see, how-
ever, that they still have important consequences for the dynamics of the whole
system.

If we prepare the condensate in a state close to the stationary real eigenvalue
solutions for values of Γ below the appearance of the PT -broken states their
influence is supposed to be negligible. This can be confirmed in a numerically
exact propagation of such initial states using the split-operator method. Since
we have demonstrated in Sect. 3.2 that a fully three-dimensional calculation is
not necessary we restrict our calculations to the one-dimensional model which
is more illustrative.

In Figs. 6(a), (b), and (c) we visualise the evolution of the probability am-
plitude of an initial wave packet

ψ(x, t = 0) =
1√
2

(
φg(x) + eiϕφe(x)

)
, (17)

where φg(x) and φe(x) are the ground and excited state, respectively, and ϕ =
π/2 was chosen. We observe the same behaviour as it appears already in linear
systems [9]. An oscillation of the probability amplitude between the two wells
sets in, and the oscillation frequency decreases with increasing Γ . Close to the
exceptional point at Γ ≈ 0.04 the oscillation period tends to infinity. A de-
tailed quantitative analysis reveals that the influence of the nonlinearity is only
a slightly higher oscillation frequency as compared to the linear case Γ = 0.

A drastic qualitative change of the wave function’s behaviour is observed in
Fig. 6(d), where the phase was chosen to be ϕ = π and the gain-loss parameter
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Fig. 6. Visualisation of the probability amplitude’s spatial distribution as a function
of time. The initial wave packet is defined by (17). In all calculations g = 0.2 was
chosen. For the choice ϕ = π/2 stable oscillations are observable in the cases Γ = 0
(a), Γ = 0.02 (b), and Γ = 0.04 (c). For Γ = 0.03 and ϕ = π we observe an explosion
of the wave packet (d).

Γ = 0.03 is in a regime in which the additional PT -broken states are present
for g = 0.2, cf. Fig. 2. The condensate does not oscillate between the wells.
The probability amplitude tunnels into the well with gain (x > 0) which leads
immediately to an “explosion” of the wave function, i.e. it grows beyond all
limits. Of course this is only correct in our description of the gain and loss
effects with imaginary potentials which correspond to infinitely large reservoirs.
In a realistic situation this description will break down at some point.

There is a simple explanation for the exploding behaviour. The two PT -
broken solutions with complex eigenvalues exist and they possess a considerable
overlap with the time-evolved wave function (17). In this case the eigenstate
with positive imaginary part of the energy can dominate the long-time behaviour
since it grows. This can also happen close to the ground state, which does not
need to be stable in the nonlinear system with gain and loss. In fact, a detailed
stability analysis by solving the Bogoliubov-de Gennes equations confirms that
the ground state becomes unstable as soon as the complex eigenvalue solutions
emerge at a critical value Γc [25].

As we have seen in Fig. 6(c) the instability of the ground state does not
necessarily lead immediately to a destruction of the oscillation. For the value
Γ = 0.04, i.e. very close to the exceptional point also the PT -broken solutions
exist. However, the probability amplitude almost pulsates in both wells with a
low frequency as it is known from linear PT -symmetric systems, and does not
seem to be disturbed by the growing and decaying complex eigenvalue solutions.
An extensive study of the initial conditions reveals that the phase ϕ in (17)
critically influences the fate of the initial wave packet.
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5 Conclusion

The most important result of this work is the verification of the existence of
PT -symmetric eigenstates of the Gross-Pitaevskii equation for a Bose-Einstein
condensate in an external PT -symmetric potential. Due to an incoupling and
outcoupling of atoms in the two wells, which can be described by imaginary po-
tential contributions, the Hamiltonian is complex and non-Hermitian. It does not
necessarily need to support true stationary states. However, the PT -symmetric
solutions possess real energy eigenvalues, and thus demonstrate that stationary
eigenstates that do not decay or grow exist even though a gain and loss of atoms
is always present. This behaviour is known from linear PT -symmetric quantum
systems, but its appearance in the mean-field description of Bose-Einstein con-
densates is a nontrivial finding since the Hamiltonian of the Gross-Pitaevskii
equation is nonlinear. Thus, the solution has an effect on the Hamiltonian’s
symmetry, i.e. only after the wave functions have been found one can be sure
that the system fulfils any symmetry. In other words, one may conclude that the
Hamiltonian picks as real eigenvalue solutions exactly those states which render
itself PT symmetric.

The real energy eigenvalues are the only true stationary states of the system.
It is also possible to find solutions of the time-independent Gross-Pitaevskii
equation with complex energy eigenvalues. However, they cannot be considered
to be physical. Due to the decay or growth enforced by the imaginary energy
contributions these states introduce an explicit time dependence into the non-
linear Hamiltonian, and thus are not stationary solutions of the time-dependent
Gross-Pitaevskii equation. As is known from linear systems the complex ener-
gies found for the time-independent Gross-Pitaevskii equation belong to wave
functions with broken PT symmetry. Since their square moduli are not sym-
metric functions of the spatial coordinates they destroy also the Hamiltonian’s
PT symmetry. A striking difference between linear and nonlinear systems is the
point of emergence of the states with broken PT symmetry. In linear systems
they are born exactly at the critical parameter value ΓEP at which the two real
eigenvalue states vanish in an exceptional point. For a nonvanishing nonlinearity
g we observe that the complex eigenvalue solutions bifurcate from the ground
state at a lower gain-loss parameter Γc.

It is remarkable that the effects of the PT -symmetric double well can be
excellently described by one-dimensional calculations. Of course, one can im-
mediately see that it is possible to construct a one-dimensional PT -symmetric
potential. Then one does not expect to lose any qualitative information when one
reduces a fully three-dimensional physical system to a one-dimensional descrip-
tion. Our calculations showed that for Bose-Einstein condensates in a double
well the correspondence between three- and one-dimensional calculations is even
stronger. Highly precise quantitative predictions for the energy eigenvalues of the
physical condensate wave function can be obtained from simple one-dimensional
considerations. This fact holds for condensate geometries which by far cannot
be called one-dimensional.
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The time evolution of the wave functions revealed that for low enough gain-
loss parameters Γ the condensate behaves as waves in linear PT -symmetric
systems. The probability amplitude oscillates between the wells, where the os-
cillation frequency decreases for increasing Γ and tends to zero close to the
exceptional point at which the real eigenvalues solutions merge. As soon as Γ
is strong enough for the appearance of the PT -broken complex energy states
the temporal evolution of the condensate can become unstable and lead to an
infinite growth of the probability amplitude in the well with gain. This effect
depends critically on the preparation of the initial state. For an experimental
realisation the most important finding is the existence of a stable dynamics.

The present work shows that Bose-Einstein condensates are good candidates
for the first experimental observation of a PT -symmetric quantum system. How-
ever, there are still some questions which have to be answered. So far, we intro-
duced the coherent in- and outcoupling of atoms only via complex potentials.
A topic of ongoing research are several setups with additional wells acting as
reservoirs of atoms. These setups are based on the idea that one has a closed
system in which the double well is embedded. We wish to investigate how it is
possible to drive a coherent flow of atoms between the reservoir and the two wells
such that the double well alone can effectively be described by the imaginary
potential presented in this article.

From the theoretical point of view it would be desirable to understand how a
coherent in- or outcoupling of atoms can be understood on a microscopic level.
This will require considerations beyond the mean-field limit but will certainly
provide more insight into the physical processes. The systems also revealed a
number of mathematical challenges. The unusual bifurcation scenario with the
PT -symmetric solutions bifurcating from the ground state has its origin in the
non-analyticity of the Gross-Pitaevskii equation. The investigation of the nature
of these bifurcation points requires a proper analytic extension.
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Abstract. This paper presents an outline of our brain theory that we
have developed over the past 30 years. Some remarks on the early stages
of Synergetics that I initiated some 40 years ago are included. Using
basic concepts of Synergetics such as order parameters and the slaving
principle, brain functions are modeled both at the macroscopic (order
parameter) and the microscopic (neuronal) levels. I deal with movement
coordination, psychophysics (ambiguous figures), pattern recognition by
the synergetic computer, my “light house model” of a neural net, and give
some hints at applications to psychology and psychotherapy (“principle
of indirect steering”). Finally, I discuss relations between Synergetics and
Complexity Science.

1 The human brain

Our brain is the most complex system we know. It consists of about 100 billion
neurons, where a single neuron can be connected with up to 10000 other neurons.
This “system” enables our recognition of faces and objects, movement patterns,
it serves movement control of our limbs, it produces our thoughts and allows us
to express them by speech and gestures, it homes our feelings, just to mention
a few characteristic features. But who or what steers the neurons so to produce
all these marvelous processes? The famous neurophysiologist Sir John Eccles
suggested that the brain is a computer and the mind its programmer. Indeed, the
“computer” metaphor is still present in numerous publications (with the “mind”
exorcised). In contrast to this picture, some thirty years (in 1982) ago I suggested
to treat the brain as a “synergetic” system and jointly with E. Basar, H. Flohr,
and A.J. Mandell (Basar et al. [1]), I organized a meeting entitled: “Synergetics
of the brain”. According to this suggestion, the brain is a self-organizing system,
which can be theoretically treated by basic concepts and results of Synergetics.

2 Synergetics: Two examples from physics and a
historical remark

I initiated this kind of study by a lecture, jointly with my then coworker Robert
Graham in the winter term 1969/70, and continued it in the summer term 1970
(cf. also Haken, Graham [2]). To explain the incentive of our endeavor, I briefly
recall my favorate subject of my research at that time:
© Springer International Publishing Switzerland 2016 147
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2.1 The laser paradigm

A typical example is the ruby laser (first realized by Maiman in 1960 [3]). In a
crystal (Al2O3) rod, impurity atoms (Cr+) are embedded. When excited by a
“pump” lamp from the outside, the impurity atoms emit light which lends the
ruby crystal its typical red color. Two mirrors (one semitransparent) mounted at
the rod’s end faces serve for a reflection of light waves, emitted in axial direction,
so that they can intensely interact with the atoms. By means of stimulated emis-
sion (first introduced by Einstein to derive Planck’s law of black body radiation),
light waves are amplified and, eventually, leave the laser rod in axial direction.
What happens, when we increase the pump power of the outer light source?
First, light waves (or photons) are spontaneously emitted, which is an entirely
random process. Even when the waves are enhanced by stimulated emission,
which is expressed by the acronym laser (light emission by stimulated emission
of radiation) this randomness (“Gaussian noise”) persists (while the linewidth
decreases with increasing pump strength). In the physics community, this line
narrowing was considered as the typical feature of laser light (besides its high
intensity and directionality). In 1964 I showed theoretically, that at a critical
pump strength laser light undergoes a dramatic qualitative change (Haken [4]):
the noisy output is replaced by a single highly ordered (“coherent”) wave. This
was the first example of an open (quantum) system far from equilibrium which
shows a disorder-order transition actually in close analogy to phase-transitions
of systems in thermal quilibrium, based on the Landau theory, as we elaborated
later (Graham, Haken 1968,70; also de Giorgio, Scully 1970). But still more
important: Here we had an explicit example of a process of self-organization!

2.2 A fluid heated from below

In order to bring out some typical features of self-organization which can be
clearly visualized (“demonstrare ad oculos”) I quote some experimental results
(Fig. 1).

In a circular pan, a thin fluid layer (e.g. oil) is heated from below and cooled
from above. If the temperature difference Δ between the lower and upper surface
is small, heat is conducted microscopically: macroscopically the fluid is at rest.
Beyond a critical Δ, a macroscopic pattern emerges: a honey comb structure
(Bénard [5]). In spite of a completely homogenous heating and cooling, a highly
ordered structure appears! When, in addition, also the border of the pan is
heated uniformly, the structure changes qualitatively: the hexagons are replaced
by a spiral (which can be one-or multi-armed) (Bodenschatz et al., experiments
[6]; Bestehorn et al., theory [7]).

2.3 A historical remark

While the laser provides us with a quantum system away from thermal equilib-
rium that shows temporal order, the fluid exemplifies the formation of spatially
ordered patterns in a classical non-equilibrium system.
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Fig. 1. Fluid layer heated from below.: l.h.s.: formation of hexagons, r.h.s.: formation
of spirals when the border is heated in addition. (From Bestehorn, M., Fantz, M.,
Friedrich, R., Haken, H. [7].)

Are these two cases just two strange singular events (which even seemed to
contradict the second law of thermodynamics) or are they just two manifestations
of an important new class of phenomena? The attempt to answer such a question
lies at the heart of my “Synergetics” endeavor. Historically, the incentive for my
approach was – besides the laser paradigm – not the just mentioned example
of fluid dynamics, but two phenomena of “phase transitions” in quite other
fields, namely Sociology and biological evolution. In 1968 my close colleague
Wolfgang Weidlich developed his theory on phase-transitions in the formation of
public opinion (Weidlich 1971 [8]), and I learned of Manfred Eigen’s work on the
evolution of molecular species (Eigen [9]) (see also Eigen, Schuster [10], Weidlich
[11]). So my conclusion at that time was: phase-transition-like phenomena must
be ubiquitous.

To put this new insight into a broader context, in 1972 I organized a sympo-
sium on Synergetics (cf. its proceedings (Haken [12])).

My introduction started with the words “In many disciplines of science we
deal with systems composed of many subsystems . . . Very often the properties
of the large system cannot be explained by a mere random superposition of
actions of the subsystems. Quite on the contrary the subsystems behave in a
well organized manner, so that the total system is in an ordered state or shows
actions which one might even call purposeful. Furthermore one often observes
abrupt changes between disorder and order or transitions between different states
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of order. Thus the question arises, who are the mysterious demons who tell the
subsystems in which way to behave so to create order, or, in a more scientific
language, which are the principles by which order is created.” And I concluded
my introduction with the statement . . . “that in spite of the completely different
nature of the systems, their behavior is governed, at a well defined level of
consideration, by a few very general principles which offers an explanation of
the often amazingly similar performance of such systems.”

3 Synergetics: Goal

This interdisciplinary field of research, Synergetics (S.), deals with systems com-
posed of many parts, elements etc. S. distinguishes between the macroscopic
level and the microscopic level by length- and/or time-scale separation. S. stud-
ies the spontaneous formation of temporal, spatial, functional structures, i.e. the
emergence of new qualities via self-organization. S. focusses its attention on open
systems, i.e. systems subject to an in – and outflow of energy, matter and/or
information. The central goal of S. is: to unearth general principles (or laws)
underlying self-organization irrespective of the nature of the individual parts of
the considered systems.

Thus the parts may be, e.g., atoms, photons, molecules, but also neurons
or people in society. “It hardly needs to be mentioned that once such common
principles are established, they are of an enormous stimulus and help for future
research” (quotation from my preface to the proceedings of our first Synergetics
meeting in 1972 (Haken [12])).

An important feature of Synergetics has always been to make contact with
experiments as closely as possible. For more details cf. Haken [13–16] and the
Springer Series in Synergetics.

In the present paper I don’t present the theoretical approaches but rather
their verbalization. For lack of space, I must also refrain from discussing the
various relationships between S. and general system theory (in the sense of L.
von Bertalanffi [17, 18] dynamic systems theory including bifurcation theory,
center and inertial manifold theory (e.g. Pliss [19], Kelley [20]), Robinson [21]),
Landau theory of phase transitions (Landau, Lifshitz [22]), thermodynamics,
statistical physics, quantum field theory, cybernetics and possibly other fields.
(In my opinion, the work of myself and my coworkers has given substantial new
insights into several of these fields).

4 Synergetics: Basic concepts

4.1 Control parameters

They qualitatively describe the input of energy, matter, information into the con-
sidered system. Examples are: power input into the laser, temperature difference
in convection experiments.
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In brain dynamics : Coffein (blocks Serotonin receptors), Haldol (blocks Dop-
amin2 receptors), neurotransmitters, neuromodulators, hormones (e.g. oxytoc-
ine); the latter acting as internal control parameters.

4.2 Instability

At a critical control parameter value the state of a system tends to disappear
and to be replaced by a new one. Critical fluctuations may occur that drive the
system into its new state.

4.3 Order parameters

occur close to the instability point. They are new collective variables that serve
as macroscopic descriptors. They are in general few and obey low dimensional
nonlinear dynamics subject to fluctuations.

4.4 Slaving principle

The order parameters determine the behavior of the individual parts (like a
puppeteer who lets the puppets dance).

4.5 Circular causality

In contrast to the “puppeteer” metaphor, the puppets – through their coopera-
tion – determine the behavior of the order parameters. This raises far reaching
ontological questions. (catchword: mind-body problem) that I will not discuss
here.

At any rate: This concept allows us to treat a synergetic (self-organizing)
system at two levels:

– macroscopic: order parameters
– microscopic: “consensualization” between parts (elements)

While the second approach requires very many data, the former requires
few data (“information compression”). In the following I will elaborate on this
distinction in the context of brain dynamics.

5 The phenomenological level I
Movement coordination and order parameters

In 1981 Scott Kelso published his experimental results on human movement
coordination (Kelso [23]). He instructed subjects to move their index fingers
in parallel at a given frequency, ω. While at low frequency the subjects could
perform this movement, at an increased, critical frequency ωc, the movement
switched involuntarily to a symmetric coordination (Fig. 2). This transition was
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Fig. 2. Kelso Experiment: Change of relative phase in index finger movement

modeled by Haken, Kelso, Bunz (HKB) [24] in the spirit of Synergetics: The
pronounced change of the movement pattern occurs at a critical frequency, ωc.
Thus the frequency ω serves as control parameter.

The relative position of the index fingers can be mathematically captured by
a relative phase φ. Because φ changes at ω = ωc, it may serve as order parameter.

As had been elaborated previously in Synergetics, the order parameter dy-
namics can be modeled by an equation of the form

dφ

dt
=

∂V (φ)

∂φ
+ F (t) , (1)

where V is a “potential” and F (t) a stochastic force. The crux was to find a
suitable V (φ). Our model V is depicted in Fig. 3. Initially (upper valley) the
movement state is characterized by φ = π. With increasing ω, the correspond-
ing potential minimum flattens and disappears: The state φ = π undergoes an
instability and changes into φ = 0.

Now, again in the spirit of Synergetics, a number of important conclusions
can be drawn:

1. hysteresis : When lowering ω, the “system” will not return from φ = 0 to
φ = π.

2. a flat potential implies critical slowing down and
3. critical fluctuation (see Fig. 4).

Kelso and his co-workers were able to experimentally (even quantitatively)
verify our predictions. These results lead us to conclude that the brain does
not act according to a computer motor program. Rather the features 1-3 are
characteristic of self-organization. This is a strong hint at our interpretation
that the brain is a self-organizing system.

Further beautiful experiments on this issue were performed by Kelso and
his group, while theory was carried further by L. Borland, A. Daffertshofer, T.
Frank, A. Fuchs, G. Schöner and others, both at Stuttgart and Boca Raton, FA.
(For reviews cf. e.g. Kelso [26], Haken [27]). A general conclusion based on these
experiments and related ones is: Humans (as well as animals, e.g. quadrupeds)
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Fig. 3. Change of potential V when frequency ω is increased. Read Fig. from upper
left to lower right corner (Haken et al. [24]).

realize only specific movement patterns depending on control parameters, e.g.
prescribed speed of performance.

6 The phenomenological level II
Psychophysics and order parameters

Our starting point is a typical relation between order parameters and the en-
slaved parts: While order parameters react to external influences (“perturba-
tions”) slowly, parts act on a faster time-scale (time-scale separation). This in-
vites us to the following analogy with brain processes:

While percepts are processed on time scales of 1/10 sec or still longer, neurons
function on a time scale of milliseconds.

These facts suggest to establish an analogy (for a review cf. Haken [27])

percepts↔ orderparameters

neurons ↔ parts(elements)

Note the ontological question that lurks behind this analogy!
Nevertheless, let us study a few typical cases of order parameter dynamics

with respect to perception. A typical order parameter potential has two valleys
indicating two different stable order parameter values, i.e. bistability. Which is
actually happening in perception (Fig. 5). Do you perceive Einstein’s face or?
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Fig. 4. Fluctuations of relative phase (open circles) and mean phase (solid dots) versus
driving frequency (Kelso et al. [25])

Thus, the same picture “induces” two quite different percepts, i.e. “bistability”
in perception. Strictly speaking over a somewhat longer time span, oscillations
occur (see below). I owe Michael Stadler (Bremen) the hint to oscillations in
perception.

A further example is hysteresis, we already came across above in a different
context. Hysteresis means that the state of a system depends on history. Fig. 6
provides us with an example from perception: The switching from the perception
of a man’s face (upper left corner) to that of a kneeling woman (lower right
corner) depends on the sequence in which we look at this series of pictures.

In the case of two order parameters, oscillations may occur (limit cycles in
the sense of dynamical system theory). In perception such oscillations may be
observed when looking at ambiguous figures (Fig. 7). Old or young lady? The
dynamics was mathematically modelled under the assumption that each percept
is controlled by an “attention” parameter that fades away after that the percept
is recognized. As I learned later, Gestaltpsychologist Wolfgang Köhler had made
the same suggestion in 1920 [29] (though he didn’t model it mathematically).
Our model allowed us to establish several relationships between first recognition
time, bias, recognition times etc. (Ditzinger, Haken [30]), and to make contact
with experimental results (Borsellini et al. [31, 32]).
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Fig. 5. Bistability in perception: Einstein’s face or three bathing girls?

7 Down to the microscopic level: models
Pattern recognition by the synergetic computer

Here, I exploit an analogy between pattern formation and pattern recognition.
This analogy is based on the concepts of order parameters, on the slaving prin-
ciple, and on circular causality (for a review cf. Haken [33]).

In pattern formation, let initially a part of the total system be in an ordered
state. This part calls on, in general, several order parameters which then compete
among each other. The initially stronger order parameter wins this competition
(“principle of winner takes all”) and, eventually enslaves the total system, i.e. it
establishes a fully ordered pattern. (An example: in the convection instability,
initially a single roll is prescribed. Then, by the just described mechanism, a
complete system of parallel rolls is formed.)

In pattern recognition, the individual parts are features, e.g. grey values of
pixels into which a pattern is decomposed. Consider as a concrete example face
recognition. Then only some features, e.g. that of a nose, may be given. Those
features call upon order parameters which compete among each other, the ini-
tially strongest wins and, again via the slaving principle, restores the whole
pattern, e.g. face. Cf. Fig. 8: example of stored prototype patterns, and Fig. 9:
recognition process, based on the following algorithm, which I formulate, quite
in the spirit of Synergetics, both at the microscopic (feature) level and at the
macroscopic (order parameter) level.
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Fig. 6. Hysteresis in perception (cf. text)

At the microscopic level, each pixel l, l = 1, ...L, is represented by its grey
value ql, which is mapped onto a neutral net so that ql is also the excitation
level of the model neuron l. Then I introduced evolution equations for the state
vector q = (q1, ..., qL),

q̇(t) = −gradqV (q, c) , (2)

where V is a polynominal of q up to fourth order with coefficients c = (cll′ , . . . )
that can be interpreted as synaptic strengths. V describes a hilly landscape
which I constructed in such a way that each of its valleys corresponds to one
and only one of the prototype patterns: The corresponding values of c can be
either inserted “by hand” into the computer or, more importantly, learned by
the rule

〈V (q, c)〉q = min ! , (3)

where the average 〈 〉 refers to a sequence of partially incomplete patterns whose
“idealization” is thus achieved. My algorithm was implemented by my former
co-worker Armin Fuchs on a serial computer (cf. Figs. 8, 9) (Fuchs, Haken [34]),
where recognition has been made invariant against displacements, rotation and
scaling. Using attention parameters and their fading away (cf. Sect. 6) our ap-
proach was also able to recognize faces in a complex scene. An example is given
by Fig. 10. The transition to the macroscopic (order parameter) level is achieved
by the transformation of the pixel vector q

q(t) =
∑
k

ξk(t)νk + rest , k = 1, . . . , k ≤ L (4)
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Fig. 7. Oscillations in perception (cf. text)

where ξk(t) is the order parameter associated with the prototype pattern vector

νk = (νk1, . . . , νk,L) . (5)

The resulting order parameter equations are

ξ̇k = ξk

(
λk + aξ2k − b

∑
m

ξ2m

)
, (6)

wih λk ≥ 0 the attention parameters, and a, b > 0.
A comparison with the vast body of pattern recognition procedures developed

by other authors can be only sketched.
My procedure belongs to the class of recurrent neural attractor networks.

The probably best known example is the Hopfield net (Hopfield [35]). Its disad-
vantage is the large number of spurious attractor states. To let the dynamical
system escape from these unwanted attractors, the laborious procedure of simu-
lated annealing has to be applied. The Grossberg/Carpenter procedure rests on
Lyapunov functions (Carpenter, Grossberg [36]) which are less precise than our
potential function, however.

8 Down to the physical level of the brain:
Coping with the dynamics of “real” neurons

This problem has been dealt with by several members of my former institute,
including A. Daffertshofer, T. Frank, V. Jirsa, P. Tass. Of course, there are also
approaches by other authors. Here I present my own “light house model” (cf.
Haken [37]) which starts from some well known experimental findings. A typical
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Fig. 8. Example of stored prototype patterns (after Fuchs, Haken [34])

Fig. 9. Example of recognition process (after Fuchs, Haken [34])

neuron emits spike trains into its axon which branches making contact to other
neurons. The contact is achieved by synapses which convert spikes into electric
currents to the soma of the neuron, which sums them up, and “fires” beyond
a threshold, i.e. it emits a spike train. The basic equations of the light house
model are:

1. Electric current ψm of dendrite m is generated by an axonal pulse from
neuron k: (

d

dt
+ γ

)α

ψm = amkPk . (7)

Here, γ is a damping constant, exponent α with 1 < α < 2 is a fraction in
accordance with experiments, amk is an experimentally determined trans-
formation rate. (A more general formulation contains a sum over k on the
r.h.s.)

2. Pulse production by neuron k, light house analogy:
When the rotating light beam emitted from a light house hits an observer,
he or she will notice a series of light flashes (“spikes”). Their time intervals
depend on the rotation speed of the beam.
The direction of the beam is described by an angle φ. If the beam hits
the observer at φ = 0, then (s)he will be hit again and again at times
tn, n = 1, 2, . . . , where φ(tn) = 2πn.
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Fig. 10. Recognition of a complex scene (after Fuchs, Haken [34])

Thus the rotation speed φ̇ determines the spike emission rate, which, in the
case of a neuron, is determined by the incoming dendritic currents. I model
this effect by means of the equation

φ̇k(t) + Γφk(t)mod 2π =
∑
m

Ckmψm(t) +
∑
ml

dkmlψm(t)ψl(t) + pk , (8)

where pk is the incoming signal. I have treated these equations rather ex-
tensively (including also time-delays and noise). Here I mention only two
special cases: In the case of dense pulse sequence I was able to derive the
equations of the synergetic computer [33, 38] so that my equations allow
pattern recognition. Under different conditions, my equations describe spike
train synchronization where contact can be made with experiments by Gray
and Singer [39] as well as by Eckhorn et al. [40] and their respective groups.

9 Further down to the molecular level

In the foregoing I have given a brief sketch of how I had applied basic concepts
of Synergetics to different levels of brain functions. In this approach, neurons
(somata), axons and dendrites are treated as entities. But these “devices” are, by
themselves, complicated systems, composed of molecules. Among the numerous
phenomena at this level, the following intrigues me particularly (cf. Alberts et
al. [41] for a review).

In an axon, there are microtubuli enbedded, which are long fibers. Along
them, biomolecules called kinesin may move by means of movable “heads” (or
better “legs”). The kinesin molecules can transport organels that are larger than
the kinesin. Powered by ATP, kinesin is an open system – to be treated as a
quantum system.

In our recently (September 2012) published book: Haken/Levi: Synergetic
Agents [42] we have started to deal with such processes. In a first step we
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treated a related problem: muscle contraction based on the propagation of myosin
molecules on actin fibers by using methods of quantum field theory and quantum
statistics of systems far from equilibrium.

10 Back to the phenomenological level: Psychology and
psychotherapy

Interestingly, Synergetics, originally quite unexpected, has made its way into
psychology and psychotherapy (cf. also the contribution by Günter Schiepek to
these proceedings, as well as Haken and Schiepek [43]). Clearly in the present
context, a few remarks must suffice here.

Behavioral patterns may be conceived as order parameters. Thus changes
of behavioral patterns can be interpreted as phase transitions, often with their
typical features, e.g. critical fluctuations. Research in Synergetics has revealed
the important role of the principle of indirect steering.

This means, the change of a control parameter can induce the evolution
of a new (behavioral) pattern by means of self-organization. This has fired a
discussion on appropriate control parameters in psychotherapy: specific verbal
interventions, or specific drugs? Or both?

Eventually, Synergetics cannot escape to try an answer to the eternal mind-
body problem (on which I am presently having fascinating discussions with Har-
ald Atmanspacher and Wolfgang Tschacher).

My suggestion is the analogy

body ↔ parts

mind↔ orderparameters

Thus in view of the principle of “circular causality” mind and body are just
two sides of the same coin. As I had learned in the meantime, this is just the
opinion of Spinoza. Just to conclude this section with a burning question: Will
the problem of qualia remain an eternal enigma?

11 Concluding remarks and outlook

Out of the vast field of Synergetics with its relations to many scientific disciplines,
I have presented a small section.

I have chosen the example of our attempts to model some aspects of brain
function to elucidate how basic concepts of Synergetics can be applied to this
fascinating field. As our studies (seem to) suggest, the human brain manages
to compress the complexity of perception and action time and again into low
dimensional dynamics of a rather small number of – in each case appropriately
established – order parameters.

Critics may object that this is a too narrow view based on a “Synergetic
bias”. On the other hand, our brain manages to compress the complexity of our
world all the time: e.g. by categorization as witnessed by language. Thus I think
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that the Synergetics approach may be a useful tool to cut one’s way through the
jungle of the brain’s complexity.

At any rate, this issue brings me to discuss the relation between Synergetics
and the presently flourishing field of Complexity Science. Synergetics is surely
one (or even the) forerunner of Complexity Science, both of which share their
emphasis on interdisciplinarity. But there are also differences that are best ex-
plained by looking at the different styles of scientific work:

1. Production of new data (information production)
2. Formulation of principles, laws etc. (information compression)

When I defined the scope of Synergetics I strongly emphasized 2.
Searching for common principles still remains an important goal which has to

go along also with 1. This is clearly demonstrated by the various presentations
at the Delmenhorst meeting (cf. these proceedings).

Readers interested in Synergetics/Complexity Science are referred to the
monograph series edited by H. Haken and S. Kelso (cf. references [14], [28]).
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Abstract. The mental development of a child is closely linked to the
development of the brain. This does not mean that this development can
be understood to be purely neurobiological. Rather, the brain is the or-
gan of feeling, thinking, and action planning, where a number of factors
concur and interact with each other in complex ways. These include (1)
genetic predispositions and characteristics of individual brain develop-
ment, (2) early attachment experience, (3) psychosocial and imprinting
experience during infancy, and (4) education and training in later child-
hood, adolescence, and adulthood.
These factors act at different times upon the individual development and
thus enter brain development, i.e. genetic predisposition and brain devel-
opment conditions show an early influence on the structuring of the per-
sonality, followed by the early bonding experience and early psychosocial
experience in childhood. For both factors it is very difficult to determine
their individual effect, as they sometimes interact intensely before birth.
Taken together they deeply influence most certainly the development of
personality. Education and training in adolescence and adulthood have,
by contrast, a lesser impact on the shaping of the individual and social
personality.

Keywords: neurobiology, mental development

1 Early brain development

The brain shapes very early its basic structure in the development of an em-
bryo, which is common for all mammals and consists of a paired end brain
(telencephalon) and an unpaired interbrain (diencephalon), midbrain (mesen-
cephalon), bridge (pons) and extended mark (medulla oblongata) as well as a
cerebellum [1]. The resulting brain parts slide against each other, bend down,
or one part overgrows the other as happens in the human brain. The relative
sequence of the parts of the brain remains strictly intact. During brain growth
the formation of nerve cells is extremely high and amounts throughout preg-
nancy to about 250,000 neurons per minute with a maximum of 500,000 per
minute. Whereas the cell division in the human brain is largely completed in the
twentieth week of pregnancy, cell migration continues long after the birth.
© Springer International Publishing Switzerland 2016 165
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Important for the function of the brain as a system of information process-
ing is not only the formation of nerve cells, which is substantially completed
in humans at birth with local exceptions, but also the formation of cell con-
tacts (synapses) in cell bodies, dendrites and axons, called synaptogenesis [2,
3]. Axonal projections are already formed from the nerve cells during their mi-
gration, while dendrites usually develop only after the cells have reached their
final destination. The formation of dendrites and synapses as points of contact
between axons and dendrites, or between dendrites of different neurons starts to
a large extent with the fifth month of pregnancy, but increases after birth again
massively together with the formation of dendrites. However, this happens differ-
ently in different parts of the brain. In the visual cortex, for example, a doubling
of the synaptic density takes place between the second and fourth month after
birth and the maximum number is approximately reached within one year. Sub-
sequently, the number of synapses drops, and the adult level is reached at about
eleven years. In the frontal cortex, the maximum synaptic density is likewise
achieved within a year, but the number of synapses is twice as high as in the
visual cortex; synapse reduction begins here only with five to seven years and
does not come to a certain stop before an age of eighteen years.

The main principle of the development of specific neuronal connections,
formed in the brain, is that initially far more synapses are formed than are
needed later on. This means that at first an overproduction of synapses, and
then a dramatic reduction occurs. It is believed that among the billions and bil-
lions of synapses a local competition takes place, which is essentially conducted
about nutrients and growth substances (called trophic factors) as well as about
to ensure a minimum of neuronal excitation. In fact, does a synapse receive too
little of everything, then it dies. As a consequence first diffuse, i.e. nonspecific
synaptic links are installed, then they are reduced selectively and adaptively due
to the competition between synapses. Thereby, the respective network is made
more efficient [4]. In the provision of adequate neuronal excitation both inter-
nally generated stimuli and those derived from the environment play a major
role.

Another important factor in the structural and functional maturation of the
brain is the myelination of nerve fibers. To this end a so-called myelin sheath
is formed around an axon. The myelination of an axonal extension allows a
much (in some cases hundreds of times) faster propagation of action potentials
through the axons than in unmyelinated fibers. Without a massive myelination
in the brain excitation processes would run much slower, this would severely
impair the cerebral cortex with its trillions of axonal connections and would
make many complex cognitive performances impossible. Therefore, the process of
myelination of the cerebral cortex is an important component in the development
of higher cognitive and psychological benefits [5].

The myelination of axons in the brain begins after completion of cell mi-
gration and finishes gradually until they reach adulthood. Thereby, there is a
clear gradient. Before birth, the axons of cells are myelinated in the spinal cord
and the medulla oblongata and immediately after birth the axons of cells in
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the mesencephalon and cerebellum. In the first and second year follow axons in
the thalamus and in limbic centers of the end-brain and in the basal ganglia
and then those in the primary sensory and motor areas of the cerebral cortex.
Subsequently, the secondary sensory and motor areas are myelinated. Still later
myelination takes place in the associative areas of the cortex. Here the fibers of
the prefrontal and particularly the orbitofrontal cortex are myelinated at last;
this may drag on until the age of 20. The growth of dendrites, the death of
synapses, and the myelination are accompanied by a parcellation of the brain
into structural units, namely into nuclei outside the cortex and later into cortical
areas. The final step in the differentiation is the fine wiring in these structures.
Thereby, the neurochemical specificity of neurons develops, i.e. the equipment
with specific excitatory, inhibitory and modulating neurotransmitters and neu-
ropeptides.

The aforementioned brain centers develop in the vertebrate brain in a very
specific sequence [6]. At first, the hypothalamus and the amygdala as well as the
tracks connected with the brainstem are developed very early, namely, around
the fifth and sixth week of pregnancy, followed by the nucleus accumbens, the
septum, and the limbic main communication routes in the sixth and seventh
week. Already in the third month of pregnancy one can differentiate the vari-
ous nuclei of the amygdala. The basal ganglia begin their development in the
seventh and eighth week as well as the deep cerebellar nuclei and parts of the
vestibulo- and spinocerebellum and parts of the limbic cortex (e.g. the insular
cortex). However, although only little is known about the process of fine wiring
within these centers, one can assume that it begins very early. At least, the main
centers and the limbic connecting tracts are available well before birth. The hip-
pocampus begins to bend in the middle third of the embryonic development in a
characteristic “sea horse-like” manner and the connections of the three parts of
the hippocampus (ammon’s horn, subiculum, gyrus dentatus) among each other
and with the adjacent entorhinal cortex form starting with the twentieth week.
The first links of the hippocampus formation with the isocortex do not occur
prior to the twenty-second week.

The actual training of the isocortex with its convolutions and fissures, which
represent signs of increased cell formation, begins to a significant extent in the
fourteenth to the seventeenth week in the cingulate cortex and in the occipital
cortex as well as in the adjacent parietal lobe. Then the central groove and the
upper temporal sulcus follow in the eighteenth to the twenty-first week of preg-
nancy, followed by further sulci and gyri in the parietal, temporal and occipital
lobes. In the twenty-sixth to the twenty-ninth week both sulci and gyri of the
frontal lobe are added. The formation of secondary temporal, frontal and orbital
sulci and gyri marks the end between the 30th and 37th week, i.e. just before
birth. The sequence of cognitive, mental and motor development of a child cor-
responds very closely to the first occurrence of the sensory, motor, cognitive and
executive functions of the cerebral cortex.

The brain of the newborn has all the sulci and gyri of the mature brain.
It weighs 300 to 400 grams and already contains the final number of neurons
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(except those born postnatally in the hyppocampus), which, however, are still
relatively immature. The subsequent massive increase in mass of the brain to an
average of 1300 to 1400 grams in adults is primarily due to the length growth of
dentrites and the myelination of axons as well as the increase in glial cells and
brain blood vessels. The fine wiring of the cerebral cortex is thus taking place
essentially after birth [3].

According to the anatomical development of the brain the sensory systems
mature at different times. The sense of balance develops first; it is formed up
to the end of the 5th month of pregnancy, followed by olfaction and the sense
of taste. The visual system is also developing prenatally. From the 5th month
the first visual synapses form, a strong growth takes place between the 14th und
and 28th week of pregnancy. However, the highlight of this development lies in
the first postnatal age, as already described. Like seeing, hearing takes place
even before birth, but this happens apparently subcortical, because the auditory
cortex develops only in the first two years after birth. The gross motor skills are
present along with the sense of balance well before birth, also specific forms of
arm and hand movements, such as thumb-sucking. Targeted access occurs from
the 4th month, the fine motor skills between the eighth and the eleventh month,
the release of a grasped object starting with the 13th month. Upright walking
takes place at the end of the first year, that is when the motor cortical fields are
mature enough for leg movements. This relatively late maturing is explained by
the fact that the myelination and the fine wiring of these cortical fields progresses
from head to foot.

From the second half of the first year, the areas of the frontal lobe slowly start
working. Clearly the number of synapses is increased, and this comes along for
an infant with nuanced perceptions and feelings from the 10th month on. With
two and a half years a further maturation of the prefrontal cortex occurs in
terms of the dendritic length and growth as well as the synaptic fine connection,
especially as far as the prefrontal cortex and the Broca area are concerned. This
is viewed to be the basis for the formation of conscious thought and other higher
cognitive functions, the syntactic-grammatical language and self-consciousness.
Apparently at this very time, i.e. at an age between two and three years, the
development begins when the human child leaves behind both cognitively and
communicatively his nonhuman contemporaries, see Ref. [7].

The development of language begins with the sensibility for the affective and
emotional tone of language and intonation. This already happens before birth
in the right hemisphere, which dominates in the first months after birth. Only
then the left hemisphere begins to become active with the temporal region,
i.e. with the later Wernicke area. The right frontal area, which is opposite to
the Broca area, is developed in advance in its neuronal fine structure, e.g. the
dendrite length, until the 12th month. Between the twelfth and fifteenth month
the dendrite length increases faster at the left hemisphere, but between the
twenty-fourth and thirty-sixth month after birth both right and left frontal areas
develop at the same rate. Between three and six years, however, the left frontal

pelster@zedat.fu-berlin.de



Neurobiological Principles of Mental Development in the Child 169

area dominates, i.e. the Broca area. This is consistent with the fast development
of a syntactic language, which takes place afterwards.

In summary, the limbic system and the subcortical system of behavioral
control, i.e. the basal ganglia, are formed early prenatally and well before the
hippo campo-cortical system form, i.e. as early as the fifth embryonic week. The
cortical system as the site of the conscious ego matures, however, only after birth,
and this maturation process is completed not before the end of puberty. Until
recently little was known on the development of the brain during adolescence.
But meanwhile we know that, during this important stage of life, new connections
are made in many parts of the brain, among others stimulated by sex hormones,
which are then selectively degraded. The word of the “construction site of the
adolescent brain” does apply, in particular to the frontal and the temporal lobe.

2 The structure of the “psychic apparatus”

The shaping of the human psyche is largely determined by subcortical and limbic
cortical centers and areas of the brain, which interact with cognitive and motor
centers in a characteristic way, see Refs. [6, 8]. Thus, large parts of the brain are
involved in the constitution of the personality of a person. Though there is some
overlap, one can differentiate four levels of the brain, which run on personality-
related processes. At each level there are again several to many centers, which
interact among each other and with other centers. In this respect, the level
structure shown below should not be viewed selective.

The lowest level is the autonomic-affective level. It is represented by the
limbic-autonomic main axis of the brain, which include parts of the septal and
hypothalamic region, the central amygdala, the central gray matter and the
autonomic-visceral centers of the brain stem (midbrain, pons, medulla oblon-
gata). These areas of the brain secure our biological existence via controlling
the metabolic balance, circulation and blood pressure, temperature regulation,
the digestive and endocrine system as well as nutrition and fluid intake, waking
and sleeping. Deficits in these regulation systems can lead to severe physical
impairment. This level also controls our most fundamental affective behaviors
and sensations such as offensive and defensive behavior, flight and freezing, ag-
gressiveness, anger and sexual behavior. These drives and emotional states are
in their way largely genetically determined - we share them with other mammals
and especially primates - and are therefore only slightly influenced by experience
and voluntary control. In particular, they run completely unconscious; they are
aware only via excitations which travel from there to the cortex.

In their individual shaping these centers set the properties of the tempera-
ment, with which the people come into the world, i.e. whether a person is curious,
daredevil or careful, communicative or taciturn, brave or timid, etc. This layer
is formed in the brain already during the first few weeks of pregnancy. Here
one finds also innate mechanisms of the interaction of the later infant with his
mother, in particular the an attachment behavior, and his other close environ-
ment, see below.
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The second level arranged above is that of emotional conditioning and emo-
tional learning. To this end the corticale, mediale und basolaterale amygdala, the
mesolimbic system (nucleus accumbens, ventral tegmental area and substantia
nigra) are involved. The basolateral amygdala is the site of conditioned linkage
of emotionally relevant, mostly negative or surprising, but also positive events
with the basic feelings of fear, anxiety, defense and surprise. This includes the
recognition of the importance of emotional and communicative signals such as
facial expressions, gestures, voice intonation and posture. The medial and corti-
cal amygdala handles smell and taste preferences as well as social smell signals
called pheromones which play an important role for the individual likes and dis-
likes. These preferences are partly genetically determined and partly experience-
dependent.

Interaction partner and simultaneously “opponent” of the amygdala is the
mesolimbic system. It dominates during the registration and processing of nat-
ural reward events (“this has gone well” and “that was fun”) and represents
the cerebral reward system via the release of pleasure-producing substances of
the brain (the so-called endogenous opioids). This means that everything which
produces lust, joy, satisfaction etc. in us is bound to the distribution of certain
substances in the brain. On the other hand, it is the basic motivation system
which “promises” a reward via the distribution of the neuromodulator dopamine
and, thus, “motivates” our behavior, as we shall see. The activity of dopamin-
ergic neurons in the nucleus accumbens depends on the prediction of rewards
[9].

This middle limbic level arises somewhat later than the lower level, but also
before birth, and develops primarily in the early days after birth. It shapes the
unconscious parts of the self, due to early childhood experiences, especially early
attachment experiences. This produces in a recursive way the basic structures of
the relationship to ourselves (self-image) and to others (empathy) as well as the
basic categories of what is considered to be good or bad from an “infantile” way.
Although these basic structures and categories result partly from unconscious
and partly from conscious learning processes, they solidify step by step, and thus
become “angel” or “vicious” circle in the sense of Papusek [10], i.e. experiences
are selectively made in order to confirm anticipations and preferences. At this
central limbic level it is determined what we seek out or have to repeat as it is
connected with gratification and pleasure and what we have to avoid, as it is
associated with an increase in the needs, pain and aversion. It is thus crucial for
the mental level, both in terms of a normal and an abnormal development.

The third level is that of conscious, predominantly socially mediated emotions
and motives. It includes the limbic parts of the cerebral cortex. These include
the insular, the cingulate and the orbitofrontal cortex, which interact in turn
partly parallel and partly hierarchically with each other. The insular cortex is
the processing site of affective sensations, including the affective pain perception,
i.e. it determines when and how a body injury hurts, and is also the place of the
affective-emotional visceral perception of the famous “gut feelings”. The anterior
cingulate cortex with its lower, ventral part is related to risk perception and risk
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assessment and with the affective tone of pain sensations, especially with pain
expectation, whereas the dorsal part is concerned with cognitive attention and
error monitoring.

The orbitofrontal cortex (OFC), i.e. the lower frontal lobe, which is located
above the eye sockets (orbita), and the adjacent ventromedial frontal cortex
(VMC, with transitions to the anterior cingular cortex, ACC) are in a certain
sense the “highest” limbic cortex. Lesions in OFC and VMC lead to the inability
to capture the social communicative context, for example the importance of scene
representations or the expressions of faces. The OFC is the seat of networks,
which represent the rules for moral and ethical behavior, i.e. those behaviors
that are appropriate to preserve us the support and appreciation of our fellow
human beings in the narrow sense and the society in the broader sense. It is that
part of the brain, which needs the longest maturity and is reasonably “mature”
not until the age of 18-20 years. Both OFC and VMC play a major role in
the control of the affective limbic level and of the selfish-infantile drive from
the centers of limbic middle level, the amygdala and the mesolimbic system,
on the basis of socially mediated experience. It is the site of development of
the components of the conscious itself and the affective-emotional, also socially
mediated ego, and here elements of morality and ethics are formed, which as
described by Sigmund Freud as the superego.

These three limbic levels contrast with the cognitive-linguistic level, which
forms inside the cerebral cortex in the stricter sense, the six-layeredisocortex. It
includes executive, i.e. preparatory treatment areas, in particular the dorsolateral
prefrontal cortex (PFC). In the left PFC also resides the Broca speech area that
represents the neural basis of the human syntactic-grammatical language. The
dorsolateral PFC is part of working memory and, thus, of intelligence and mind.
It is related with the spatio-temperal structuring of sensory perceptions, with
tactical and contextual acting and speaking as well with the development of
goals.

This is the level of the cognitive-linguistic ego and of grammatical-syntactical
communication. On the one hand it is examined “which side one’s bread is
buttered on”, and on the other hand it is about problem solving and purpose-
rational action planning. Finally, this is the level of rational or pseudo-rational
representation and justification of the conscious ego in front of oneself and of
others. This level is closely connnected with the sensory (i.e. visual, auditory and
tactile) areas as well as with the motoric centers of the cerebral cortex, but it has
only few links to those limbic centers, including the OFC and VMC. This means
that the upper frontal lobe, as the seat of intelligence and understanding, hardly
interacts with the lower frontal lobe as an instance of moral-ethical control, risk
assessment and control feeling.

The presented “four-layer model” of psyche and personality explains well the
complexity of personality. There are largely genetically or prenatally fixed por-
tions of temperament, above resides probably the most important limbic level
of emotional conditioning in early childhood. Both together make up the core
of our self-centered personality, which works largely unconsciously or cannot be
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recalled (Freud’s “infantile amnesia”). The development of this core of our per-
sonality is largely finished with 5-6 years. At about four years the development
of the third limbic level begins at which we socialize through early childhood
attachment experience through our extended family, i.e. father, siblings, grand-
parents, uncles, aunts as well as playmates and classmates. Here we learn how
to behave, such that others like us and help us when necessary. We do this not
necessarily out of pure human love, but because of the experience acquired early
in life, that the others (apart from our parents) do not help us, if we do not
help them, i.e. if we do not develop “reciprocal altruism”. This socialization
takes a long time and is largely completeled not before twenty years when the
personality is more or less “consolidated”.

The fourth level of intelligence, mind and language develops roughly in par-
allel to the upper limbic level, but largely independent of it. This fact is of great
importance for the school, because here you will often find that boys and girls are
“highly intelligent”, but their personalities are not sufficiently developed (which
is a problem when skipping classes). The opposite can also happen that someone
is relatively “mature” of his or her personality, i.e. reveals a good social conduct,
but remains somewhat slow in his/her cognitive abilities.

3 Neuromodulators and personality

In first approximation one can identify six neurobiological-psychological basic
systems which are characterized by the specific interaction of neuroactive sub-
stances in the above mentioned limbic and cognitive centers of the brain. These
basic systems also arise partly at different times in cooperation of genetic and
environmental factors.

The first neurobiological-psychological system is the stress management sys-
tem, which is also called the stress axis. Its function is to direct the organism
towards coping with physical and psychological stress and strains. It emerges
quite early in the development of the brain, that is already in the first weeks of
pregnancy, but is functioning well only at the end of the first postnatal year of
life. This system is activated by the limbic centers, which are responsible for de-
tecting potentially threatening or negative events (e.g. the amygdala), and reacts
hereupon in two steps. The first and fast stress response is based on the acti-
vation of neuromodulators adrenaline (epinephrine) in the adrenal medulla and
noradrenaline in the locus coeruleus (“blue core”) of the brain stem. The release
of adrenaline into the blood stream and then into the body and of noradrenaline
in the autonomic centers of the brain lead in a matter of seconds to an increase in
muscle tone, responsiveness and attention. Adrenaline and noradrenaline in turn
trigger the second and slower stress reaction [11]. This begins with the release
of corticotropin releasing factor (CRF) in cells of the hypothalamus, which then
migrates to the anterior part of the pituitary gland. There it effects both the
production and the release of the adrenocorticotropic hormone (ACTH). ACTH
travels through the blood stream to the adrenal cortex, where it stimulates the
formation of glucocorticoids, in humans mainly cortisol. Cortisol in turn moves
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through the blood stream into the body and the brain, where it triggers a variety
of effects. It mobilizes our metabolism by increasing glucose and fatty acid levels
in the blood and, thus, puts the body in a position to accomplish demanding
achievements.

In the brain cortisol acts on two different receptors, especially in the amyg-
dala, the hippocampus and the orbitofrontal cortex, namely the mineralocor-
ticoid and the glucocorticoid receptors. Low doses of cortisol and mild stress
activate primarily the mineralocorticoid, stronger stress the glucocorticoid re-
ceptors. Due to the latter the activation of those brain centers is increased which
control the reactions for eliminating the threat or stress, for instance, escape,
defense, fight or more complex countermeasures. The effect of this stress hor-
mone is slower and more long-lasting than that of adrenaline and noradrenaline
[12]. Simultaneously cortisol controls directly via the glucocorticoid receptors or
indirectly via the hippocampus and the orbitofrontal cortex the release of CRF
and ACTH in the hypothalamus or in the pituitary. Thus, there exists a neg-
ative feedback between cortisol on the one hand and CRF and ACTH on the
other hand, which should prevent that too much CRF, ACTH and cortisol are
produced at a stress reaction [11]. A special role in this negative feedback of the
CRF-ACTH-cortisol system plays the hippocampus, which has a particularly
large number of corticosteroid receptors and, therefore, reacts particularly sensi-
tive to severe stress. The reduction of the stress-related cxcitement is enhanced
by the simultaneous release of endogenous opioids and other “primary brain
drugs” and of serotonin, which has a sedative and anxiety-dampening effect in
this context.

Mild stress is necessary in order to prepare body and brain for dealing with
and addressing problems and dangers, and high stress can temporarily lead to
a release of unsuspected forces. Chronic high levels of stress on the other hand
leads to physical and mental decline in performance, insomnia, over-excitement,
depression, stomach aches and headaches, forgetfulness and a strong decrease of
sexual activity. Here it is the failure of the aforementioned negative feedback of
the stress axis and, correspondingly, an ongoing overproduction of CRF, ACTH
and cortisol, called “hypercortisolism”, which damages in particular the hip-
pocampus (although mostly reversible). During the course of the stress response
one speaks of an “inverted U” shape. People strongly differ in the way they
deal with stress, i.e. it belongs to the personality of a person, how much stress
he or she can withstand, i.e. ”stress resilience”, determining how quickly and
effectively potentially negative and threatening events are recognized, how fast
the stress axis “boots up” body and brain and how quickly the excitement may
be “shut down”. Some people can tolerate a lot of stress and under stress reach
a “top form”, while others are very sensitive to stress and barely tolerate some
stress or excitement. Some are excited and calm down quickly, others are slowly
excited and have trouble to calm down later on.

The just mentioned U-shaped pattern of stress response can therefore turn
out to be highly individual. This is supported by the highly individual production
rates of CRF, ACTH, and cortisol, by the distribution pattern, by the number
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of glucocorticoid receptors, and by the effect of soothing substances (endogenous
opioids, serotonin, etc.), and all this is determined partly genetically and partly
environmentally. High levels of stress can cause great damage for an unborn child
via the mother, or after birth directly on the infant, because the stress axis is
yet unfinished and especially vulnerable [13–15]. But also in the later life severe
acute stress (a serious accident, physical abuse, great mental suffering) may cause
a psychological trauma and may lead to the formation of post-traumatic stress
disorder (PTSD), which is associated with structural and functional deficits,
especially in the hippocampus and the frontal cortex [16].

The second neurobiological-psychological system is the self-calming system.
It develops partly before birth and partly postnatally. It is mainly determined by
the meuromodulator serotonin (5-hydroxytryptamine, abbreviated 5-HT) Sero-
tonin is produced in the nuclei, which sit on the midline (the “seam”, greek and
latin “raphe”) of the lower brain stem and, therefore, are called “raphe nuclei”.
From here serotonin is spread via different nerve fiber tracts in the brain, espe-
cially in limbic centers such as the amygdala, hypothalamus, mesolimbic system,
hippocampus, basal ganglia, orbitofrontal, cingulate, and insular cortex. Sero-
tonin acts there, but also directly at its place of origin, the raphe nuclei, on a
variety of receptors, which may have very different effects on their support cells.
A group of receptors, the so-called 5-HT-1A receptors, are involved in the reg-
ulation of food intake, of sleep and of temperature; psychologically they cause
a damping and calming-down and are significantly involved in the oppression of
harmful activity stimuli (see below). A deficiency in serotonin production and in-
crease, a deterioration of its effect via the so-called serotonin transporter as well
as an activation of 5-HT-2A receptors initiates insomnia, depression, anxiety,
risk aversion, reactive aggression and impulsivity. Such people typically inter-
pret the world as threatening and feel constantly worried which manifests itself
- most often in men - in “reactive” physical violence (“you have to fight after
all!”), in women more in self-harm (“I am myself to blame for everything”) and
in both sexes in depression.

Human personality is characterized by their ability, how to deal with stress,
and more significantly by the degree of confidence or anxiety, balance or inner
serenity, frustration tolerance and sense of threat; and all this is essentially deter-
mined by the functional state of the serotonergic system, which closely interacts
with the stress system and with substances such as the endogenous opioids and
the “attachment hormone” oxytocin (see below). The management of acute high
stress therefore depends also strongly on the effectiveness of the self-calming sys-
tem, while, conversely, humans with deficiencies in this system, which show a
high degree of anxiety and risk aversion, also show strong deficits in coping with
stress. Just as the stress processing system, the performance of the self-calming
system is partly genetically determined and partly influenced by environmental
factors. Severe stress and strong psychological trauma in early childhood, for
instance in form of physical or psychological abuse or neglect, and sexual abuse,
lead to a sustainable, partly irreversible damage to the self-calming system [13,
17].
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The third neurobiological-psychological system is the internal evaluation sys-
tem. This system essentially comprises the activity of the amygdala and the
mesolimbic system, which rate - metaphorically speaking - everything what a
person experiences and is doing, according to the consequences for one’s own
welfare and draw conclusions for the further behavior. The recording of positive
events is connected with the release of brain’s own opioids through centers of
the hypothalamus, which act upon receptors in the mesolimbic system, mainly
in the nucleus accumbens, but also in the amygdala and in the orbitofrontal,
cingulate, and insular limbic cortex, and which are linked with the feeling of re-
ward and, thus, with joy, pleasure and desire. The recording of negative events is
related to the release of substance P (“P” for “pain”), arginine vasopressin, and
cholecystokinin and generates feelings of aversion, pain, and threat up to panic.
Closely connected to this are also a serotonin deficit as well as an increased
production of the stress factors CRF, ACTH, and cortisol. In addition comes
the effect of noradrenaline associated with stress, fear, anxiety, the increase of
the general awareness and the sense of threat and the consolidation of negative
aversive memories. This positive-negative rating develops very early, no later
than the first birthday, and determines how strong a person responds to reward
and punishment, and whether one is more reward receptive (“extraverted”) or
punishment receptive (“neuroticistic”).

The evaluation system forms the basis of the motivation system, by estab-
lishing that things and actions leading to reward should be repeated, whereas
things and actions leading to pain or punishment should be avoided. The rep-
etition tendency is based on the conscious or unconscious assumption that the
reward will return upon repetition, i.e. it is driven by the expectation of reward.
In the brain, this is achieved by the dopamine system, see Ref. [9]. Dopamine
is primarily produced in the substantia nigra and the ventral tegmental area of
the brain stem and acts upon many limbic brain centers, mainly the nucleus ac-
cumbens, the amygdala, the hippocampus and the orbitofrontal prefrontal and
anterior cingulate cortex. Different types of dopamine-producing and dopamine-
affected neurons register type, intensity and probability of occurrence of rewards
and store it in the reward memory, which becomes the basis for reward ex-
pectancy and prediction. Still other dopaminergic nerve cells register, whether
and to what extent an expected reward has actually occurred, and, thus, act -
metaphorically speaking - as “confirmation” or “disappointment” neurons; their
activity naturally influences the reward memory.

A pulse-like increase of the dopamine level is associated with the drive to
seek or perform a reward-promising object or action. Accordingly an elevated
dopamine level is connected with mental activation, reward expectation, sensa-
tion seeking and increased creativity, a lack of dopamine leads to a lack of ideas
and imagination, lack of motivation and depression. A strong and sustainable
increase of the dopamine level leads to a desire for adventure and variety, mental
restlessness, impulsiveness, aggressiveness, flight of ideas and delusions.

The same applies for the registration of adverse events, in particular pain and
punishment and for the memory of punishment, which defines what should be
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avoided. It is connected with the activity of neurons in the amygdala, the nucleus
accumbens and the orbitofrontal cortex, which are sensitive to serotonin, sub-
stance P and arginine-vasopressine. A low level of serotonin may be congenital-
constitutive, but may also be caused, as already mentioned, by strongly negative
early childhood experiences such as neglect, physical and sexual violence or in-
consistent education. This leads to a preponderance of the punishment memory
in the child and, thus, to avoidance behavior up to total inaction or, in women,
to a tendency to self-harm, and in men to increased levels of aggression and
violence or other anti-social behavior.

These three systems (or four systems if one considers the dopaminergic mo-
tivational system as a system of its own) form together predominantly on the
lower and middle limbic level the core of our self-centered personality by defin-
ing how we handle stress, deal with frustrations, how we respond to rewards and
punishments and what motives us. They also form the basis of three other psy-
chological basic systems that develop subsequently and add a socially mediated
part to the self-centered core of our personality.

This includes the impulse inhibition system. The behavior of infants and
young children is usually impulsive and does not tolerate delayed gratification
(“I want everything, and immediately”). Inhibition and tolerance for delayed
gratification or postponement of elimination of negative things start developing
from the first year until adulthood. Responsible for this on the brain side is the
maturation of the lower and inner frontal lobe, i.e. the orbitofrontal, anterior
and ventromedial cingulate cortex, as the upper limbic level, see above. They
form inhibitory pathways to the subcortical limbic centers of the lower and mid-
dle limbic level (hypothalamus, amygdala, mesolimbic system), which in turn
are designed for impulsive reactions and immediate gratification of egocentric
motives [18]. The impulsive system is driven by the just described motivational
dopamine system, inhibition essentially takes place via the serotonin system [19–
21]. The bottom and medial frontal lobe contains many serotonin receptors, and
an activation of the frontal lobe via these receptors increases over the descend-
ing pathways the inhibition of the mentioned subcortical limbic centers via their
inhibitory neurons. This applies both to appetitive as aversive reactions, i.e. the
urge for immediate reward as well as the tendency to immediate escape, de-
fense or immediate attack. This explains why the lack of serotonin and, thus,
a sub-activity of the frontal cortex usually occurs with anxiety disorders and
violent antisocial behavior, as well as with experience with addiction, gambling
addiction and high-risk behavior [22].

The next system is the attachment and empathy system. In its primary stage
as an attachment system it is developing in a few weeks after birth, when the
infant begins to smile at his mother or other primary attachment person and
interacts with her increasingly complex ways. It is believed that this strenghens
the emotional coupling between infant and attachment person and increases the
differentiation of the emotional world of infants and small children, and is coined
in the emotion of the mother. Accordingly, a depressive mother will strengthen
the negative feelings of her child and, apart from disseminating depression pro-
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moting genes, reinforces the tendency to depression of a child in non-genetic
ways.

An essential role in this binding plays the neuropeptide oxytocin, which is
produced in the hypothalamus and promotes the uterus contractions and milk
flow. In mammals including humans, it occurs as a “attachment hormone” in
mother-child and also in adult couple relationships and sexual behavior, but also
generally in trusting social contacts [23, 24]. This effect of oxytocin is reinforced
by the release of endogenous opioids and serotonin, which enhance the sense of
well being during intense social relationships. Disturbances in social behavior,
for example autism, Asperger’s syndrome, antisocial personality disorder and
psychopathy, are associated with deficits in the oxytocin budget.

These disorders are associated with deficits in the empathy system, which
develop from the attachment system. Empathy includes the ability to “read”
thoughts and intentions of others, which is also called “theory of mind”. One
has to add the ability to show “compassion”, i.e. empathy in the strict sense.
The former may well occur without the latter, for example, psychopaths who
can superbly read and take advantage of the thoughts, desires and fears of other
people, but act ruthlessly [25, 26].

The human empathy system encompasses both subcortical limbic centers
such as the mesolimbic system and the amygdala (especially when recogniz-
ing the facial expression) and cortical limbic centers, especially the anterior or-
bitofrontal, cingulate and insular cortex for the perception of “pain” in others,
as well as areas of the parietal and temporal lobes, which are involved in the
recognition of faces and gestures. Unfortunately, this system is often referred to
as cortical “mirror neuron system” on the basis of “mirror neurons” which were
discovered and closely examined in macaque monkeys, see Refs. [27, 28]. The one
is completely unrelated to the other, because in macaques the mirror neurons
are not involved in empathy or imitation (macaques show neither the one nor
the other) and are found in a premotor and not in a limbic or a cognitive region
of the cortex as in humans [29].

The last neurobiological-physiological system is the system of sense of re-
ality and the perception of risk. It develops after the age of three, when the
cognitive abilities of the brain develop gradually, in particular in terms of atten-
tion and memory skills. This system is primarily bound to the neurotransmitter
and neuromodulator acetylcholine, which is mainly formed in the so-called basal
forebrain. The basal forebrain affects massively the cognitive areas of the cor-
tex via the release of acetylcholine, in particular the frontal lobes as well as the
hippocampus wich is central to learning and memory. Acetylcholine increases
both attention and concentration by “focusing” neuronal activity in the frontal
lobes and in the selective retrieval memory contents; a disturbance of the basal
forebrain (e.g. in case of Alzheimer’s desease) and thus a reduction of the acetyl-
choline level cause a lack of concentration and a reduced memory performance
up to dementia. The states of the attention and concentration is also supported
by the release of noradrenaline in the locus coeruleus, which causes either a
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general arousal or a specific task-related response via a tonic or phasic effect,
respectively.

The features of this system also include the ability to recognize risks of a par-
ticular situation and, thus, potential negative consequences of our actions. Here,
mainly the activity of the dorsal portion of the anterior cingulate cortex plays
a role, which has a close relationship with the adjacent dorsolateral prefrontal
cortex. It is believed that the anterior cingulate cortex “recognizes” the risks
and sends corresponding signals to the prefrontal (cognitive) and orbitofrontal
(emotional and ethic) cortex, which results in certain global strategies of action
(see above). Persons with deficits in the anterior cingulate and prefrontal cortex
fail to detect risks, whereas people with deficits in the orbitofrontal cortex are
able to do high-risk things, even if they know these risks [30].

This rational-cognitive system of the prefrontal and dorsal cingulate cortex
is the one which together with the orbitofrontal system of social control develops
slowest and is more or less mature only at the beginning of adult life - i.e. the
attainment of adulthood is characterized by the fact that young people slowly
come “to reason and understanding” and have learned simultaneously “how to
behave”.

4 Final remarks

During the past years, neuroscientists, together with psychologists of person-
ality and psychiatrists, have studied intensively the relationship between neu-
roanatomical, neurophysiological and neuropharmacological properties of the
brain and personality traits, including their individual characteristics and dis-
eases [31]. Therefore, it becomes increasingly better to relate the prevailing clas-
sifications of personality, for instance after the “Big Five” of Costa and McGrae,
with these brain properties and to explain why the basic features used in these
classifications (neuroticism, extraversion, openness, conscientiousness, and com-
patibility) are not truely selective, because the underlying psychological basic
systems interact pharmacologically and functionally both positively and nega-
tively. This could be addressed here only in a very superficial way.

The emotional and cognitive development of the child is determined by a
sequential maturation of limbic structures at the three limbic levels plus the
cognitive-linguistic level and the corresponding maturation of the neuropharma-
cological systems which drives the interaction between the levels. The most im-
portant finding here is that both maturation processes are based on a complex
interaction between genetic-epigenetic and environmental processes, in which
early attachment experience during early childhood play a major role. To ex-
plain all this in more detail has to be left to future publications.
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Abstract. Synergetics has arrived in psychology. More than this – it has
proven to be an inspiring research paradigm for investigating and mod-
elling complexity and dynamics of mental, behavioural, and social phe-
nomena. The evolution of human systems is characterized by features as
circular causality, the emergence and dynamics of order parameters, or-
der transitions, and critical instabilities. Psychotherapy research was one
of the most productive fields for empirical research on self-organization
in psychology. Referring to several studies on psychotherapy processes
we will demonstrate that human development and learning generate
some kind of order. They are chaotic in a strict sense, i.e., they can
be characterized by low-dimensional, complex, and changing dynamics.
Empirical studies used different data sources, coding methods, and time
scales and focused on synchronization, non-stationarity, and local insta-
bilities of psychotherapeutic processes. Referring to the concept of order
transitions, synergetics offers an explanation to what is called “sudden
changes” in psychotherapy. Empirical evidence also exists for coordi-
nated order transitions in the dynamics of subjective experiences and
brain activity, measured by repeated fMRI scans. During the treatment
of patients with obsessive-compulsive disorder (OCD), transitions started
by the destabilization of current patterns and hence by critical fluctua-
tions. The most important change rates of neuronal activity in different
brain areas occurred during cognitive-affective order transitions.

Keywords: Synergetics, psychology, order transitions, psychotherapy
research, brain dynamics
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1 Introduction

Synergetics describes, measures, and explains processes of pattern formation and
pattern transition in complex nonlinear systems. Although Hermann Haken de-
veloped it in the field of quantum optics (laser physics) and applied it firstly to
other physical phenomena like the emergence of convection patterns in fluids, he
noticed quite early that its principles and the mechanisms of self-organization
hold for true independently of the matter of the systems they occur in [1]. Syn-
ergetics is thus not only a theory of pattern formation in physics; it is a general
theory of structures and a conceptualizing module for modelling and thinking
in quite different disciplines. Its general concepts, equations, and mathematical
formalisms successfully founded the perhaps most important transdisciplinary
framework and connecting pattern of modern science.

In terms of the structuralistic concept of theories and theory dynamics [2],
synergetics provides a theory kernel which applies successfully to many phenom-
ena in the natural sciences and the humanities [3]. Beginning from models of pat-
tern formation in physics, chemistry, and biology, Hermann Haken early applied
it also to brain dynamics (e.g., [4, 5]). He thereby gave rise to the insight that
the brain is perhaps the most interesting example of a complex, self-organizing
system. More than 1011nonlinear interconnected neurons create a dynamic mega-
network of neuronal networks with emerging and submerging synchronizations,
nearly instantaneous adaptability and flexibility with ever changing pattern for-
mation working “at the edge of chaos”, and realizing combined (activating and
inhibiting) feedback mechanisms following the principles set forth by synergetics
[6, 7].

In contrast to early presentations of synergetics, when the listing of exam-
ples synergetics was applied to jumped from biological structures and brain
dynamics to macro-sociology (where synergetics modelled the change of opin-
ions and attitudes of large populations by the master equation, [8]), later on
mental and behavioural phenomena were introduced into the set of examples,
too [9, 10]. It became evident that the paradigm of self-organization would be a
very promising approach to psychology. The laws and principles of synergetics
helped for a deeper understanding of neural, mental, and behavioural processes.
Fruitful interdisciplinary cooperation in modern psychology was underpinned by
the unifying terminology, formalism, and modelling tools of synergetics.

When taking a closer look at psychological phenomena like perception, learn-
ing, decision making, thinking, feeling, or social interaction and behaviour coor-
dination in dyads or groups, we can appreciate that they are dynamic in nature
and characterized by specific “Gestalts”. They can be described by synergetic
features such as

– order and order parameters, in many cases also hierarchies of order para-
meters,

– enslaving of system components by order parameters,
– coordination (competition or cooperation) of order parameters,
– order transitions (non-equilibrium phase transitions) with symmetry break-

ing,
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– critical instabilities and fluctuations during the emergence of new or changed
patterns,

– multistability,
– hysteresis,
– circular causalities between the components of a system, and
– circular causality from the bottom (relative micro-level of a system) to the

top (relative macro-level of a system) and from the top to the bottom.

In consequence, synergetics has successfully been applied to many topics in psy-
chology:

General psychology

– motoric coordination (e.g. [11–14])
– perception (e.g., [15, 16])
– decision making (e.g., [3, 17])
– memory (ekphorisation as a spontaneous self-organizing process of neural

networks triggered by internal and external stimuli, former system states,
and boundary conditions, e.g., [33, 18])

– learning (e.g., [9, 19, 20])
– intentionality of cognition and action processes (e.g., [21, 22])
– dynamics of emotions (e.g., [3, 23])
– creativity and innovation (e.g., [24])
– speech recognition and speech acquisition (e.g., [25])
– the emergence of phenomenal consciousness (e.g., [3])
– the dynamics of the ,,self“ (e.g., [3, 26])

Developmental Psychology

– child development (e.g., [23, 27])
– assimilation and accommodation of schemata (e.g., [27])

Social psychology

– dyadic interaction (patient-therapist, mother-child) (e.g. [28, 29])
– attitude change (e.g., [8, 30])
– group dynamics (e.g., [3, 31–33])
– stability and instability of collective behaviour (e.g., [30, 34])

Clinical psychology

– etiology of mental disorders (e.g., [35, 36]),
– mental disorders as dynamical diseases (e.g., [35, 37–39]),
– psychotherapy (process-outcome-research, feedback and monitoring) (e.g.,

[3, 40–43])

Management / organizational psychology (e.g., [3, 44]).

Looking back to the last three decades, synergetics gave some important
inspirations to modern academic psychology: First, it introduced a “thinking
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in complexity” [45] on mental and social phenomena. Since after World War II
positivism and linear causality had become the dominating paradigm, complexity
had been ruled out from psychological modelling. Second, concepts of time and
dynamics were integrated into psychological thinking. Even though it seems
quite obvious that things evolve in time and that they are not “being” but
“becoming”, the important tools for thinking in dynamics and for nonlinear time
series analysis had to be imported to psychology from the outside – from the
theory of self-organization and dynamic systems. Third, synergetics introduced
a fruitful research paradigm to psychology by consequently relating models to
empirical testing. The complexity of hypotheses increased noticeable, since not
only differences between experimental conditions or pre-post-differences were in
the focus of interest, but specific dynamic patterns, emerging dynamics, and
contra-intuitive phenomena. Fourth, synergetics gave rise to a specific ,,imago
hominis“ accentuating the autonomy of individuals (in contrast to focussing on
their dependency of external input) but without forgetting the social context
of interpersonal synchronization and cooperation. Finally, synergetics turned
psychology back to its own history by connecting it to its roots in “Gestalt
psychology” and other traditional approaches.

The Gestalt psychology of the early 20th century was concerned with patterns
(“Gestalts”) of perception, thinking, behaviour, and interaction (e.g., group dy-
namics, [46] ). Psychologists like Wolfgang Köhler (e.g., [47] ), Wolfgang Metz-
ger (e.g., [48]), Max Wertheimer, Kurt Lewin (e.g., [46]) and others can be
seen as predecessors of modern complexity research in psychology [49] . An-
other precursor of self-organization theory is Jean Piaget’s equilibration theory
of action-cognition patterns (schemata) describing assimilation-accomodation-
cycles of schemata [50] by using input from the inner and outer environment as
disturbing stimulation. Another historical line – anthropological medicine – ac-
centuated concepts of circular causality. The “Gestaltkreis” integrates feedback
loops between sensorial and actional systems on the one side, and individual and
environmental systems on the other side (ecosystemic approach) [51] .

2 Dynamic Patterns in Psychotherapy

One of the prominent topics of applied synergetics in psychology is human devel-
opment during psychotherapy, which has become an important field of research
similar as laser physics did in the early steps of synergetics. One of the reasons is
that psychotherapy is an intensive learning and development process integrating
cognitive, affective, and behavioural systems. Stable, dysfunctional patterns of
processing are destabilized in order to give rise to new patterns and the deforma-
tion of potential landscapes and thereby creating changed mental attractors. In
such a way, self-organizing processes can very well be studied in psychotherapy
research.

One of the basic questions is whether therapy-related dynamics of behaviour,
cognition, and emotion manifest some kind of order or not. If this is not the
case, we would expect irregularity or white noise. But if psychotherapy was a
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self-organizing process, one would expect some kind of complex dynamic order
– in other words: deterministic chaos. The term “deterministic chaos” refers to
complex dynamic structures in time signals generated in “real world systems” by
deterministic or – more realistic – by combined deterministic and stochastic pro-
cesses [52–54]. The term “chaos” covers a large spectrum of dynamic patterns
between irregularity on the one hand and regularity and order on the other
hand. One consequence with specific relevance to psychotherapy is a fundamen-
tal limitation of predictability and of linear controllability of processes. Another
consequence is the distinctive individuality of processes; any notion of superposi-
tion of dynamics within or between individuals (systems) cannot be maintained
meaning that concepts like “standard tracks” or “normative processes” are in-
appropriate to describe psychological phenomena.

2.1 Patients and Measurement Procedure

To investigate the hypothesis of ordered dynamics in psychotherapeutic change
processes we used the data from daily self-assessments of 149 patients (aver-
age age: 34.3 years, 92 female, 57 male) during in-patient psychotherapy in a
psychiatric hospital. The self-ratings were collected through an Internet-based
device, the so called Synergetic Navigation System (SNS, [42] ). In the last years,
Internet-based real-time methods like the SNS were successfully used in research
and practice for process monitoring and ambulatory assessment [55, 56]. Real-
time monitoring allows for the optimization of therapy processes [57, 58] and offer
detailed insights into process-related patterns. Every day, patients completed the
Therapy-Process Questionnaire (TPQ) provided by the SNS. The TPQ is a self-
assessment tool for patients undergoing in-patient or out-patient psychothera-
peutic treatment. The study described here made use of the in-patient version
with 23 items, grouped into 5 scales [59].

Most of the patients were categorized to three ICD-10 diagnostic groups: F30
(affective disorders), F40 (neurotic stress-related and somatoform disorders), and
F60 (specific disorders of personality, esp. F60.3, emotionally unstable person-
ality disorder, referred to as borderline type in other classification systems). On
average, the TPQ was completed by patients during 97 days (SD: 50.3). The
number of days defines the length of the time series and roughly corresponds to
the days of hospital treatment. 5.1% of the entries were missing; the missing val-
ues were restored by a cubic spline function implanted in the SNS. Figure 1 gives
an example of the 5 time series of a patient, corresponding to the 5 subscales of
the TPQ.

The measurement series of all 149 patients were joined together, resulting
in 5 artificial time series with a length of n = 14,425 points (one time series
for each subscale of the TPQ). Different durations of hospital stay were not
counterbalanced, i.e., patients with longer treatments hold a greater fraction of
the resulting artificial time series.
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Fig. 1. Example of time series from TPQ scales (factors). Factor I: Therapy progress;
Factor II: Complaints and problem pressure; Factor III: Relationship quality and trust
in therapists; Factor IV: Dysphoric affects; Factor V: Relationship with fellow patients
/ ward atmosphere. All scales were normalized to a range from 0 to 6. (Female patient,
25 years old; diagnosis: F33.10 major depressive disorder, recurrent; 224 measurement
points = days).

2.2 D2 and Pointwise D2 (PD2)

Fractal dimensionality of a time series estimates the number of independent sys-
tem components or subsystems whose interaction creates the system dynamics.
The dimensionality of an attractor corresponds to the degrees of freedom of the
generating system and can be seen as an indicator of its complexity.

There are several definitions and methods for calculating fractal dimension-
ality. A well known method for empirical time series is the D2 algorithm, which
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is based on the embedding of a time series in a reconstructed phase space whose
dimensions were created by time-delay coordinates [60]. The method calculates
a correlation integral [61, 62] by a counting algorithm over all Euclidean dis-
tances between vector points within the phase space. The estimate of the D2
correlation dimension results from a diagram which plots D2 against increasing
numbers of embedding dimensions. In case of saturation, D2 estimates converge
to a fixed value with increasing embedding dimensions (for details see [3] pp.
484-489, [54] pp. 208-214). While D2 provides a complexity estimation of the
attractor of the whole process, the pointwise D2 (PD2) portrays the possible
changes of dimensional complexity over time (non-stationarity). D2-estimates
are taken from vector point to vector point and can be portrayed in a PD2 to
time diagram [63, 64].

2.3 Surrogate Data Analysis

When there is no saturation of D2 estimates for increasing time-delay embedding
dimensions, this theoretically means that the process under consideration does
not entail systematic order. In practice, however, the hidden dynamic order of
the data has to correspond to the resolution of the measurement scale and to
the length of the time series. If the scale is too coarse grained and by this, the
corresponding m-dimensional phase space doesn’t include a sufficient number
of m-dimensional voxels, even ordered time series will cover the phase space
and fail any D2 convergence. On the other hand, time series without sufficient
measurement points n (n � number of available voxels in the phase space)
cannot cover the phase space, even if they result from pure randomness (white
noise). Here, the pseudo-evidence of saturation would erroneously reject the null-
hypothesis of no existing dynamic structure. In both cases the procedure fails to
differentiate between randomness and order.

A random series only covers the entire phase space (resulting in no D2 satura-
tion with increasing numbers of embedding dimensions) if the time series is long
enough. In a 10-dimensional embedding space, only 10 levels of a measurement
scale result in 1010 possible voxels or data constellations within the phase space.
If a diced time series wanted to cover the entire phase space, the series would
have to include at least the same number of measurement points. If the time
series is too short for covering the phase space, it is possible to calculate finite
correlation dimensions even for randomness. Safely backing up D2 or PD2 anal-
yses therefore requires surrogate data testing [65] which tests for nonlinearity or
chaos in a given time series [66] .

Surrogate time series preserve some characteristics of the original time series
while others are changed. A simple surrogate can result from shuffling the values
of the series, leading to a random surrogate. The dynamic structure vanishes
but the series maintains distribution characteristics as mean, median, or vari-
ance. In applying complexity estimates, the surrogate differs from the original
time series. If not, the original itself seems to be only a random arrangement
of values. Generally, surrogate data sets are created by different procedures in
order to obtain or destroy specific statistic distributions and dynamic features
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Fig. 2. Procedures of surrogate data analysis, based on statistical comparisons of dy-
namic features resulting from nonlinear time-series analysis (e.g., fractal dimension-
ality). The distribution of the features of a large number of surrogates is compared
against the feature of the original time series. In case of FFT surrogates, linear auto-
correlations and the frequency spectrum of the time series are retained in the surrogates
while nonlinear features are destroyed by the procedure of phase angle randomization.
Surrogate data tests will thus be indicative for nonlinearity. Depending on the null hy-
pothesis under consideration, surrogates can be generated by quite different methods.

of the data. A surrogate corresponds to a specific null-hypothesis. Eliminating
nonlinear qualities should result in the effect that the nonlinearity and chaoticity
of the original is discarded. By this, the crucial part in surrogate data testing is
the algorithm for surrogate generation.

More sophisticated than random surrogates is the surrogate production by
applying a Fast Fourier Transformation (FFT) [66–71]. The time series is sub-
mitted to a Fourier-analysis with randomization of the resulting function phase
angles. When the spectral density function and the randomized phase angle
function are subsequently used to generate a surrogate via Fourier synthesis, the
surrogate retains the frequency spectrum of the original time series but has lost
its nonlinear features. It seems to be the result of a linear stochastic process.
Linear correlations within the data are preserved, whereas nonlinear qualities are
lost. A surrogate data test using such kind of surrogates tests for nonlinearity,
which is a prerequisite for chaotic dynamics (Figure 2). Calculations were per-
formed with GChaos 19.0 (www.complexity-research.com), a nonlinear analysis
program written by one of the authors (G. Strunk).

2.4 PD2 of TPQ Factor Dynamics and D2-Differences Between
Original Time Series and FFT-Surrogates

The time series of the factors of the TPQ were analyzed by the PD2 algorithm.
We adopted Skinner’s [63] criterion of at least 75% valid measurement points for
the calculation and interpretation of the PD2 for all 5 factors (Table 1). This
implies that the majority of the processes is suitable for interpretation as ordered
dynamics instead of being a stochastic processes.

The arithmetic means of the PD2 range from 0.947 to 5.187 and are indicative
for low-dimensional chaotic processes. Large standard deviations (as compared
to the means of PD2) result from the variability in the PD2 dynamics which
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Table 1. PD2 of TPQ factor time series and surrogate data test of D2 using FFT
surrogates of TPQ factor time series (see Figure 1; TPQ: Therapy Process Question-
naire). The time series of the 5 factors of 149 patients were joined together, resulting
in 5 artificial time series with a length of n = 14,425 points. 30 FFT surrogate time
series were generated for each factor dynamics to produce a distribution of D2 esti-
mates. Maximum embedding dimension was 15. The table presents the percentage (%)
of valid PD2 values, the arithmetic mean (AM) and the standard deviation (SD) of the
PD2s of the 5 empirical (original) time series, and the t- and p- values of the surrogate
data tests.

refer to different levels of fractal dimensionality between patients, but also to
the nonstationarity of the dynamics and hence to phase transitions during treat-
ment.

FFT surrogates from the time series of TPQ factors were used for a compar-
ison to the original time series. Since the PD2 scaling range was not sufficiently
large for surrogates (which results in insufficient valid measurement points), the
surrogate test is based on the D2 algorithm. 30 FFT surrogate time series were
generated per TPQ factor to obtain statistical distributions of the D2 values,
which served as a reference for comparison with the original time series by t-
tests. The greatest number of embedding dimensions in the time-delay phase
space was 15. For surrogate time series lacking D2 saturation, the average D2
estimates were used to compare embedding dimensions from 10 to 15. For results
see Table 1.

When nonlinear dynamic structures are destroyed by producing FFT surro-
gates, one expects significantly increased fractal complexity of the surrogates.
This hypothesis could be confirmed: all t-tests were highly significant (p< 0.001).
The data represent a nonlinear dynamic structure.

The hypothesis of chaoticity and nonlinearity of psychotherapeutic processes
was corroborated once again. Calculating fractal dimensionality via PD2 results
in saturation of the mean PD2 estimates in low-dimensional ranges. The PD2’s
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high standard deviation is an indicator of non-stationary processes (phase tran-
sitions). The crucial point is validation through FFT surrogate testing which is
methodically rigorous and discriminating, because it not only contains means
and variances of the surrogate time series used for comparison but also their
frequency spectrums. Only nonlinear characteristics are removed, providing the
basis for statistically significant D2 complexity differences.

3 Order Transitions in Human Dynamics

3.1 Patient-Therapist Interaction

In psychotherapy research there has been a rapid rise in interest in the study of
patterns of change. In the sense of synergetics, these patterns correspond to the
order parameter dynamics of the process. If the prerequsites for self-organized
order transitions are given, they should occur with only small external driving
forces or even without any additional input. Indeed, discontinuous transitions of
dynamic patterns were found in the social dynamics of psychotherapies and in
the social dynamics of groups.

In a study on the dynamics of the therapeutic relationship [28, 72] we used
the method of Sequential Plan Analysis, which is a development of the hierar-
chical plan analysis proposed by Grawe and Caspar [73] . By “plans” here one
understands more or less conscious and verbally or non-verbally communicated
intentions and/or self-presentations in a social situation. Patient’s and thera-
pist’s interactional behavior was analysed on the basis of video recordings. The
construction of a hierarchical plan analysis leads to an idiographic categorical
system for the observation of the patient-therapist interaction. Two complete
therapies (13 and 9 therapy sessions, resp.) were encoded with a sampling rate
of 10 seconds. At this measuring frequency, a psychotherapy process of 13 ses-
sions was represented by multiple time series of about 3,800 measurement points,
and a therapy of 9 sessions by time series of about 2,900 points.

Nonlinearity was proven by surrogate data tests [65] using random surrogates
and FFT-based phase-randomized surrogates. Then the time series were analysed
by methods which are sensitive to the nonlinearity as well as the non-stationarity
of processes. The methods of PD2 [64] and of the Local Largest Lyapunov Ex-
ponents [74] were used to identify phase-transition like discontinuities. Following
the evolution of PD2 dimensionalities, both therapies realized non-stationarities,
and both therapies showed periods of strongly synchronized (with correlations
from 0.80 to 1.00) and anti-synchronized PD2-processes (with correlations from
-.80 to -1.00) between patient and therapist (Figure 3). Quite similar and even
more pronounced dynamical jumps could be identified in the development of the
Local Largest Lyapunov Exponents (LLLE) (Figure 4), representing changes in
the chaoticity of a time signal [28]. Most of the discontinuities of the LLLE were
exactly synchronized between patient and therapist. Obviously both persons cre-
ate a dynamic self-organizing communication system, which enables and triggers
the individual change processes of the patient.
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Fig. 3. Dynamics of PD2 of patient and therapist from one of the two therapies under
consideration (13 sessions, 3,800 measurement points). A smoothing was realized by a
gliding window of 100 PD2 values. The lower part of the figure represents the correlation
between the two PD2 dynamics, with correlations calculated in a gliding window of
100 points. Periods of strong positive correlations are marked by a grey background,
periods of strong negative correlations are marked by a white background.

These results receive support from nonlinear coupling measures between the
time series of the interaction partners. Pointwise Transinformation as well as
Pointwise Coupling Conditional Divergence [75, 76] were applied to the data,
and both indicate changing and time-dependent coupling strengths between the
time series of the interacting persons. There is no priority of the therapist’s
influence on the patient, or vice versa. Constituting the circular causality of
psychotherapeutic self-organization, this finding contradicts the classical opinion
where the input from the therapist supposedly determines the patient’s output.

The converging results corroborate the hypothesis of (i) nonlinearity and
deterministic chaos realized in therapeutic change dynamics and interaction, (ii)
spontaneous order transitions in these processes, and (iii) synchronization and
synchronized order transitions between patient and therapist. Furthermore there
are some studies that focus on self-organized synchronization between patient
and therapist at different time scales and with different methods [29, 77–79].

3.2 Group Dynamics

The method of Sequential Plan Analysis was not only applied to patient-therapist
interaction, but also to the microdynamics of group interaction [3]. In a group
of five persons a creativity and problem solving task was to be solved within 2 ½
hours (creation of ideas, rules, and physical handicraft realisation of a prototype
board game from different materials). Similar to the psychotherapy study the
sampling rate was 10 seconds. The superordinate plans which could be identified

pelster@zedat.fu-berlin.de



192 G. Schiepek et al.

Fig. 4. Synchronized jumps in the dynamics of Local Largest Lyapunov Exponents
(black arrows) during a therapy of 13 sessions (3,800 measurement points). Grey arrows
indicate not clearly synchronized changes. (a) therapist, (b) patient. For the patient,
the embedding was realized in a 6-dimensional phase space, constructed by 3 plans
(time series) at the top of the plan hierarchy with each time series represented by two
time delay coordinates, x(t) and x(t−τ ). For the therapist, the embedding was realized
in a 8-dimensional phase space, constructed by 4 plans (time series) at the top of the
plan hierarchy with each time series represented by two time delay coordinates, x(t)
and x(t− τ ). LLLE estimates were calculated in a gliding window of 500 points by the
algorithm of Rosenstein et al. [74].

for all five persons were (1) spontaneity and emotional engagement vs. shyness,
restricted behaviour, and orientation to social norms, (2) engagement in the
group interaction and in positive social climate, (3) task orientation. Length of
time series was about 810 coding points. D2 as well as mean PD2 estimates sat-
urated at a fractal dimensionality of about 5 for all categories. The embedding
of the time series was realized by two ways: (1) The phase space was constituted
by the three dimensions of superordinated plans with five trajectories repre-
senting the five group members, or (2) the phase space was constituted by the
five persons with three trajectories representing the time course of the three
plans (additional embedding dimensions result from time delay coordinates). In
both cases PD2 results show an evolving pattern of quasi-attractors with chang-
ing complexity, and LLLEs (algorithm from [74]) portray chaoto-chaotic phase-
transitions with clear-cut interpersonal jumps – similar to the dyadic interaction
of the psychotherapy study.

3.3 Sudden Changes Reflect Order Transitions in Psychotherapy

Phase-transition-like phenomena characterize the short-term as well as the long-
term evolution of cognitive, affective, and social systems. In psychotherapy, sud-
den changes seem to be a universal and robust phenomenon. A substantial per-
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centage of patients experience discontinuously shaped changes. Sudden gains,
especially if they occur early in the therapy process, uphold until the end of
treatment or seem to be a necessary prerequisite for successful treatment [77,
80–82]. However, the mechanisms underlying such discontinuous shapes of symp-
tom severity and other change markers are still not well understood challenging
classical views of linear input-output-functions or dose-to-effect-relations. It is
an anomaly of conventional psychotherapy science which postulates that spe-
cific factors of treatment cause the therapeutic effect in a linear way (or in a
damped function related to the dose). Consequently, explanations tried to pro-
vide evidence for changes in relevant factors occurring before symptom changes,
such as cognitive restructuring in the pre-gain-sessions of cognitive therapy [82].
Others have disputed this interpretation and have argued on behalf of common
factors such as positive expectations, induction of hope, or positive therapeutic
relationship [83, 84]. Kelly et al. [80] did not find any factors, such as changes in
self-esteem, attribution style, concurrent psychological treatment or psychotropic
medication to precede sudden treatment gains.

Actually, in psychotherapy research there are no adequate theoretical mod-
els explaining discontinuously shaped transitions in a fundamental way, still
employing the idea of being uniquely reactive to external input like instructions,
(minor) interventions, or therapeutic techniques. Synergetics, on the contrary,
provides a model predicting that once system dynamics has reached an instabil-
ity point, phase transitions are likely to occur. There are specific prerequisites
for self-organized pattern transitions, such as (i) the existence of a system with
nonlinearly interacting components or subsystems, (ii) the existence of one or
several control parameters driving the system out of the actual stability state,
and (iii) relatively stable boundary conditions. If the conditions for self-organized
order transitions are met – that is to say, the instability point draws closer –
a nonlinear shift-like change will be the consequence of the slightest additional
external input. One of the predictions of the model is the occurrence of critical
fluctuations just before a system undergoes such qualitative changes of pattern
formation.

To investigate the above mentioned phase-transition-like phenomena in psy-
chotherapy, we used the data from daily self-assessments of 18 patients with
obsessive-compulsive disorder (OCD; ICD diagnosis: F42; average age: 32.2 years,
SD = 9.6; 9 female, 9 male). The therapies were realized in a day-treatment cen-
ter at Munich. Mean duration of treatment was 61 days (SD = 12.5, range from
37 to 88 days). Exposure with response prevention (ERP) was the principal
cognitive-behavioural intervention of the therapy. ERP is a therapeutic proce-
dure in the treatment of OCD, where patients are confronted with symptom
provoking stimuli but abstain from performing compulsive rituals (e.g., clean-
ing).

Similar to the study we reported in chapter 2, the self-ratings were done by
the Synergetic Navigation System (SNS, [42]). Every day, patients completed
the Therapy-Process Questionnaire (TPQ) provided by the SNS. Two times per
week, patients filled out the Yale-Brown Obsessive Compulsive Scale (Y-BOCS)
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provided by the SNS. The Y-BOCS is a self-assessment scale for obsessions and
compulsions [85]. In order to compare individual change dynamics to ERP we
related the individual symptom severity trajectories to the onset of ERP.

Building on the earlier finding that phase transitions (here referred to as order
transitions) in self-organizing systems are introduced by critical fluctuations and
instabilities [3, 86], a measure of dynamic complexity was calculated on the time
series resulting from daily self-ratings in order to identify non-stationarity and
critical instabilities in short time series. In contrast to statistical variance, this
complexity measure identifies jumps, volatility and pattern complexity of signals.
It is used for the analysis of discrete time series data with a known data range
(for the algorithm see [87]). Dynamic complexity combines a fluctuation measure
and a distribution measure in a multiplicative way. The fluctuation measure is
sensitive to the amplitude and frequency of changes in a time signal, and the
distribution measure scans the scattering of values – or system states – realized
within the theoretical range of possible values – or system states. In order to
identify nonstationarity, the dynamic complexity is calculated within a window
of 7 data points (= 7 days) moving over the time series of each patient.

The processes of each patient (see Figure 5 for an example) are evidence
for increased dynamic complexity of the subscales and most of the items of the
TPQ just before or during sudden changes, which are characterized by the steep-
est gradient (decrease) of the Y-BOCS curve. Significant decrease of symptom
severity (Y-BOCS) takes place before (!) the most important therapeutic inter-
vention – exposure with response prevention (ERP) – of the treatment process
was started, a result in line with the theory of synergetics and findings across
several disciplines.

Figure 6 aggregates the dynamics of all 18 patients. For each patient, the
individual ERP-onset was defined at t = 0, and the trajectories of the total
Y-BOCS scores were related to this event. In 72% of the 18 cases, the steepest
gradient of symptom change was located before ERP-onset. Figure 6 illustrates
that the mean trajectory of the z-transformed individual total scores of the Y-
BOCS has its steepest change gradient before ERP starts (t = -4 days), and
symptom severity reaches a significantly reduced level at the day of ERP onset
at t = 0 (T(17) = 3.07; p = 0.007).

The same procedure was accomplished with the mean dynamic complexity
signal of all items of the TPQ, calculated within a moving window of 7 data
points. This complexity signal was related to ERP-onset as well. Figure 6 il-
lustrates the mean z-transformed complexity signal of the change processes of
the 18 subjects. Besides a complexity peak at the beginning of treatment, which
may be interpreted as an initial instability period representing individual doubts
and varying degrees of working intensity at the start of the treatment process,
the most important peak occurred three days before the steepest gradient of
symptom reduction was realized and about 7 days before ERP-onset (T(17) =
2.48, p = 0.026). In terms of synergetics, this corresponds to the assumed critical
instabilities accompanying order transitions of a self-organizing system.
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Fig. 5. Order transition in the therapy process of a patient with OCD (64 days =
measurement points). Brown bar: critical instability (period of statistical significance
of increased dynamic complexity). Green bar: Period of ERP. The curves at the top
of the diagram represent the dynamic complexity of factors of the TPQ: Factor I:
Therapy progress (blue), Factor II: Complaints and problem pressure (black), Factor
IV: Dysphoric affects (red), and “getting new insights and perspectives”, which is a
factor from a former factor analysis. Below the complexity-resonance-diagram where
the intensity of dynamic complexity is translated into colours. Yellow, orange, and red
correspond to high complexity values. The lower part of the diagram represents the
course of the Y-BOCS which was completed two times per week. The steepest gradient
of symptom reduction was realized during the period of critical instability.

4 The Self-organizing Brain

The human brain is one of the most fascinating complex systems. Since function
corresponds to structure and vice versa, structural changes can be understood as
functional self-organization of neural populations. Changes of synaptic coupling
strengths and network configurations (re-wiring patterns) follow the synchro-
nized co-activity of neurons. Perception, action and transition of action patterns,
decision making, and cognitive, behavioural, as well as emotional learning are
generated by principles of self-organization [3, 6, 7, 86]. At a neuronal level they
correspond to and are based on nonlinear brain dynamics. The emergence of
order parameters and the occurrence of phase transitions can be described and
measured on psychological as well as on neuronal levels.
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Fig. 6. Mean course of symptom severity (Y-BOCS, z-transformed) (upper part), and
mean course of dynamic complexity (z-transformed), normalized in relation to the
beginning of ERP during the behavior therapy of 18 OCD patients (day treatment
center Munich). Vertical bars: standard error.

4.1 Brain Correlates of Gestalt Perception

One of the phenomena modelled by synergetics is Gestalt perception – the emer-
gence of percepts and the switching of ambiguous visual patterns (e.g., Necker
cube or stroboscopic alternative motion). These processes of Gestalt perception
constitute the link between Gestalt psychology and actual mathematical mod-
elling in synergetics [88]. The binding of different perceptual features or com-
ponents to coherent structures or “qualia” seems to be due to synchronization
processes of extended brain regions and converging integrative areas [89]. “Pat-
tern perception is pattern formation” – as Hermann Haken puts it into pointed
words.

Tallon-Baudry et al. [90, 91] measured enhanced gamma-band activity (30-50
Hz) in the EEG of the primary and secondary visual cortex while subjects iden-
tified a triangle from the offered stimulus material. This could be a fingerprint of
corresponding neuronal synchronization processes. The activity occurred when
subjects saw a real object (triangle) or a figural illusion of the object (Kanizsa-
triangle), but not if the same geometrical components could not be composed to
a true Gestalt. The research group of Basar-Eroglu and Stadler [92] measured
increased gamma-band activity in EEG during states of perceptual switching
triggered by stroboscopic alternative motions. To summarize: Perception of mul-
tistability is one of the multifold cognitive processes giving rise to 40 Hz enhance-
ment in the cortex, and coherent oscillations reflect an important mechanism of
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feature binding in the visual cortex which corresponds to the emergence of a
neuronal order parameter. Changing order parameter dynamics during different
cognitive activities was shown by Schupp et al. [93]. Mental imagery of an object
could be differentiated from its concrete perception. The dimensional complexity
of prefrontal EEG was increased during sensory imagery compared to the real
perception of the same object [94].

4.2 Neuronal Activity During Motoric Instability and Motoric
Order Transitions

The well-known movement coordination paradigm modelled by Haken, Kelso,
and Bunz [12] was used to demonstrate neuronal correlates of instability and
symmetry breaking processes in the motoric brain. The order parameter in this
finger movement experiment is the relative phase of the index fingers of both
hands. Metronome-pacing – with movement frequency as the control parameter
– triggers the system from parallel (out-of-phase) to mirror (in-phase) move-
ment. Meyer-Lindenberg et al. [95] showed that the emergence of patterns in
open, non-equilibrium systems like the brain is governed by their (in-)stability
in response to small disturbances. Transitions could be elicited by interference at
the neuronal level. Functional neuroimaging (PET) identified premotor (PMA)
and supplementary motor (SMA) cortices as having neuronal activity linked to
the degree of behavioural instability, induced by increasing frequency of the fin-
ger movement. These regions then were transiently disturbed by transcranial
magnetic stimulation (TMS) of different intensity, which caused sustained and
macroscopic behavioural transitions from the less stable out-of-phase to the sta-
ble in-phase movement, whereas the stable pattern could not be affected. More-
over, the intensity of the disturbance needed (a measure of neuronal stability)
was correlated to the degree of the control parameter (movement frequency) and
thereby to the behavioural stability of the system.

4.3 Coordinated Order Transitions of Mental and Brain Dynamics

A fMRI-study5 investigated order transitions of brain activity related to subjec-
tive experiences of patients during their psychotherapy process [41, 96]. Repeated
fMRI scans were related to the degree of stability or instability of the ongoing
dynamics (measured by the dynamic complexity of daily TPQ-ratings). The
time series of dynamic complexity were averaged over the items of the TPQ,

5 Multi-center study of the Ludwig-Maximilians-University Munich, University Hos-
pital of Psychiatry (PD Dr. O. Pogarell, Dr. S. Karch, Dr. Ch. Mulert), Hospital
of Psychosomatic Medicine Windach/Ammersee and Day Treatment Center Mu-
nich/Westend (Dr. I. Tominschek, Dipl. Psych. S. Heinzel, Prof. Dr. M. Zaudig),
University Hospital Vienna/Astria, Clinic of Psychiatry (Prof. Dr. M. Aigner, Prof.
Dr. G. Lenz, Dr. M. Dold, Dr. A. Unger), MR Centre of Excellence, Medical Univer-
sity Vienna/Austria (Prof. Dr. E. Moser, PD Dr. Ch. Windischberger). The study
was coordinated by G. Schiepek.
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and the maxima of these dynamics were used as an indicator of the most inten-
sive fluctuation periods and the discontinuous transition(s) during the therapies.
Real-time monitoring by the Synergetic Navigation System allows for the identi-
fication of stable or unstable periods and by this for a decision on the appropriate
moments of fMRI acquisitions. Wherever possible, fMRI measurements were re-
alized shortly before or after these transitions.

3 or 4 scans were realized during each of the psychotherapy processes of 9
patients and compared to the scans of 9 healthy controls without therapy. The
study included patients with obsessive-compulsive disorder (OCD) of the wash-
ing/contamination fear subtype (DSM IV: 300.3), without co-morbid psychiatric
or somatic diagnoses. All patients except for one were drug näıve. Patients were
matched to healthy controls.

OCD seems to be an appropriate model system for synergetic studies in
clinical psychology, since the pathological order parameter is quite evident, the
disease has an obvious and often stable time course, and therapeutic order tran-
sitions – if they do occur at all – are easy to be observed. OCD-specific func-
tional neuroanatomy is partially known. It includes an integrated network of
cortico-striato-thalamo-cortical feedback-loops and limbic structures (amygdala,
hippocampus, insular cortex, anterior cingulate cortex) [97, 98].

The visual stimulation paradigm of the study used symptom provoking, dis-
gust provoking, and neutral pictures. The disgust and the neutral pictures were
taken from the International Affective Picture System, whereas the OCD-related
pictures were photographed in the home setting of the patients, showing specific
and individual symptom provoking stimuli [41, 96]. Here we refer on the contrast
of individualized symptom provoking pictures vs. neutral pictures.

Results from a Single Case. For illustrative purposes we report on the results
of a single case. It is a female patient, whose fMRI scans were taken three times
during the 59 days of their hospital stay at days 9, 30, and 57. The matched
healthy control was also scanned three times at identical time intervals as the
patient. The second acquisition was done after an intensive period of critical
instability of the TPQ-based time series, but just before ERP started. The in-
stability maximum of the patient’s process was the precursor of an important
personal decision to divorce from her husband. (Her OCD symptoms had de-
veloped in the context of a long-lasting marital conflict.) This decision was the
essential order transition of the therapy.

Indeed, the most pronounced changes in brain activity occurred from the
first to the second fMRI scan, whereas BOLD response differences from the
second to the third session were only slight. The changes from the first to the
second scan perhaps represent the neuronal correlates of her personal order tran-
sition (decision to divorce) related to the resolution of a severe personal con-
flict. Not only these changes occurred before the ERP procedure was introduced
but also a marked symptom reduction took place (measured by the Y-BOCS)
(Figure 7).

The alternations of brain activity during this period involved widespread ar-
eas, e.g. medial frontal brain regions including anterior cingulate cortex, superior
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Fig. 7. The course of the Y-BOCS of a female patient (completed once per week; grey
line). The steep gradient of symptom reduction in the middle of the hospital stay is
preceeded by an intensive period of critical instability of therapy-related self-ratings.
Black curve: Mean dynamic complexity of the items of the TPQ. Black arrays indicate
the days when fMRI scans were realized. ERP started 2 days after the second fMRI
scan.

and middle frontal gyrus, inferior frontal and precentral gyrus, superior temporal
gyrus, superior parietal lobe, cuneus, thalamus, caudate nucleus in both hemi-
spheres, as well as the right fusiform gyrus (Figure 8). The OCD-associated
BOLD responses of the second and third session revealed only small differences
(Figure 8). Slightly enhanced responses were found during the second session
compared to the third session in the precuneus and the inferior parietal lobe.
The middle frontal gyrus, the left inferior parietal lobe, the cuneus, the superior
and middle frontal gyrus, and the cingulate gyrus responded slightly stronger
during the third session compared to the second session. In the healthy control
to the patient, no such changes of brain activity took place between the scans.

Thalamic and basal ganglia activation is part of the dorsolateral-caudate-
striatum-thalamus circuitry of OCD. Especially the caudate nucleus takes a role
within the executive dysfunction model of compulsions [99], and its activity has
been found to be reduced after treatment (e.g., [100]).

The function of the anterior cingulate cortex is interesting with regard to
synergetics. The cingulate cortex comprises various functions like somatosen-
soric integration, mediation of affective and cognitive processes, control of at-
tention, and processing of painful stimuli. Additionally, it plays an important
role as conflict monitoring system: it is sensitive to ambiguous or conflicting in-
formation [101, 102], is involved in decision making [103, 104], and its activation
is predictive to treatment outcome in depression [105]. This is true especially
for the dorsal (cognitive) structures of the ACC. By this, its activity could be
an indicator of symmetry states of brain functioning, which are characterized
by two or more dynamic patterns or attractors in competition. In the present
case, the ACC activation at the beginning of the therapy could be either part of
the pathology or could be indicative for the critical instability of the cognitive-
affective system of the patient, preparing her important decision. The second
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Fig. 8. Brain activation patterns of a patient with OCD (washing/contamination fear)
during psychotherapy. BOLD signals from a 1.5 Tesla fMRT scanner. Top: first scan
(9th day of hospital stay; x = 0, y = −55, z = −2; p(uncorr) < 0.001). Middle:
second scan (30th day of hospital stay; x = 8, y = −54, z = −5; p(uncorr) < 0.001).
Bottom: third scan (57th day of hospital stay; x = 0, y = −85, z = 26; p(uncorr) <
0.001). Activations during the presentation of individual symptom provoking pictures
contrasted to activations during the presentation of standard neutral pictures. The
brain activations before the order transition (first scan) (medial frontal brain regions
including anterior cingulate cortex, superior and middle frontal gyrus, inferior frontal
and precentral gyrus, superior temporal gyrus, superior parietal lobe, cuneus, thalamus,
caudate nucleus, right fusiform gyrus) are markedly reduced at the second and third
scan.

fMRI measure was conducted during a local minimum of critical fluctuations.
Whether the impressive change in cingulate activation could be attributed to a
changed critical symmetry state of the neuronal self-organization before vs. after
the phase transition or to changes in symptom severity cannot be decided within
a single case study, but seems to be an interesting question for further research.

Results from the Sample of OCD-Patients. Similar results were to be seen
in the whole sample of all 9 patients [96]. In order to quantify the changes of
neuronal activity over the fMRI scans, 8 brain regions were identified that are
important in OCD-related neuronal processing: the anterior and medial cingulate
cortex as well as the supplementary motor area (CC/SMA), the dorsolateral
prefrontal cortex (DLPFC) right and left, the insula right and left, the parietal
cortex right and left, and the cuneus.

When interscan-intervals including order transitions (OT) were compared to
intervals without order transitions (NOT), the changes of the number of signifi-
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Fig. 9. Differences in order transition intervals for patients (OT: order transitions, red),
non-order-transitions for patients (NOT: non-order-transitions, yellow) and inter-scan-
intervals (ISI) for healthy controls (grey). Y-axis: mean voxel number differences be-
tween scans. 95%-confidence intervals of the means were bootstrapped with R’s boot.ci
function using 10,000 resamples and the “bca” type of confidence intervals.

cant voxels for the contrast between individualized symptom provoking pictures
and neutral pictures show increased BOLD responses during OT in all relevant
brain regions. The healthy controls received no therapy so that any distinction
between intervals with and without order transitions has no importance. By
this, in healthy subjects functional changes were averaged across all inter-scan-
intervals (ISI). Figure 9 illustrates the changes in significant voxels averaged for
the 8 brain areas of OT and NOT (patients), and ISI (controls). Activation rates
and change rates were significantly higher for patients compared to controls.

The differences between order transition intervals (OT) of the patients
(mean voxel number difference: 7480, SD: 6835) and non-order-transition inter-
vals (NOT) of patients (mean voxel number difference: 1900, SD: 1968) reached
significance. In addition, the number of activated voxels differenced significantly
between order transition intervals of patients and the inter-scan-intervals (ISI)
of the controls, whereas the differences between the NOT intervals of patients
and the inter-scan-intervals (ISI) of the controls were quite similar. For each of
the 8 brain regions we identified, pronounced differences occurred between OT
and NOT and even more clearly for OT vs. ISI, but not for NOT vs. ISI. The
most pronounced differences were realized in the CC/SMA, the DLPFC left,
DLPFC right and insula right. The differences in the area of the cuneus and the
left parietal cortex did not reach significance because of the NOTs’ wide confi-
dence intervals. The high individual variability is partly the result of distinctly
differing change patterns in patients as well as therapy processes.

An additional result concerns the intercorrelations of the involved brain areas.
When comparing correlations before and after order transitions, the difference is
striking, independent of where the order transitions were located in the course
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of therapy. The mean intercorrelation of the brain areas changed from 0.73 (SD:
0.09) to 0.33 (SD: 0.33) (p of the difference < 0.001). In addition to the decline
in correlation, a differentiation of intercorrelations occurred which is reflected
in an increase in variation (standard deviation of the intercorrelations increased
from 0.09 to 0.33). This could be taken as an indicator of a decreased network-
synchronization of OCD-specific brain areas before and after order transitions.

To conclude: Most patients showed clearly recognizable order transitions in
different brain areas. Changes in the activity of brain areas outside of order tran-
sitions were considerably weaker, similar to the differences between fMRI scans
of the healthy controls which did not undergo psychotherapy and by this did
not experience any dynamic changes. The strong connection between cognitive-
affective order transitions and BOLD responses reversely validate the opera-
tionalization of order transitions by the maximum of dynamic complexity of
the time series gained from daily self-assessments by the Synergetic Navigation
System.

5 Perspectives

Order or phase transitions indicate the spontaneous emergence of collective pat-
terns or qualitative pattern shifts in complex non-equilibrium systems. Based
on an empirically sound transfer of this and other concepts from synergetics to
human systems functioning, psychotherapy can now be interpreted as the pro-
cedural creation of conditions conducive to biological, mental, and social self-
organization processes [3]. This opens new perspectives for basic and applied
research, but also for the treatment of mental disorders. New developments in
the real-time monitoring of human change processes by internet-based devices
with integrated nonlinear analysis methods like the Synergetic Navigation Sys-
tem offer effective means of therapy feedback and therapy control [57, 106].

Other encouraging developments concern invasive and non-invasive brain
stimulation which applies to neurological diseases as Parkinsonian or essential
tremor, chronic tonal Tinnitus, but hopefully also to psychiatric disorders as
OCD or mayor depression [107]. The difference between new technologies of
stochastic phase resetting applying mathematical tools and concepts of syner-
getics at the one hand and high frequency stimulation at the other is that high
stimulation frequencies mimic tissue lesions by a blocking effect on the stimulated
target. However, learning and un-learning needs the activity of neuronal cell pop-
ulations. New technologies are demand-controlled and are activated only during
certain stimulation intervals. Its effect is a desynchronization of pathologically
synchronized populations of neurons, using multi-site coordinated reset (CR)
stimulation [107] or nonlinear delayed feedback stimulation [108]. Both methods
counteract abnormal interactions and detune the macroscopic frequency of the
collective oscillators – that is the abnormally established order parameters of
neuronal synchronization. Thereby they restore the naturally varying frequen-
cies of the individual oscillatory units. Neurons get in the range of physiological
functioning and can engage in changing and varying synchronization patterns.
In consequence, the coupling strengths connecting synapses (synaptic weights)
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are changed and a long term rewiring of neuronal networks is reached. Changed
function triggers the emergence of healthy attractors and by this changes the
structure of neuronal networks. For therapeutic effects on chronic Tinnitus see
[109].

In the future technologies of non-invasive brain stimulation could be com-
bined with a SNS-based psychotherapy for the optimization of self-organizing
changes in therapeutic processes.
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50. Piaget, J.: Die Äquilibration der kognitiven Strukturen. Klett-Cotta, Stuttgart
(1976)
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chotherapeutische Plananalyse. Huber, Bern (1996)

74. Rosenstein, M.T., Collins, J.J., de Luca, C.J.: A practical method for calculating
Largest Lyapunov Exponents from small data sets. Physica D 65, 117–134 (1993)

75. Vandenhouten, R.: Analyse instationärer Zeitreihen komplexer Systeme und An-
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Abstract. Synergetics has established a well-known top-down approach
to the modeling of perceptual phenomena in psychology and cognitive
sciences. This phenomenological approach is deply rooted in the theory of
pattern formation and offers a formal justification that in the proximity
of transitions from one pattern to another a low-dimensional description
via canonical models is permissible. We exploit this thinking in the con-
text of auditory scene analysis, specifically auditory streaming, where the
brain network integrates or segregates sounds that arise from two or more
distinct sources. We interpret the process of integration and segregation
as a pattern formation process and demonstrate through mathemati-
cal modeling, behavioral experiments and functional magnetic resonance
imaging (fMRI) that selected networks in the brain get differentially ac-
tivated as a function of the percept. We propose a functional architeture
composed of brain areas with tonotopic organization (auditory cortex)
and non-tonotopic organization (various parietal areas including right
superior parietal lobule and precuneus). The dynamics of this functional
architecture extends beyond auditory streaming and suggests the exis-
tence of informational convergence zones in the brain that get selectively
activated in a nonlinear all-or-none fashion. This dynamics is reminiscent
of phase transitions as discussed in synergetics and generalizes concepts
well established in multisensory integration.

Keywords: auditory streaming, synergetics, perception, emergence, fMRI,
BOLD signal

1 Introduction

Synergetics is an interdisciplinary field of research founded by Hermann Haken
[1] and explains how macroscopic self-organized pattern formation occurs in open
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systems operating away from equilibrium. Examples of such pattern formation
range from the formation of Rayleigh-Bénard convection rolls in liquids to var-
ious chemical instabilities and morphogenesis in biological systems [2]. Though
synergetics has its roots in physical systems, its concepts and mathematical ap-
paratus generalize to other disciplines describing the collective self-organizing
dynamics of multi-component systems.

One of the more recent applications of synergetics is found in the psychologi-
cal sciences. In particular, perceptual phenomena related to state transitions are
amenable to synergetic analysis. In this context, we will discuss the phenomenon
of auditory scene analysis, particularly auditory streaming. Auditory stream seg-
regation, or streaming, has been used as a model for how the auditory system
integrates or segregates sounds that arise from two or more distinct sources. For
example, when listening to bass and soprano vocalists singing simultaneously,
the two voices are perceived as separate from each other but each voice is si-
multaneously perceived as an integrated perceptual event. In the laboratory, a
similar effect can be created using sequences of tones. In a typical streaming
experiment, two sequences are created using alternating high and low tones. Se-
quences vary in the frequency difference between the tones and presentation rate.
In general, when the frequency separation is relatively small and/or the rate is
relatively slow, listeners perceive a single integrated melody (or stream) and can
accurately report the ordering of the tones. But when the frequency separation
is relatively large and/or the rate relatively fast, listeners report hearing two
auditory streams, one with higher pitch than the other. They can easily attend
selectively to one or the other stream but they are unable to hear the tones
as a single integrated stream and cannot report the relative order of individ-
ual events between the two streams. In this sense, streaming may be regarded
as a pattern formation process, where the perceptual patterns emerge depen-
dent on the details of the input sequences. The parameters characterizing the
input sequence serve as unspecific control parameters, equivalent to the control
parameters in a physical system. This is in stark contrast to response-driven ap-
proaches where the specific characteristics of the input signal determine the time
course of the driven system. Prevailing models from auditory streaming studies
focussed on the examination of auditory cortex responses and posit that stream-
ing will be evoked whenever the tones of the input excite non-overlapping pop-
ulations of neurons. Parametric variations of stimulations or stimulus features
could produce neural activity patterns, which vary linearly with the sigmoidal
firing rate of neural populations. While such patterns have been widely reported
in vision, only limited evidence for such a mechanism exists in the auditory
system. More importantly, such mechanisms rely heavily on the tonotopic orga-
nization of the auditory cortex. Yet evidence from neural recordings in humans
suggests that activations during auditory streaming paradigms are significantly
more widespread, involving brain areas outside of the auditory cortex that have
no tonotopic organization [3, 4]. This suggests that the large network activated
during the formation of streaming-related percepts results in the emergence of
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brain pattern dynamics.

In this chapter we will remind the reader of our model of auditory stream-
ing [5], which predicted that widespread brain networks with mixed organiza-
tion (tonotopic and non-tonotopic) would be involved in auditory streaming.
Next we provide behavioral evidence for a particular prediction of this archi-
tecture, namely, the phenomenon of amplitude streaming, in which tone se-
quences that differ only in the amplitude of consecutive tones can form integrated
or segregated streams. This distinguishing feature poses a particular challenge
to functional architectures comprised of only tonotopically organized networks.
Through functional Magnetic Resonance Imaging (fMRI), we tested the neuro-
architectural predictions of our auditory streaming model and report the findings
in the final section of this chapter.

1.1 Auditory stream segregation

Auditory stream segregation has long been a focus of psychophysical research
(e.g., [6]). The phenomenon has proven to be robust and may be fundamentally
related to other integration and segregation phenomena in perception. Related
studies have been conducted in humans (e.g., [6–15]), monkeys [16], and bats
[17], and several theories have been proposed to account for the phenomenon. In
Gestalt theory, streaming is viewed as arising from fundamental principles inher-
ent in the input patterns, such as proximity (of the tone frequencies), similarity,
and spatiotemporal cohesion [18–25]. Bregman (1990) appeals to Gestalt prin-
ciples in explaining auditory grouping mechanisms, and auditory scene analysis
in general, but recruits other explanatory concepts such as integrative schemas
when Gestalt principles fail. Other general theories invoked to explain auditory
streaming include filter, or channel models, e.g., [26], that hold that streaming is
based on selective attention to a single perceptual dimension such as pitch. Nev-
ertheless, spectral separation and other differences in power spectrum are not
necessary conditions for perceptual stream segregation (e.g., [14, 15]). Streaming
also occurs in sequences of amplitude modulated, harmonically complex tones
(e.g., Joris, Schreiner, and Rees; 2004). Moreover, channel models fail to ac-
commodate streaming effects that are dependent on relationships among tones,
such as quality, higher-order frequency relationships [27] and timbre [28]. Oth-
ers (e.g., [7, 29]) propose that listeners attend to frequency motions in perceiving
auditory streams. In fact, some researchers claim that Gestalt principles are gen-
erally inadequate explanations for entire classes of acoustic and visual grouping,
for example in speech perception [30] and vision [22]. Although in nature there
are many kinds of gestalten, that is organized patterns of perception or behavior,
the means by which those patterns arise is as yet unclear.

Other work has highlighted the dynamic nature of streaming phenomena
by demonstrating the importance of initial percept (van Noorden, 1975) and
longer-term temporal effects [31, 32]. In one influential series of experiments, van
Noorden presented tones with two different pitches in the order low-high-low-
low-high-low (ABAABAABA). Tones were of equal amplitude and duration and
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van Noorden Bifurcation Diagram

= Frequency Difference in semi-tones.

IOI in ms

Temporal Coherence 
Boundary (TCB)

Fission Boundary (FB)

Δf

Fig. 1. Stimulus sequences. Variations of frequency difference or interstimulus inter-
vals (ISI) are used as control parameters to manipulate the emergence of a particular
percept.

the onset interval between successive tones was identical. Van Noorden presented
listeners with tone sequences in which the frequency difference between the A
and B tones was small and asked them to follow the gallop rhythm formed (so
that perception was of an integrated tone sequence). He also presented tone
sequences in which the frequency difference between the A and B tones was
much larger and asked the listeners to focus their attention on the string of
low tones (so that two segregated sequences of different frequency tones were
perceived). See Figure 1 for example stimulus sequences, which were used in
the experiments reported in this chapter. van Noorden (1975) then manipulated
the frequency difference between A and B tones and their interstimulus-onset-
interval (IOI) toward the other sequence type (integrated or segregated) and
mapped the perceptual changes (see Figure 2). He found (1) a frequency-time
boundary beneath which all sequences were heard as integrated, regardless of
instructions (the Fission Boundary, FB) and (2) a frequency-time boundary
above which all sequences were heard as segregated, regardless of instructions
(the Temporal Coherence Boundary, TCB). In the bistable region between these
two boundaries, a sequence could be heard as either integrated or segregated
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Small Frequency Difference
Slow Rate

Large Frequency Difference
Fast Rate
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t
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Δ
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Δ
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Frequency
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Fig. 2. van Noorden’s bifurcation diagram. Variations of two control parameters, the
frequency difference of tones and their interstimulus interval (ISI), allow to span a two-
dimensional parameter space. The parameter space is partitioned into three regimes,
one region with the percept one stream, another region with the percept two streams
and a region in between which permits both.

depending upon initial instructions, with hysteresis phenomena observed when
traversing the bistable regime.

1.2 Physiological correlates of auditory streaming

Complementary to the psychophysical approaches to the integration and segrega-
tion of sounds, there are currently two predominant neurophysiological theories
of how the nervous system integrates environmental signals. The first theory is
referred to as the binding theory and assumes that an integrated percept arises
when activity in cortical areas becomes synchronized [33]. The second theory
is grounded in the field of multisensory integration and assumes the existence
of informational convergence zones. These convergence zones are made of cor-
tical and subcortical networks such as the network consisting of the superior
colliculi, the inferior parietal areas and the insula which is activated during the
integration of speech and vision [34] among other behaviors. Both sources of
neurophysiological evidence suggest that activations of larger networks are rele-
vant for perceptual integration. Importantly, they also involve neural areas with
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no known tonotopic architecture. For example, the left inferior parietal cortex
has been hypothesized to be involved in the integration of visual-acoustic in-
formation to a common percept parametrized by temporal disparity [35]. Other
researchers have found similar networks to be involved in the spatiotemporal
integration of visual cues during collision judgments [36]. In the more related,
but also more complex situation of speech perception, Hickock and Poeppel [37]
argued that the left inferior parietal cortex is also involved in the integration
of auditory-motor processes. Recruitment of these higher areas is largely non-
specific to the modalities involved, which implies a general mechanism for the
integration of signals to a coherent percept.

Specific to the phenomenon of auditory streaming, work by Snyder and col-
leagues (2008, 2009) confirms the presence of hysteresis in that perception and
Event Related Potential (ERP) magnitude during an auditory streaming task
depend on whether the prior sequence was perceived as integrated or segregated.
Cusack [4] reported increased BOLD activity in the anterior intraparietal sulcus
during two versus one-stream percepts, but did not find differences in the audi-
tory cortex based on percept or frequency separation. The latter is in contrast to
findings by Gutschalk and colleagues [38] who found covariations in magnetoen-
cephalographic (MEG) signals with both frequency separation and percept. In
event-related fMRI experiments of auditory streaming, Kondo and Kashino [39]
found activations in auditory cortex, posterior insula, medial geniculate body,
and supra-marginal gyrus but no contrasts were carried out regarding effects
of perceptual organization or frequency separation. These results underline the
need for further examination of the neurophysiological basis of auditory stream-
ing, in particular the involvement of brain areas outside of the auditory cortex.

2 The Almonte et al. model of auditory streaming

The functional architecture proposed by Almonte and colleagues [5] was inspired
by the large literature on integration phenomena across sensory modalities, in
which multisensory convergence zones (represented by certain brain areas such
as the insula) integrate information from different sensory modalities through an
increased activation covariant with the percept of multisensory integration [40].
Almonte and colleagues explored the possibility of a homeomorphic architecture
for auditory streaming comprising two layers. One layer, a neural field [41–44],
is tonotopically organized such that the frequency of the acoustic stimulus maps
onto a location in neural space. The second layer is a non-tonotopically orga-
nized subsystem and classifies the spatiotemporal neural field dynamics along
very much the same lines as convergence zones in multisensory paradigms. The
classification itself is not just a measurement (else the application of a simple
measure to the neural field would suffice) but is itself a dynamic integrating
process. In fact, bistability and hysteresis are properties of the classification dy-
namics rather than properties of the neural field dynamics. From the view point
of synergetics, the second subsystem defines the order parameter of the percep-
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tual pattern forming system, whereas the first subsystem performs a form of
preprocessing of the input stimulus sequence.

The dynamics of the neural field μ(x, t) are given by the Jirsa-Haken wave
equation [44] accommodating auditory inputs s(x, t) as follows:

[
1

γ2

∂2

∂t2
+

2

γ

∂

∂t
+ 1− r2∇2

]
μv =

(
1 +

1

γ

∂

∂t

)
ς(μv + s(x, t)), (1)

where, as a reminder, γ = c/r, c is the speed of spike propagation and r param-
eterizes the spatial decay of lateral interactions. The external input or stimulus
to the neural sheet is s(x, t) : R2 → R , which contains all the spatiotempo-
ral characteristics of the auditory input stream. Periodic boundary conditions,
μ(0, t) = μ(L, t), t ≥ 0, are used. The second subsystem is not tonotopically
organized, hence its spatial dimension is of no relevance, when we consider only
the competition of two streams. In fact, the ability to show multistable pattern
formation is the only relevant property of this subsystem. A simple multistable
subsystem with its scalar state variable y(t) is given by the equation

ẏ = εy − y3 − I0 + I(t), (2)

where ε is a constant that captures all linear contributions. I0 contains all con-
stant contributions given rise to the rest state activity. The functional I(t) is
specified as

I(t) =

∫ L

0

h(μ(x, t))dx h(n) =

{
0, n ≤ Ω
n, n > Ω

}
, (3)

where Ω is a neural activity threshold. The equations (1), (2) and (3) define the
dynamics of a stream classification model in one of its simplest forms. Figure 3
illustrates the architecture of the model.

To understand van Noorden’s results, we parametrize a sequence of consecu-
tive tones by their frequency difference, Δf , and their inter-onset interval, IOI.
As the neural field evolves, it is integrated across space and time yielding the
time dependent, but scalar, activity I(t) driving the second system. I(t) repre-
sents the relevant ”information” from the neural field μ as a spatiotemporally
integrated activity measure, which depends on the amount of dispersion over
space and time. The greater the dispersion, the greater will be the value of I(t)
at a given time point. Figure 4 shows the contour lines of neural field activity
over space x and time t for the bistable situation.

The final state reached by the second system defined in Eq. (2) with activity
y will depend on I(t) and its own intrinsic dynamics. For an intermediate value
of I(t), there is a bistable regime in which y can assume either one of the fixed
points. The negative fixed point is identified with perceiving one stream and
the positive fixed point with perceiving two streams. The time series for y are
shown in Figure 5 for several different initial conditions of the activity y. After
a transient the activity becomes stationary, displaying three possible scenarios
(see Figure 5 from top to bottom): one stream only, or the bistable situation, in
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μ

Fig. 3. Cortical architecture of the model. The neural field is illustrated by the rect-
angular box showing the neural activity μ(x, t) composed of inhibitory and excitatory
neurons. The input s(x, t) is provided at locations xi via the Gaussian localization

function e−(x−xi)
2/δi with width

√
δi. The explicit model parameters used in the sim-

ulations are given in Almonte et al (2005).

which either one integrated stream or two separate streams may be perceived,
or finally two streams only. For each choice of Δf and IOI, the model equations
(1) and (2) are solved numerically and their stationary states determined. The
results are plotted in the two-dimensional parameter space shown previously in
Figure 1.

3 A novel paradigm: amplitude streaming

Do the mechanisms leading to the emergence of auditory streaming need to be
explained through tonotopically structured networks? Or may there be a cru-
cial role to be played within the functional architecture by subsystems with no
tonotopic organization? In what follows, we study specifically whether auditory
streaming involves interacting neural subnetworks, some tonotopic but others
non-tonotopically organized and acting as information convergence zones for the
classification of the perceptual world. To this end, we first show that percep-
tual streaming occurs for sequences of pure tones with constant frequency but
systematic amplitude modulation across tones. This demonstration is a neces-
sary step because our model does not depend on the system being organized
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Fig. 4. Bistable regime of auditory streaming. The stimulus sequences (top) and its
resulting neural field dynamics (bottom).

tonotopically. We then, in the next section, examine the BOLD responses from
listeners who perceive auditory streaming 1) on the basis of frequency differ-
ences among equal amplitude tones and 2) on the basis of amplitude differences
of same-frequency tones.

In order to assess perceptual streaming on the basis of amplitude differences
alone, we constructed sequences containing 40 sinusoidal tones of constant fre-
quency (600 Hz) and duration (100ms) and an inter-onset interval (IOI) of 110ms
(i.e., an interstimulus interval of 10ms). The only parameter varied across se-
quences was the amplitude ratio (AR) between adjacent tones (T1 and T2). AR
was kept constant within each of the 20 T1-T2 pairs in a sequence. Values of
AR relative to the highest amplitude tone were 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
and 1 (AR = 1 denotes equal amplitude of T1 and T2). Amplitude was linearly
ramped over the first and last 10ms of each tone.

Pairs of 40-tone sequences were presented 5 times to subjects in random
order, with 500ms between members of each sequence pair. The subject’s task
was to judge which of the two sequences in a pair sounded slower. When tone
sequences of the type used here are perceived as two streams, they are perceived
to be slower than sequences perceived as a single stream. Subjects responded by
pressing one of three labeled keys on a keypad: Pressing the number 1 meant
that the first sequence was perceived as slower; pressing 2 meant that the second
sequence was perceived as slower; and pressing = meant that the two sequences
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Fig. 5. Percept formation. For multiple initial conditions the time series of y(t) are
plotted for the three regimes, one stream only (top), bistable (middle) and two streams
only (bottom).

were perceived as equal in rate. All combinations of sequences were included, with
the exception of sequences having AR = 0.3, AR = 0.5, and AR = 0.7 paired
with itself, for a total of 230 sequence pairs. Order of sequence presentation for
each pair was counterbalanced.

A control condition was included in which each trial consisted of three short
tone sequences presented with 500ms ISI between sequences. Each sequence was
either 1) a T1-T2 sequence with AR = 0.2 and IOI = 110ms, or 2) a sequence
with T1=1 and IOI = 220ms, i.e., T2 was omitted. Triad orders were sequences
(a) 1, 2, 1; (b) 2, 1, 1; (c) 1, 2, 2; and (d) 2, 1, 2. Sequence 1 contained 12 tones.
Sequence 2 contained 6 tones, with double the IOI of sequence 1, in order to
verify that subjects reliably heard the lowest amplitude tones. The procedure
was an ABX, forced-choice task in which subjects judged whether the rate of
the third tone sequence (X) was more like the first sequence (A) in the triad or
more like the second sequence (B) in the triad. Subjects responded by pressing
one of two labeled keys on a keypad: Pressing the number 1 meant that the rate
of the third (test) sequence was more like the first sequence. Pressing 2 indicated
that the rate of the third sequence was more like the second sequence.

All subjects (N=11) had normal hearing according to self-report and were
naive to the purpose of the experiment. They were told that there were no right
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Fig. 6. Amplitude Streaming. Behavioral results are shown based on amplitude varia-
tion of consecutive tones.

or wrong answers and that our interest was purely in how they perceived the
tone sequences.

Responses from the control condition were examined to verify that all sub-
jects were able to hear the lowest amplitude tone reliably. All subjects responded
with at least 85% accuracy (9 of the 11 responded with 95% accuracy or bet-
ter). Thus, the low amplitude tone was indeed perceived and contributed to the
perception of a faster rate sequence.

Figure 6 shows the means and standard deviations of the responses across
subjects for the perception of streaming in sequences of amplitude-modulated
pure tones. The x-axis represents the AR difference between the two sequences in
each pair. When the difference is negative, the amplitude difference between suc-
cessive tones within a sequence is greater in the first sequence than the second. In
this case, subjects judge the first sequence to be slower than the second, indicat-
ing that streaming has occurred in the first sequence but not in the second. When
the AR difference is positive, the amplitude difference between successive tones
within a sequence is greater in the second sequence than the first. In this case,
subjects judge the second sequence to be slower than the first, indicating that
streaming has occurred only in the second sequence. For small AR differences,
subjects judge the rates of the sequences to be equal, indicating that streaming
occurred in both sequences (denoted on the y-axis by 1.5 in Figure 6). Moreover,
there is no order effect. AR differences of -0.6, for example, are equivalent to AR
differences of 0.6. The lack of an order effect was confirmed statistically by a
2-way repeated measures ANOVA with order and AR difference as factors. For
order, F (1, 5) = 2.67, p > 0.1 and the interaction of order and AR difference
was similarly not significant, F (5, 5) = 1.88, p > 0.1.
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Amplitude Streaming (AS)

Condition: Name f1, f2 in Hz A1, A2

1: AS 1000, 1000 0.2, 1

3: Control 1000, 1000 1, 1

4: Control 1000, 0 1, 0

5: Control 1000, 1000 0.2, 0.2

6: Control 1000, 1000 0.2, 0

Frequency Streaming (FS)

Condition: Name f1, f2 in Hz A1, A2

2: FS 500, 1000 1, 1

3: Control 1000, 1000 1, 1

4: Control 1000, 0 1, 0

7: Control 500, 500 1, 1

8: Control 500, 0 1, 0

Table 1. Parameter values for experimental conditions consisting of tone sequences
ABAB...AB. Conditions 3 & 4 function as controls for both amplitude and frequency
streaming. In order to examine the neural effects of auditory streaming, several control
conditions needed to be built into the experimental design. Condition 1 is the con-
dition most likely to result in amplitude streaming, since the tones are of the same
frequency but with very different amplitudes. Condition 2 is most likely to result in
frequency streaming. Conditions 3 and 5 were used to eliminate rate effects as the only
cause of a significant amount of neural activation in amplitude streaming (condition
1). Conditions 4 and 6 were used to eliminate amplitude effects as the only cause of a
significant amount of neural activation in amplitude streaming (condition 1). Control
conditions 3 and 7 were used to eliminate rate effects as the only cause of a significant
amount of neural activation in frequency streaming (Condition 2). Conditions 4 and 6
were used to eliminate amplitude effects as the only cause of a significant amount of
neural activation in frequency streaming (condition 2).

In summary, in spite of the fact that all tones were of equal frequency and
IOI was constant across sequences, amplitude difference alone was sufficient to
cause the pure-tone sequences to split into two perceptual streams. This is in
agreement with the model’s prediction of the possibility of perceiving one or two
streams depending on the AR of the tone sequences.

4 Amplitude streaming and its associated BOLD
responses

Next we consider the BOLD responses from listeners who perceive auditory
streaming 1) on the basis of frequency differences among equal amplitude tones
and 2) on the basis of amplitude differences of same-frequency tones. Eight
subjects (4 females and 4 males) between 23 and 42 years of age participated in
the fMRI experiment. All subjects were in good health with normal hearing (by
self-report) and no past history of psychiatric or neurological disease. Informed

pelster@zedat.fu-berlin.de



Auditory Streaming as a Paradigm of Synergetic Pattern Formation 221

consent was collected from each subject prior to the experiment and the study
was approved by the Florida Atlantic University Institutional Review Board.

Because scanner noise is a primary concern when using fMRI for auditory
perceptual experiments, we used a sparse sampling (or clustered volume) scan-
ning technique [3]. The long TRs used by this technique directly influence the
possible experimental design, especially, experiment duration, which affects the
number of trials that can be collected for each experimental run. Auditory stim-
uli were presented to the subjects in 12-second on-blocks followed by 12 seconds
of silence. The on-blocks consisted of pure tone sequences. The only parameters
that were varied were the frequency difference between adjacent tones, the silent
gaps between tones, and the amplitude ratio of adjacent tones. Tone durations
were always 50ms with 5ms amplitude ramping at the beginning and end of each
tone. Interstimulus silent intervals were either 100ms or 250ms, depending on
the condition (see Table 1). Each on-block contained the maximum number of
[tone, silentgap] pairs that fit in the 12-second interval; any remaining time was
divided into two equal durations of silence at the beginning and end of each tone
sequence. fMRI scans lasted 2sec and began 2sec before the end of each block, so
that the tone stimuli were still present during the scanning period. Each of the
eight conditions was repeated twenty times during the experiment for a total run
time of 64 minutes. The order of stimulus presentation was randomized across
presentation blocks and conditions, but not across subjects, with the constraint
that no condition was repeated consecutively.

Before the beginning of the experiment, subjects went through a short train-
ing session with sequences from Conditions 1 and 2, each repeated 3 times in
random order. The purpose of the training session was to allow the subjects to
become familiar with the stimulus sequences and to determine via verbal report
whether they perceived 1) amplitude-based streaming in Condition 1 (equal fre-
quency tones of different amplitude) and 2) frequency-based streaming in Condi-
tion 2 (different frequency tones with equal amplitude). A General Electric (GE)
3T Signa scanner was used to acquire T1-weighted structural images and func-
tional EPI images for the measurement of the blood oxygenation level-dependent
(BOLD) effect. The acquisition scheme and parameters used for the functional
scans were as follows: echo-planar imaging (EPI), gradient recalled echo, TR =
12 s, TE = 35 ms, flip angle = 90 degrees, 64 x 64 matrix, 30 axial slices per scan
each of thickness 5 mm acquired parallel to anterior-posterior commissural line.
The data was preprocessed and analyzed using Statistical Parametric Mapping
software [10] (SPM2 from Wellcome Department of Cognitive Neurology, Lon-
don, UK). Motion correction to the first functional scan was performed within
subject using a six-parameter rigid-body transformation. The 8 subjects had less
than 7mm of translation in all directions and less than 6.0 degrees of rotation
about the three axes. The mean of the motion-corrected images was then coreg-
istered to the individual 30-slice structural image using a 12-parameter affine
transformation. The images were then spatially normalized to the Montreal Neu-
rological Institute (McGill University, Canada, http://www.bic.mni.mcgill.ca/)
template brain by applying a 12-parameter affine transformation, followed by
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a nonlinear warping using basis functions. These normalized images were in-
terpolated to 2 mm isotropic voxels and subsequently smoothed with a 4 mm
isotropic Gaussian kernel. A random-effects, model-based, statistical analysis
was performed with SPM2 [10] in a two level procedure. The first level consists
of estimating a General Linear Model (GLM) [11] of the form: Y = Xv + e for
each subject whereX is a (m x n) experimental design (basis) matrix (m = 320 =
Total number of stimulus presentations and n = 8 = Number of conditions), and
v is a constant vector representing weights for each basis vector of X . Each col-
umn vector of X consists of a series of entries of zeros for the off-blocks and ones
for the on-blocks and represents different stimulus conditions in each functional
run and six motion parameters obtained from the realignment. v is estimated
using the method of least squares and minimizing the error e. Individual contrast
images were created by correlating the brain response with the aforementioned
covariates for each subject. Global differences among subjects were controlled
by proportional scaling. The individual contrast images were then entered into
a second-level analysis, using a separate one-sample t-test for each term in the
general linear model. The summary statistical maps were thresholded at p <
0.05 (uncorrected for multiple comparisons). These maps were overlaid on a
high-resolution structural image in the Montreal Neurological Institute (MNI)
orientation.

In previous work, no explicit contrasts were carried out to test for effects
of perceptual organization or frequency separation (such as [39]) reinforcing the
need for further examination of the involvement of areas outside the auditory
cortex in streaming. Here we develop a set of constraints based on set theoret-
ical operations allowing us to address differential effects related to streaming
or streaming in combination with amplitude, frequency, or rate changes. Figure
7 shows voxels which correlate with streaming percepts. The voxels in pan-
els A (amplitude streaming), B (frequency streaming), & C (the intersection
of amplitude and frequency streaming) are related only to streaming percepts.
Anatomical areas activated by amplitude streaming (panel A in Figure 7) in-
clude primary auditory areas as well as parietal areas (right superior parietal
lobule (SPL) and precuneus). Similarly, for frequency streaming (panel B) there
are activations in primary auditory areas and beyond, including the left inferior
parietal lobule (IPL), supramarginal gyrus (SG), precuneus, parietal lobe sub-
gyral (Brodmann area 40), right inferior and superior parietal lobule, and middle
and superior temporal gyri. The implication of the right parietal cortex is con-
sistent with related findings in which intraparietal sulcus (IPS) showed greater
activity when two streams were perceived rather than one [4] and reports that
right parietal cortex influences the auditory perceptual scene - more specifically,
sound movement (Griffiths et al. [9]). The findings are also consistent with the
results of Bushara and colleagues [45] who found that the hierarchical organiza-
tion of the auditory system extends beyond the temporal lobe to include areas
in the posterior parietal and prefrontal regions, especially for auditory spatial
processing.
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Fig. 7. Streaming results in the BOLD response. Three different activation patterns
are shown. Active voxels related to the percept of amplitude and frequency streaming
and their intersection at p < 0.05. The voxels are color coded to show contributions
due only to the streaming percept (red voxels) and any other effects not related to
amplitude, frequency, and rate changes in the stimuli. Whereas the blue, cyan, green,
and yellow voxels are related to amplitude, frequency, or rate changes in the stimuli.

Panels A and B in Figure 7 show areas of significant BOLD increases for
amplitude and frequency streaming. In contrast, there are relatively few vox-
els with significant activity that are common to both amplitude and frequency
streaming (panel C). There is ∼44% overlap among the voxels of panels A and C
and ∼8% overlap among voxels of panels B and C. The non-empty intersection
shown in panel C defines the necessary condition for the existence of convergence
zones that influence the perception of both amplitude and frequency streaming.
If we subtract (voxel by voxel) these common networks from the voxels in panels
A and B we obtain specific networks corresponding only to amplitude and fre-
quency streaming percepts respectively. The networks represented by the voxels
in panels A, B, and C are independent of the changes in the control parameters
since the effects of these parameter changes were subtracted out. Complemen-
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tary to this conclusion, there also exist specific neural networks that influence
the perception of either amplitude or frequency streaming but not both since
there exist voxels in panels A and B complementary to the intersection shown
in Panel C.

5 Conclusions

We have shown in the auditory domain that by specifying primary experimen-
tal stimulus conditions (amplitude and frequency modulation, in our case), to-
gether with appropriate controls, we can identify convergence zones related to
the percepts induced by the primary stimulus conditions. Convergence zones
were determined by subtracting effects present in individual control conditions
using contrasts dependent on relationships among the primary conditions and
controls (see Felix Almonte’s PhD thesis, Florida Atlantic University 2006, for
details). Convergence zones were found mainly within the right parietal areas.
Thus, even though parietal areas may be multimodal, they still account for
unimodal auditory temporal integration. Convergence zones are interpreted as
networks that integrate higher order information leading to specific perceptual
states, thus making them plausible representational candidates for the neural
substrates of awareness. From the synergetic view point, convergence zones ba-
sically track the perceptual dynamics as we propose here, but they also partic-
ipate in a widespread brain network responsible for the overall brain pattern
formation. Hence, when convergence zones change their activation dynamics, it
corresponds to a larger spatiotemporal reorganization of the brain patterns as
described by phase transitions in synergetic systems. From a more traditional
neuroscience perspective, convergence zones form dominant parts of cell assem-
blies in a neural representational strategy, for instance as proposed by Singer,
relying on the dynamic association of feature-specific cells into functionally co-
herent cell assemblies. The cell assemblies represent the constellation of features
defining a particular perceptual object. These possibilities combined with our
experimental results provide support for theoretical models of perception that
employ the idea of convergence zones as mediators for the organization of per-
cepts.
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Abstract. The complex, fluctuating dynamics that abounds in nature
is now easily monitored and analysed, applying either stochastic or de-
terministic methods. It has been demonstrated that complex systems
far from thermodynamic equilibrium, especially living systems, often ex-
hibit time-varying dynamics. To date they have been usually treated
as stochastic. Here we focus on the non-autonomous properties of com-
plex systems and propose a new class of dynamical systems. Namely, we
assume that a basic dynamical unit which inherently possesses an inter-
nal source of energy, is continuously perturbed by the environment and
maintains its stability by adjusting the rate of exchange of energy and
matter with the environment. We provide a mathematical formalism for
such systems, combining the recent theory of pullback attractors with
the theory of self-sustained oscillators. We name the new class of sys-
tems as chronotaxic and, based on measured data, show that the heart
possesses properties characteristic of chronotaxic systems. This means
that its dynamics is largely deterministic, which opens new possibilities
for diagnosis and prediction. We expect that many complex systems will
be identified as chronotaxic and that their models will become much
simpler and more realistic.

Keywords: non-autonomous systems, time-varying dynamics, coupled oscilla-
tors, chronotaxic systems, biological oscillations

1 Introduction

Complex dynamical systems are a significant challenge for theoretical modelling
and for the inverse problem approach [1]. Specifically, we face the problem of
understanding how the dynamics is generated when three components are un-
known. These are the dynamics of the internal system, the environment and
the interaction between them two. The separation of these components is in
general an unsolved problem. Nonetheless, as we show in this chapter, such a
separation is now possible for a certain class of systems. Such systems naturally
resist disorder when exposed to a strong external influence. These features are
© Springer International Publishing Switzerland 2016 227
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typically found in biological systems such as the cardiovascular system [2, 3],
mitochondrial oscillations [4, 5] and the brain [6, 7]. Similar behaviour is also
observed among certain low-temperature systems with simpler dynamics, e.g.
surface state electrons on liquid helium [8]. Attempts have also been made to
apply the properties of limit cycle systems in robotics [9].

Another important aspect of complex systems are ensembles and networks
of oscillatory units. These include the dynamics of thin liquid films, cellular net-
works, brain dynamics and the cardiovascular system as well as social dynamics
and social networks. Theories and models, such as the various Kuramoto models,
have been developed to describe the temporal and spatiotemporal behaviour of
these complex systems [10–13]. This traditional approach involves building an
autonomous model of this ensembles, and then including the influence of the
environment via time-dependent parameters or weak perturbations [9, 14]. Here,
we present a new class of non-autonomous systems that inherently possess a
source of internal energy, are continuously perturbed by external perturbations
and are able to maintain stability while perturbed, resulting in their oscillatory
behaviour with time-variable characteristic frequencies.

In the next section we present our motivation for proposing this new class of
non-autonomous dynamical systems and summarise the background of the work
leading to the proposal. In Sec. 3 we introduce chronotaxic systems and in Sec.
4 we provide their mathematical formulation. In Sec. 5 we discuss methods of
data analysis that are suitable for reconstructing their dynamics from measured
data. Finally, in Sec. 6 we summarise this chapter.

2 Motivation and Background

In nature, and especially for living systems, it is often the case that not all parts
of the system can be observed. The system may, for example, be comprised of
subsystems, many of which might be inaccessible. An example of such a situation
is provided in Fig. 2(a), where different signals related to the cardiovascular
system (respiration, ECG, blood pressure and skin microvascular blood flow in
wrist and ankle) are simultaneously recorded. Several oscillatory processes can be
seen already in the time domain propagated through the system and recorded by
different sensors. The instantaneous frequency of the heart, also known as heart
rate variability (HRV), derived from the R-peaks in the ECG, is also shown.
It is obvious that it is not constant, but rather varies in time and the nature
of this variation – stochastic or deterministic, or both – has been a subject
of intensive research in the past decades. Many studies have shown that these
oscillatory processes originate from certain physiological functions (beating of
the heart, expansion and contractions of the lungs with breathing, movements
of the smooth muscles in the vascular walls, cyclical activation of sympathetic
nerves and oscillatory processes across the endothelial cells that form the inner
layer of the entire vascular system), and that they influence each other (e.g. [2,
15–17]). In such cases, if only one signal is observed, the variation in its dynamics
can be mistakenly classed as stochastic or chaotic. In modelling there is often
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(a) (b)

Fig. 1. Examples of systems with inherent time variability. (a) Simultaneous record-
ings of signals related to the function of the cardiovascular system. The instantaneous
frequency of the heart, known as HRV, derived from R-peaks in the ECG signal, is
also shown indicating that the frequency of the heart beat is not constant, but rather
varies with time. The nature of this variation has been a subject of intensive research
over the past decades and to date there is no commonly accepted opinion whether it
originates from a stochastic or a deterministic source. Figure modified from [2]. (b) The
membrane potential of two types of non-excitable cells as recorded using the whole-cell
configuration of the patch clamp technique [18].

not enough information about what to include in the description of the system;
for example, what is considered to be environment can be a part of the system.
As a result of a lack of information, the model of the resulting complex dynamics
of the observed system can be overcomplicated, and its deterministic component
can be well hidden. Here we argue that the traditional approach to modelling is
not realistic and does not provide a simple way of studying such systems.

Another example of such systems is the cell. Its membrane potential also
exhibits time-varying dynamics. Fig. 1(b) and 2-right show the time-evolution of
the resting membrane potential recorded in non-excitable cells by the whole-cell
patch clamp technique. Information in the subtle fluctuations of the membrane
potential of such cells has been left unexplored. Mitochondrial oscillations, Fig. 2-
left, have also been shown to exhibit complex time-dependent dynamics [4, 5]
with similar frequency as that seen in the cell membrane potential, Fig. 2-right.

The most challenging features of these systems is the inherent time-variability
of their dynamics, which has often been overlooked by standard analytical and
“inverse problem” approaches [19]. Consequently, using conventional approaches,
the dynamics of these systems looks too complex, which prevents any detailed
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Fig. 2. Mitochondrial oscillations viewed in the time domain and in the wavelet trans-
form. (Left) Oscillations in a single mitochondrion using a fluorescent dye which is
sensitive to the membrane potential. Figure modified from [4]. (Right) Intermittent os-
cillations are observed at a similar frequency in the wavelet transform of the membrane
potential of an endothelial cell, recorded using the patch clamp technique [18].

understanding. This furthermore leads to the system being misrepresented as
stochastic and/or chaotic despite exhibiting dynamics that is both deterministic
and stable with respect to perturbations and variations in initial conditions. It
is obvious that the explicit time-dependence, which originates from the non-
autonomous nature of the dynamics, should be taken into account.

The mathematical theory of non-autonomous dynamical systems was intro-
duced to tackle the problem of systems under external influence [20, 21]. The
problem of characterising complex systems under stochastic influence was in-
vestigated almost in parallel within the theory of random dynamical systems
[22, 23]. The latter approaches were mainly motivated by practical applications
including climate [24, 25], neuroscience [26, 27] and evolutionary science [28]. In
climate science efforts have been made to define statistically the effective com-
plexity of time-varying systems [24], and a theory of non-autonomous dynamical
systems has brought new physical information about a system using concepts of
random attractors and time-dependent invariant measures [25]. In neurophysiol-
ogy, the dynamics of the brain has been modelled as a set of interactions between
separate simple systems, rather than as a single complex or chaotic system [27].
In addition, some of the most relevant work has been applied to measured brain
data where it was found that the attractor of the system is time-dependent [26].
Random dynamical systems were used to establish that a variational free energy
minimization provides a sufficient account of self-organised behavior in biological
systems [7]. Meanwhile in evolutionary science, the importance of separating the
various interacting species into distinct open systems has also been identified and
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used to explain how nature maintains diversity [28]. Further development has
also led to the concept of pullback attractors [20], which generalise the notion of
attractors within the theory of non-autonomous dynamical systems, including
random [22] and snapshot [23] attractors.

In parallel with the development of the mathematical theories mentioned
above, practical applications stimulated the development of novel data analysis
methods for the inverse problem approach. In particular, several methods that
provide time-localised analyses of dynamical systems were proposed. In studies
of cardiovascular and brain dynamics, the wavelet transform was applied [15]
to cope with the inherent time variability of such systems as seen in Figs. 1
and 2. Wavelet-based [29, 30], phase coherence [30, 31] and recently Bayesian-
based inference [32, 33] methods have since been introduced to deal with the
properties of systems with inherently time-varying parameters.

Despite these achievements we are still left with the problem of separating the
components of the dynamics. The conditions for when this problem is solvable
have not been strictly defined. In our work [34] we make progress by formu-
lating the new class of non-autonomous dynamical oscillatory systems that we
introduce in the next section.

3 Introduction of Chronotaxic Systems

We define chronotaxic systems through a unification of two concepts: the con-
cept of self-sustained limit cycle oscillations [10, 35], and the concept of time-
dependent attractors [20]. The first concept determines the oscillatory dynamics,
and the second one provides the conditions for stable motion along the limit
cycle. As a result, such systems resist external perturbations because all dynam-
ical variables have stable time-dependent values due to oscillatory dynamics of
a point attractor. As we will see below such properties allow a reduction in the
complexity of the full dynamics of these systems. This is made possible because
the motion of the point attractor can be separated from the weak perturbations
acting on it. In order to illustrate the characteristics of the new class of systems
and the importance of it being distinguishably classified as such, we provide
examples of a theoretical model.

3.1 Autonomous Self-sustained Oscillatory Systems

First, we consider a very important class of oscillatory systems which are defined
by processes which can sustain their oscillatory dynamics and which can resist
external perturbations. In the case of autonomous dynamical systems such pro-
cesses are modeled by self-sustained autonomous oscillatory systems [10, 35, 36].
We review briefly the main properties of these systems in order to provide the
background for the extension of the theory of self-sustained oscillations to the
case of non-autonomous systems.

Since its introduction [36] the theory of self-sustained oscillations has been
proven to be useful in the description of various phenomena [10, 35]. The main
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property of self-sustained oscillations is that they do not depend on the initial
conditions of the system – a system starting from any initial state (allowed
within a model) approaches the regime of stable oscillations. Once the stable
oscillations are established, they do not decay or change in time. In phase space,
such behavior is described by the presence of an asymptotically stable, isolated
closed curve – a limit cycle Γ0. All of the system’s trajectories in phase space
converge to the limit cycle. The motion on the limit cycle is strictly periodic:
thus if the N−dimensional autonomous dynamical system with a state vector
x ∈ Rm is located on a limit cycle at time t, x(t) ∈ Γ0, then after a period
T the system returns to its previous state x(t + T ) = x(t). The limit cycle
has an important property: the phase space coordinate which is tangent to the
limit cycle has a zero Lyapunov exponent, in contrast to all other coordinates
which have negative Lyapunov exponents. Such a coordinate is called a phase,
denoted as α. So perturbations to the phase neither decay nor grow in time. As a
result, when a limit cycle oscillation interacts with another limit cycle oscillation,
synchronization between their phases and frequencies is possible. The ability to
synchronize is used as a criterion to identify limit cycle oscillations.

3.2 Chronotaxic Systems as Non-autonomous Self-sustained
Oscillatory Systems

In the case of non-autonomous systems a variety of oscillations resembling au-
tonomous self-sustained oscillations are possible. Thus, for example, the limit
cycle can be time-dependent and it can change its shape and position, or the
frequency of oscillations can be time-dependent. For the time being we focus
on the latter case, i.e. we assume that the motion along the limit cycle is time-
dependent. The period of oscillations therefore changes in time. By having the
phase introduced as a coordinate on the limit cycle it is possible to characterize
such oscillations by an instantaneous angular velocity α̇, which can be considered
as an instantaneous oscillation frequency on the limit cycle. Such dynamics can
be described by a model of limit cycle oscillations with time-dependent frequen-
cies; but the phase in this model again has a zero Lyapunov exponent. Under
external perturbations the instantaneous frequencies can be changed easily be-
cause there is no restoring force.

There is, however, an important class of stable oscillatory systems for which
the oscillations have a determined frequency. The frequency of oscillations of such
systems cannot easily be changed by external perturbations. Such dynamical sys-
tems can be described as non-autonomous because, in contrast to autonomous
systems, it is possible to consider “limit cycle”-type oscillatory systems where
all dynamical variables (including the phase) have time-dependent steady states.
We propose to consider such systems as a new class [34]. These systems are non-
autonomous, oscillatory and have a stable amplitude dynamics similarly to the
self-sustained limit cycle, but additionally the frequency of the oscillations is
stable against external perturbations. The main feature of these systems, apart
from the presence of an attracting limit cycle, is that the phase has a negative
Lyapunov exponent. This is provided by a point attractor which moves along
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Fig. 3. Relationship between chronotaxic systems and other dynamical systems.
Chronotaxic systems are innately non-stochastic and non-chaotic, being purely deter-
ministic in nature. But they can become both stochastic, and/or chaotic, if perturbed
by stochastic or chaotic influences.

the limit cycle. The attractor determines the time-dependent phase of the sys-
tem. External perturbations cause the system to deviate from this phase but
the frequency stays the same for a certain range of external perturbations. Thus
the frequency is not easily perturbed, but it resists external perturbations. The
system therefore maintains the initial unperturbed dynamics. We name these
systems chronotaxic (chronos – time, taxis – order) [34] to emphasise their defin-
ing property which is the ability to resist perturbations and to maintain their
unperturbed dynamics. Below we define these systems theoretically, analyze their
properties and discuss how they can be identified.

In general, chronotaxic systems are explicitly time-dependent, non-chaotic
and deterministic. They should possess the following properties: 1) Time-depen-
dent perturbations of a self-sustained oscillatory system result in complex dy-
namics. 2) Under such perturbations the stability evident in the unperturbed
limit cycle may be lost. Yet, chronotaxic systems are able to retain their stabil-
ity through the time dependent adjustments of the initial limit cycle.

Before providing the theoretical formulation of chronotaxic systems, let us
point out the position of chronotaxic systems among other dynamical systems.
Fig. 3 illustrates how chronotaxic systems relate to the existing categories (e.g.
deterministic, non-autonomous, dynamical systems); they possess certain fea-
tures which allow us to put them in a separate class.
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4 Mathematical Definition of Chronotaxic Systems

The definition of chronotaxic systems is based on non-autonomous systems.
These are defined by a skew-product flow [20, 37, 38] generated by the autonomous
system of unidirectionally coupled differential equations (which are also called
the master-slave configuration [1], or drive and response systems [39]):

{
ṗ = f(p) ,
ẋ = g(x,p) ,

(1)

where p ∈ Rn, x ∈ Rm. The dynamics of the system x is non-autonomous in
the sense that ẋ = g(x,p(t)). Assuming we have a solution p(t), the dynamics
of x can be expressed in terms of solutions x(t, t0,x0), i.e. it can be reformu-
lated as a process. Mathematically the process means a continuous mapping
(t, t0,x0) �−→ x(t, t0,x0) ∈ Rm for all (t, t0,x0) ∈ R × R × Rm which satisfies
the initial condition x(t0, t0,x0) = x0 and the cocycle property x(t2, t0,x0) =
x(t2, t1,x(t1, t0,x0)).

The steady oscillatory dynamics of chronotaxic systems is provided by an
asymptotically attracting closed isolated trajectory Γ̃0 – a non-autonomous ana-
log of the limit cycle – and by a steady state xA(t) which moves along Γ̃0 trajec-
tory. By the non-autonomous analog Γ̃0 of the limit cycle we understand a closed
isolated trajectory Γ̃0 which attracts all points in the phase space. Points move
along the cycle Γ̃0 thus representing the oscillating dynamics of the system. All
coordinates of the system not tangent to the cycle Γ̃0 are required to have a neg-
ative Lyapunov exponent. A phase α, a coordinate which is tangent to the cycle
Γ̃0, can now be introduced. However, because the system is non-autonomous,
the condition that the phase α has zero Lyapunov exponent is not necessary.
Thus Γ̃0 effectively has all properties of a limit cycle in autonomous systems
except that the phase on Γ̃0 no longer has a zero Lyapunov exponent. Next, it
is required that the influence from the system p on the system x results in a
unique steady state xA(t) which moves along Γ̃0 trajectory. Hence, xA(t) ∈ Γ̃0

for any moment of time t. Therefore, the phase of the system on the Γ̃0 has
negative Lyapunov exponent. Similarly, starting from any initial points on the
limit cycle a system is attracted to a time-dependent point xA(t) at time t.

Attraction at a given moment of time t rather than in the infinite future is
characterised by so called pullback attraction [40, 20]: all trajectories which start
at initial time t0 ∈ R and x0 ∈ Rm, are attracted to xA(t) if one considers the
limit t0 → −∞,

lim
t0→−∞

∣∣x(t, t0,x0)− xA(t)
∣∣ = 0 . (2)

Moreover, the point xA(t) satisfies the condition of invariance

x(t, t0,x
A(t0)) = xA(t) . (3)

According to properties (2) and (3) the point xA(t) is the time-dependent pull-
back attractor. Hence, the system x defined in this section is chronotaxic. The
motion of the point attractor xA(t) along Γ̃0 features as a special kind of limit
cycle for non-autonomous systems – a chronotaxic limit cycle.
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Furthermore, we assume that equations (1) describe a system x which ap-
proaches its point attractor and moves together with it. The motion of the point
attractor is defined by the system p. Thus, it is possible to consider the system
p as part of a bigger system (x,p), where we do not have information about p
or it is impossible to measure it. Deviations of the system x from the attractor
will therefore occur if its dynamics is influenced by processes external to (1).

Having formulated chronotaxic systems in mathematical terms we now sum-
marise their properties. The fact that a limit cycle exists means that the ampli-
tude of a chronotaxic system is sustained at a stable value in the face of external
perturbations. Physically this means that the system is both thermodynami-
cally open and has an internal source of energy. Chronotaxic systems are thus
dissipative dynamical systems. In contrast to autonomous limit-cycle oscillators,
the phase of oscillations can resist external perturbations within a certain range
due to a point attractor which moves along the limit cycle. This also means
that the frequency of oscillations is stable and cannot be substantially changed
by external perturbations. The observed part of the system is also intrinsically
non-autonomous, which means that its motion depends on the initial time as
well as on the actual time, even when external environment is stationary. Below
we provide two examples illustrating the implications of these properties.

4.1 Examples of Chronotaxic Systems

Phase dynamics Generally, the point attractor moves along the attracting
time-dependent cycle Γ̃0(t) instead of the limit cycle Γ̃0. For now, we restrict
the discussion to the case of a stationary Γ0. If the deviations of x from the
limit cycle Γ̃0 are negligible, we can focus only on phase dynamics [10]. The
phase of x on Γ̃0 is given by an unwrapped phase αx. Its value increases by 2π
after each full cycle around Γ̃0. The phase αx(t, t0, αx0) is defined mathemati-
cally as a mapping αx : R × R × S1 → R, which satisfies the initial condition
αx(t0, t0, αx0) = αx0, αx0 ∈ (0, 2π), and the cocycle property αx(t2, t0, αx0) =
αx(t2, t1, arg exp[iαx(t1, t0, αx0)]), where we wrap the phase αx(t1, t0, αx0) on
the interval (0, 2π). The phase of the point attractor xA denoted as αA

x ∈ S1 is
an attractor for the phase αx wrapped on the interval (0, 2π).

The description of the dynamics of the phase of x, αx(t), which has the
attractor αA

x , can be simplified via the coupling of αx to a single time-dependent
phase αp(t),

α̇x = g(αx, αp(t)) , (4)

where g : R × R → R, and αp ∈ R has as angular velocity ω0(t) = α̇p(t).
We assume that the motion of the attractor αA

x is completely described by the
function ω0(t) and by a coupling function g. It is important that phase slips
between αp and αx do not occur, i.e. the difference |αp − αx| lies within a
constant interval of width 2π. Then the value of α̇A

x deviates slightly from ω0(t)
as ω0(t) varies. These deviations decay when ω0(t) is constant.

The stability of the dynamics due to a point attractor moving along a limit
cycle is demonstrated in the following example. Consider only the phase dynam-
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Fig. 4. The phase with unperturbed frequency ω0 = 0.3 (grey lines) and with frequency
perturbed by ξ > 0 (black line) of three systems: (a) the chronotaxic system (5) with
weak perturbations ξ < ξc, ξc = 1.3 (perturbations do not change frequencies), (b) the
chronotaxic system (5) with strong perturbations ξ > ξc (perturbations cause phase
slips, ξ = 1.35), (c) a limit cycle self-sustained oscillator α̇p = ω + ξ, ξ = 0.3, where
frequency can easily change.

ics of a chronotaxic system described by a phase αx :

α̇x = − sin(αx − αp(t)) + ξ , (5)

where αp(t) = ω0t, and ξ is the external perturbation. In the general case the
phase αp(t) can have a more complex than linear dependence on time, and
the external perturbation ξ can be time-dependent too. When |ξ − ω0| < 1
the point attractor αA

x (t) for a phase αx exists and can be found analytically:
αA
x (t) = αp(t)−arcsin(ω0− ξ). Considering for simplicity ω0 > 0, and ξ > 0, the

point attractor exists for ξ < ξc, where ξc = ω0+1. For this case, when ξ < ξc, as
is shown in Fig. 4(a), the frequency αx is not changed by external perturbations,
and the phase is only slightly shifted from the unperturbed time-dependent
phase. When ξ is bigger than ξc, phase slips occur, and the frequency is no
longer stable. However when ξ is close to ξc, there could be a long time interval
between phase slips when the perturbed frequency only slightly deviates from
its unperturbed value. Such a case is shown in Fig. 4(b), where the frequencies
of the perturbed and unperturbed systems are given by the gradients of the
black and grey lines respectively. In Fig. 4(b) time intervals can be clearly seen
where the gradient of the two lines is similar, i.e. the frequencies of the two
systems are similar. These time intervals are separated by phase slips. When
phase slips occur the frequency of the perturbed system changes rapidly during
a short time. After a phase slip, the frequency of the perturbed system, shown
in Fig. 4(b), returns to a value that is close to the frequency of the unperturbed
system. When the self-sustained limit cycle oscillator without a point attractor
is considered, with a phase αp,

α̇p = ω0 + ξ , (6)

any non-zero perturbations ξ do shift in frequency and cause the phase to drift,
as is shown in Fig. 4(c).
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In general ξ can represent a time-dependent perturbation ξ(t). In such a case
the observed behavior will be similar to that shown in Fig. 4(a) – the chrono-
taxic systems will resist external perturbations and the phase of the chronotaxic
system will be characterized by a time-dependent attractor αA

x (t).

5 Chronotaxic Systems in Inverse Problems

In applying the theoretical aspects from the previous section to the real world an
important question must be posed: how can we detect a chronotaxic system from
observations? The following will detail the procedure for detecting chronotaxicity
in a single time series from an observed system, as well as the restrictions for
when this can be used. Later, this framework will be demonstrated by applying
it to data a numerically-generated and a real-world system.

5.1 Time Series Analysis of Chronotaxic Systems

Background One of the most important issues in the analysis of any non-
autonomous system is that many of the common time-independent analytical
methods do not give useful information. In most cases the frequency distribution
of the system is nonstationary, which means the Fourier transform contains a
mixture of the power spectra at different times that becomes difficult to interpret.
In addition, other representations such as probability distributions and phase
space embeddings give a time-averaged view of the system that makes it appear
high-dimensional and stochastic [41, 19].

The usual way of dealing with nonstationary data is to perform the same
analyses but only on part of the time series by using a moving time window.
This creates a number of issues, however, the first of which is that the window
cannot be made infinitesimally small for discrete data. This means that it is not
possible to obtain an instantaneous measure of the system localised exactly at
each point. In the case of the Fourier transform a smaller window size also reduces
the frequency resolution of the Fourier spectrum, which has a huge impact on the
detection of low-frequency oscillations (an effect known as the Gabor limit [42]).
In phase space, the system may be unable to explore all parts of the attractor
and in non-autonomous systems the amount explored is time-dependent, causing
distortions in the reconstructed attractor.

Fortunately, a solution to the problems of the windowed Fourier transform
can be found in the wavelet transform [43],

W (s, t) =

∫ L/2

−L/2

Ψ(s, u − t)x(u)du, (7)

where x(t) is a time series of length L and Ψ(s, t) is a wavelet stretched according
to the scale s. This method calculates each frequency component using a dif-
ferent sized window; shorter for high-frequencies and longer for low-frequencies.
Consequently, the wavelet transform is always optimised to give the best time-
frequency resolution possible given the Gabor limit.
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In the case of phase space analysis there is, however, no methodology to
reconstruct a time-dependent attractor without some sort of “blurring”, which
actually occurs in two forms. The first is the simple fact that the data used in
the embedding is taken from some time interval, where data at the beginning
of the interval correspond to the attractor at a different time from that derived
from data at the end of the interval. The second effect is more subtle as it is
related to the parameters used in the time delay embedding theorem of Takens
and Mañé [44, 45]. In particular, the time delay used ensures that the phase
space dimensions are independent and the parameter is constant for the entire
embedding. When the attractor is non-autonomous, and since the parameter is
not adaptive, this means that the dependence of the dimensions may change in
time, resulting in an attractor that is more blurred (time-dependent) than it
actually is. At present it is therefore best that phase space should be avoided in
the analysis of potentially chronotaxic systems.

Separation of Phase and Amplitude One of the requirements for chrono-
taxic systems is that they possess a limit cycle. The existence of a limit cycle
means that the system can be transformed to polar coordinates where a phase
and amplitude can be defined, which correspond respectively to the angular
direction and radial distance from a reference point.

In the time-frequency domain the transformation to polar coordinates is fairly
trivial. The amplitude of the system’s oscillations in time is known, while the
phase can be found by using a complex basis such as the Morlet wavelet. Even
without a complex basis the phase can be obtained automatically from the inte-
gral of the frequency, which is known for every point in time; but all this assumes
that the system oscillates at one continuous frequency in time. Rapid jumps in
frequency cannot be tracked due to the time-frequency resolution limit, although
this is already a condition for the existence of a point attractor in chronotaxic
systems. The other restriction is that no two oscillatory components should be
present at any one time as, otherwise, each oscillation requires a separate trans-
formation to polar coordinates. The only exception to this is when the oscillations
are in fact harmonics caused by nonlinearities in the system but corresponding
to the same limit cycle oscillation. In this case the harmonics can actually be
used to help extract the phase and amplitude in the time-frequency domain [46].

It is fairly straightforward to calculate the frequency and amplitude of a
limit cycle oscillation for every point in time using the wavelet transform. This
also means that the phase can be found as well since it is simply the frequency
integrated over time. Doing this provides the phase dynamics, but to calculate
the actual Fourier phase one must use the complex Morlet wavelets,

Ψ(s, t) =
1
4
√
π

(
e

2πiωot
s − e−

2πω2
o

2

)
e−

t2

2s2 . (8)

The phase is then arg(W (s, t)).
By separating the phase and amplitude dynamics, one can test to see whether

the oscillations have the properties of a chronotaxic system. In particular, the
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amplitude dynamics corresponds to convergence of the system to the limit cycle,
which is influenced only by a negative Lyapunov exponent and external pertur-
bations. On the other hand the phase dynamics corresponds to convergence to
the point attractor, which is also influenced by a negative Lyapunov exponent
and external perturbations, but also by the motion of the point attractor itself.

Direction of Coupling Another important property of chronotaxic systems is
that they can be decomposed into two parts: the driving part p and the driven
part x. The time-dependent dynamics of the system results from the coupling
between these two parts. Unfortunately, it is usually impossible to obtain the
dynamics corresponding to p from the phase αx while the system is perturbed.
This information must instead come from another time series which contains
only the dynamics of the point attractor and is not influenced by the rest of the
system.

Once the phases αx and αp have been extracted, the next stage is to de-
termine how they are coupled. In chronotaxic systems, the dynamics of αx are
influenced by a coupling to αp. Because αp is not dependent on any variable
related to αx, there should be little or no coupling in the direction from αx to
αp. If there was a strong enough coupling in both directions then the distinction
between the internal system and its environment would become uncertain.

One way of detecting couplings is to calculate the conditional mutual infor-
mation (CMI) between αx and αp and applying the principle of Granger causal-
ity to find the information flow in each direction [29, 47–49]. However, there is
always some baseline information between even two completely unrelated time
series, which means surrogate data must be used to test for significance [50,
16, 19]. There is also no contraint on the form and strength of coupling in a
chronotaxic system being constant in time, but the method for calculating CMI
assumes that the time series is stationary. As before, the immediate solution is
to perform the same analyses using a moving time window but this reduces the
accuracy of the CMI, which means that even very strong couplings may not pass
the significance test given by the surrogate data.

Nonetheless, in a similar way to the wavelet transform, methods can be con-
structed to precisely track changes in the couplings in time. Bayesian inference
[51–53] can be applied to detect the change in the coupling functions between the
phases of two oscillations in time [32, 33]. It assumes that the phase dynamics is
described by

α̇i = ωi + fi(αi) + gi(αi, αj) + ξi(t), (9)

where ωi is the natural frequency of the oscillation, fi(αi) is the self-coupling of
the phase, gi(αi, αj) are the cross-couplings and ξi(t) is white Gaussian noise.
The coupling terms are modelled using a Fourier basis [32, 33]. The most likely
combination of parameters for this basis is inferred by locating the stationary
point in the negative log-likelihood function, known as maximum likelihood esti-
mation. For inferring the coupling parameters for two phases α1,2, this function
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is defined as [32]

S =
N

2
ln |E|+ h

2

N∑
n=1

(c
(l)
k

∂Φl,k(α(1,2),n)

∂αl
(10)

+
[
α̇i,n − c

(i)
k Φi,k(α

∗
(1,2),n)

]
(E−1)ij

[
α̇j,n − c

(j)
k Φj,k(α

∗
(1,2),n)

]
),

where Φ is the Fourier basis, ck are the parameters (Fourier coefficients) of the
basis, E is the correlation matrix for the noise in the two phases (〈ξi(t)ξj(τ)〉 =
δ(t− τ)Eij). The parameters ck are calculated from a covariance matrix Ξ and
can be used to calculate the directionality index d [32]. The Bayesian theorem
is applied by taking Ξ from the previous time window, known as the posterior,
and using it as the starting point for inferring parameters for the next window,
known as the prior. This allows information to propagate between windows,
causing the inferred parameters to become more accurate with time.

Note that, up to this stage, the method still only applies to the case where
the parameters are not time-varying. To account for changes in the values of the
parameters, the prior must take the form of a convolution between the posterior
of the previous window and a diffusion matrix which describes the change in ck
[32, 33]. The standard deviation corresponding to the diffusion of the parameters
is assumed to be a known fraction of the parameters themselves, σk = pck, where
p is known as the propagation constant. This modification allows the method to
track the change in the couplings over time.

5.2 Application

The above methodology is now applied to the time series data of two different
chronotaxic systems.

The first is a phase oscillator, which is already simulated in polar coordinates
so that separation of phase and amplitude is not needed. However, the effect of
noise in the system means that the oscillator does not stay on the point attractor,
so identification of chronotaxic properties is nontrivial.

The second involves real data recorded from the human cardiovascular sys-
tem. In this case the phases are unknown and so the analysis is performed
primarily in the time-frequency domain.

Phase Oscillator Consider the chronotaxic system
{
α̇p = ω0(t),
α̇x = εω0(t) sin(αx − αp) + ξη(t),

(11)

where the coupling function εω0(t) sin(αx−αp) explicitly depends on time, while
the coupling strength ε is constant. The function η(t) is normalised white Gaus-
sian noise with intensity D, where ξ =

√
2D = 1.5. When ξ(t) = 0, |ε| ≥ 1 and

ω0(t) > 0, a time-dependent pullback attractor α∗
x(t) can be found analytically:

α∗
x(t) = αp(t)− arcsin(1/|ε|) + 0.5π(1 + sign(ε)) + 2πk, where k is an arbitrary
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Fig. 5. Trajectory of the system (11) when under strong influence from noise (σ = 5)
in relation to its time-dependent point attractor. Phase slips and perturbations due to
noise for the time series sin(φ) are shown in (a). In (b) the phase φ (black) is shown
against the phase of the point attractor (grey). The Morlet wavelet transform power
spectrum of sin(φ) is shown in (c), revealing a continuous time-dependent frequency
corresponding to the motion of the point attractor. The direction of coupling found
using Bayesian inference is shown in (d) with the directionality index d taking values
from -1 to 1, where positive values indicate coupling from the attractor to the oscillator
and negative values indicate coupling in the opposite direction.

integer. Assuming the function sin(αx) as an observed signal from the system,
we analyse its time series and present results in Fig. 5 using ε = 1.2 and

ω0(t) = ω1

[
1− cos(ω2t)

3
+

cos(ω3t)

3

]
, (12)

with ω1 = 2π rad s−1, ω2 = 0.002 rad s−1 and ω3 = 0.001 π rad s−1.
Figure 5 (a) shows a sample of the complex dynamics seen in the time series

sin(αx). The strength of the noise is such that the oscillator undergoes phase
slips and it is not clear from Figure 5(b) that the phase is in any way coupled
to the phase of the unperturbed system (i.e. αA

x ). Figure 5(c) provides evidence
that some underlying deterministic dynamics exist in the system, where a fairly
continuous line can be observed in the time-frequency domain. From the data
in figure 5(d) it is clear that there is a strong coupling in the direction from the
oscillator to the point attractor.

Cardiorespiratory System Time series analogous to the previous example of
a coupled phase oscillator can be generated from the cardiorespiratory system.
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Fig. 6. Analysis of (a) respiration and (b) HRV time series of a subject whose breathing
was paced quasi-periodically. In the time domain (top) the influence of the respiration
can be seen as oscillations of variable amplitude and frequency. The wavelet transforms
(bottom) show that these oscillations closely follow the respiration frequency. The phase
space plots (c) and (d) show the time delay embedded time series of (c) detrended
HRV, h(t), with time delay τ = 1.9 s, and (d) xh(t) = cos(αh(t)) with time delay
τ = 1.5 s, where αh(t) is a phase of h(t) which was reconstructed using nonlinear mode
decomposition [46]. In (d) small parts of the embedded trajectory during time intervals
(t, t+ 2π/ω0(t)) reveal a time-dependent cycle. Figure modified from [34].

The electrocardiogram and respiration (measured using a stretch-sensitive belt
around the chest) of a human subject were recorded for 30 minutes while they lay
in a supine position. During the recording the respiration was modulated using
the same function as (12) but with ω1 = 0.3π rad s−1, ω2 = 0.0275π rad s−1

and ω3 = 0.01325π rad s−1.

Fig. 6 shows the analysis of the time series in the time-frequency domain.
The wavelet transform of the heart rate variability shows the strong influence
of the respiration frequency. More important, however, is that the line observed
in the wavelet transform is discontinuous where some of these gaps correspond
to phase slips. These would not be expected to occur if the phase of the heart
rate variability did not contain an attracting point. The phase space embeddings
show further evidence of chronotaxic dynamics. While the standard embedding
in (c) appears to show a very complex and noisy system, the embedding after
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phase and amplitude separation in (d) reveals an attractor which corresponds
to a stable but time-dependent cycle.

5.3 Conclusion

Chronotaxic systems appear to be among the most challenging to analyse and
interpret effectively in inverse problems. Many common forms of analysis can
cause these systems to appear high-dimensional or even stochastic because the
methods in question do not track time-dependent dynamics. Instead, methods
such as the wavelet transform are required to separate the phase and amplitude
dynamics from the time-frequency domain, allowing further analysis by methods
based on Bayesian inference to extract the nature of the interactions within the
system. Now that we have formulated them as a specific class of systems and
defined their distinguishing properties, we expect new methods to be proposed
and generally that their properties easier to identify from measured data.

6 Summary

We have introduced a new class of systems and named it chronotaxic [34] to en-
compass their defining properties – the ability to sustain stability in the ampli-
tude and the time-dependent frequencies of oscillation under continuous pertur-
bation. These systems are non-autonomous and oscillatory. We have presented
a theoretical description of such systems and formulated their defining prop-
erties. We have shown how their ability to sustain stable oscillatory dynamics
against external perturbation is generated by a time-dependent point attractor
with oscillatory motion.

Chronotaxic systems have many potential applications. Among these are the
modelling of complex systems, networks and ensembles of oscillators when not all
parts of the dynamics are directly observed. The idea of chronotaxic systems was
primarily motivated by the analysis of living systems, where inherently stable
but time-varying characteristic frequencies were identified, and we expect them
to be essential for their effective modelling.

In addition, chronotaxic systems provide a new mechanism for obtaining
complex dynamics from stable deterministic dynamics. Instead of the traditional
view of this type of dynamics as being stochastic, we now propose this new
class of systems that categorizes them as deterministic. While the dynamics
under external perturbation may look stochastic, we have demonstrated that the
underlying deterministic motion of the point attractor can be extracted. Thus the
complexity in the description of chronotaxic systems can be reduced, which we
have illustrated using inverse problem methods. The introduction of chronotaxic
systems is therefore changing the perception of what is seen as the deterministic
universe. Hence, we expect many chronotaxic systems to be discovered in nature,
leading to an improved understanding of their dynamical behavior.
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29. Jamšek, J., Paluš, M., Stefanovska, A.: Detecting couplings between interacting
oscillators with time-varying basic frequencies: Instantaneous wavelet bispectrum
and information theoretic approach. Phys. Rev. E 81, 036207 (2010)

30. Sheppard, L.W., Stefanovska, A., McClintock, P.V.E.: Detecting the harmonics of
oscillations with time-variable frequencies. Phys. Rev. E 83, 016206 (2011)

31. Sheppard, L.W., Stefanovska, A., McClintock, P.V.E.: Testing for time-localised
coherence in bivariate data. Phys. Rev. E 85, 046205 (2012)

32. Stankovski, T., Duggento, A., McClintock, P.V.E., Stefanovska, A.: Inference of
time-evolving coupled dynamical systems in the presence of noise. Phys. Rev. Lett.
109, 024101 (2012)

33. Duggento, A., Stankovski, T., McClintock, P.V.E., Stefanovska, A.: Dynamical
Bayesian inference of time-evolving interactions: From a pair of coupled oscillators
to networks of oscillators. Phys. Rev. E 86, 061126 (2012)

34. Suprunenko, Y.F., Clemson, P.T., Stefanovska, A.: Chronotaxic systems: A new
class of self-sustained non-autonomous oscillators. Phys. Rev. Lett. 111, 024101
(2013)

35. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization - A Universal Concept
in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

pelster@zedat.fu-berlin.de



246 A. Stefanovska et al.

36. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: The Theory of Oscillators. Pergamon
Press, Oxford (1966)

37. Kloeden, P.E., Kozyakin, V.S.: The perturbation of attractors of skew-product
flows with a shadowing driving system. Dis. Cont. Dyn. Sys. 7, 883–893 (2001)

38. Kloeden, P.E., Lorenz, T.: Mean-square random dynamical systems. J. Diff. Eqns.
253, 1422–1438 (2012)

39. Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equiva-
lence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816–
1819 (1996)

40. Kloeden, P.E.: Pullback attractors in nonautonomous difference equations. J. Dif-
ference Eqns. Appl. 7, 883–893 (2001)

41. Clemson, P., Stefanovska, A.: Time series analysis of turbulent and non-
autonomous systems. In: AIP Conf. Proc. 1468, Let’s Face Chaos Through Non-
linear Dynamics: 8th International Summer School/Conference, pp. 69–81. AIP,
Melville (2012)

42. Gabor, D.: Theory of communication. J. IEEE 93, 429–457 (1946)
43. Kaiser, G.: A Friendly Guide to Wavelets. Birkhäuser, Boston (1994)
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Abstract. The synergetic computer that has originally been developed
as an algorithm for pattern recognition has also been used in the life sci-
ences as a model for various self-organizing perceptual processes. Coarse-
graining of the order parameter equations of the synergetic computer is
discussed for sets of to-be-perceived patterns that vary in the degree
to which they can be distinguished from each other. Coarse-gaining is
exploited to conduct a model-based analysis on literature data of multi-
stable perception under schizophrenia as tested in motion-induced blind-
ness (MIB) experiments. The analysis not only supports earlier sugges-
tions that schizophrenia reduces the occurrence frequency of the MIB
effect but also suggests that the perceptual system of schizophrenia pa-
tients is characterized by a greater degree of asymmetry.

Keywords: multistable perception, schizophrenia, synergetic computer, motion-
induced blindness

1 Introduction

The synergetic computer is an algorithm for pattern recognition [1]. The algo-
rithm is based on self-organization principles and has been developed within
the framework of synergetics [2]. Although the algorithm has been developed to
solve pattern recognition problems [1, 3–7], it has been generalized and applied
in various related, interdisciplinary fields. In particular, the algorithm has been
generalized to allow for hierarchical pattern recognition processes [8]. Economic
and industrial applications in the field of settlement dynamics [9, 10], job as-
signment problems and robotics [11–17], and signal transmission via message
buffer [18] have been addressed. Although the synergetic computer describes an
artifical associative memory or decision-making system, due to its roots in syner-
getics and the theory of self-organization, the synergetic computer has also been
regarded as a benchmark model for self-organizing psychological processes and
self-organizing motor control system. In this context, oscillatory phenomenon
induced by certain perceptual [19, 20], and auditory [21, 22] stimuli have been
© Springer International Publishing Switzerland 2016 247
A. Pelster and G. Wunner (eds.), Selforganization in Complex Systems:
The Past, Present, and Future of Synergetics, Understanding Complex Systems,
DOI: 10.1007/978-3-319-27635-9_15
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discussed and application to priming [23, 24], grasping [25, 26], and motor devel-
opment during infancy [27, 28] can be found in the literature.

The pattern recognition algorithm is a winner-takes-all system that for a
given initial stimulus pattern converges to a fixed point solution indicating the
perception of a stored prototype pattern. The algorithm can be discussed from
the perspective of the to-be-perceived and stored patterns. Alternatively, the
algorithm can be studied from the perspective of the pattern amplitudes. In line
with the fact that the synergetic computer is considered as a computational or
artificial self-organizing system mimicking natural self-organizing systems, the
amplitudes have typically been considered as order parameters [1, 29, 30].

Let ξk denote the order parameters of k = 1, . . . , N patterns. We consider the
order-parameter dynamics of the synergetic computer in the following form [1]

d

dt
ξk = ξk

⎛
⎝λ−B

N∑
m �=k,m=1

ξ2m − C

N∑
m=1

ξ2m

⎞
⎠ (1)

with λ,B,C > 0. Equation (1) can be cast into a form that is convenient for
conducting a stability analysis of fixed points in the generalized case that will
be considered in Section 3 when the attention parameter λ depends on the
pattern index [7, 23–27]. Accordingly, Eq. (1) can equivalently be expressed by

dξk/dt = ξk(λ−g C
∑N

m �=k,m=1 ξ
2
m−Cξ2k), where we have introduced the coupling

parameter g = 1+B/C > 1. The parameter C can be put to C = 1 without loss
of generality such that

d

dt
ξk = ξk

⎛
⎝λ− g

N∑
m �=k,m=1

ξ2m − ξ2k

⎞
⎠ . (2)

Alternatively, the parameter λ and the order parameters ξk may be rescaled by√
C and the rescaled equations are considered [26]. Solutions of Eq. (2) under

initial conditions ξk(0) ≥ 0 will be considered, which implies that all order
parameters remain semi-positive definite for all times (i.e., ξk(t) > 0 ∀t ≥ 0).

In what follows, we will derive order parameter equations on several levels
of coarse-graining. The ideas that will be developed below are closely related to
the ideas developed in earlier studies on hierarchical generalizations of the order
parameter equations of the synergetic computer [8].

2 Approximative coarse-grained order parameter
dynamics

In Section 2.1, we will consider first a special case that will be used in Section 3
in the application for multistable perception of schizophrenia. Subsequently, in
section 2.2, the general case will be discussed.
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2.1 Special case

In this section, it is assumed that all patterns k = 2, . . . , N possess a common
feature that is not present in the ’default’ pattern k = 1. In this special case, we
consider the course-grained order parameter U defined by

U =

√∑
s∈IU

ξ2s (3)

with the index set IU = {2, . . . , N}. Due to the ’winner-takes-all’ property of the
synergetic computer (see Section 1) it follows that if one of the order parameters
ξ∗k with k∗ ∈ IU becomes finite in the stationary case, then U = ξ∗k > 0. If the
order parameter ξ1 of the default pattern becomes finite in the stationary case,
then U = 0.

Before exploiting the definition (3), it is useful to cast the order parameter
equations (2) of the synergetic computer in yet another form. Eq. (2) can be
written like

d

dt
ξk = ξk

(
λ− g

N∑
m=1

ξ2m − (1 − g)ξ2k

)
, (4)

where the mixed term contains the sum of all squared order parameters. Note
that in Eq. (4) the cubic term ξ3k actually has a positive coefficient because of
g > 1 (or since −(1 − g) = B > 0 holds using C = 1 again). Substituting the
definition (3) into Eq. (4), we obtain

d

dt
ξ1 = ξ1

(
λ− g[U + ξ21 ]− (1− g)ξ21

)
,

d

dt
U = U

(
λ− g[U + ξ21 ]

)
− (1− g)

1

U

∑
s∈IU

ξ4s . (5)

In the stationary case, we have either U = ξ∗k > 0 and ξj �=k∗ = 0 if a pattern
k∗ ∈ IU is selected or U = 0, ξk∈IU = 0, ξ1 > 0. In both cases, the dynamical
system (5) for ξ1 and U exhibits the same stationary fixed points as the coupled
dynamical system

d

dt
ξ1,a = ξ1,a

(
λ− g[Ua + ξ21,a]− (1− g)ξ21,a

)
,

d

dt
Ua = Ua

(
λ− g[Ua + ξ21,a]− (1− g)U2

a

)
(6)

for the variables ξ1,a and Ua. Note that Eq. (6) assumes the form of the order
parameter equations of the synergetic computer again. The question arises to
what extent the variables ξ1,a and Ua can be regarded as useful approximations
to the order parameter ξ1 and the coarse-grained order parameter U .

In this context, we first note that the expression U4 reads

U4 =

[∑
s∈IU

ξ2s

]2
=
∑
s∈IU

ξ4s +mixed terms of the form
(
ξ2i ξ

2
j �=i

)
i,j∈IU

. (7)
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Consequently, Eq. (5) reads

d

dt
ξ1 = ξ1

(
λ− g[U + ξ21 ]− (1− g)ξ21

)
,

d

dt
U = U

(
λ− g[U + ξ21 ]− (1− g)U2

)

+mixed 3rd order terms of the form
1

U

(
ξ2i ξ

2
j �=i

)
i,j∈IU

. (8)

As indicated the mixed terms are considered third order terms because the prod-
ucts of order 4 are divided with the variable U that depends linearly on the scales
of the variables ξk∈IU .

The dynamical systems (6) and (8) differ by the mixed terms occurring in
the U -dynamics of the model (8). In order to assess the relevance of these terms,
we apply a concept from psychophysics: the ’just noticeable difference’ (JND)
of sensations [31]. We assume that all patterns under consideration differ from
each other by a distance measure D that will not be specified in detailed. For
a human observer the patterns under consideration differ such that they can be
distinguished from each other. In this sense, for all pairs of patterns the distance
measure D is larger than a certain threshold that corresponds to the JND.

Mathematically speaking, we assume that the initial conditions are such that
the order parameters ξk differ at t = 0 by a certain amount that reflects the dis-
tance D between the patterns and accounts for the aforementioned requirement
that the sensation patterns (stimuli) under consideration differ at least by the
JND. We distinguish between two cases.

Case I: It is assumed that patterns with a JND induce relative large differ-
ences between the initial values ξk(0) of the order parameters. Accordingly, we
assume that

∃k∗ : ∀j �= k∗ : ξk∗(0)� ξj(0) . (9)

In this case, the order parameter ξ∗k of the pattern k∗ will not only win the
selection process defined by Eq. (4) but the mixed terms in the U -dynamics of
Eq. (8) will be negligibly small at all times relative to the U3 term:

∀t ≥ 0 : U3(t)� mixed 3rd order terms of the form
1

U(t)

(
ξ2i (t)ξ

2
j �=i(t)

)
i,j∈IU

.

If Eqs. (10) holds, then the dynamical systems (6) and (8) exhibit approximately
the same transient and stationary solutions. Consequently, the model (6) involv-
ing the variable Ua is a good approximative model for the original order pa-
rameter model (4) of the synergetic computer. In particular, in the limiting case
ξj �=k∗(0)/ξ∗k(0) → 0 a point-wise convergence ξ1,a(t) → ξ1(t) and Ua(t) → U(t)
holds at any time point t provided that we use the consistent initial conditions
ξ1,a(0) = ξ1(0) and Ua(0) = U(0). An illustration is shown in Fig. 1AB.

Case II: It is assumed that patterns with a JND induce differences between
order parameters ξk(0) that are scaled to the size of the set of patterns and are
at least of the magnitude

√
N − 1. More precisely, we assume that

∃k∗ : ∀j �= k∗ : ξk∗(0) > ξj(0)
√
N − 1 . (10)
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Case I

A

ξ 1
,ξ

1,
a
[a
.u
.]

U
,U

a
[a
.u
.] B

Ti me [a.u .]

Case II

C

Ti me [a.u .]

D

Case III

E

Ti me [a.u .]

F

Fig. 1. Illustrations of solutions for case I (A,B), II (C,D), III (E,F) initial conditions.
Solutions of Eq. (4) (solid lines) and Eq. (6) (circles) are shown under consistent initial
condition: ξ1,a(0) = ξ1(0), Ua(0) = U(0). See text for details. Parameters: N = 10,
λ = 2.0, g = 1.3. Case I initial conditions: ξ5(0) = 0.2, ξj �=5(0) = 0.2/

√
(N − 1)/10/(1+

0.1ε). Case II: ξ5(0) = 0.2, ξj �=5(0) = 0.2/
√

(N − 1)/(1 + 0.2ε). Case III: ξ1(0) = 0.25,
ξj �=1(0) = 0.2 + 0.01ε. In all cases, ε was uniformly distributed in [0, 1].

Let us distinguish between the two sub-cases that k∗ ∈ IU and k∗ �∈ IU (i.e.,
k∗ = 1). If k∗ ∈ IU then the original order parameter dynamics will converge to
a fixed point with ξk∗ > 0 such that in the stationary case U(st) = ξk∗(st) holds.
Moreover, it follows that U(0) > ξk∗(0) > ξ1(0). Consequently, if the dynamical
system (6) is considered under consistent initial conditions (i.e., ξ1,a(0) = ξ1(0)
and Ua(0) = U(0)), then Ua converges to the finite stationary value Ua(st) =
U(st) = ξk∗(st) > 0 of the original dynamical system (4) and x1,a(t) converges
to zero consistent with the stationary behavior of ξ1: ξ1,a(st) = ξ1(st) = 0. In
contrast, if k∗ = 1 then the original selection equation dynamics (4) converges
to the fixed point with ξ1 > 0 and U = 0. In addition, it follows that

U2(0) =
∑
s∈IU

ξ2s (0) <
∑
s∈IU

ξ21(0)

N − 1
= ξ21(0) ⇒ U(0) < ξ1(0) . (11)

If, again, the dynamical system (6) is considered under consistent initial con-
ditions (i.e., ξ1,a(0) = ξ1(0) and Ua(0) = U(0)), then Ua converges to the sta-
tionary value Ua(st) = U(st) = 0 and x1,a(t) converges to its finite fixed point
value consistent with the stationary behavior of ξ1: ξ1,a(st) = ξ1(st) > 0. In
summary, if condition (10) is satisfied, then the dynamical system (6) involving
the variable Ua exhibits the same stationary behavior than the original selection
equation model (4) provided that both dynamical systems are considered under
consistent initial conditions. Figure 1CD exemplifies solutions of the dynamical
systems (4) and (6) for this case.

In view of the fact that in the two aforementioned cases the performance of
the dynamical model (6) is consistent in the stationary case with the original
order parameter equation model (4) and given that both models exhibit formally
the same mathematical structure, we will consider in what follows the coupled
differential equations (6) involving the variables ξ1,a and Ua as the (approxima-
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tive) coarse-grained order parameter equation model of the original synergetic
computer model (4) (or (1)) involving the variables ξ1, . . . , ξN .

Finally, let us consider the general case in which neither of the two conditions
described above are satisfied.

Case III: If the conditions considered in cases I and II are not satisfied, then
the dynamical model (6) may exhibit solutions that are inconsistent with the
order parameter dynamics (4) even if both dynamical models are solved under
consistent initial conditions. Let us prove this statement by an example. Let
ξ1(0) = b > 0 and ξk∈IU (0) = a > 0 with b > a. For these initial conditions
the original pattern recognition algorithm (4) converges to a fixed point with
ξ1(st) > 0 and ξk = 0 for k ∈ IU indicating that the default pattern k = 1 is
recognized. Next, we consider the special case in which the distance D between
the default pattern k = 1 and the other patterns k ≥ 2 is not that large such
that if the default pattern is presented we have b > a but b2 < (N − 1)a2.
That is, the condition of case II is violated. From b2 < (N − 1)a2 it follows
that U(0)2 = (N − 1)a2 > a2 = ξ21(0). In other words, although for b > a
and b2 < (N − 1)a2 the condition ξ1(0) > ξk(0) holds for any k �= 1, we have
U(0) > ξ1(0). Consequently, if we solve the coarse-grained selection equations
(6) under consistent initial conditions (ξ1,a(0) = ξ1(0) and Ua(0) = U(0)), then
Ua(t) converges to a finite stationary value Ua(st) > 0 and x1,a(t) converges to
zero in the stationary case. The coarse-grained dynamical model (6) indicates
that one of the patterns k ≥ 2 was recognized, which is in contradiction with the
recognition process described by the original selection equations (4). Figure 1EF
illustrates this case.

In summary, we have considered the special case in which the set of N pat-
terns under considerations exhibits a distinct default pattern and N−1 patterns
that constitute a class of non-default patterns. On a coarse-grained level, we
considered the order parameters x1 and U that describe whether a pattern is
recognized as the default pattern (ξ1(st) > 0) or as a pattern belonging to the
class of non-default patterns (U(st) > 0). It was shown that for this special case
a dynamical model for the variables ξ1,a and Ua can be derived (see Eq. (6))
that under certain circumstances behave approximatively in the same way as ξ1
and U , respectively. More precisely, if patterns are considered that differ at least
by a JND that induces (i) a relative large gap or (ii) at least a gap of

√
N − 1 in

the spectrum of initial amplitudes ξk(0), then in the stationary case the coarse-
grained order parameter dynamics involving ξ1,a and Ua yields consistent results
with the fine-grained dynamics of ξ1, . . . , ξN . This implies that the pattern se-
lection made by the two dynamical systems is consistent. Under the condition
(i) the two dynamical models exhibit also approximatively the same transient
solutions. If neither of the two gap conditions (i) and (ii) are satisfied, then the
two models may yield inconsistent results. These considerations are summarized
schematically in Table 1.

Importantly, the two dynamical models for the approximative coarse-grained
order parameters ξ1,a and Ua and for the fine-grained order parameters ξ1, . . . , ξN
exhibit formally the same mathematical structure.
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Table 1. Correspondence of fine- and coarse grained dynamics

Case ’JND’ impact Initial conditions Fine- & coarse-grained

I Large gap ∃k∗ : ∀j �= k∗ : Consistent transient

ξk∗(0) � ξj(0) and stationary solutions

II Moderate gap ∃k∗ : ∀j �= k∗ : Consistent

ξk∗(0) >
√
N − 1 ξj(0) stationary solutions

III Gap conditions Stationary solutions may

I and II not satisfied or may not be consistent

2.2 General case

Let us consider M levels of coarse-graining L ∈ {1, ..,M}. The first level (L = 1)
contains N1 patterns. To each pattern an order parameter ξk,1 is assigned that is
used to indicate whether the pattern is recognized. On the second level, patterns
are grouped together such that there are N2 < N1 pattern classes. To each
pattern class a coarse-grained order parameter ξk,2 is assigned that is used to
indicate whether a pattern out of the class is recognized. In general, each level
exhibits NL pattern classes (with N1 > N2 > · · · > NM ) that are described by
NL coarse-grained order parameters ξk,L. For the sake of simplicity, the patterns
of level L = 1 and the corresponding amplitudes ξk,1 will be treated as if they
were pattern classes and pattern class amplitudes, respectively.

At this stage, it is useful to introduce the index sets Ik,L+1 ⊂ {1, . . . , NL}.
The index set Ik,L+1 contains all the pattern class indices j from the coarse-
grained level L that are grouped together to the class k of the level L + 1.
For example, the index set IU discussed in Section 2.1 becomes Ik=2,L=2 =
{2, . . . , N}. The sets satisfy ∀k �= j , k, j ∈ {1, . . . , NL+1} : Ik,L+1 ∩ Ij,L+1 = ∅
and ∪NL+1

k=1 Ik,L+1 = {1, . . . , NL}. In words, all sets belonging to a particular
level of coarse-graining are mutually disjunct and the unification of all sets of
a coarse-graining level L + 1 gives the index set of all pattern classes of the
previous level L. In analogy to Eq. (3), coarse-grained order parameters ξk,L+1

are defined iteratively by

ξk,L+1 =

√ ∑
s∈Ik,L+1

ξ2s,L . (12)

Let us assume that for a particular level L of coarse-graining the selection equa-
tions for ξk,L assume the form of the order parameter equations of the synergetic
computer. In analogy to Eq. (4), we consider the selection equations

d

dt
ξk,L = ξk,L

(
λ− g

NL∑
m=1

ξ2m,L − (1− g)ξ2k,L

)
(13)
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for k ∈ {1, . . . , NL}. Proceeding as in Section 2.1, we use

NL∑
m=1

ξ2m,L =

NL+1∑
k=1

⎛
⎝ ∑

s∈Ik,L+1

ξ2s,L

⎞
⎠ =

NL+1∑
m=1

ξ2m,L+1 . (14)

Differentiating Eq. (12) with respect to time t and substituting Eqs. (13) and
(14) into the resulting equation, we obtain in analogy to Eq. (5) the following
result

d

dt
ξk,L+1 = ξk,L+1

⎛
⎝λ− g

NL+1∑
m=1

ξ2m,L+1

⎞
⎠− (1− g)

1

ξk,L+1

∑
s∈Ik,L+1

ξ4s,L (15)

for k ∈ {1, . . . , NL+1}. Using the same line of arguments as in Section 2.1, the
most right standing term in Eq. (15) can be expressed in terms of ξk,L+1 and
mixed terms of the form ξ2i,Lξ

2
j,L with i �= j. Consequently, in analogy to Eq. (8),

Eq. (15) can be cast into the form

d

dt
ξk,L+1 = ξk,L+1

⎛
⎝λ− g

NL+1∑
m=1

ξ2m,L+1 − (1− g)ξ2k,L+1

⎞
⎠

+mixed 3rd order terms
1

ξk,L+1

(
ξ2i,Lξ

2
j �=i,L

)
i,j∈Ik,L+1

. (16)

Neglecting the third order mixed terms, we obtain a coupled set of approximate
selection equations of the coarse-grained level L+ 1 that read

d

dt
ξk,L+1 = ξk,L+1

⎛
⎝λ− g

NL+1∑
m=1

ξ2m,L+1 − (1 − g)ξ2k,L+1

⎞
⎠ (17)

and just assumes the form of the order parameter equations of the previous level
L, see Eq. (13).

Finally, we assume that the patterns under consideration exhibit a JND that
induces gap conditions as discussed in cases I and II of Section 2.1 for the
initial amplitudes ξk,L(0) on all coarse-grained levels L. Under these conditions,
the mixed third order terms in Eq. (16) can be neglected (Case I) or affect
the transient dynamics only to a relatively small degree which implies that the
approximate selection equations (17) of the level L + 1 yield consistent results
with the selection equations (13) of the level L (Case II).

Let us exemplify the relationship between the selection equations (13) and
(17) on subsequent levels L and L+1 of coarse-graining. For illustration purposes
it is sufficient to consider just two levels M = 2 and a set of N1 = 4 patterns on
L = 1 that is reduced to N2 = 2 pattern classes on the level L = 2. Furthermore,
the patterns k = 1, 2 and k = 3, 4 on L = 1 are assumed to constitute the pattern
classes k = 1 and k = 2 on L = 2. That is, we have I1,2 = {1, 2} and I2,2 = {3, 4}.
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Fig. 2. ξ1,2 (panel A) and ξ2,2 (panel B) computed from Eqs. (18) and (19) (solid lines)
and Eq. (20) (circles) for consistent Case II conditions with ξ3,1(0) = 0.2, ξj �=3(0) =
0.2/

√
(N − 1)/(1 + 0.2ε), ε uniformly distributed in [0, 1], and N = 4, λ = 2, g = 1.3.

For L = 1 the order parameter equations for ξk,1 with k = 1, 2, 3, 4 read

d

dt
ξk,1 = ξk,1

(
λ− g

NL∑
m=1

ξ2m,L − (1− g)ξ2k,1

)
(18)

and the coarse-grained order parameters on the level L = 2 are defined by

ξ1,2 =
√
ξ21,1 + ξ22,1 , ξ2,2 =

√
ξ23,1 + ξ24,1 . (19)

Under Case I and II initial conditions, the coarse-grained order parameters on
level L = 2 satisfy at least approximately the selection equations

d

dt
ξ1,2 = ξ1,2

(
λ− g[ξ21,2 + ξ22,2]− (1− g)ξ21,2

)
,

d

dt
ξ2,2 = ξ2,2

(
λ− g[ξ21,2 + ξ22,2]− (1− g)ξ22,2

)
. (20)

Under case I initial conditions ∃ k∗ : ξk∗,1(0)� ξj �=k∗ ,1(0) the solutions of the
coarse-grained differential equations (20) are good approximations to the exact
solutions calculated from Eqs. (18) and (19) provided consistent initial conditions

ξ2,1(0) =
√
ξ21,1(0) + ξ22,1(0) and ξ2,2(0) =

√
ξ23,1(0) + ξ24,1(0) are used. In order

to illustrate this correspondence, we solved Eqs. (18), (19), and (20) numerically,
see Figure 2.

3 Motion-induced blindness and schizophrenia

Motion-induced blindness is an optical illusion produced by a visual stimulus
composed of a fixed stationary foreground pattern and a rotating background
pattern. Typically, the foreground pattern consists of three yellow dots arranged
in a triangle, whereas the background pattern is a rotating array (or grid) of
blue dots. A human observer exposed to the MIB stimulus typically reports that
some of the target dots disappear for a while. In this sense, the motion of the
background pattern induces a temporary blindness with respect to the target
pattern [32].
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3.1 Modeling of fine- and coarse-grained order parameter dynamics

We distinguish between 8 spatio-temporal patterns on the level L = 1 that
fall into two classes on the coarse-grained level L = 2. There is one perceptual
pattern not subjected to a MIB effect (i.e., the three yellow target dots are
perceived), which is regarded as the default pattern indexed by k = 1 on L = 1.
The default pattern constitutes its own class on L = 2 Moreover, there are 7
different patterns that are subjected to a MIB effect (i.e., at least one dot is
perceived as being absent). They are indexed by k = 2, . . . , 8 on L = 1. and
constitute the class of ’incomplete patterns’ on L = 2. On L = 2 the default
pattern is index by k = 1 and the incomplete patter class is index by k = 2.
Following earlier work on selective attention phenomena [1, 4], certain oscillatory
phenomena of the perceptual [19, 20] and auditory system [21, 22], priming [23,
24], grasping [25, 26], and child development [27, 28], we assume that in general
the attention parameters of the two classes are different from each other. In this
case, the evolution equations for L = 1 and L = 2 read

d

dt
ξk,1 = ξk,1

⎛
⎝λk,1 − g

N∑
m=1,m �=k

ξ2m,1 − ξ2k,1

⎞
⎠ , k = 1, . . . , 8 (21)

and

d

dt
ξ1,2 = ξ1,2

(
λ1,2 − g U2 − ξ21,2

)
,

d

dt
U = U

(
λU − g ξ21,2 − U2

)
(22)

with λ1,1 = λ1,2 and λk,2 = λU for k = 2, . . . , 8. The coarse-grained order
parameter variables ξ1,2 and U are related to the fine-grained order parameters

ξ1,1, . . . , ξ8,1 as discussed in the Section 2 with ξ1,2 ↔ ξ1,1 and U ↔
√∑8

k=2 ξ
2
k,1.

The stability of the winner-takes-all fixed points ξk∗,1 =
√
λk∗,1 ∧ ξj �=k∗ ,1 = 0

of Eq. (21) and (ξ1,2 =
√
λ1,2 , U = 0), (ξ1,2 = 0 , U =

√
λU ) for Eq. (22)

depend on the attention parameter spectrum. The stability of fixed points of
the synergetic computer in the case of an inhomogeneous attention parameter
spectrum has been discussed in detail in a series of studies [7, 23–27]. From these
studies it follows that for the default pattern the stability depends on λ1,2, λU ,
and g like

ξ1,1 =
√
λ1,2 ∧ ξk≥2,1 = 0

ξ1,2 =
√
λ1,2 ∧ U = 0

}
=

{
stable if λ1,2 > λU/g
unstable if λ1,2 < λU/g

. (23)

By analogy, for the incomplete patterns we have

∃ k∗ ≥ 2 : ξk∗,1 =
√
λU ∧ ξj �=k∗ ,1 = 0

ξ1,2 = 0 ∧ U =
√
λU

}
=

{
stable if λU > λ1,2/g
unstable if λU < λ1,2/g

. (24)

In what follows, we will primarily focus on the coarse-grained model. The
oscillatory switching between the default pattern and a pattern out of the class of
incomplete patterns can be modeled by assuming that the attention parameters
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λ1,2 and λU vary in time [18–22]. More precisely, we assume that if the default
pattern is perceived then λ1,2 decays gradually until the critical ratio λ1,2 = λU/g
is reached at which the percept becomes unstable, see Eq. (23). Consequently, the
perceptual dynamics is subjected to a bifurcation and the perceptual experience
of the default pattern is replaced by the percept of one of the incomplete patterns.
However, the percept is assumed to induce again a decay in the corresponding
attention parameter. That is, λU is assumed to decay gradually, while λ1,2 relaxes
back to a ’rest level of attention’. Among various possible dynamical systems
that are able to capture these mechanisms, we will use the following evolution
equations for the attention parameter dynamics:

d

dt
λ1,2 = − 1

τ
(λ1,2(t)− b1,2) ,

d

dt
λU = − 1

τ
(λU (t)− bU ) (25)

with

b1,2 = 0 ∧ bU = b0 if ξ1,2 =
√
λ1,2 ∧ U = 0

b1,2 = b0 ∧ bU = 0 if ξ1,2 = 0 ∧ U =
√
λU , (26)

where b0 denotes the aforementioned rest level and τ > 0 is a time constant.
Our aim is to investigate the oscillatory dynamics (22), (25), (26) in a special

case which allows for a semi-analytical approach. To this end, we note that the
parameter τ defines the characteristic time scale of the attention parameter
dynamics. Likewise, 1/λ1,2 and 1/λU define the characteristic time scale of the
dynamics of ξ1,2 and U . Let λc,low and λc,high with λc,low > λc,high = gλc,low

denote the critical attention parameters at which percept-switching occurs. Then
λ1,2 and λU oscillate between these levels. Consequently, ξ1,2(t) and U(t) evolve
on a time scale at least as fast as given by 1/λc,low. If λc,low is chosen large
enough (the value of λc,low depends on the model parameters b and g) such
that 1/λc,low is much shorter than τ , then the ξ1,2(t) and U(t) are fast evolve
variables, whereas the attention parameters λ1,2(t) and λU (t) are slowly evolving
variables. Figure 3 illustrates this case. In this case, the oscillation period can be
calculated from the attention parameter dynamics alone. Moreover, differences in
the transient behavior of the fine- and coarse-grained dynamics become irrelevant
as long as both levels of consideration yield consistent results in the stationary
case (case II, see Table 1).

In order to derive an expression for the oscillation period, we consider the
case in which λU decays from λc,high towards zero and λ1,2 relaxes back towards
b0:

λ1,2 = λc,low exp

{
− t

τ

}
+ b0

(
1− exp

{
− t

τ

})
,

λU = λc,high exp

{
− t

τ

}
. (27)

This phase will be terminated when λ1,2 = λc,high and λU = λc,low. The duration
of the phase corresponds to half of the oscillation period. Therefore, at t = T/2
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Fig. 3. Oscillatory behavior of the order parameters (panel A) ξ1,2 (solid), ξU (circles)
and attention parameters (panel B) λ1,2 (solid), λU (circles) for τ = 100ms, g = exp{1},
b0 = g + 1 as computed from Eqs. (22), (25), (26). Note that the observed period is
T ≈ 2τ as expected.

we have

λc,high = λc,low exp

{
− T

2τ

}
+ b0

(
1− exp

{
− T

2τ

})
,

λc,low = λc,high exp

{
− T

2τ

}
. (28)

Substituting λc,high = gλc,low into the second relation of Eq. (28), we can deter-
mine T as a function of g and τ like T = 2τ ln(g). Substituting λc,high = gλc,low

into the first relation of Eq. (28), we then obtain a relationship between the
parameters b0 and g:

b0 = g + 1 . (29)

This relation tells us that the scenario described above can not be realized for
any arbitrary values of g and b0. Rather, the model parameters must satisfy the
matching condition (29). Eliminating b0 by means of Eq. (29), the model defined
by Eqs. (22), (25), (26) involves two unknown parameters g and τ . If we fix one
of the two parameters, then the remaining parameter can be estimated from
the experimentally observed oscillation period Tobs. In this context, a particular
simple model can be constructed if we put g = e (where e = exp{1}). In this
case, we have T = 2τ , and the model parameter τ can be estimated from the
observed oscillation period Tobs like τestim = Tobs/2.

Let us generalize the model in order to account for the fact that in MIB
experiments the default percept and the incomplete percepts are not necessarily
perceived for the same amount of time. That is, in general, the MIB paradigm
involves perceptual oscillations composed of two phases with unequal durations.
In order to introduce two phases with different phase durations, we include a bias
in the dynamical model defined by Eqs. (22), (25), (26). To this end, Eq. (22) is
replaced by

dξ1,2
dt

= ξ1,2

(
λ1,2 +

δ

2
− g U2 − ξ21,2

)
,
dU

dt
= U

(
λU −

δ

2
− g ξ21,2 − U2

)
.(30)

For δ > 0 the duration of the phase with ξ1,2 > 0 and U = 0 becomes longer
than the duration of the phase with ξ1,2 = 0 and U > 0. According to our
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interpretation of the model, we say that for δ > 0 there is a bias towards per-
ceiving the default pattern. Likewise, for δ < 0 the model reflects a perceptual
systems exhibiting a bias towards the perception of an incomplete pattern. If
we consider the parsimony model defined by Eqs. (25), (26), and (30) with fixed
parameters g = exp{1} and b0 = g+1, then we have two parameters τ and δ at
our disposal to model experimentally observed durations of the phase of default
pattern perception and the phase of incomplete pattern perception.

3.2 Schizophrenia patients data versus controls

Schizophrenia patients frequently show deficits in the perceptual processing of
visual stimuli. In particular, perceptual processes are affected that involve higher
cognitive functions such as feature binding [33–36]. On the other hand, there is
evidence that the MIB phenomenon involves such higher cognitive processes and
does not arise from low hierarchical processes like retinal suppression. For exam-
ple, visual aftereffects that are assumed to emerge on a relative low hierarchical
level of sensory processes are induced by the target dots of the MIB stimulus
although these dots are not perceived by the observers [37, 38]. In other words,
there is experimental evidence that when a target dot is not perceived by an
observer then the sensory stimuli of the target dot is still processed in low hi-
erarchical levels of the perceptual system but it is not processed (’correctly’)
on higher cognitive levels involved in consciousness and sensory experiences that
are explicit to the observer. This point of view is also supported by experimental
studies that point out the similarity between the MIB phenomenon and other
Gestalt theoretical phenomena such as perceptual filling-in [39]. In summary,
higher cognitive functions are relevant both for the MIB phenomenon and our
understanding of schizophrenia, which makes the MIB phenomenon a promising
paradigm to investigate schizophrenia [40].

In a study by Tschacher et al. [40] controls and schizophrenia patients were
tested on the MIB phenomenon. Both groups were exposed to three trials of
60 seconds. On the average, the number of total MIB experiences within these
three minutes was about 42 for controls and 29 for patients (see Table 3 in [40]).
In what follows we distinguish between total and single event durations. The
total durations of the MIB experiences was about 42 seconds for controls and
33 seconds for patients. From these data we can obtain a crude measure for the
duration of a single MIB event. For controls we obtain a single MIB duration of
about TMIB = 1.0s (i.e., 42sec/42). For patients we obtain a single MIB event du-
ration duration of about TMIB = 1.1s (i.e., 33sec/29). Likewise, we can calculate
a crude measure for how long on average the perception of a default pattern was
experience before it became unstable (single event duration). Controls perceived
the default pattern on the average for a total period of 138 seconds. Assuming
(in line with our simplified model) that there were on average 42 switches to the
default percept, we obtain an estimated single event duration of Tdefault = 3.3s
(i.e., 138sec/42). Likewise, for patients we obtain a single event duration of the
default pattern of about Tdefault = 4.5s (i.e., 147sec/33). In view of Eq. (30),
we anticipate that a model-based analysis of the data should reveal that the
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Table 2. Descriptive experimental data and model parameters

Data Model

Group Tdefault [ms] TMIB [ms] τ [ms] δ [1/ms]

Controls 3300 1000 1500 1.6

Patients 4500 1100 1700 1.8

parameter δ is larger for schizophrenia patients because the asymmetry of the
durations of the MIB and non-MIB phases is more pronounced.

We fitted the model parameters δ and τ to reproduce the duration data TMIB

and Tdefault for controls and patients. To this end, τ was varied in the interval
[Tdefault, TMIB] in steps of 100 ms, while δ was varied in the interval [0, 2.0] 1/ms
in steps of 0.1. The results of this fitting procedure are summarized in Table 2. As
expected, we found that the asymmetry parameter δ is larger for schizophrenia
patients than for controls.

4 Discussion

We studied coarse-graining of order parameter equations of the synergetic com-
puter and followed in part earlier studies on hierarchical generalizations of the
synergetic computer concept [8]. In particular, we showed that under certain
conditions the coarse-grained order parameter equations exhibit the same math-
ematical structure as the corresponding fine-grained order parameter equations.
In this sense, self-organizing artificial and natural systems, whose dynamics can
be described (at least to some approximation) by the synergetic computer equa-
tions, exhibit a scale free system dynamics. A model-based analysis of literature
data on multistable perception of schizophrenia patients tested in an MIB exper-
iment was carried out. The observation that the frequency of MIB experiences is
lower for schizophrenia patients than for controls corresponds in the model to a
time scale parameter τ that is larger for schizophrenia patients than for controls.
In addition, the model-based analysis highlights a second perceptual character-
istics of schizophrenia patients that has so far received only little attention. The
two different perceptual phases in MIB experiments seem to be less symmetric in
duration under schizophrenia. This shows up as a symmetry breaking parameter
δ which is larger for schizophrenia patients than for controls.
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Abstract. During the last sixty years Hermann Haken has made nu-
merous contributions to the scientific endeavor, not only to physics. We
focus on the time from 1950 to 1983. This includes his early years at Er-
langen University, where Haken was concentrating on solid-state physics.
Then he developed the quantum-mechanical theory of the laser with the
members of his “Stuttgart School” during the years 1962 to 1967.

At the end of this period he and his student Robert Graham could show
that the laser is an example of a nonlinear system far from thermal equi-
librium that shows a phase transition-like behavior. This led to the for-
mulation of Synergetics in 1970. Influenced by his tremendous knowledge
of the laser and the role of fluctuations in systems far from thermal equi-
librium Haken then developed the mathematical tools for Synergetics,
especially the generalized Ginzburg-Landau equations and the slaving
principle.

Keywords: Haken biography, synergetics history, self-organization, laser,
non-equilibrium phase transition, Elmau conferences, Versailles confer-
ences

Hermann Haken was born on the 12th July 1927 in Leipzig. The place was
by chance because his parents lived in the nearby town of Halle where Hermann
later on also went to school in the “Oberschule der Francke’schen Stiftungen”.
Due to a long lasting chronical illness he was not recruited by the army and
studied mathematics at the University of Halle in the period 1946 – 1948. It
was the time following the Second World War and the city of Halle was part of
the Soviet occupation zone. So, after his first examinations passed, his parents
decided that Hermann should move to relatives living in Nuremberg, which was
part of the American occupation zone and continue his studies at the nearby
University of Erlangen. In 1951 he finished his PhD in mathematics [1] and in
1952 got a position at the Institute of Theoretical Physics.

Experimental physics at Erlangen was focused on what is now called solid-
state physics. There existed a close connection to the researchers of the SIEMENS
AG and its nearby research laboratory at Pretzfeld. Here, the famous physicist
Walter Schottky and his colleague Eberhard Spenke worked since the time when
the laboratory had been moved from Berlin during the war in 1943. Spenke
wanted to write a book about semiconductors and asked Hermann Haken to
help him with the theoretical quantum mechanical part [2]. Haken especially
© Springer International Publishing Switzerland 2016 265
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studied the work of Vladimir Fock about the second quantization and, as he re-
members, “I learned the whole methodology of the so called quantum field theory.
And by that I was one of the first physicists that applied this method to problems
of solid state and semiconductor physics” [3]. His own research concentrated on
the theory of electron-hole pairs, the so called excitons. Here Haken learned the
fundamentals from the famous book of Herbert Fröhlich “Elektronentheorie der
Metalle” [4]. Fröhlich, a German theoretical physicist with Jewish roots, was
assistant of Arnold Sommerfeld and had to flee from Germany in 1933. Since
1948 he occupied the chair of theoretical physics at the University of Liverpool.
After finishing his postdoctoral thesis [5] and writing several papers on the ex-
citon theory Haken got an invitation from Herbert Fröhlich for a three-months
visit at his institute in Liverpool. This was the beginning of a lifelong friendship.
Fröhlich visited Haken regularly at the University of Stuttgart as guest professor
during the 1960s and 1970s and was essential for Haken’s participation at the
first Versailles conferences (see later).

Back home in Erlangen an invitation from Cornell University as guest pro-
fessor for the winter term 1959/60 dropped in. Being in the United States Haken
again received an invitation, this time from the famous Bell Telephone Labora-
tories in Murray Hill. This is why Hermann Haken went there in spring 1960,
where he met his friend and colleague Wolfgang Kaiser. He introduced him to
the then hot debated topic about the possible realization of a laser. But before
the publication of Theodore Maiman appeared in August [6], Haken had to go
back to Germany. He had been offered the chair of theoretical physics at the
Technische Hochschule Stuttgart, which he finally accepted in November 1960.
His knowledge of the quantum mechanical field theory played a decisive role in
his appointment:

“Dr. Haken is one of the leading young theoretical physicists working in the
field of solid-state physics. He has achieved international recognition for his work
on excitons in nonmetallic crystals. He is the only German theoretician who,
in problems of solid-state physics, successfully applies the general methods of
quantum-mechanical field theory.”1

In Stuttgart Hermann Haken immediately concentrated on the theoretical
investigation of the new phenomenon of the laser2. Together with one of his
first students, Herwig Sauermann, he developed a semi-classical approach of the
Laser theory in 1963. Only some months later, in a seminal paper submitted
in July 1964 [7] he formulated a nonlinear quantum mechanical version of the
theory. The main purpose of this paper was

“to bridge the gap between linear and nonlinear theories of laser action. As
we have shown linear theories represent a very good approximation at small in-

1 Cited from “Antrag des Berufungsausschusses (Nachfolge Prof. Fues) an den Großen
Senat der Technische Hochschule Stuttgart vom 12. Januar 1960” (Personalakte
Haken, Universitätsarchiv Stuttgart) (translation by the author).

2 An account of the race to the theoretical understanding of the laser between Hermann
Haken and his Stuttgart School and the American researchers Willis Lamb, Marvin
Scully and Melvin Lax is given in another paper of the author (to be published).
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Fig. 1. Plot of “potential energy” versus light amplitude. Dashed curve below threshold
(linear and nonlinear theory); dotted curve above threshold, linear theory leads to
instability; solid curve above threshold, nonlinear theory [7].

version. On the other hand there is a marked threshold beyond which the system
behaves qualitatively very differently from below threshold, its amplitude oscillat-
ing around a stable value”.

For the first time Haken could show that the laser light changes its quality
at the threshold. Below threshold it consists of numerous different single light
waves, whereas above threshold a single nearly indefinitely long coherent wave
is obtained.

“In contrast to linear theories there exists a marked threshold. Below it the
amplitude decreases after each excitation exponentially and the linewidth turns
out to be identical with those of previous authors. [ . . . ] Above the threshold the
light amplitude converges towards a stable value, whereas the phase undergoes
some kind of undamped diffusion process”.

Only in a nonlinear theory, where also the effects of the heatbath to which
the laser is coupled are taken into account, the different behavior of the light
shows up. Haken used the picture of a potential plot to visualize the difference,
see Fig. 1. The linear theory only shows an unstable value for the light amplitude
above threshold whereas in the nonlinear treatment a symmetry-breaking occurs
(leading to a bifurcation) and two stable attractors arise. Looking back to this
paper Haken states [8]
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Fig. 2. Intensity fluctuation for the leading mode versus injection current (dashed line:
theory prediction) [9].

“in this paper I introduced noise. Before, noise has only been calculated for
the [electromagnetic] field, but noise for the atoms occurred for the first time.
The other novelty has been the operator method according to Heisenberg’s sec-
ond quantisation formalism. First of all the elimination procedure: the adiabatic
method was known, but it was new that you are able to do it also with quantum
mechanical operators. And the Ansatz for the field operator. To split the operator
into a classical and a quantum mechanical part, that was also new.”3

In this work Haken did not only show the different quality of the light emis-
sion below and above the transition point but he also predicted the reduction of
the intensity fluctuations with increasing “pump” strength, see Fig. 2. This was
confirmed in a paper by American experimentalists only one year later [9].

The development of the full nonlinear quantized laser equations with its dif-
ferent applications and including noise took about three years. Mathematically
there are three different ways to deal with the problems: The Langevin pic-
ture (Heisenberg treatment), the master equation Ansatz (Schrödinger picture)
and the Fokker-Planck approach. Hermann Haken had a couple of high pro-
file co-workers. We have to mention Hannes Risken, Wolfgang Weidlich, Robert
Graham and Fritz Haake. This group of theoreticians together with their stu-
dents were called the Stuttgart School and pursued all three ways. Risken, his
first assistant, who became professor of theoretical physics at the University of
Ulm in 1971, was a specialist of the Fokker-Planck equation. Wolfgang Weidlich,
joining Haken in 1963 and receiving the chair of the second theoretical physics
institute of the Technische Hochschule Stuttgart in 1966, was a master of the
master equation and worked with Fritz Haake. Hermann Haken and his stu-

3 Translation by the author.
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dent Robert Graham preferred the Langevin approach. From 1964 to 1970 the
Stuttgart School published more than fifty papers on the subject. As early as
1965 Hermann Haken took the task of writing a monograph about laser theory
in the famous Handbuch der Physik [10]. Working extremely hard, he finally
fell ill in autumn 1966 and had to take a time out for some months. He recov-
ered soon and in April 1968 together with Robert Graham published an article
on the “Quantum Theory of Light Propagation in a Fluctuating Laser-Active
Medium” [11]. For the first time, they stated an analogy between the laser and
a superconductor at threshold:

“The connection between laser theory and the theory of condensation also
shows up in this solution where, e.g. the threshold condition is obtained as the
condition for the occurrence of off-diagonal-long-range order in the light field
(ODLRO). The solution well above threshold is discussed in connection with
some concepts of phase transition theory, such as order parameters, broken sym-
metry and symmetry restoring elementary excitations.”4

This idea was then worked out and two years later Graham and Haken pub-
lished their paper “Laserlight – First Example of a Second-Order Phase Tran-
sition Far Away from Thermal Equilibrium” [13]5. Here they state very clearly
that “the laser threshold appears as a second-order phase transition in all details.
It is indicated that our theory provides a new formalism also for the Ginzburg-
Landau theory”. The very important point is that this theory holds not only for
systems in thermal equilibrium but also for systems far away from this equilib-
rium state. They also conclude “that the concept of a phase transition is much
more general than usually thought of.” The mathematical correspondence of the
laser theory and the Ginzburg-Landau theory of superconductivity is shown in
Fig. 3.

In a talk delivered at the Spring Conference 1970 of the German Physical
Society in Freudenstadt (a town in the Black Forest) Hermann Haken presented
the results found by Graham and himself and then asked [15]:

“Is the laser a sole example for a phase transition far away from thermal
equilibrium or are there other classes of corresponding phenomena? One can
show that there are, indeed, corresponding phenomena in nonlinear optics, for
instance the parametric oscillator. And, we believe, that our methods can also
be applied to other problems, i.e. the Gunn-effect. [. . .] Finally a totally different
field may be mentioned, namely biology. Fröhlich mentioned some time ago that
in biological systems certain collective oscillations, that are highly excited above
thermal equilibrium, may play an important role [. . .]”6.

It is interesting that Haken drew the conclusion: “Our above considerations
have shown that by increasing the energy the properties of a system may change
not only quantitatively but also qualitatively, so that an application of our re-

4 In a footnote they state that “analogies between laser theory and the theory of
superfluidity have been discussed by Ref. [12]”.

5 At about the same time, Marvin Scully and V. de Giorgio also found this analogy
[14].

6 Translated from German by the author.
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Laser equation:
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Fig. 3. Analogy between laser theory and Ginzburg-Landau theory of superconductiv-
ity [15].

sults on biological questions may be of interest.” The above citation of Herbert
Fröhlichs article is especially interesting. It was delivered as the opening speech
of the first international conference “From Theoretical Physics to Biology” held
in Paris, 1967.

These conferences, “From Theoretical Physics to Biology” took place at Ver-
sailles every second year, starting in June 1967. They had the goal to offer a
platform for biologists, physicists and chemists to discuss the question, whether
life could be explained from the laws of physics or if there must be other expla-
nations be taken into account. This old philosophical question had been revived
through the book of Erwin Schrödinger “What is Life?” [16]. The answer given
by Schrödinger that life could be explained by the laws of physics and chemistry
alone was questioned by the noted physicist Eugene P. Wigner. In an article
titled “The probability of the existence of a self-reproducing unit” [17] he came
to the conclusion that the probability was infinitely small that the many parts
needed for the task would find together spontaneously. This was the background
of the conferences. The so called Versailles conferences had great influence on
the development of the theory of self-organization that took place in the late
sixties and seventies of the 20th century. The ten conferences that were orga-
nized between 1967 and 1988 attracted many leading scientist and Nobel Prize
winners. Among them were Manfred Eigen, a physico-chemist from Göttingen
and Ilya Prigogine from Brussels. Hermann Haken attended nine out of the ten
conferences and got in close contact to Eigen and Prigogine. Eigen remembers
[18]

“I got to know [Haken] in Paris first. [. . .] I had to give a talk after his
presentation and was a little bit late . . . and then I spoke about my findings and
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Autocatalytic reaction (“Hypercycle ansatz”), Manfred Eigen, 1971:

ṅj = kj · nA · nj − γj · nj

nA = n0 −
∑

j

nj

nj = number of molecules in state j; kj = gain-coefficient; nA = number of molecules
of type A; γj = loss-coefficient; n0 = start concentration of molecules A.

Single-mode laser ansatz, Hermann Haken, 1964:

ṅλ = nλ · ωλ ·D − 2κλ · nλ

D =
∑

μ

σμ ≈ D0 − (2Dc/γ⊥)
∑

λ

ωλnλ

nλ = number of photons of mode λ; Dc = critical inversion number of all atoms at
threshold.

Fig. 4. Analogy between the self-organization ansatz by Manfred Eigen (The Hyper-
cycle) and the single-mode laser equations derived by Hermann Haken [20].

wanted to write my equations onto the blackboard. But, I said “they are already
there, how did they get there? [Interviewer: The rate equations?] Yes, in fact the
ones from Haken, but they were very similar, namely the autocatalytic term.”7.

At that time Eigen was working on his famous Hypercycle Theory about the
first steps in the development of life [19]. It was a year before that Hermann
Haken had heard about this model of self-organization of macromolecules at a
talk by Eigen in Göttingen. Shortly afterwards Haken was able to show a strong
analogy between the reaction formalism by Eigen and his own equation for the
single-mode laser, see Fig. 4.

The analogies of the laser equations to superconductivity and to the Hyper-
cycle theory of Eigen convinced Hermann Haken that there must be common
roots in these phenomena of self-organization. Already in 1970 he gave a lec-
ture at the University of Stuttgart (as it was now called since 1967) entitled
“Fließgleichgewichte, Phasenübergänge und Fluktuationen in Quantensystemen
weit weg vom thermischen Gleichgewicht”8. In this lecture Haken used the word
“Synergetik” for the first time. The word comes from the Greek word συνεργια
and has the meaning of “[parts] working together”.

To test his hypothesis Haken together with Graham published an article titled
“Synergetik – Die Lehre vom Zusammenwirken”9 in the March issue 1971 of the
popular German Science magazine Umschau [21]. Here they stated that complex

7 Translated by the author from German.
8 Flow equilibrium, phase transitions and fluctuations in quantum systems far away
from thermal equilibrium. The handwritten plan of the lecture was found in the
Haken papers (Archiv Haken).

9 “Synergetics – the science of working together”.
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systems made up of many subsystems may be looked at and analyzed from a
common perspective. The systems they mentioned were the laser, the structure
of a forest, the production of an enzyme, the creation of life or the development of
a language. The theory of phase transitions allows for this common perspective
and they finished their article with the words:

“In summary, it can be said that a variety of quite different phenomena can
be dealt with with the help of only a few concepts. The mysterious order principles
governing the cooperation of the parts of a large system turn out to be feedback
control systems created by the subsystems. Surprisingly abrupt changes in these
order principles are generated by phase transitions. A way for the mathematical
treatment of these phenomena therefore seems possible.”

But to Haken’s astonishment there was no reaction of the scientific commu-
nity. This may be due to the fact that the Umschau was not the favorite German
scientific magazine to be read by scientists. This would have been the journal
“Naturwissenschaften” where Haken later on published several articles.

In the meantime Haken, Graham, and Weidlich were analyzing the reason
for the similarity between phase transitions in equilibrium systems and those far
away from thermal equilibrium. Guiding line was of course the laser theory. In a
series of papers in 1970 and 1971 [22–24] they looked for the common principle
that was valid for the laser (far away from thermal equilibrium) as well as for the
Landau theory of superconductors (thermal equilibrium). They detected it in the
existence of the famous “potential condition” that is central to the application
of the Landau theory. The solution presented was simple but unexpected:

“Recently, we found the unexpectedly simple answer to this question: Within
the framework of a Fokker-Planck equation the potential conditions in their most
general form are equivalent to the condition of detailed balance.”

Under this condition it is possible to describe systems far from thermal equi-
librium using some of the methods of classical equilibrium thermodynamics. At
this point of the development Hermann Haken knew what to look for: phase tran-
sitions in systems far from thermal equilibrium that are in the state of detailed
balance.

Phase transition theory was a central topic of theoretical physics at that
time and played an important part for instance at the meetings of the German
Physical Society. At the spring meeting 1969 Siegfried Grossmann from Marburg
gave a talk on “Analytische Eigenschaften thermodynamischer Funktionen und
Phasenübergänge”10 and at the annual convention of in Salzburg that year H.
Thomas delivered a plenary talk about phase transitions, too.

The emergence of order was also on the agenda at the early Versailles confer-
ences that Hermann Haken attended. We find headlines like “Self-Organization,
emergence of order in systems, physical aspects of order in biological systems
and questions of information in biological and physical systems” on the list of
topics of the Versailles conferences in 1969 and 1971 [25, 26]. At the third confer-
ence in June 1971 Haken delivered a talk on “Cooperative Phenomena far from

10 “Analytical properties of thermodynamical functions and phase transitions”.
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thermal Equilibrium”. Even now, after the publication of the Umschau article,
he did not use or mention the word Synergetics.

Now the time had come for Haken to organize his first conference on Syn-
ergetics that took place in April 1972 at the Bavarian resort of Elmau [27]. He
remembered that his motive for this conference had been threefold: a) to look
for more specific examples of analog behavior in systems far from equilibrium
(and not only in thermal equilibrium), b) to get leading international scientists
interested in Synergetics, and c) to promote Synergetics to a wider scientific
audience11. The conference topics were “Mathematical and Physical Concepts
for Cooperative Systems, Instabilities and Phase Transition-Like Phenomena
in Physical Systems far from thermal Equilibrium, Biochemical Kinetics and
Population Dynamics, Biological Structures and General Structures”. Some of
these topics were also dealt with at the first three Versailles conferences, but the
scope of Hakens Ansatz was new, much broader, concentrated on systems far
from thermal equilibrium and went far beyond biological questions. How much
influence his participation at the first three Versailles conferences had on his
thinking at that time is hard to say, but seven of the speakers present at El-
mau (out of 23) had also been participants in Versailles. There were three other
groups of attendees: speakers of the late German Physical Society meetings,
Japanese solid-state physicists that had worked on statistical multicomponent
systems and scientists that had published on phase transitions and, of course,
members of the Stuttgart School. In his opening talk Haken brought into focus
the order parameter concept that makes it possible to abstract from the largely
different properties of the subsystems like electrons, molecules or neurons and to
concentrate on the one or few order parameters that describe the macroscopic
behavior of the system. Then he dealt with two other systems from biology and
chemistry that show oscillatory behavior: The Lotka-Volterra rules of population
dynamics and the Belousov-Zhabotinsky reaction. And finally, after once again
explaining the laser, he pointed to the great importance of symmetry breaking
in different phase transition-like phenomena.

The conference in Elmau had been a great success for Hermann Haken. Even
years later, one of the participants, Rolf Landauer, an eminent physicist working
at IBM, who has been very influential in computer information theory, remem-
bered [28]:

“Hermann Haken in 1972 had the first interdisciplinary meeting [. . .] Proba-
bly not everything presented at Hakens session in 1972 has stood up, but all of it
was serious and represented real intellectual depth and effort. Participation was
a breath-taking experience for me; for the first time I found myself among people
with comparable interests and a comparable sense of values. I was no longer an
orphan! And the meeting had another earmark of a good conference: The confer-
ence had broad representation in its selection of speakers; it was not dominated
by the organizer and his close associates.”

The next time, where we find the word Synergetics, is in the Festschrift “Co-
operative Phenomena” on the occasion of Herbert Fröhlich’s retirement in the

11 Hermann Haken: personal communication to the author.
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following year 1973 [29]. A subchapter has the heading “Synergetics” and along
with his own contribution contains also articles of Ilya Prigogine, B. Holland and
others. Haken’s paper was only a slight modified version of the Elmau article,
but with one addition. Having in mind the influential book of Jacques Monod
“Le hazard et la nécessité” [30] he looked at the equation for the order parameter
of the single-mode laser. This equation consists of two terms. The first one deals
with the interaction of the lightfield with the electrons of the laser medium and
is deterministic. The second term describes the spontaneous emission by excited
electrons due to quantum mechanical effects. So he came to the conclusion [31]:

[This equation] “is one of the simplest examples, but very instructive of the
interplay between fluctuating forces [. . .] and systematic forces [. . .] or, in Monods
words, of the interplay between “chance and necessity”.”

Deterministic forces that are “triggered” by fluctuations at the transition
points are one key element of the ordering phenomena of self-organization.

The reader should not be misled and get the impression that during the
years 1971 – 1974 Hermann Haken only would have been occupied with phase
transition phenomena and Synergetics. This was not the case. During this time
he published no less than seventeen papers in solid-state physics as author or
co-author and from 1971 to 1977 he supervised eleven diploma thesis and dis-
sertations of his students. In 1973 he also published his textbook on “Quantum
field theory of solid-state physics”. So it seems fair to say that Synergetics during
these years did not play a central role in the activities of the institute. It was a
special activity of Hermann Haken.

The physics of cooperative systems and phase transitions in equilibrium and
non-equilibrium systems were discussed on many occasions during 1974 and
1975. Finally, Hermann Haken was asked to summarize the knowledge on these
topics in a fundamental paper that appeared in the January edition of the Re-
view of Modern Physics [32]. In this widely read publication this article drew
a lot of interest as it is shown in the more than 650 citations it got12. While
working on the Review of Modern Physics paper Haken also dealt with the so
called Brusselator, a chemical reaction scheme that shows oscillations and can
be compared with the Belousov-Zhabotinsky reaction. The Brusselator was the
main research model of Prigogine and his co-workers Nicolis and Leféver. Only
weeks after the publication of the Review article Haken submitted a paper to the
Zeitschrift für Physik entitled “Statistical Physics of Bifurcation, Spatial Struc-
tures and Fluctuations of Chemical Reactions” [33], where he could present a
mathematical solution for the Brusselator model and for the Bénard reaction.
The mathematical tools he used were the advanced Ginzburg-Landau equations
that he had developed and refined during the recent months. This fundamental
work for Synergetics was then published only weeks later under the title “Gen-
eralized Ginzburg-Landau-Equations for Phase Transition like Phenomena in
Lasers, Non-Linear Optics, Hydrodynamics and Chemical Reactions” [34]. The
far reaching scope of his results was very clear to him. He wrote

12 Science Citation Index, as of 8th June 2011.
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Lorenz equations Laser equations

ξ̇ = ση − σξ Ė = κP − κE

η̇ = ξζ − η Ṗ = γED − γP

ζ̇ = b(r − ζ)− ξη Ḋ = γ‖(λ+ 1) − γ‖D − γ‖λEP

Identity conditions:

t → t′σ/κ , E → αξ , with α = [b(r − 1)]−1/2 , r > 1
P → αη , D → ζ , γ‖ = κb/σ , γ = κ/σ , λ = r − 1

Fig. 5. Analogy between the Lorenz equations of hydrodynamics and the single-mode
laser equations [35].

“Our procedure has immediate applications to the Taylor instability, to var-
ious chemical reaction models, to the parametric oscillator in nonlinear optics
and to some biological models. Furthermore, it allows us to treat analytically the
onset of laser pulses, higher instabilities in the Bénard and Taylor problems and
chemical oscillations including fluctuations.”

In a footnote to the paper he mentioned the formal identity of his single-
mode laser equations with the Lorenz equations of atmospheric physics. Again
only four weeks later he submitted his results to the journal Physics Letters,
where the article appeared on May 19th, see Fig. 5. Haken was one of the first
scientists to “rediscover” the work of Edward Lorenz. The Lorenz equations
became the fundamental paradigm of what was later known as chaos theory.
Haken saw that particular result [35]

“The most important result is that spiking occurs randomly though the equa-
tions are completely deterministic”.

So 1975 was a very successful year for Hermann Haken. He also got a first
grant from the Volkswagenwerk Foundation for Synergetics that run as an “un-
usual project”. Equipped with a sabbatical term from the university and the
money from the foundation he started two projects. The first one was writing a
book about Synergetics and then planning for the second Elmau conference.

The seminal book entitled “Synergetics An Introduction, Nonequilibrium
Phase Transitions and Self-Organization in Physics, Chemistry and Biology”
appeared in 1977 but was finished already in November 1976 [36]. It sold out
quickly and within one year a second edition was necessary. Here Haken included
a chapter of the rising chaos theory. To go into the details of this fundamental
work is beyond the scope of this article. Therefore we will only mention the
influence of chance and necessity (reminiscent of the work of Jacques Monod)
that Haken expressed in the layout of the book, see Fig. 6.

Now the word Synergetics was “out” and Haken was going to promote it. The
next step was the planning and realization of the second Elmau conference in
May 1977. Under the Heading “Synergetics – A workshop” we find the following
items: “General Concepts (including Catastrophe Theory); Bifurcation Theory,
Instabilities in Fluid Dynamics; Solitons; Non-equilibrium Phase Transitions in
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Fig. 6. Logical organization of the chapters in Hermann Haken’s book “Synergetics”
from 1977 [36].

Chemical Reactions; Chemical Waves and Turbulence (including a talk on Chaos
by O. Rössler); Morphogenesis and Biological Structures”. Hermann Haken’s
intention was to spread the word Synergetics beyond the scientific community
he had cooperated with during the last years. So he invited many new scientists
he had not met before. Nobel Prize Winner Alfred Kastler and the “Father” of
catastrophe theory René Thom were among them.

Only one month later Haken used his talk at the 4th Rochester conference on
Quantum Optics to present his thoughts about Synergetics to the international,
especially American physicist community. The title of his speech fitted the topic
perfectly “The Laser Trailblazer of Synergetics”. In his talk he also highlighted
the role of the laser with respect to the now widely discussed Lorenz equations
[37]:

“The Laser when pumped high enough is the first realistic system obeying the
Lorenz equations.”

In November 1977 a conference on bifurcation theory and its applications in
scientific disciplines was held in New York. One of the organizers, Otto Rössler
from Tübingen, has been a participant at the second Elmau conference in May
and knew the ideas of Hermann Haken very well. If one compares the contents
of both meetings the similarity of topics is striking [38]. In his talk “Synergetics
and Bifurcation Theory” Haken presented the laser as a model system for an
exact computable bifurcation hierarchy. In 1978 and early 1979 Haken then got a

pelster@zedat.fu-berlin.de



Hermann Haken – His Roadmap to Synergetics 277

Conference Date Topic

30.04.-06.05.1972 Synergetics:

Cooperative Phenomena in Multi-Component Systems

02.05.-07.05.1977 Synergetics - A Workshop

30.04.-05.05.1979 Pattern Formation by Dynamic Systems

and Pattern Recognition

27.04.-02.05.1981 Chaos and Order in Nature

26.04.-01.05.1982 Evolution of Order and Chaos

02.05.-07.05.1983 Synergetics of the Brain

06.05.-11.05.1985 Complex Systems - Operational Approaches

in Neurobiology, Physics and Computers

04.05.-09.05.1987 Computational Systems - Natural and Artificial

13.06.-17.06.1988 Neural and Synergetic Computers

04.06.-08.06.1989 Synergetics of Cognition

22.10.-25.10.1990 Rhythms in Physiological Systems

Fig. 7. Dates and topics of the 11 Elmau Conferences on Synergetics.

research grant to write a textbook on laser theory for students. He used this time
also to promote Synergetics at at least four international conferences [39–42].

At the end of 1978 the first term for the grant of the Volkswagen Foundation
was about to expire and Haken came in for a prolongation. He was astonished
and pleased to hear that the Foundation asked him to give Synergetics a broader
scope. The “unusual project” should apply for a full “priority program” that was
finally granted in spring 1980. There were two decisive arguments in favor of the
priority program. The first one was its broad scope: according to the referees
Synergetics comprised the following scientific fields [43]

• Mathematics: Bifurcation Theory, Theory of Singularities, Stochastic;
• Physics: Laser, nonlinear optics, Hydrodynamics, Turbulence Theory, elec-
tric current instabilities;

• Chemistry: chemical oscillators, dissipative structures;
• Biology: Population Dynamics, Morphogenesis, neural networks;
• Engineering: nonlinear continuum mechanics, fluid mechanics;
• Informatics: self-organization of computer and computer networks13.

13 Translated by the author.
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(1973) Synergetics – (1983) Advanced Synergetics

Cooperative Phenomena

Physics: Physics:

• Laser • Laser
• Superconduction • Bénard Effect
• Ferromagnetism • Hydrodynamics

• Plasmaphysics
• Solid-State Physics

Chemistry: Chemistry:

• Bénard Effect • Belousov-Zhabotinsky
• Brusselator
• Oregenator

Biology: Biology:

• Hypercycle (Eigen) • Biological Clocks
• coordinated muscle operation
• Morphogenesis
• Evolution
• Immunsystem

Computer:

• Pattern recognition
• Self-Organization
(parallel computing)

• Reliable systems from
unreliable components

Economy

Engineering Sciences

Ecology: Phase transitions

Sociology: Sociology:

• Opinion Formation • Opinion formation

Fig. 8. Comparison of scientific fields dealt within the two books on Synergetics from
1973 [27] and 1983 [45].

The second reason was the awarding of the Nobel Prize for Chemistry to Ilya
Prigogine in autumn 1977. This has made the word “dissipative systems” known
to a broader public and hence nonlinear systems theory far from equilibrium [44].
The priority program lasted ten years from 1980 to 1990 and in total 115 different
projects were supported. In this way Synergetics got a boost and Hermann Haken
used three ways to promote his activities. The Elmau conferences got a regular
schedule, i.e. they took place every second year, the book series “Springer Series
in Synergetics” was created and the theoretical work at the institute in Stuttgart
could be intensified. The best way of exchanging new ideas had been the Elmau
conferences. A look at the topics shows quite clearly how the ideas of Synergetics
spread to ever new fields, see Fig. 7.
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In 1982, after implementing the program, Hermann Haken wrote his second
important book “Advanced Synergetics” [45]. In this work he presented in a
systematic form the mathematical results that he had developed mainly with
his co-worker Arne Wunderlin during the last five years. The topics comprised
stability theory, order parameter theory and the full methods of the slaving prin-
ciple. In Hakens words “these concepts represent the “hard core” of synergetics
in its present form”.

If we compare the road Synergetics has taken during the ten years from 1972
with the first Elmau Conference “Synergetics – Cooperative Phenomena” [27] to
the “Advanced Synergetics” book published in 1983 [45] one can clearly observe
the broad development of the field, see Fig. 8. It is fair to say that with the
publication of his book “Advanced Synergetics” the first phase of the history of
Synergetics ended. During the following years the methods of Synergetics coping
with large systems were applied to numerous fields. Working in this field, many
researchers were often reminded of the words of Hermann Haken in this book

“The basic concepts of synergetics can be explained rather simply, but the
application of these concepts to real systems calls for considerable technical (i.e.
mathematical) know-how.”
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In 2012 two very sad news reached the physics community and – frankly
speaking – shocked me. Two of my former students and coworkers, Arne Wun-
derlin and Rudolf Friedrich had untimely died.

Arne Wunderlin (1947 – 2012)

Arne studied physics at the University of Stuttgart from 1966 till 1971.
His diploma thesis was entitled “Behandlung von elektronischen Kollektivanre-
gungen im Festkörper mit Hilfe von Quasiwahrschein-
lichkeiten” [Treatment of electronic collective excita-
tions in a solid by means of quasi-probabilities]. His
Ph.D. thesis (1975) had the title “Über statistische
Methoden und ihre Anwendung auf Gleichgewichts-
und Nichtgleichgewichtssysteme” [On statistical meth-
ods and their application to equilibrium- and nonequi-
librium systems]. The topic of his “habilitation” (1985)
was “Mathematische Methoden der Synergetik und
ihre Anwendungen auf den Laser” [Mathematical meth-
ods of synergetics and their applications to the laser].
In 1992 Arne Wunderlin was nominated apl. Professor
at the University of Stuttgart and in the summer term
1995 he served as visiting professor at the University Arne Wunderlin

of Potsdam.
The research areas of Arne were widespread. Here I can name only the most
important.

1. In solid state physics, he developed new mathematical methods to deal with
superconductivity, including nonequilibrium states.

2. He dealt with excitons of high density as well as with the convection insta-
bility of fluid dynamics.

3. His contributions to the development of Synergetics were quite substantial.
Arne dealt with nonlinear partial stochastic differential equations at insta-
bilities. In particular he had the idea of how to extend my “slaving principle”
to arbitrary order.

4. Then his research activities turned to a newly developing field: delay differ-
ential equations at instability points.
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5. Arne dealt, jointly with Axel Pelster, also with highly abstract problems
such as nonintegrable space-time-transformations.

6. Finally, Arne’s widespread interests are witnessed by his contribution to the
theory of elasticity: general solution of incompability problems of 3-dim.
linear anisotropic media.

Arne published (jointly with me) a book (1990): “Die Selbststrukturierung
der Materie” It is a pity that we never have tried to translate this book into
English. (Probably a title could have been: How matter forms its structure) He
also edited the book Evolution of Dynamical Structures in Complex Systems,
1992, (jointly with Rudolf Friedrich) and also the book Lasers and Synergetics
(jointly with Robert Graham and me).

Arne was a dedicated academic teacher whose lectures were highly esteemed
by his students. His lectures comprised both the regular courses in theoretical
physics as well as special courses on turbulence, synergetics, relativistic quantum
field theory, light and matter, to mention a few of them.

Arne was all the time willing to discuss problems with my diploma and Ph.D.
students. He was of an enormous help to all of us. We appreciated him highly
also because of his great kindness. Arne was married and had three children. We
will keep him in good memory.

Rudolf Friedrich (1956 – 2012)

Rudolf studied physics at the University of Stuttgart from 1975 till 1982. His
diploma thesis (1982) was devoted to “Höhere Instabilitäten beim Taylor Prob-
lem der Flüssigkeitsdynamik” [Higher Instabilities of
the Taylor problem of fluid dynamics]. In his Ph.D. the-
sis (1986) he dealt with “Stationäre, wellenartige und
chaotische Konvektion in Geometrien mit Kugelsym-
metrie” [Stationary, wave-like, and chaotic convection
in geometries with spherical geometry]. The topic of
his “habilitation” (1992) was: “Dynamische Strukturen
in synergetischen Systemen” [Dynamical structures in
synergetic systems]. In 1999, Rudolf Friedrich was nom-
inated apl. professor at the University of Stuttgart, and
in 2001 he became professor of theoretical physics and
director of the institute of theoretical physics of the
University of Münster.
The research areas of Rudolf Friedrich were very broad.
His work was not only characterized by its depth, but Rudolf Friedrich

also by its close connection with experiments.
1. In fluid dynamics, he dealt with a variety of instabilities, i.e. changes of one

spatio-temperal structure into another one, where he took different geome-
tries (e.g. cylindrical, spherical) into account.

2. He dealt with analogies between pattern formation and pattern recognition.
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3. In brain research, he developed a spatio-temporal analysis of multi-channel
Alpha EEG (electro encephalogram) map series. Here the goal was to demon-
strate that the underlying dynamics is governed by few order parameters. In
particular, Rudolf was able to show that in the case of “petit mal” epilepsy
the dynamics is that of Shilnikov Chaos. A beautiful result!

4. A good deal of Rudolf’s research activities in Münster was devoted to various
aspects of turbulence. Here I can mention only a few examples:
Derivation of a Fokker-Planck-equation, statistics of Lagrangian velocities,
spiral turbulence, time series analysis, magnetic fields in turbulent fluids.
Rudolf introduced fractional substantial derivatives, and dealt with anoma-
lous transport.

5. His interest in practical problems in engineering is witnessed by his work on
the effects of water jets on metal cutting.

Rudolf Friedrich edited the book Evolution of Dynamical Structures in Com-
plex Systems, 1992 (jointly with Arne Wunderlin). Rudolf was a dedicated aca-
demic teacher giving courses and seminars on theoretical physics. Since 2008
he had been member of the “Dynamics and Statistics” section of DFG (Ger-
man Science Foundation). He was speaker of the center for nonlinear science
of the University of Münster, a member of the board of German-Chinese Son-
derforschungsbereich Transregio 61 (special research section), and director of
research, Sonderforschungsbereich 458.

During his time at my institute, I got to know Rudolf as a very helpful and
humorous student and colleague. Rudolf was married and had three children.
His son is just about to finish his physics study, and I wish him heartfully to be
able to carry on the fundamental work of his father.

Quite obviously, my obituaries can hardly do justice to the wonderful person-
alities of Rudolf Friedrich and Arne Wunderlin, and their important scientific
work. But nevertheless, I hope my remarks will contribute to keep both of them
in our minds.
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Abstract. Here we analyze the extended Bose-Hubbard model for hard-
core bosons in both a quadratic and a triangular lattice within a mean-
field approximation. Especially interesting is the appearance of the su-
persolid phase for certain parameter values of the triangular lattice. We
find analytical results for energies, condensate densities as well as phase
boundaries except for the supersolid phase, for which just the density
wave to supersolid boundary is derived analytically. The resulting quan-
tum phase diagram for the triangular lattice coincides with a mathemat-
ically equivalent fermion model and agrees qualitatively with a recent
Monte Carlo simulation.

Keywords: extended Bose-Hubbard model, hard-core bosons, Mott in-
sulator, density wave, superfluid, supersolid

1 Introduction

Ultracold bosons in optical lattices are highly controllable and accurately ob-
servable quantum systems, which can be used as ideal quantum simulators to
investigate open questions such as about intricate macroscopic quantum phe-
nomena [1]. One prominent example is the elusive phenomenon of supersolidity,
which amounts to a spontaneous breaking of both U (1) and translational sym-
metry. Although initial experiments to observe supersolidity in helium turned
out to be unsuccessful [2, 3], it has recently been proposed to realize a supersolid
with dipolar bosons in a triangular optical lattice (see, for instance, Ref. [4] and
references therein).
© Springer International Publishing Switzerland 2016 289
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Fig. 1. The checkerboard pattern on the quadratic lattice (left) and a pattern with
three sites in the unit cell on the triangular lattice (right).

Therefore, we analyze in the following a lattice potential close to absolute
zero filled with bosons, where the dipoles are either of magnetic atomic or electric
molecular origin. We consider hard-core bosons, i.e. bosons with such a strong
contact interaction that two or more of them can not be at the same place at the
same time. This is experimentally achieved by increasing the scattering length to
a high value close to a Feshbach resonance using an external magnetic field [5].
Due to the additional dipolar interaction the interaction between next-neighbor
bosons can be attractive or repulsive.

The Hamiltonian for the resulting extended Bose-Hubbard model reads:

Ĥ = −J
∑
<i,j>

â†i âj +
V

2

∑
<i,j>

n̂in̂j − μ
∑
i

n̂i , (1)

where âi and â†i are the bosonic annihilation and creation operators, whereas

n̂i = â†i âi denotes the bosonic number operator on the lattice site i. The symbol
< i, j > stands for next-neighbor combinations of sites i and j. The first term
in Eq. (1) describes the hopping of bosons from site to site with the hopping
energy J , the second describes the next-neighbor interaction with its strength
V , and the third describes the dependency on the chemical potential μ within a
grand-canonical description.

In this model we determine the ground-state quantum phase diagram by
analyzing the mean-field approximation of the Hamiltonian (1) for a periodic
distribution of bosons on the lattice like the checkerboard pattern and a pattern
with three sites in the unit cell, which are both illustrated in Fig. 1. The quadratic
lattice is not frustrated, i.e. the lattice geometry allows a density distribution, in
which sites with density 1 have only sites with density 0 as next neighbors and
vice versa. In the triangular lattice this is not possible, so it is called frustrated.
In the following it will turn out that this frustration seems to be correlated to
the appearance of the supersolid phase.
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1.1 Mean-field approximation

It is not possible to determine the eigenvalues of the Hamiltonian in Eq. (1)
exactly due to the presence of bilocal operators, i.e. a product of two operators
at neighboring lattice sites. Using the mean-field (MF) approximation (see, for
instance, Ref. [6]), however, we can rewrite the bilocal operators of the Hamil-
tonian approximately as

â†i âj ≈ ψ∗
i âj + ψj â

†
i − ψ∗

i ψj (2)

n̂in̂j ≈ "in̂j + "j n̂i − "i"j , (3)

where ψi := 〈âi〉 denotes the condensate density and "i := 〈n̂i〉 represents the
boson density at lattice site i.

With Eqs. (2) and (3) the extended Bose-Hubbard Hamiltonian (1) is ap-
proximated according to

Ĥ
MF≈

∑
i

ĥMF,i , (4)

where the local Hamiltonian reads

ĥMF,i := −J
(
âiΨ

∗
i + â†iΨi − ψ∗

i Ψi

)
+

V

2
(2n̂iRi − "iRi)− μn̂i . (5)

Here the mean fields

Ψi :=
∑

j∈NNi

ψj , Ri :=
∑

j∈NNi

"j (6)

represent sums over expectation values on nearest neighboring sites, which have
to be determined self-consistently. To this end we consider now periodic patterns
in the distribution of ψi and "i over the lattice like the checkerboard pattern for
the quadratic lattice or the pattern with three sites in the unit cell for the trian-
gular lattice (see Fig. 1). Such a symmetry reduces the mean-field Hamiltonian
for the whole lattice to the following Hamiltonian for one unit cell (UC):

ĥMF,UC =

(
JΨ − V

2
R

)
−J

∑
X

(
âXΨ

∗
X + â†XΨX

)
+2

∑
X

n̂X

(
V

2
RX − μ

2

)
(7)

with the abbreviation

Ψ :=
∑
X

ψ∗
XΨX , R :=

∑
X

"XRX , (8)

where the sum has a finite number of summands X ∈ {A,B, . . .} named by
capital letters corresponding to Fig. 1.
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1.2 Finding the ground state

After having calculated the energy eigenvalues Ei of the Hamiltonian (7) for
different patterns, we have to describe the ground state at zero temperature for
this system. Therefore the values of the mean-field parameters on each sublattice
are determined by extremizing the energy eigenvalues:

∂�XEi = 0 ∀X , ∂ψXEi = 0 ∀X . (9)

In principle we have to consider each pattern and find out, which has the
lowest ground-state energy. But here we will just discuss the special patterns
shown in Fig. 1. An example for a pattern, which we do not describe, is a stripe
pattern with ΨA = ΨB = 2ψA + 2ψB on the quadratic lattice, which is not a
special case of the checkerboard. Its energies can be calculated, but it turns out
not to appear in the ground state.

1.3 Possible phases

The simplest non-superfluid phase, which occurs, is the Mott insulator (MI). All
bosons are localized at lattice sites, i.e. the condensate density vanishes at all
sites according to ψX = ψY = 0 ∀X,Y , and all are distributed homogeneously,
thus "X = "Y ∀X,Y . There are just two cases for hard-core bosons - the empty
lattice with "X = "Y = 0 ∀X,Y and the full lattice with "X = "Y = 1 ∀X,Y .
In the second non-superfluid class of phases - the density wave phase (DW) - all
bosons are localized, too, but the density distribution is not homogeneous, i.e.
∃X,Y "X �= "Y .

For non-vanishing condensate densities two classes of phases are defined.
When the density distribution is homogeneous, i.e. "X = "Y ∀X,Y , but the
bosons are not localized, i.e. ψX = ψY �= 0 ∀X,Y , then the phase is called
superfluid (SF). The remaining possible phases are called supersolid (SS), i.e.
the density distribution is not homogeneous, thus ∃X,Y "X �= "Y and at least
two condensate densities are unequal, so ∃X,Y ψX �= ψY .

2 Quadratic lattice

The checkerboard pattern is described by the two sites A, B in the unit cell.
To find the Hamiltonian for this pattern, we have to express ΨA, ΨB, RA, and
RB in terms of ψA, ψB , "A, and "B according to Eq. (6), which is ΨA = 4ψB,
ΨB = 4ψA, RA = 4"B and RB = 4"A, since the next neighbors of every site are
always four of the other kind (see Fig. 1).

We can now write the Hamiltonian in the two-site basis

B = {|0, 0〉 , |1, 0〉 , |0, 1〉 , |1, 1〉} , (10)
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where |nA, nB〉 denotes the state of the unit cell with nX bosons on site X . Thus
the Hamiltonian becomes(

ĥMF,UC

)
B
=

=

⎛
⎜⎜⎝

E0 −4Jψ∗
A −4Jψ∗

B 0
−4JψA E0 + 4V "A − μ 0 −4Jψ∗

B

−4JψB 0 E0 + 4V "B − μ −4Jψ∗
A

0 −4JψB −4JψA E0 + 4V ("A + "B)− 2μ

⎞
⎟⎟⎠(11)

with the abbreviation E0 := JΨ − V R/2 = 4J (ψ∗
AψB + ψ∗

BψA)− 4V "A"B.
Determining the mean-field parameters via (9) leads to simple solutions for

ψA = ψB = 0, which are the non-superfluid phases - Mott insulator (MI) and
density wave (DW):

"A "B ψA = ψB
E
V domain of J, μ phase

0

0

0

R

MI
0 1 − μ

V DW
1 0
1 4− 2 μ

V MI

So in the density wave phase we find a checkerboard density distribution with
zero or one boson localized at the respective lattice sites.

For the superfluid phase, i.e. ψX = ψY �= 0 ∀X,Y , the Hamiltonian is
not diagonal, but the energy eigenvalues and the mean-field parameters can be
calculated analytically:

"A = "B ψA = ψB
E
V domain of J, μ phase

μ
V +4 J

V

4+8 J
V

√
μ
V +4 J

V

√
4+4 J

V − μ
V

|4+8 J
V |

− ( μ
V +4 J

V )
2

4+8 J
V

0 ≤ μ
V + 4 J

V

0 ≤ 4 + 4 J
V − μ

V

SF

We find conditions here, under which these formulas are valid, because out-
side of the domain for J and μ (see previous table) the density "A = "B could
not be between 0 and 1, which is a necessary condition for hard-core bosons.
Note that the self-consistency equations (9) turn out to not allow a supersolid
phase in the quadratic lattice.

Since we know now the energies of all phases, we can calculate, which energy
becomes the smallest one for certain parameter values J and μ, yielding the
quantum phase diagram shown in Fig. 2. The phase boundaries can be expressed
analytically in the following way:

DW-MI μ
V = −4 J

V second-order transition

DW-MI μ
V = 4 J

V + 4 second-order transition

DW-SF
2 < μ

V : μ
V = 2+ 2

√
1− 4

(
J
V

)2
first-order transition

μ
V < 2 : μ

V = 2− 2

√
1− 4

(
J
V

)2

The order of the phase transitions describes, whether the order parameters
ψ and " change continuously or discontinuously with J and μ (see Fig. 3).
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DENSITYWAVE: ΡA�1, ΡB�0, Ψ�0

MOTT INSULATOR

MOTT INSULATOR

SUPERFLUID: ΡA�ΡB�0, Ψ�0

J

Μ

0.0 0.1 0.2 0.3 0.4 0.5 0.6

�1

0

1

2

3

4

5

Fig. 2. Phase diagram of the quadratic lattice with continuous (dashed) and discon-
tinuous (solid) phase transitions (J and μ in units of V ).

3 Triangular lattice

The considered pattern from Fig. 1 for the triangular lattice of three sites A, B, C
in the unit cell yields according to Eq. (6) the mean fields ΨA = 3ψB+3ψC , ΨB =
3ψA+3ψC, ΨC = 3ψA+3ψB, RA = 3"B+3"C , RB = 3"A+3"C and RC = 3"A+
3"B. The Hamiltonian for one unit cell turns out to be a 8× 8-matrix, which we
omit here for the sake of simplicity. Analyzing the corresponding self-consistency
equations (9), we find the non-superfluid states, i.e. ψX = ψY = 0 ∀X,Y , which
are the empty lattice (MI), the full lattice (MI) and, additionally, two density
wave phases with average densities of 1/3 and 2/3 and degenerated energies:

"A "B "C ψA = ψB = ψC
E
V domain of J, μ phases

0

0

0

R

MI
0 0 1

− μ
V

DW

0 1 0
1 0 0
1 1 0

3− 2 μ
V1 0 1

0 1 1
1 9− 3 μ

V MI

The superfluid phase with ψX = ψY �= 0 ∀X,Y is here quite similar to the
quadratic lattice, just a few constants have changed, and again, we find certain
conditions for the domain of J and μ:
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Fig. 3. Order parameters � (left) and ψ (right) over J and μ. In the density wave
region � is chosen to be zero. In the other regions we have �A = �B = � (J and μ in
units of V ).

"A = "B = "C ψA = ψB = ψC
E
V domain of J, μ phases

μ
V +6 J

V

6+12 J
V

√
μ
V +6 J

V

√
6+6 J

V − μ
V

|6+12 J
V |

− (6 J
V + μ

V )
2

4+8 J
V

0 ≤ μ
V + 6 J

V

0 ≤ 6 + 6 J
V − μ

V

SF

For the supersolid case with 0 �= ψA = ψB �= ψC �= 0 we can still diagonalize
the Hamiltonian and find a universal minimal energy ESS, which turns out to
be too complicated for an exact extremalization.

Finding the phase transitions is simple for the SF-DW and SF-MI transition
using the above mentioned analytical expressions for the energies. The DW-SS
transition is of second order, so we can insert the DW-parameters into the ex-
tremalization equation ∂ESS/∂ψA = 0 to find it. The resulting phase boundary
makes the density wave region asymmetric (see Fig. 4). For the SS-SF transition
we can not use this method, because this transition is of first order and the
analytic expression for the energy of the supersolid is unknown, thus no ana-
lytical curve has been found. However, a numeric simulation shows, that this
curve is simply a straight line. That fits to the results found in Ref. [7] for a
mathematically equivalent fermion model.

Furthermore we compare in Fig. 4 the mean-field results with the recent
Monte Carlo simulations of Ref. [4], where the J-axis is dilated by a factor of
2. The comparison shows, that quantum fluctuations cause the superfluid to
shrink or, equivalently, the density waves to grow and the SS-SF transition is
no longer a straight line in the Monte Carlo simulation. Thus, we conclude,
that the mean-field approximation produces qualitatively correct results, but
quantitatively it is not that accurate. The mean-field approximation could, in
principle, be improved by interpreting the mean fields as variational parameters
and by taking into account quantum fluctuations systematically as has been
shown for the Bose-Hubbard model in Ref. [8].
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Density Wave: ΡA�ΡB�0,ΡC�1,Ψ�0

Density Wave: ΡA�ΡB�1,ΡC�0,Ψ�0

Mott Insulator: ΡA�ΡB�ΡC�0,Ψ�0

Mott Insulator: ΡA�ΡB�ΡC�1,Ψ�0

Superfluid: ΡA�ΡB�ΡC�0,Ψ�0

Supersolid: 0�ΡA�ΡB�ΡC�0,
0�ΨA�Ψb�Ψc�0

0.05 0.10 0.15 0.20 0.25
J

2

4

6

Μ

Fig. 4. left : Mean-field phase diagram of the triangular lattice with continuous (dashed)
and discontinuous (solid) phase transitions. The dotted lines in comparison with the
DW-SS transition illustrate the asymmetry of the DW region (J and μ in units of V ).
right : Exact phase diagram found using Monte Carlo methods [4]. Note that the J-axis
is dilated by a factor of 2 in comparison with the mean-field results on the left.
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Abstract. We explore two possible applications of the theory of Bose-
Einstein condensates in astrophysical contexts, one being white dwarfs
and neutron stars, the other being Bose-Einstein condensates of dark
matter. There is a general consensus that the conditions in these astro-
physical environments allow for the formation of a Bose-Einstein conden-
sate and thus the investigation of such scenarios are important for the
determination of the physical properties of these astrophysical objects.

Keywords: Bose-Einstein condensation, astrophysics, white dwarf,
neutron star, dark matter

1 Introduction

The earliest work on neutron stars has been performed by Tolman [1], as well
as Oppenheimer and Volkoff [2]. They considered neutrons with an equation of
state determined by Fermi statistics in a general relativistic setting and calcu-
lated the resulting stable equilibrium configuration, see also Ref. [3]. The gravita-
tional collapse of a cloud of neutrons is counteracted by the neutron degeneracy
pressure due to the Pauli exclusion principle, which leads to a prediction for
the maximum masses of neutron stars of about 0.7M�. Observations however
proved the existence of neutron stars with up to 2M� [4], which is in contradic-
tion with the limit predicted by Refs. [1, 2]. Currently there exists an abundance
of different models trying to explain the observed masses of neutron stars, most
of them predicting the existence of other kinds of matter in the core of a neutron
star. Explanations reach from hyperons, i.e. strange baryons, over kaons and pi-
ons, both heavy mesons, to quark matter in the core, while the outer layers
and crusts are supposed to be dominated by neutrons and electrons [5]. There
is the general consensus that the neutrons in neutron stars are in a superfluid
phase [6], i.e. they are bound in states of two neutrons, so-called Cooper pairs,
and can thus effectively be treated as bosons. Investigations of typical temper-
atures and densities in neutron stars show that these bosons, with an effective
mass of m = 2mn, are in a regime in which Bose-Einstein condensation (BEC)
can occur. Thus it is reasonable to investigate whether the maximum mass or
© Springer International Publishing Switzerland 2016 297
A. Pelster and G. Wunner (eds.), Selforganization in Complex Systems:
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other properties like the equation of state of the neutron star change under the
assumption of Bose-Einstein condensated neutron pairs. This theory is known as
BCS-BEC-crossover [7], and has been proven to exist in laboratory experiments
on dilute ultracold quantum gases [8], but was never addressed in astrophysi-
cal settings. A second field of application for BECs in astrophysics are boson
stars - either denoting the abstract concept of a star purely consisting of generic
bosons [9], or using objects like white dwarfs, which contain in principle several
species of particles, but are dominated by one bosonic species, like e.g. 4He white
dwarfs [10, 11]. Results can be compared to an abundance of existing theories on
neutron stars and white dwarfs, explaining observations with varying success.
Finally, some theories suggest dark matter to be bosonic and present in the form
of a Bose-Einstein condensate [12–14]. This could explain some of the puzzles
observed in galactic dynamics, like the rotation curves of visible matter around
the center of a galaxy. Due to the completely unknown nature of dark mat-
ter, the application of BEC is yet unspecified. However, it is assumed that the
conditions in dark matter halos are in principle suitable for superfluid or Bose-
Einstein condensated phases of the constituent particles for some models of dark
matter [15].

In the following we review the idea of applying the theory of Bose-Einstein
condensation, a phenomenon occurring in cold dilute quantum gases, in the
context of astrophysical compact objects. To this end we compare in Section 2
different theoretical treatments of interacting bosons in astrophysical contexts.
In Section 3 we then investigate the implications in the cases of neutron stars
(NSs), white dwarfs (WDs), and dark matter (DM).

2 Theoretical treatment of interacting bosons

There have been plenty of calculations in the field of Bose-Einstein condensates
in astrophysical contexts, for generic boson stars as well as white dwarfs and
even neutron stars. All kinds of scenarios have been considered, from Newtonian
gravity to general relativistic treatments, and from non-relativistic to relativistic
particle dispersions [16–18]. In the following we will introduce three approaches
which differ in the assumed conditions for the investigated system.

2.1 Non-relativistic bosons in Newtonian gravity

Non-relativistic bosons are described by a condensate wave function which obeys
the Gross-Pitaevskii equation, i.e. a non-linear Schrödinger type equation [16],

i�
∂

∂t
ψ(x, t) =

[
− �

2

2m
∇2 +

∫
d3r′ U(x,x′) |ψ(x′, t)|2

]
ψ(x, t) , (1)

using contact interaction and Newtonian gravitational interaction,

U(x,x′) = g0 δ(x− x′)− Gm2

|x− x′| , (2)
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where m denotes the particle mass, and g = 4π�2a/m represents the strength of
the contact interaction depending on the s-wave scattering length a.
Choosing the Madelung representation of the condensate wave function, i.e. split-
ting it into an amplitude and a phase according to

ψ(x, t) =
√
n(x, t) eiS(x,t) , (3)

transforms the Gross-Pitaevskii equation Eq. (1) into two coupled hydrodynamic
equations for the mass density ρ(x, t) = mn(x, t), namely the continuity equa-
tion and the Euler equation for the velocity field v = �∇S/m of the fluid,

∂ρ

∂t
+∇ · (ρv) = 0 , (4a)

ρ

[
dv

dt
+ (v · ∇)v

]
= −∇P (ρ)− ρ∇Φ(x, t)−∇ · σQ . (4b)

Here, the Newtonian gravitational potential Φ(x, t) is defined as

Φ(x, t) = −
∫

d3x′
Gm

|x− x′| ρ(x
′, t) , (5)

fulfilling Poisson’s equation

∇2Φ(x, t) = 4πGρ(x, t) . (6)

Furthermore,

σQ
ij =

�
2

4m2
ρ∇i∇j ln

ρ

m
(7)

denotes the so-called quantum stress tensor, which has the dimension of a pres-
sure and represents a quantum contribution stemming from the kinetic term
in the Gross-Pitaevskii equation. From the form of the equations above, the
pressure can be read off as

P (ρ) =
g

2m2
ρ2 , (8)

which corresponds to a polytropic equation of state of the form P = K ρ1+1/n,
with the polytropic index n = 1.
Henceforth we will apply the Thomas-Fermi approximation in the scenario,
which is justified for a system with a very large particle number and a uni-
form distribution of particles. Mathematically this corresponds to neglecting the
quantum pressure term σQ. Moreover, we will assume a static configuration, and
thus neglect time derivatives as well as all velocity terms. Using the identification
of the pressure in Eq. (8), Eq. (4b) turns out to be

∇P = −ρ∇Φ . (9)

Here it is suitable to introduce spherical coordinates as, due to the symmetry of
the problem, the angular coordinates do not occur in the calculations any more.
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Combining Eq. (6) and Eq. (9) leads, with appropriate units for radial coordinate
and density, to the so-called Lane-Emden equation,

1

r2
d

dr

(
r2

dρ

dr

)
= −ρn , (10)

describing the density profile of the condensate ρ(r). From this, quantities like
the maximum mass of stable configurations can be calculated. Solving for the
density and subsequently integrating up to the first zero of the function yields the
maximum mass, which depends on the yet unspecified s-wave scattering length
a of the particles [16]:

Mmax "
π

2

�c2
√
a

(Gm)3/2
. (11)

2.2 Non-relativistic neutrons in general relativistic setting

Instead of Newtonian gravity, we can also consider the laws of General Relativ-
ity [16]. With a spherically symmetric ansatz for the metric,

ds2 = −e−ν(r)dt2 + eμ(r)dr2 + r2dΩ2 , (12)

and the following assumptions for the metric functions,

dν(r)

dr
= −

[
2

P (r) + ρ(r)c2

]
dP (r)

dr
, (13)

eμ(r) =

[
1− 2GM(r)

r

]−1

, (14)

Einsteins field equations are transformed into the Tolman-Oppenheimer-Volkoff
form [1, 2],

dP (r)

dr
= −

G
[
ρ(r) + P (r)

c2

] [
4πP (r)r3

c2 +M(r)
]

r2
[
1− 2GM(r)

rc2

] , (15)

which, together with the mass conservation equation,

dM(r)

dr
= 4πρ(r) r2 (16)

replace Eqs. (6) and (9). The final set of equations is then Eq. (8), (15) and (16).
Processing these equations leads to a similar expression as in Eq. (10) with several
additional terms which are due to general relativity. Solving for the density as
a function of the radius and then integrating up to the first zero leads to the
maximum mass [17]

Mmax "
1

2

�c2
√
a

(Gm)3/2
. (17)
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2.3 Relativistic neutrons in general relativistic setting

Now we treat relativistic neutrons, for which the equation of state changes. We
will no longer use the non-relativistic Gross-Pitaevaskii equation (1), but start
deriving the governing equations from the action of a scalar field,

S =

∫
d4x

√
−gL (18)

with the Lagrangian density

L =
1

2
gμν∂μφ

∗∂νφ−
1

2

m2c2

�2
|φ|2 − λ

4
|φ|4 (19)

containing a scalar field with quartic self interaction in curved spacetime [17, 18].
A variation with respect to the complex conjugate of the scalar field φ∗ yields
the Klein-Gordon equation

(
ΔLB −

m2c2

�2
− λ |φ|2

)
φ = 0 , (20)

where

ΔLB =
1√−g ∂μ

√
−ggμν∂ν (21)

represents the Laplace-Beltrami operator for curved spacetimes. It can be shown
that with the ansatz φ(x, t) = exp(−imc2t/�)ψ(x, t), a spherically symmetric
metric and in the non-relativistic limit the Gross-Pitaevskii equation Eq. (1) will
be recovered with the identification λ = 2mg/�2.
Furthermore the energy-momentum tensor T μν of the scalar field follows from
varying the action (18) with respect to the metric gμν :

T μ
ν =

1

2
gμσ

(
φ∗
;σφ;ν + φ;σφ

∗
;ν

)
− 1

2
δμν

[
gκσφ∗

;κφ;σ +m2|φ|2 + 1

2
λ|φ|4

]
. (22)

Using the spherically symmetric ansatz from Eq. (12) for the metric, we end up
with three equations, i.e. the Klein-Gordon equation (20), as well as the tt- and
rr-components of the Einstein equations, Eqs. (9a)-(9c) in Ref. [17]. From these
we obtain in analogy to above the maximum mass of the star as

Mmax " 0.22

√
λ

4π

M3
P

m2
=

0.22√
4π

�c2
√
a

(Gm)3/2
, (23)

with the Planck mass MP =
√
�c/G. Note that the qualitative dependence on λ

has been found analytically using the Thomas-Fermi approximation, while the
exact form with the coefficient 0.22 has been read off a numerical plot [17]. Inves-
tigations including thermal or quantum fluctuations have also been performed
more recently in Refs. [18, 19] in a purely numerical approach.
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Fig. 1. Results for the predicted maximum masses of neutron stars in different treat-
ments. Red (full line) are non-relativistic neutrons in Newtonian gravity (11), blue
(dashed line) are non-relativistic neutrons in General Relativity (17), and green (dot-
dashed line) are relativistic neutrons in General Relativity (23). The horizontal grid
line marks the maximum observed mass of 2M� [4], and the vertical grid lines denote
the corresponding s-wave scattering length deduced from the respective theories.

2.4 Comparison of treatments

Even though the three models differ significantly in their physical assump-
tions, Fig. 1 reveals that the quantitative outcomes are rather similar and the
resulting predictions all lie in the same order of magnitude. We can see that the
maximum mass decreases from Newtonian to general relativistic, and from non-
relativistic to relativistic treatment of neutrons. The three maximum masses are
given by Eqs. (11), (17), and (23), and only differ in their numerical prefactor,
which is in all three cases of the order of unity, but otherwise are proportional to
�c2

√
a/(Gm)3/2. Using the observed maximum mass of a neutron star of about

2M� [4], we can infer the corresponding s-wave scattering length a of the neu-
trons from relations Eqs. (11), (17), and (23) and the plot in Fig. 1. The values
for a are 0.8 fm, 8 fm, and 11 fm, respectively, for the three different treatments.
Unfortunately astrophysical measurements do not permit the determination of
the s-wave scattering length of neutrons in a neutron star, but it is surprising
that the values predicted from the maximum masses are not so different from
those obtained in laboratory experiments.

3 Choosing the right treatment

Some simple considerations are helpful to figure out the appropriate choice of
setting for a realistic analysis. The following estimations are carried out for
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the example of a neutron star. To decide whether Newtonian gravity or Gen-
eral Relativity is physically appropriate, it is instructive to calculate the typical
Schwarzschild radius of a neutron star from observed masses, and compare it
with the observed radii of neutron stars. The Schwarzschild radius of an object
is defined as

RS =
2GM

c2
, (24)

and with typical masses of neutron stars of about M " 1.5M�, this leads to a
Schwarzschild radius of about RS " 4 · 103m, which is about half of the typical
radius of a neutron star of Rtyp " 104m. This clearly hints at the necessity of a
general relativistic treatment.
As for the choice of treatment for the neutrons, we consider the estimated tem-
peratures in neutron stars, Ttyp " 1011K, and equate the thermal energy of the
neutrons with their kinetic energy. Assuming for now the non-relativistic energy
expression, the average velocity of the particles is given by

v =

√
2kBTtyp

m
, (25)

leading to a typical velocity of neutrons in a neutron star of v " 3 · 107m/s,
which is a velocity well in the relativistic regime. For the lower temperature of
about Ttyp " 106K in the outer regions of a neutron star however, we end up
with particle velocities of around v " 9 · 104m/s, which would justify a non-
relativistic treatment. Thus, the different treatments outlined above seem to
be applicable for different physical scenarios. Finally, we remark that for white
dwarfs in general the Newtonian treatment of non-relativistic bosons would be
sufficient, as well as for dark matter in the galactic core and halo.

4 Outlook

Plenty of calculations in the field of Bose-Einstein condensates in astrophysical
contexts, ranging from generic boson stars to neutron stars and white dwarfs have
been performed, and all kinds of scenarios have been considered, analytically as
well as within the framework of numerical simulations. However, the majority
of investigations have been carried out at zero temperature, and thus have ne-
glected thermal fluctuations around the Bose-Einstein condensated ground state.
Our estimations of temperatures and conditions in the astrophysical settings in
question have shown that this assumption of zero temperature is in reality not
justified, and thus thermal fluctuations would have to be taken into account.
This could be accomplished in a first step by extending the zero-temperature
treatment of Section 2 to a Hartree-Fock theory at finite temperature. This
leads to a depletion of the condensate through the presence of thermally ex-
cited bosons. Self-consistency equations for both condensate and thermal den-
sity would change predictions of measurable quantities, such as the maximum
masses shown in Fig. 1, considerably. It is expected that thermal fluctuations
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would destabilize compact astrophysical objects, resulting in a lower limit for
the maximum mass.
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Abstract. General anaesthesia (GA) is a medical procedure which aims
to achieve analgesia, amnesia, immobility and skeletal muscle relaxation.
Although GA is commonly used in medical care for patients undergoing
surgery, its precise underlying mechanisms and the molecular action of
anaesthetic agents (AA) remain to be elucidated. A wide variety of drugs
are used in modern anaesthetic practice and it has been observed that
for many AAs, during the transition from consciousness to unconscious-
ness, the electroencephalogram shows biphasic effects in amplitude: an
initial increase of the spectral power followed by a decrease at higher
concentrations. Moreover during the administration of propofol, specific
changes in EEG rhythms can be observed. The aim of this work is the
extended discussion of a recent model by Hindriks and van Putten [8]
that reproduces specific changes in EEG rhythms by the study of a neu-
ronal population model of a single thalamocortical module. We illustrate
specific features of the model, such as the physiological assumptions, the
derivation of the power spectral density and the impact of the propofol
concentration and of the stationary state. We show that the propofol-
induced modification of the stationary state plays an important role in
the understanding of the observed EEG.

Keywords: General anesthesia, Thalamocortical model, EEG, Power
specrtum

1 Introduction

General anesthetics (GAs) include a large number of drugs which without them,
modern medicine, especially surgery, would not have been possible. However,
the mechanism underlying its anesthetic effects on human beings is not yet fully
understood [1].

It has been observed that during the transition from consciousness to un-
consciousness, by induction thippental, propofol, and sevoflurane, many derived
EEG variables show biphasic effects, that is an initial increase of the spectral
power followed by a decrease at higher concentrations [2]. Moreover, during the
induction phase of propofol, enhanced oscilatory activity within several frequncy
© Springer International Publishing Switzerland 2016 305
A. Pelster and G. Wunner (eds.), Selforganization in Complex Systems:
The Past, Present, and Future of Synergetics, Understanding Complex Systems,
DOI: 10.1007/978-3-319-27635-9_20
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bands can be observed [3]. For clinically relevant concentration of propofol spe-
cific changes in EEG rhythms include an increase in alpha peak frequncy, over
frontal regions, accompanied by increase in delta and theta power [4, 5].

Most of the previous studies on anesthetic phenomena have been done by
considering a mean-field model to explain the biphasic behavior and describe
some experimental feature of specific changes in electroencephalography (EEG)
data recorded during anesthesia [6–9]. While some previous theoretical studies
(Steyn-Ross 1999; Bojak and Liley et al. 2005; Hindriks and van Putten 2012) are
based on the same type of continouous spatial mean-field model involving spatial
partial derivatives [10], Hutt and Longtin have considered a neural populations
model motivated by Wilson and Cowan [11] and Amari [12].

In this study we use a thalamocortical feedback model first developed by
Rennie et al. [13] and recently extended to model general anaesthesia by Hindriks
and van Putten [8] to repreduce the specific changes in EEG activity that can
be observed during the propofol-induced general anesthesia. The present work
reviews this latter model and points out the importance of stationary states to
understand EEG power spectra during anaesthesia.

2 Methods

2.1 Model

The body of the model [8] is based on a population-level model of a single
thalamo-cortical module consisting of four populations, namely an excitatory
(E) and inhibitory (I) cortical population, a thalamic relay nucleus (S), and a
thalamic reticular nucleus (R). The average soma membrane potential for a=E,
I, S, R is modeled by

Va(t) =
∑

i=E,I,R,S

h̄(t)⊗Ka,iφi(t− τa,i), (1)

where φi is the pulse firing rate of the population i (in units Hz). The constants
Ka,b are the strengths of the connections from population of type b to population
of type a (in units mVs). The delay term, τa,b is zero if the both populations
are in the thalamus or in the cortex. For thalamocortical or corticothalamic
pathway, the delay is nonzero [14]. We point out that this model does not distin-
guish excitatory and inhibitory synapses in contrast to other models for general
anaesthesia as [9, 6, 7].

In this model, only the axons of excitatory cortical neurons are long enough
to emit propagating pulses along axons and the φE obeys the damped oscillator
equation

DφE = S(Va), (2)

in which the operator D is defined as

D =

(
1

γ

∂

∂t
+ 1

)2

, (3)
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where γ is the ratio of propagation velocity to mean axonal length. It is assumed
that the spatial spread of activity is very fast in other populations and the
activity variable can be approximated by a sigmoidal function as

φa = S(Va) = Smax[1 + exp(−Va − θ

σ
)]−1, (4)

in which Smax is the maximal firing rate (in unit Hz), θ is the average activation
threshold (in units mV), and σ is proportional to the standard deviation of
activation thresholds over the populations (in units mV−1).

In Eqs. (1), ⊗ denotes the convolution operator and h̄(t) denotes the mean
synaptic responce function

h̄(t) =
αβ

β − α

(
e−αt − e−βt

)
, (5)

where α and β are the synaptic decay and rise rate of synaptic responce function,
respectively.

External input to the system can be considered as a non-specific input to
relay neurons as

KS,NφN = 〈φN 〉+
√
2κξ(t), (6)

where 〈φN 〉 indicates its mean value, ξ(t) is a Gaussian white noise with average
zero and κ is the intensity of the driving noise. For more details of model and
the nominal parameter values see [8].

2.2 Effect of propofol on populations

It has been shown that propofol increases the decay time constant of GABAA

synapses, and hence increases the total charge transfer in these synapses but not
that of excitatory synapses [15]. Interestingly propofol has been shown to have
a negligible effect on the amplitude synaptic receptors in cortical neurons [15].

To integrate physiological observations into the model, the potentiation of
synaptic receptors in anaesthesia condition can be modelled by α → α/p with
p ≥ 1, which leads to a decrese in the decay rate constant α or equivalently, an
increase in decay time constant of GABAA receptors. The factor p indicates the
target concentration of propofol in the neural populations. We take p = 1 for
zero concentration i.e, baseline condition. Then we could replace the synaptic
response h(t) by

h(t) =
H

η(α, β)
h̄(t), (7)

in which

η(α, β) =
αβ

β − α

[
exp

(
−α ln(β/α)

β − α

)
− exp

(
−β ln(β/α)

β − α

)]
, (8)

and where the constant H indicates the synaptic efficacy [8]. The maximum
height of h indeed is H and hence is independent of the rate constants α and β.
The baseline value chosen for α and β; α=50 Hz, β=200 Hz leads to the value
η(α, β) = 31.5Hz .

pelster@zedat.fu-berlin.de



308 M. Hashemi and A. Hutt

Fig. 1. The temporal synaptic response function h(t) of inhibitory GABAA synapses
subject to p. Parameters are set to α=50 Hz, β=200 Hz.

2.3 Theoretical power spectrum

The stationary state of Eqs. (1) obeys dVa(t)/dt = 0. We could linearize the
Eqs. (1) about the stationary state and write them in a general matrix form of
a linear DDE as

L̂

(
∂

∂t

)
X(t) = AX(t) +BX(t− τ) + I(t), (9)

with matrices A, B, the system activity vector X and the external input I.
The solution of system can be written as

X(t) =

∫ ∞

−∞
G(t− t′)I(t′)dt′, (10)

and the Green function obeys

L̂

(
∂

∂t

)
G(t) = AG(t) + BG(t− τ) + 1δ(t), (11)

in which 1 is unitary matrix. Applying the Fourier transform

G(t) =
1√
2π

∫ ∞

−∞
G̃(ω)eiωtdω (12)

yields

G̃(ω) =
1√
2π

[L̂(ω)−A−Be−iωτ ]−1. (13)

The power spectral density matrix P(ω) of x is the Fourier transform of the
auto-correlation function matrix 〈X(t)tX(t− T )〉 (Wiener-Khinchine Theorem)
leading to

P(ω) = 2κ
√
2πG̃(ω)G̃t(−ω),
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where the high index t denotes the transposed vector or matrix [16].
At the end, the model assumes that excitatory activity generates the EEG

and by virtue of the specific choice of external input the power spectrum of the
EEG depends just on one matrix component of the Greens function by

PE(ω) = 2κ
√
2πG̃1,3(ω)G̃1,3(−ω) = 2κ

√
2π
∣∣∣G̃1,3(ω)

∣∣∣
2

. (14)

The stationary state of Eqs. (1) is given by

V0E = KEES(V0E) + p1KEIS(V0I) +KESS(V0S),
V0I = KIES(V0E) + p2KIIS(V0I) +KISS(V0S),
V0S = KSN〈φN 〉+ p3KSRS(V0R) +KSES(V0E),
V0R = KRSS(V0S) +KRES(V0E),

(15)

where KSN〈φN 〉 = 1mV and we take three different impact factors for the
anaesthetic effect of propofol as

H

ηei
= p1,

H

ηii
= p2,

H

ηsr
= p3,

in which we parametrize ηei, ηii and ηsr by

ηei : α→
α

p1
, ηii : α→

α

p2
, ηsr : α→ α

p3
.

This assumes a complete insensitivity of synaptic receptors located on cortical
pyramidal neurons and reticular nucleus.

For the linearization of Eqs. (1) one obtains

X =

⎛

⎜
⎜
⎝

φE

VI

VS

VR

⎞

⎟
⎟
⎠ , A =

⎛

⎜
⎜
⎝

K1 K2 0 0
K4 K5 0 0
0 0 0 K8

0 0 K10 0

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

0 0 K3 0
0 0 K6 0
K7 0 0 0
K9 0 0 0

⎞

⎟
⎟
⎠ , I(t) =

⎛

⎜
⎜
⎝

0
0√

2κξ(t)
0

⎞

⎟
⎟
⎠ ,

with

K1 = KEE ,K2 = p1KEI
∂S[V ]

∂V
|V=V0I , K3 = KES

∂S[V ]

∂V
|V =V0S ,

K4 = KIE , K5 = p2KII
∂S[V ]

∂V
|V=V0I , K6 = KIS

∂S[V ]

∂V
|V =V0S ,

K7 = KSE , K8 = p3KSR
∂S[V ]

∂V
|V =V0R , K9 = KRE ,

K10 = KRS
∂S[V ]

∂V
|V=V0S , K11 =

∂S[V ]

∂V
|V =V0E ,

and

L̂(ω)−A−Be−iωτ =

⎡
⎢⎢⎢⎣

L̃ D̃
K11

−K1 −K2 −K3e
−iωτ 0

−K4 L̃−K5 −K6 0

−K7e
−iωτ 0 L̃ −K8

−K9e
−iωτ 0 −K10 L̃

⎤
⎥⎥⎥⎦ (16)
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Fig. 2. Theoretical power spectrum of EEG in the baseline condition (solid black line)
and three different sets of factor p in the anesthesia condition; p1=p3=1+0.3(p2-1),
p2=1.05 (dashed red line), p2=1.1 (solid red line) and p1=p2=p3=1.1 (dashed blue
line).

where L̃ = (1 + iω/α)(1 + iω/β) and D̃ = (1 + iω/γ)2.
We point out that the new constants Ki, i = 2, 3, 5, 6, 8, 10, 11 are proportional
to the nonlinear gain ∂S/∂V computed at the stationary state. With Eq. (13)
and (16), it turns out that the stationary state and the corresponding nonlinear
gain play in important role in the power spectrum.

3 Results

This section shows that the model under study repreduce the specific changes
observed in EEG data during the propofol-induced anesthesia. Figure 2 shows
the theoretical EEG power spectrum in the baseline condition and after the ad-
ministration of propofol. The spectrum resembles well experimental observation
in EEG power spectrum, i.e. increases in delta and theta power as well as more
pronounced alpha oscilations with increased peak-frequency.

Figure 3 shows how the nonlinear gain and the stationary states dependent
on the propofol concentration. We observe that the nonlinear gain may increase
(a) or decrease (b) with increasing propofol dependent on the synapses that
are modified. If the inhibitory synapses at excitatory neurons (p1) and at relay
nerons (p3) respond identically to a change of the propofol concentration in a
specific relation to the response of synapses at inhibitory neurons (p2), then the
nonlinear gain increases (Fig. 3(a)) reflecting an increased excitability and the
power values increase as well (Fig. 2, red curves). In contrast, if the response of
all three synapse types respond identically (as assumed in previous studies such
as [9]), then the nonlinear gain decreases (Fig. 3(a)) and the decreased excitabil-
ity diminishes the power spectrum values (cf. Fig. 2, blue curve).
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Fig. 3. The stationary states and the nonlinear gain dS/dV computed at the lowest
stationary state of pyramidal neurons V0E subjected to the factor p2. a, c) p1=p3=
1+0.3(p2-1), b, d) p1=p2= p3. We observe three states in (c) and (d) for p = 1 where
(c) the two lower states collide or (d) the two upper states collide. The center branch
(red) is linearly unstable, whereas the other branches are linearly stable.

Moreover, the stationary states behave differently in the two cases, cf.
Fig. 3(c) and (d). Increasing (decreasing) the nonlinear gain is accompanied
by an increasing (decreasing) value of the corresponding stationary state, see
panels (c) and (d). It is also remarkable that in (c) the two lower stationary
states collide to a single state whereas in (d) the two upper states collide. This
difference indicates two fundamentally different mechanisms which may yield the
different dynamics obseved in the power spectrum. This link will be a research
topic of future work.

4 Discussion

In the recent study of Hindriks and van Putten the authors have considered a
high-dimensional mean field model to repreduce observed EEG changes during
general anesthesia. The present work illustrates this work in some detail and
highlights the important assumptions. We have extended the previous work by
investigating the effect of the stationary state and have revealed the the increase
or decrease of power seems to be strongly related the the increase or decrease
of the stationary state of the system. This new finding proposes a more detailed
study of the stationary state of neural population activity under anaesthesia.
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Abstract. The ”Royal Road” objective function was proposed by J. H.
Holland in 1993 as a very hard benchmark problem for evolutionary algo-
rithms. Generally, it belongs to the class of combinatorial optimization
problems. In our work, we solve the problem in a distributed way by
assigning each decision variable to an autonomous agent. The resulting
multi-agent system ”COHDA” forms a self-organizing complex system,
where the global solution emerges from local interactions. By apply-
ing the XOR instance generator introduced by S. Yang in 2003, we are
able to pertubate the system during runtime by modifying the objective
function. This allows us to examine the robustness of COHDA against
dynamic objectives. Here, we focus on the influence of runtime memory,
which comprises the beliefs of each agent, on the adaptivity capabilities
of the agents after an occured pertubation. We show that the final fitness
values produced by the system do not suffer from a dynamic objective
function, and are not influenced by the availability of an agents’ runtime
memory. The time needed by the system to adapt to such a pertubation,
however, significantly increases if the agents’ beliefs are being distorted.
We conclude that, in terms of solution quality, COHDA is very robust
against dynamic objective functions. With respect to adaptation speed,
the heuristic benefits from the availability of runtime memory.

Keywords: Combinatorial Optimization, Self-Organization, Coopera-
tion, Multi-Agent System

1 Introduction

In a general way, an optimization problem can be characterized as follows [1]:
Given a set S of feasible solutions and an objective function f : S → IR, one
tries to find those elements s ∈ S which maximize (or minimize) f . Typically,
the elements in S are tuples comprising values for a set of decision variables
v0 . . . vn. If the feasible values for these variables are discrete rather than con-
tinuous, this is called a combinatorial optimization problem. Instances of this
© Springer International Publishing Switzerland 2016 313
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family of problems are usually hard to solve, since their structure is less ex-
ploitable than in the continuous case. Even more, many of such problems are
computationally intractable, so that exact solution methods are not appropri-
ate [2]. Hence, a number of approaches have been proposed, which aim at finding
a quite good solution in a reasonably short amount of time, but without guaran-
teeing any particular solution quality with respect to f . These approaches are
called heuristics.

A special form of combinatorial optimization problem arises, if each variable
v0 . . . vn is controlled by an autonomous decision maker a0 . . . an, respectively.
Example applications for this kind of problem include distributed resource al-
location, logistics and decentralized energy management. In such distributed
systems, the decision makers (in the following simply denoted as agents) have
to coordinate their decisions in order to jointly optimize the objective function
f . Hence, when designing efficient solution strategies for such systems, not only
computational complexity as well as memory complexity, but also communica-
tion complexity (information exchange between agents) has to be regarded.

Recently, the ”COHDA” heuristic has been proposed, which utilizes a self-
organization strategy in order to solve distributed combinatorial optimization
problems efficiently in a completely decentralized and asynchronous way, and
thus forms a nonlinear complex system, where the global solution emerges from
local interactions [3, 4]. In the contribution at hand, we focus on the adaptivity
capabilities of COHDA with respect to the amount of runtime memory of the
underlying agents, using the example of a dynamic variant of the ”Royal Road”
benchmark problem.

2 The Dynamic Royal Road Benchmark Problem

The ”Royal Road” objective function was proposed by J. H. Holland in 1993
as a very hard combinatorial optimization problem. The function takes a tuple
s = v0 . . . v(2k)·(b+g)−1 of binary values as input, such that vi ∈ {0, 1}, and
produces a fitness value f(s) ∈ IR. The goal is to maximize f . The numbers
k, b, g are predefined integer parameters, such that the tuple s comprises 2k

contiguous regions, each containing b values forming a block, and g values forming
a gap. The evaluation criteria of f are designed such that each region contributes
a higher fitness to the resulting global fitness value, the more 1’s are contained
in its block part, but only up to a certain threshold m∗ < b. For amounts of
1’s in the range [m∗ + 1, b − 1], a region would yield a negative fitness, and
thus contribute a penalty to the global fitness value of the function. Finally, for
a block full of 1’s (this is then called a complete block), a region would again
yield a large positive value. Furthermore, series of regions with complete blocks
each would produce extra bonus values to the global fitness. In this whole fitness
evaluation, the gaps do not have any influence on the resulting value. Hence, the
optimal global fitness value will be reached if every block is ”complete”, and the
worst solution (with a negative global fitness value) will be produced if every
block contains exactly b− 1 ones.
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Fig. 1. Example of a ”Royal Road” objective function (k = 2, b = 5, g = 3, m∗ = 3).

In an iterative search process, most optimization algorithms would add more
and more 1’s to each block, until eventually each block comprises m∗ ones. Since
adding more 1’s would introduce penalties and thus decrease the global fitness
value, this poses a local optimum. But in order to reach the global optimum,
an optimization procedure would have to pass the areas with very low fitness
values in the solution landscape. Because of this property, the function is called
deceptive. Figure 1 shows an example configuration. A more detailed description
of Holland’s ”Royal Road” function can be found in [5].

Since the contribution at hand targets the adaptivity capabilities of the CO-
HDA heuristic, the ”Royal Road” objective function had to be converted to a
dynamic variant. This can be done using the XOR instance generator introduced
by S. Yang in 2003 [6]. For this purpose, a randomly chosen binary tuple T with
a predefined Hamming weight HW(T ) is chosen, and the objective function f is
replaced by a function g, which is defined as g(s) = f(s⊗T ). Here, the operator
⊗ is a component-wise XOR operation, thus changing the ”meaning” of every
value in s, where the corresponding value in T equals to 1. This transforms the
solution landscape of the objective function without affecting its basic structure
(i.e. number of optima). The Hamming weight determines the severity of the

transformation: sev(T ) = HW(T )
len(T ) . By applying such randomly chosen transfor-

mations at arbitrary time steps t during the optimization procedure, this allows
us to analyze the behavior of the COHDA heuristic in a perturbed system.

3 COHDA

As stated in the introduction, COHDA is a heuristic for solving distributed
combinatorial optimization problems. Basically, each decision variable of a given
problem is controlled by an autonomous decision maker, implemented as a soft-
ware agent in a multi-agent system. The agents are allowed to communicate
through a communication network, whose topology forms a partially connected,
undirected graph. Figure 2 shows an example of such a system. In COHDA, a
global solution emerges from local interaction between agents. Each agent fol-
lows the same simple behavioral rules: 1) Upon an incoming information from
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Fig. 2. Visualization of an exemplary communication topology used by COHDA.

a neighbor, the local knowledge base of the agent is updated. 2) Afterwards,
the agent chooses the value for its controlled decision variable, that suites the
currently believed system state the best. 3) The agent publishes its local knowl-
edge base to the neighborhood. Following these three steps, the system will first
asynchronously explore the solution space, before converging to the best solution
found by an agent. More details on the heuristic can be found in [3, 4].

4 Evaluation

Our evaluation focuses on the adaptivity capabilities of COHDA in a dynamic,
perturbed environment. The pertubations are modeled by a dynamic objective
function as described in Sect. 2. In more detail, we analyzed the influence of an
agent’s runtime memory on the efficiency of the heuristic to converge after an
occured pertubation. A simulation study has been performed using a royal road
function with k = 3, b = 5, g = 3, m∗ = 3. We compared different pertubation
severities sev(T ) ∈ {None, 0.0, 0.1, 0.2, 0.5} against a number of configurations
of runtime memory:

• No memory. Whenever a pertubation occured, the knowledge bases of all
agents are completely erased, and each agent is re-initialized with a random
value for its decision value.

• Limited memory. Same as above, except that the currently selected value
for the decision variables are kept.

• Full memory. Knowledge bases are kept intact upon system pertubation.

Additionally, we included for reference an evolutionary algorithm with one par-
ent, offspring of size 1 and adaptive mutation rate ((1+1)-ES, c.f. [7]). Each
configuration was simulated 100 times, the results are summarized in Fig. 3,
showing mean values and standard deviations. The upper chart presents the fit-
ness of the solution produced by the algorithms, normalized to [0, 1], whereas
the lower chart depicts the number of iterations until convergence, as a measure
of the time needed to converge. Concerning fitness, the COHDA heuristic pro-
duces significantly better results than the reference algorithm in all cases. Also,
COHDA is unaffected by objective pertubations during runtime. With respect
to the number of iterations until convergence, however, the results show that
the heuristic benefits from the existence of runtime memory when a pertubation
occurs, especially with low pertubation severities. Obviously, the agents make
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Fig. 3. Evaluation results: Pertubation severities compared against different levels of
runtime memory, (1+1)-ES included for reference.

use of their existing memory in order to adapt to a changing objective function
as fast as possible.

5 Application

The primary use case of the COHDA heuristic lies in the domain of decentralized
energy management systems, as it is envisioned for example in the Smart Nord
research project [8]. Here, coalitions of intelligent generators, loads and storages
are formed in order to provide active power as well as ancillary services in the
power grid. Within this research project, the goal of a coalition is to provide a
product of either active power or ancillary services. This product can then be
placed at a market (see Fig. 4). However, in the case of an active power product,
the selection of an active power profile for each agent in the coalition, in order to
jointly produce the desired product, forms a combinatorial optimization problem
as described in the introduction. The COHDA heuristic can be used to solve this
problem efficiently in a distributed way.

However, the COHDA heuristic relies on cooperative agents in principle.
In our future work, we will study the influence of non-cooperative (i.e. self-
interested) agents on COHDA. How many private constraints (with respect to
an agent’s interests) can the heuristic cope with? Up to which amount of non-
cooperative agents is the heuristic still effective?
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$

Fig. 4. Coalition Formation in the Smart Nord research project.

6 Conclusion

Our world gets more and more connected, evolving to an internet of things,
where the interconnected entities get smarter every day. In our research, we
focus on decentralized energy management systems. We believe that in such
systems, self-organization is a promising way for providing coordination, and
in turn to fulfill system-critical tasks. The self-organizing heuristic COHDA for
solving combinatorial optimization problems is a building block in this vision.
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Abstract. In this article we discuss an extension of a method to ex-
tract Langevin equations from noisy time series to spatio-temporal data
governed by stochastic partial differential equations (SPDEs). The re-
construction of the SPDEs from data is traced back to the estimation of
multivariate conditional moments.

Keywords: Stochastic partial differential equations, data analysis

1 Introduction

The synergetic approach to complex systems, composed of many interacting
subsystems, shows that the influence of the fast degrees of freedom on the or-
der parameter dynamics can be described by dynamical noise. This leads to a
mathematical description in terms of nonlinear Langevin equations of the form

ẏ = D(1)(y) +
√
D(2)(y)Γ (1)

or a corresponding Fokker-Planck equation [1]. Here, y(t) is the order param-
eter, D(1)(y), D(2)(y) are the drift and diffusion coefficients, respectively, and
Γ (t) describes a Gaussian distributed and δ-correlated stochastic force with zero
mean. The two coefficients are defined according to

D(n)(Y ) = lim
τ→0

1

τ

1

n!
〈[y(t+ τ) − y(t)]n|y(t) = Y 〉 (2)

which can for example be derived from the Kramers–Moyal expansion [2].
Pursuing the question of how to formulate an evolution equation for the

velocity fluctuations on different scales in turbulent flows, Friedrich and Peinke
[3] proposed to estimate these coefficients directly from experimental data by
the approximation

D
(n)
∗ (Y ) =

1

τmin

1

n!
〈[y(t+ τ)− y(t)]n|y(t) = Y 〉 (3)

with D(n) ≈ D
(n)
∗ . In this context, τmin is the smallest available time scale which

is still big enough to ensure that the stochastic dynamics can be described by a
© Springer International Publishing Switzerland 2016 319
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Markov process. In a large number of subsequent publications this method has
been successfully applied to different scientific topics like turbulence research
[3–5], finance [6], medicine [7–10] or engineering [11] to mention just a few. Be-
sides applications to different scientific disciplines, research focused on technical
questions connected to finite sampling times [12, 13] or measurement noise [14].
An recent overview is given in [15].

2 Outline of the Method

Many physical observables of complex systems do not only depend on time but
also on space [1]. The dynamics of these systems is also influenced by dynamical
noise [16]. In this contribution we want to show how the estimation of Langevin
equations can be extended to spatio-temporal data governed by equations like

∂ty(z, t) = D(1)[y(z, t)] +
√
D(2)[y(z, t)]Γ (z, t) (4)

where the drift and the diffusion coefficient depend on a spatially extended field
y(z, t). In general, the time evolution at the point z depends only implicitly via
operators like e.g. spatial derivatives or integral expressions on the evolution at
other points z′. Due to this, we make the assumption that D(1) and D(2) are
functions of the operators and y(z, t) only and rewrite the equation as

ẏz,t = D(1)[O1, . . . , ON ] +
√
D(2)[O1, . . . , ON ]Γz,t (5)

with yz,t := y(z, t) and the noise term Γz,t := Γ (z, t). The stochastic force is
defined according to

〈Γz,t〉 = 0 , 〈Γz,tΓz′,t′〉 = δ(t− t′)C(|z − z′|) (6)

where C(|z − z′|) denotes the spatial correlation of the noise. The Oi represent
the various operators. For example, in case of the reaction-diffusion equation

∂tyz,t = εΔyz,t + yz,t − y3z,t +
√
q(1 + y2z,t)Γz,t (7)

we would have O1 := yz,t and O2 := Δyz,t. The drift and diffusion coefficients
are then

D(1)[O1, O2] = O1 −O3
1 + εO2 (8)

D(2)[O1, O2] = q(1 +O2
1) . (9)

One can show [17] that in close analogy to the normal Langevin equation (1),
the drift and diffusion coefficient are defined as the multidimensional conditional
averages

D(1)[Y1, . . . , YN ] = lim
τ→0

1

τ
〈yz,t+τ − yz,t|O1 = Y1, . . . , ON = YN 〉 (10)

D(2)[Y1, . . . , YN ] = lim
τ→0

1

τ

1

2
〈[yz,t+τ − yz,t]

2|O1 = Y1, . . . , ON = YN 〉 . (11)
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Fig. 1. Snapshot of a solution of the nonlinear SPDE (7).

It is important to note that in contrast to ordinary Langevin equations the
number of conditions is not known in advance, because we do not know on how
many operators the right-hand side of the SPDE depends. Therefore one has
to use different combinations of operators in order to test which combination
is more suitable to reproduce the data. As criterion for the correct selection of

the operators, one could rearrange (4) (using the estimated coefficients D
(1,2)
∗ )

to extract the noise, and analyze it for Gaussianity and δ-correlation. A further
discussion of this question and related issues will be presented in [17].

The definitions of the drift and diffusion coefficients relate the problem of
finding the structure of the SPDE to an estimation of multidimensional con-
ditional averages or, in other words, to a multidimensional regression problem.
Since kernel based methods show better convergence properties than histograms,
we choose a local linear estimator [18] to determine the conditional averages.

3 Numerical Example

We now turn to a simple example illustrating the outlined procedure. By nu-
merically integrating equation (7) we produce a time series of noisy spatial fields
y(z, t). The data are then used to reconstruct the SPDE. The parameters used
for the simulation are ε = 0.25 and q = 1. The correlation function of the noise
is proportional to exp(|z− z′|2/(2l2c)) with lc = 0.5. The computational domain
is discretized by a 2562 grid and has a side length of L = 100. In Fig. 1, an
example of the solution of (7) is depicted. Without noise, the equation shows
moving fronts as solutions. Due to the strong noise, these structures are not
visible anymore.
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Fig. 2. Visualization of D
(1)
∗ [Y1, Y2] estimated from the simulation data. The two thick

lines highlight the cuts Y1 = 0 and Y2 = 0 shown in Fig. 3.

Fig. 3. The estimated drift coefficient (dots) D
(1)
∗ [Y1, Y2 = 0] (left), D

(1)
∗ [Y1 = 0, Y2]

(right) together with the exact result (line).

Given the data from 100 time steps, the unknown coefficients are estimated
via the conditional moments

D
(1)
∗ [Y1, Y2] =

1

τmin
〈yz,t+τ − yz,t|Y1 = yz,t, Y2 = Δyz,t〉 (12)

D
(2)
∗ [Y1, Y2] =

1

τmin

1

2
〈[yz,t+τ − yz,t]

2|Y1 = yz,t, Y2 = Δyz,t〉 , (13)

where τmin is the time difference between two subsequent time steps. In Fig. 2,
a three-dimensional plot of (12) is shown. One can clearly see the cubic depen-
dence on Y1 and the linear dependence on Y2, i.e. Δyz. At the boundaries, the
estimation of D(1) becomes less reliable due to the small amount of data in this
region, which results in larger fluctuations in the conditional moment.

For a better quantitative comparison, cuts along the Y1-axis and the Y2-axis

are shown in Fig. 3 . In the center, the estimated conditional moment D
(1)
∗
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Fig. 4. The estimated diffusion coefficient (dots)D
(2)
∗ [Y1, Y2 = 0] (left),D

(2)
∗ [Y1 = 0, Y2]

(right) together with the exact result (line).

correctly reconstructs the dependence of D(1) on Y1 and Y2. In Fig. 4, the same

plot is shown for D
(2)
∗ : The diffusion coefficient also is estimated correctly.

4 Conlusion and Outlook

In this paper, we have shown that the method to extract drift and diffusion
coefficients for Langevin equations from time-series as introduced in [3] can be
extended to processes governed by SPDEs. In contrast to pure time-series, one
has to estimate conditional moments depending on several conditions, each con-
dition representing one kind of operator in the right hand side of the SPDE.
Since the number and the kind of operators are not known in advance one has
to test several combinations of operators, or one has to make assumptions on
the general structure of the SPDE [17] to reduce the complexity of the problem.
Also the methods reviewed in [15] and the extension presented here are suited to
analyze experimental data, we want to point out that these methods can also be
valuable tools to analyze data from large scale simulations of complex systems
where a reduced description in terms of lower number of degrees of freedom is
needed. An example for this approach can be found in the context of simulations
of large biomolecules [19].
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Abstract. The decay of beer foam is recorded by evaluating pictures,
measuring the bubble sizes. We use Lorenz curves in order to avoid the
problem of bubble size classification, which is naturally connected with
the estimation of a classical distribution function. It turns out that con-
secutive Lorenz curves intersect which each other. The intersection of
Lorenz curves is directly connected with Ruch’s idea of incomparable
diagrams in the lattices of partitions. This observation suggests the ex-
istence of different, incomparable structures in decaying foam.

Keywords: foam decay, intersecting Lorenz curves, incomparable struc-
tures, Ruch’s partition diagram lattices

1 Introduction

Foam is of great importance for modern industrial products, cosmetics, food, and
beverage industry. However, there is not much known on the creation and decay
of foam up to now. We were interested in the temporal evolution of bubble size
distributions during the decay of beer froth. For this reason, we used ultrasonic
foaming up of beer to achieve a reproducible situation in which all bubbles
are almost of the same size [1]. In this way we created an ordered structure.
However, this structure is unstable because of the dependence of pressure inside
the bubbles on their diameters which are slightly different by creation. Therefore
the foam decays passing through very different less ordered structures. The decay
was documented photographically every second using a CCD device (Fig. 1). As
a result we obtained 300 pictures with 600 - 800 bubbles at the beginning and 200
bubbles per picture at the end of the measurement. The bubble size distributions
right after the foaming-up are of small half-widths. They become wider in time
and split up in a poly-nodal distribution function after passing the drainage
phase, when Apollonian structures are formed [2]. The decrease of the number
of bubbles and the formation of a poly-nodal distribution function raises the
question how to characterize the different distribution functions. In economy
one has a similar problem if one wishes to compare the income distribution
functions of different states, or its time dependence if populations are changing
© Springer International Publishing Switzerland 2016 325
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Fig. 1. Photographs of foam at the beginning (left) shows almost uniform bubble sizes
while at the end of the measurement (right) large deviations of the bubble sizes can be
observed.

in their magnitudes. In this context, Rothschild and Stiglitz used the methods
developed by Lorenz and Gini to describe quite different social and economic
situations [3, 4].

2 The Lorenz method and the Rothschild-Stiglitz
statement

In order to compare the bubble size distributions we formed a vector ordered
monotonously with increasing bubble size for each picture. Taking the partial
sums of all components of the vector as a function of their corresponding running
numbers one obtains the discrete Lorenz function, which is related to the bubble
size distribution considered. This Lorenz method is well known from macroe-
conomics, where it is used to compare social and financial distributions. One
picture results in a distribution of n bubbles. Let xi be the diameter of bubble
i, with i = 1, . . . , n. Order the bubbles from small to large to obtain the vector
(x1, . . . , xn). Now plot the points (k/n, Sk/Sn), k = 0, . . . , n, where S0 = 0 and

Sk =

k∑
i=1

xi (1)

is the total contribution of the smallest k bubbles in the distribution. Join these
points by line segments to obtain a curve connecting the origin with the point
(1, 1) (Fig. 2). If the bubble sizes are uniformly distributed in the foam then the
Lorenz curve is a straight line – the diagonal of the doubly normalized diagram.
Otherwise the curve is convex and lies under this straight line [3]. By this means
one can introduce a total order on the set of all Lorenz curves, i.e. one can
argue that the lower curve represents a distribution which is smaller, i.e. which
has a greater inequality, than the distribution with a Lorenz curve located on
top of the curve under consideration. However, if two Lorenz curves cross each
other, an additional criterion has to been taken into account in order to allow
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Fig. 2. Lorenz curves of bubble size distributions. Every curve belongs to one picture
of the measurement. According to the pictures the number of bubbles changes over
time. The rainbow sequence of colours represents the time – from red to violet.

Fig. 3. A detail of Fig. 2 exemplifying the intersection of Lorenz curves. The rainbow
sequence of colours represents the time.

the comparison of these distributions (theorem of Rothschild and Stiglitz [5]).
From their theorem it can be concluded that if two Lorenz curves intersect,
it depends on the choice of the function which of the two curves describes a
greater inequality of the distribution. This statement corresponds to the idea
of incomparable diagram structures developed earlier by the theoretical chemist
E. Ruch [6]. Indeed, we observed crossing Lorenz curves of developing bubble
size distributions which succeed each other in time (Fig. 3). One may argue
that this observation is a result of the fact that we wish to compare distribution
functions which originate from different numbers of bubbles. In order to examine
the assumption, put the dimension n of the vector of each picture to be constant:
n = n0, namely the maximum number of the bubbles which have been observed
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Fig. 4. Lorenz curves of bubble size distributions. Every curve belongs to one picture
of the measurement. According to Ruch order [6] the number of bubbles has to be
constant. Missing bubbles are represented by diameters of zero. The rainbow sequence
of colours represents the time.

right at the beginning: missing or vanishing bubbles are accounted for as existing
bubbles with vanishing diameter. The corresponding Lorenz functions are shown
in Fig. 4. Again points of intersection of Lorenz curves can be observed (Fig. 5).
It is hard to understand that red and green coloured Lorenz curves intersect
because of the corresponding time intervals, but what is more, one can observe
intersecting red as well as intersecting green lines which lie close to each other in
time. This is indeed a very surprising result since according to the arguments of

Fig. 5. A detail of Fig. 4. One can observe intersecting red coloured Lorenz curve which
are temporarily neighboured as well as green crossing Lorenz curves. The rainbow
sequence of colours represents the time.
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Ernst Ruch incomparable states should not emanate from each other but from
a common mother state.

3 Ruch’s incomparable diagrams and intersecting Lorenz
Curves

Partition diagrams of natural numbers n ∈ N can be represented as diagram
lattices which are totally ordered if n ≤ 5, otherwise they form lattices, which
are partially ordered. In this way Ruch defined incomparable diagrams, or parti-
tions, respectively [6]. If one takes the diagrams as representation of distribution
functions, one can map one Lorenz curve to each of the diagrams. It turns out
that Lorenz curves of comparable diagrams do not intersect (see Fig. 6), whereas
the Lorenz curves of incomparable diagrams intersect with each other (see Fig. 7
and Fig. 8).

Fig. 6. Ruch’s diagram lattice of the number n = 5 and (right) the corresponding
Lorenz curves, which do not intersect with each other.

4 Concluding remarks

In earlier works (cf. [7–9]) we have used Ruch’s diagrams in order to describe
the temporal evolution of the different structures during decay of foam. The
development of structures in the decaying foam could be described by a pathway
on the diagram lattice [10]. As a consequence, the system would have to decide
each time how to develop, if incomparable distributions appear in its imminent
future. But this procedure was connected with the classification of bubble sizes
in order to estimate bubble size distribution functions, i.e. the frequency of
bubbles in the corresponding classes. In the present paper we have chosen the
Lorenz method in order to avoid the problem of classification, which naturally
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Fig. 7. Left: Ruch’s diagram lattice of the number n = 6. The green, as well as the
red marked diagrams are incomparable. Middle: Corresponding partition vectors of the
number n = 6 ordered according to increasing number of non-zero entries. Right: A
possible corresponding distribution of bubble sizes.

is connected always with some preconceptions. However, experimentally it turns
out that the incomparability of distribution patterns, i.e. the intersections of
Lorenz curves following each other, becomes the crucial problem again. These
observations lead to our conviction that in the foam there may exist regions of
incomparable structures with different histories. During our observations such
regions could come to our inspection by the very fast and complex movement of
bubbles in wet foam or they may by created just in the time interval of taking
pictures. Nevertheless, both the methods which we used show unambiguously the
simultaneous existence of incomparable distribution functions in the developing
foam. As a consequence, we come to the conclusion that the foam decay has to be
described by a bundle of quite different pathways in the space of the distribution
functions.
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Fig. 8. Lorenz curves of Ruch diagrams for n = 6. The intersecting dashed Lorenz curves
in boldface belong to the incomparable green and red diagrams in Fig. 7, respectively.
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Abstract. Prices in financial markets exhibit extreme jumps far more
often than can be accounted for by external news. Further, magnitudes
of price changes are correlated over long times. These so called stylized
facts are quantified by scaling laws similar to, for example, turbulent
fluids. They are believed to reflect the complex interactions of heteroge-
nous agents which give rise to irrational herding. Therefore, the stylized
facts have been argued to provide evidence against the efficient market
hypothesis which states that prices rapidly reflect available information
and therefore are described by a martingale. Here we show, that in very
simple bidding processes efficiency is not opposed to, but causative to
scaling properties observed in real markets. Thereby, we link the styl-
ized facts not only to price efficiency, but also to the economic theory of
rational bubbles. We then demonstrate effects predicted from our nor-
mative model in the dynamics of groups of real human subjects playing a
modified minority game. An extended version of the latter can be played
online at seesaw.neuro.uni-bremen.de.

Keywords: Bubbles, Stylized Facts, Efficient Markets, Minority Games

1 Introduction

Many studies of financial datasets emphasise scaling properties [1]. Further, large
jumps in price time series often cannot be attributed to external events [2]. Some
claim that these findings contradict the efficient market hypothesis (EMH) [3].
However, the EMH foremost states, that no systematic profit is possible from
observing previous prices p because predictable price changes are eliminated by
traders exploiting them [4]. This property holds well as a stylized concept [5]. The
distribution of log-returns r(t) = log(pt/pt−1) would be Gaussian only if further
assumptions like a fast convergence according to the central limit theorem would
hold true which is not neccessarily the case. Furthermore, there are also economic
models with perfectly rational traders that can exhibit “rational bubbles” where
prices deviate far from fundamental values [6]. Hence, bubbles and crashes do
not disprove the EMH.

� Currently supported by the Volkswagen-Foundation
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Here, we establish a systematic link between these endogenous mechanisms
for bubbles and crashes on the one hand and the stylized facts on the other hand.
We show, that price efficiency in a simplistic bidding process links bubbles with
the most prominent stylized facts of financial price time series. While the model
is rather abstract and currently tied to a specific pricing rule, many qualitative
and quantitative features of real returns are captured both numerically and an-
alytically. Our model further makes directly testable predictions, some of which
were confirmed in behavioral group experiments.

2 The Model

Consider a market with N agents: Ns speculators and Nr random traders. At
discrete times t each agent places a market order to either buy or sell one unit of
an asset (e.g. a stock). Thereby, agents contribute to either the demand dt or to
the supply st = N−d. For simplicity we only allow market orders, that is, dt and
st do not depend on the price at which the orders are executed. Note, that the
latter is generally not known a priori at stock-, foreign exchange-, and similar
markets. We further require: 1. Increasing dt increases the price while increasing
st decreases the price. 2. The price pt is invariant to the traded volume: scaling
dt and st by the same factor yields the same price. This allows e.g. for some not
executed orders as long as the same fraction of buy and sell orders are affected.
Therefore,

pt =
dt
st

=
dt

N − dt
(1)

which naturally possesses the correct unit.
Agents make their decisions stochastically and we postulate price efficiency:

the probability for a speculator to buy at each time t is chosen such that the
expectation value of the new price given all previous observations

〈pt | pt−1, pt−2, . . . 〉 !
= pt−1 (2)

is the same as the previous price. This condition may be violated only if dt >
Ns+Nr/2 or if dt < Nr/2. In these cases, it is impossible to be price efficient in
this model due to the discretization of the traded assets. However, for Ns � Nr

and Ns � 1, we consider this boundary effect acceptable.
A model time series is shown in Fig. 1 A. The distribution of log-returns is

power-law tailed. The exponent in the cumulative distribution approaches ξ = 2
for large systems (Fig. 1 B). Finite size effects or large Nr/Ns increase ξ (not
shown). Log-returns are uncorrelated while their magnitudes are correlated for
long periods of time (Fig. 1 C) reflecting realistic volatility clustering.

3 Analytical Results

To obtain an explicit solution to Eq. (2), a good approximation for large N is
to require efficient demands instead of efficient prices:

〈dt, | dt−1, dt−2, . . . 〉 !
= dt−1. (3)
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Fig. 1. Price efficient model with Ns = 10000 speculators and Nr = 10 random (coin
flipping) traders. A: Time series. B: Complementary cumulative distribution of log
return magnitudes (solid black line) and a Gaussian with the same variance (dashed
gray line). Straight line: analytical result. C: Autocorrelation of the log returns (dashed
line) and of their magnitudes (solid line).

Since agents choose stochastically, the demands generated by the speculators
and random traders each are binomially distributed. Eq. (3) is fulfilled, if the
probability for each speculator to buy at time t is

P (buy | dt−1) =
1

2
+

dt −N/2

Ns
(4)

Fig. 2 A shows a comparison of Eq. (4) with a numerical optimization with
respect to Eq. (2). For efficient prices, there is a slight drift away from the system
boundaries that is not present for efficient demands. However, this difference
decreases with an increased system size N .

Eq. (4) further shows why a small number of random agents is important
for a finite system. For Nr = 0, we obtain P (buy | dt−1) = dt−1/N . Then, if by
chance the system ends up in the boundary states d = 0 and d = N , it can never
leave unless we allow for a violation of Eq. (2) as discussed above. An alternative
to random agents would be a reset rule like P (buy | dt−1 ∈ {0, N}) = 1/2.

3.1 Stationary solution

For large Ns, we can neglect the random agents, and the difference between
price- and demand efficiency. We thus consider N agents who buy at each time
t with probability dt−1/N . The stationary demand distribution π then satisfies

πj =

N∑
i=0

πi πij , πi,j =

(
N

j

) (
i

N

)j (
1− i

N

)N−j

(5)

where the probability to move from state i = dt−1 to state j = dt is given
by the transition matrix πij . For large N , Eq. (5) is satisfied by the uniform
distribution. To show this, we first divide by πi = πj = const, and obtain

1 =

1∑
x=0

(
N

j

)
xj (1− x)N−j , with x =

i

N
. (6)
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Fig. 2. A: Probability for an agent to buy at time t for different previous demands dt−1

normalized by the system size N = Ns+Nr. Fraction of random traders: Nr/Ns = 0.1.
The demand efficient solution is given by Eq. (4) (dotted black). The price efficient
solutions for N = 22 (solid blue) and N = 110 (dashed red) were obtained by numerical
optimization. B: Distribution of demands in a simulation of Ns = 1000 speculators and
Nr = 1 random trader for 108 time steps.

For large N , we can replace the sum over x � 1 with an integral. The right
hand side of Eq. (6) then reads

(
N

j

)
N

∫ 1

0

xj(1 − x)N−jdx =

(
N

j

)
N

Γ (j + 1)Γ (N − j + 1)

Γ (N + 2)
(7)

=
N

N + 1

N�1−→ 1 � (8)

Fig. 2 B shows the demand distribution for a simulation of the price efficient
model. It is uniform except for the very edges where it drops sharply. For higher
ratios Nr/Ns, the edges can also exhibit peaks.

3.2 Tail Exponent

The log return for two subsequent demands d and d′ can be expressed as

r = log

(
d′

N − d′
N − d

d

)
≈ Δ

(
1

d
− 1

N − d

)
, where Δ = d′ − d. (9)

The approximation is obtained by expanding for small Δ up to the first order.
This is possible, because the standard deviation for the binomial distribution
is proportional to

√
N and vanishes for demands close to zero or close to N .

Hence, the distribution of Δ will be very localized for large N . Fluctuations in
r are then dominated by d, especially for d � N , and N − d � N . Due to the
symmetry with respect to N/2, we now analyze only the case d � N where
r ≈ Δ

d . For the scaling of the tail of the return magnitudes, the shape of p(Δ) is
negligible. The expected fluctuations in r can be expressed by

〈r2|d〉 ≈
(
〈Δ〉
d

)2

≈ 1

d
:= r̃2. (10)

Using the probability integral transform, and p(d) = const. yields

p(r̃) ∝ |r̃|−3, and therefore p(r) ∝∼ |r|−3 (11)

for sufficiently large N and r, and in agreement with simulations (Fig. 1 B).
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the choices ci = ±1, white to skipping a round. Middle: model with equal probabilities
for ci ± 1. Bottom: demand efficient model. Skipping probabilities for the models were
equal to the experiments. B: Variance of the outcomes, correlation coefficient of the
player choices with the respective last excess demand, and the probability for a bubble.
The latter is quantified by the relative number of rounds, where one choice was made
by twice as many subjects (agents) as the other choice.

4 Experiments

Testing for tail exponents or stationary distributions with limited time and sub-
jects appears impossible. However, the uniform distribution of demands implies a
dynamics which spends significant amounts of time near the system boundaries,
that is, in bubble phases. This testable prediction reflects that a mean reverting
trend may be easily exploited and eliminated by traders. We let subjects play a
game (an extension is playable online [7]) where players i in each round chose
ci,t = 1 or ci,t = −1 before a countdown ran out. These choices correspond to
the market orders in the model above. No decision was registered as ci,t = 0. A
superplayer chose Ct = −

∑
i ci,t−1 = −dt−1. The players whose choices were in

the minority won 1 point. Due to the superplayer, betting against the change
in the other players decisions is rewarded. Note, that each new round is a nash
equilibrium: If all players repeat their choices, the outcome dt−dt−1 (a linearized
return) is zero. A single player who changes, loses. Yet, players did not stay in
these equilibria.

Fig. 3 shows the subjects’ choices and two models: agents chosing by flipping
a coin, and agents betting demand efficient on average. The experiment and the
efficient model show clusters where one choice is preferred. These bubble phases
are absent for coin flipping agents. Efficient betting causes a decrease in the
outcome variance, but increases the probability for a bubble phase. This effect
is significant, but not as strong for the real subjects as for the efficient model.
This may be due to a heterogenity of players or the use of other information
which is not captured by the simple model. Nevertheless, players bet against the
superplayer and therefore against mean reversion as much as the efficient model.
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5 Summary

We presented an analytically tractable model which relates price efficiency to
bubbles, power-law log returns and volatility clusters. The lack of mean reversion
leads to a uniform demand distribution. The non-linear price causes the system
to be more susceptible in bubble phases. This is analogous to, for example, many
buyers betting up the price of a scarce resource. Then, in absolute terms small
fluctuations in the availability of said resource may lead to large relative price
changes. Another analogy would be a liquidity crisis.

We successfully tested model predictions with human subjects. Instead of a
player payoff based on the excess demand like in other minority games, we use
the return. This correctly compares the price at which an asset is sold by an agent
not to a fundamental price, but to the price at which the agent bought said asset,
and vice versa. Our game combines information efficiency as in minority games
with bubbles as in majority games in a simpler way than the $-game [8] [9],
and without the necessity to fine tune to a phase transition (for an overview of
games, see [10]). Even if player choices were not efficient, adjusting their impact
based on our payoff rule (trading success) is a learning algorithm allowing for
collective efficiency with respect to the information available to the agents. [11].
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Abstract. Synergetics’ applications in the sciences of cognition and be-
havior have focused on instabilities leading to phase transitions between
competing behavioral or perceptual patterns. Inspired by this scientific
tradition, functional architectures are proposed as a general theoretical
framework aiming at modeling the nonstationary, multiscale dynamics
of complex behaviors, beyond the neighborhood of instabilities. Such
architectures consist of interacting dynamical processes, operating in a
hierarchy of time scales and functionally differentiated according to their
mutual time scale separations. Here, the mathematical formalism of func-
tional architectures is presented and exemplified through simulations of
cursive handwriting. Then, the implications for the analysis of complex
behaviors are discussed.

Keywords: functional architectures, structure flows on manifolds, hierarchies
of time scales

1 Introduction

The idea that human function (be it motoric, perceptual or cognitive) is com-
posed of elementary processes acting as functional units or ”primitives” is often
expressed in the biological and life sciences. Identifying such functional units
implies a time scale separation between such units and the resulting compos-
ite processes. Thus, there is a relationship between time scale separation and
functional differentiation of processes. Moreover, interactions among these time
scales are essential for the organization of multiscale behaviors that are char-
acterized by circular causality. For instance, serial behaviors, such as speech
and handwriting, constitute a class of complex behaviors where slow processes
sequentially activate functional units (elements of a sequence), modifying the
© Springer International Publishing Switzerland 2016 339
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fast dynamics of the level of units, which often results in non-stationary pro-
cesses (top-down influence); at the same time, bringing functional units into
meaningful relationships (here serial order) is how a complex behavior emerges
(bottom-up composition). The field of nonlinear dynamics has offered descrip-
tions of functional or behavioral units [1, 2] such as excitable point attractor
systems and limit cycles to model discrete and rhythmic behaviors, respectively,
as well as more complex ones (e.g. multistable or chaotic). Moreover, Synergetics
[3–5] has focused on the instabilities leading to phase transitions among com-
peting, low-dimensional, cognitive or behavioral patterns of order parameters,
and the related experimentally observed phenomena, such as hysteresis, critical
slowing down and fluctuations, and metastability. The present work proposes
functional architectures [6–8] to account for the ensemble of interactions consti-
tuting the organization of complex human function, outside the neighborhood
of instabilities as well. Functional architectures deal with a dual task: to provide
a general formalism of the functional units’ dynamics, and to propose dynam-
ical mechanisms responsible for temporarily establishing a functional unit, and
subsequently destabilizing it, in order to transit to another one (a role played
by control parameters whose dynamics is not explicitly treated in Synergetics),
for complex function to emerge.

2 Structured Flows on Manifolds modeling Functional
Units

In a recent advance, ’Structured Flows on Manifolds’ (SFM) [8, 9] has been pro-
posed (in the spirit of Synergetics) to link the dynamics of large-scale brain net-
works interacting with bodily and environmental dynamics (high dimensional
systems) to low-dimensional phenomenological descriptions of functional (or
behavioral) dynamics. SFM suggest that during the engagement in a specific
function, the high-dimensional network dynamics collapses (via a fast adiabatic
contraction) on a functionally relevant subset of the phase (state) space, the
so-called manifold. The phase flow is the structured dynamics on the manifold
that evolves for the duration of a specific functional process:

τu̇i = −gi({ui}, {sk})ui + μfi({ui}, {sk})
τ ṡk = −sk + hk({ui}, {sk})
{ui} ∈ �N , {sk} ∈ �M , N �M,μ� 1 (1)

where gi(), fi(), and hi(.) define the globally attractive manifold, the slow (due
to the small value of μ) flow on it, and the fast dynamics towards the manifold,
respectively. τ is the time constant of the fast contraction. The requirement for
SFM is to contain an inertial manifold [10], which is a global structure used
in cases of reduction of infinite dimensional dynamical systems to finite dimen-
sional spaces. The existence and global stability of an inertial manifold has to
be treated in a case-by-case manner, but it is not constrained to the neighbor-
hood of instabilities and phase transitions. After the adiabatic elimination of
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Fig. 1. Multiscale dynamics: slow operational signal and SFM emergence. Panel A:
The slow operational signals {ξj} converge through a fast transient to a specific ξj
node resulting (here) in the emergence of a cylindrical manifold. Panel B: The func-
tional dynamics {uj} collapses fast (also) onto the manifold where it executes a slow
spiral flow. The ξj node’s stability is sustained for the duration of the flow execution.
Subsequently, the ξj node destabilizes, followed by the related manifold, and the dy-
namics moves away, again through fast transients. The density of data point is inversely
proportional to the time scale of the dynamics. Figure adapted from [7].

sk = h({ui}, {sk}), the low-dimensional dynamics on the manifold is given by

τu̇i = Fi({ui}) = −gi({ui})ui + μfi({ui}) (2)

and describes (quantitatively) functional modes, the main building blocks of
functional architectures, as autonomous, deterministic and time continuous sys-
tems. Moreover, the phase flow topology of a mode uniquely determines a sys-
tem’s qualitative behavior, encoding the invariant features of a dynamical process
relative to quantitative variations such as robustness or stability changes due to
stochastic contributions or to different contexts, thus identifying all functional
possibilities within a class in a model-independent manner.
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Fig. 2. The generation of the word ”flow” and the operational signals involved. The
word is repetitively generated after a short transient (black solid line). Four principle
functional modes are used, one for each character (associated with solid blue, green,
magenta and cyan lines, respectively), plus two auxiliary ones (linear point attractors)
at the sequence’s beginning and end (dotted dark and light brown lines, respectively).
From top to bottom: three repetitions of the word in the handwriting workspace (the
plane x -y), the output trajectory in the 3-dimensional functional phase space spanned
by state variables x, y and z, followed by their time series, and the time series of
the slow (WTA competition coefficients |ξj |) and the instantaneous (|δx,y|) ”kicks”,
light and dark red, respectively) operational signals. The mode amplitudes that do not
participate in the word always have a value close to zero (red line). Figure adapted
from [7].

3 Functional Architectures for Complex Behavioral
Processes

In its most general formulation (first part of equation (3)), we can describe
a functional architecture through its flow {Fi(.)} in phase space, potentially
subjected to additional dynamics {σi(t)} called operational signals (for a detailed
treatment see [6, 7]):

τu̇i = Fi({ui}, {σi(t)}) =
∑
j

|ξj(t)|(Fij({ui}) + δi(t)) (3)

where {Fij(.)} is the j -th functional mode that is available in an agent’s dynam-
ical repertoire and {σi(t)} is a (generally) time-dependent operational signal.

pelster@zedat.fu-berlin.de



Functional Architectures for Complex Behaviors 343

The {σi(t)} may operate on various time scales relative to the characteristic
time scale of {Fij(.)}. These time scale separations among modes and signals
determine their functional differentiation and result in distinct functional ar-
chitectures. The second part of equation (3) describes a more specific form of
a functional architecture where, at each moment in time, the expressed phase
flow {Fi(.)} is given as a linear combination of all available modes, weighted by
the operational signal |ξj(t)|. |ξj(t)| modifies {Fi(.)} on a slower time scale than
the one of the functional modes {Fij(.)}, except for the critical moments where
abrupt transitions between modes take place. The operation of this slow signal
upon the functional modes implements the basic mechanism of the functional
architecture: slow dynamics drives the faster functional dynamics through an al-
ternating sequence of fast and slow transients, each of the latter ones constituting
a distinct function, described by a SFM (Fig. 1). Thus, elementary processes are
sewed together to form a longer more complex one. The architecture also pro-
vides for the optional involvement of the operational signal {δi(t)} that leaves
the flow {Fi(.)} unaffected, because it acts instantaneously, just like a func-
tionally meaningful perturbation (for instance, by moving the system beyond a
threshold and thus initiating a significant change in the trajectory’s evolution).
The ensemble of subsystems (|ξj(t)|, {Fij(.)}, {δi(t)}) operating on distinct time
scales (τδ � τF � τξ, respectively) constitutes the functional architecture. In
[7] we showed how the ((|ξj(t)|, {Fij(.)}, {δi(t)})) dynamics can be designed
to organize functional modes so that serial order behavior emerges. Under the
requirement that functional modes’ activations do not overlap, we implemented
a ”winner-take-all competition” (WTA) for the dynamics, in the spirit of the
Synergetic Computer [5]. Suitable dynamics for the parameters of the competi-
tion (”attentional parameters” in the terminology of the Synergetic Computer)
had to be designed, so as to activate the functional modes taking part in the
sequence one after the other and with the appropriate timing. As the different in-
gredients of the functional architecture were intricately coupled in various ways,
the whole architecture was constituted as an autonomous multiscale dynamical
system. We demonstrated the application of the functional architecture on cur-
sive handwriting (Fig. 2), for which we designed a repertoire of functional modes
implementing characters (or parts thereof) modeled as 3-dimensional SFM on
cylindrical manifolds.

4 Implications for Analysis of Complex Behaviors

Functional architectures aim not only at providing the theoretician with hy-
potheses on the nature and mutual interactions of the dynamical components
of complex behaviors, but also the experimenter with the means to identify
such components. In [7] we analyzed data from several simulated trials of the
handwriting architecture, assuming the time scale separations and the respective
functional differentiation of functional modes and operational signals. We man-
aged to identify and distinguish between all three kinds of dynamics ((|ξj(t)|,
{Fij(.)}, {δi(t)}) and thus, decompose the architecture’s output into its dynam-
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ical components and segment it into time periods where different functional
modes are activated. Doing so appeared to be possible only through the calcula-
tion of the output phase flow variability (as opposed to studying the variability
of the output time series), i.e. by identifying the short time periods when the
expressed phase flow changed because operational signals became effective. Fu-
ture work could be directed towards methods of phase flow reconstruction of
stochastic systems based on Fokker-Planck equation formalisms, adjusted for
nonstationary, multiscale systems [11].
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Abstract. We investigate the influence of indirect connections, interre-
gional distance and collective effects on the large-scale functional net-
works of the human cortex. We study topologies of empirically derived
resting state networks (RSNs), extracted from fMRI data, and model dy-
namics on the obtained networks. The RSNs are calculated from mean
time-series of blood-oxygen-level-dependent (BOLD) activity of distinct
cortical regions via Pearson correlation coefficients. We compare func-
tional-connectivity networks of simulated BOLD activity as a function
of coupling strength and correlation threshold. Neural network dynam-
ics underpinning the BOLD signal fluctuations are modelled as excitable
FitzHugh-Nagumo oscillators subject to uncorrelated white Gaussian
noise and time-delayed interactions to account for the finite speed of
the signal propagation along the axons. We discuss the functional con-
nectivity of simulated BOLD activity in dependence on the signal speed
and correlation threshold and compare it to the empirical data.

Keywords: functional connectivity, resting state networks, time-delays

1 Introduction

Despite important progress over past few years, little is known about brain
functional connectivity (FC) at rest, i.e. under no stimulation and in the ab-
sence of any overt-directed behaviour. In the studies on goal-directed mental
activity, spontaneous brain activity has been considered as random enough to
be averaged out across many trials [1]. However, well organized spatio-temporal
low-frequency fluctuations (< 0.1 Hz) have been observed in blood-oxygen-level-
dependent (BOLD) fMRI signals of a mammalian brain in the absence of any
stimulation or task related behaviour [2–4]. These well organized patterns of
activity, suggest existence of underlying dynamics that governs intrinsic brain
processes.

Existing large-scale models of the intrinsic brain dynamics focus on the rela-
tionship between functional and anatomical connectivity. They explore the range
© Springer International Publishing Switzerland 2016 345
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of conditions under which functional networks may emerge from known anatom-
ical connections. In particular, roles of multiple time-scales in FC networks for-
mation [5, 6], time-delays in the signal propagation between the network nodes
and system noise [7, 8], local network oscillations [9, 10] and structural discon-
nection [11] in the underlying dynamics have been investigated. Although RSNs
reflect anatomical connectivity between brain areas comprising the networks in
focus, FC cannot be understood in those terms alone [12, 13].

Here, we combine experimental and modelling approaches to investigate dy-
namics underlying correlated behaviour of distant cortical regions. We choose to
model the local node dynamics by excitable FitzHugh-Nagumo (FHN) neurons
[14, 15] and use the resulting time-series to infer the neuronal activity at the
network levels and subsequently low-frequency oscillations in the BOLD data
[16]. We focus on identifying how global coupling strength and different network
topologies affect connectivity patterns in simulated BOLD signals.

The rest of this paper is organized as follows: In Sec. 2 we provide a detailed
description of the methods used to generate the networks. In addition we intro-
duce the model equations. This sets the stage for numerical simulations that are
presented in Sec. 3. Finally we conclude with a discussion in Sec. 4.

2 Methods and Models

Subjects.We use resting state blood-oxygen-level-dependent (BOLD) fMRI sig-
nals downloaded from the 1000 Functional Connectome Project website
(http://www.nitric.org/). 26 functional and anatomical scans from the Berlin
study are considered in the analysis. Demographic data for the subjects partici-
pated in the study along with the technical details of the signal acquisition can
be found at the Functional Connectome website.

Data Preprocessing Steps in FSL. Image preprocessing is carried out
using FSL (http://www.fmrib.ox.ac.uk) [17]. The preprocessing consists of
the following steps: (a) temporal high-pass filtering (using Gaussian-weighted
least-squares straight line fitting with sigma equals 100 s); (b) temporal low-pass
filtering (using Gaussian filter with HWHM = 2.8 s); (c) slice-timing correction
for interleaved acquisition (using Fourier-space time-series phase-shifting); (d)
motion correction (using a six parameter affine transformation implemented in
MCFLIRT); (e) spatial filtering (using Gaussian kernel of FWHM = 6 mm);
(f) non-brain removal (BET brain extraction is applied to create a brain mask
from the first volume in the fMRI data): (g) normalization to standard brain
image (using 12 DOF linear affine transformation implemented in FLIRT each
subject scan was transformed in MNI space - voxel size 2× 2× 2 mm).

Functional Connectivity. For the connectivity analysis we extract BOLD
time-series from N = 64 cortical regions. These regions are adapted from stud-
ies of functional segmentation of the human cortex [18, 19]. They consist of 30
pairs of the inter-hemispheric homologues and 4 additional areas chosen along
the midline. The full list of the cortical areas along with their anatomical (MNI)
coordinates is provided in the work by Anderson et al. in Table 1 in the Supple-
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mentary material of Ref. [19]. We define the areas of interest as 5 mm spheres
centered at the corresponding anatomical coordinates. For the given image res-
olution of 2 × 2 × 2 mm voxel size (measured at 64 × 64 × 33 brain sites in
total), there are 81 voxel time-series within each of the spherical areas. To ob-
tain correlation matrix, describing connections between the regions, we calculate
the linear correlation coefficient between any pair of the mean signal intensity
of each of the 64 regions as:

r(x1, x2) =
〈V (x1, t)V (x2, t)〉 − 〈V (x1, t)〉〈V (x2, t)〉

σ (V (x1, t))σ (V (x2, t))
, (1)

where V (x, t) represents activity of the region x at time t (averaged across 81
voxels), σ is the standard deviation, and 〈·〉 denotes temporal averages. The
N × N correlations matrices are averaged across the ensemble of 26 subjects.
The obtained correlation matrix {fij}, i, j = 1, . . . , N , is used to create FC
maps between the cortical regions of interest. By definition, FC between two
brain regions exists if their temporal correlation exceeds some predetermined
value r, regardless of their anatomical connectivity.

Thresholding: We obtain FC network topologies by thresholding the empir-
ically derived FC matrix at different threshold values r. If fij ≥ r, the corre-
sponding element of the adjacency matrix is set to 1; otherwise it is set to 0.
We simulate neural and BOLD activity only for r ≥ 0.26, i.e. values for which
connection density or topology cost in the brain networks is less than 0.5 [20].

Simulation of the Network Dynamics. To infer the BOLD signal in
dependence on the network properties, we first simulate the underlying neural
activity. We consider the neural dynamics on the network of N nodes or cortical
regions, where local dynamics of the each node is represented by the homoge-
neous FHN neurons.

Simulation of the Neural Activity: Simulations of the neural network dy-
namics take into account time-delays due to finite speed of signal propagation
between the nodes as well as the presence of the system noise:

u̇i = g(ui, vi)− c

N∑
j=1

fijuj(t−Δtij) + nu (2)

v̇i = h(ui, vi) + nv, (3)

where c denotes global coupling parameter (c > 0), ui and vi are the activator
and inhibitor variables of the ith neural population, fij are the elements of the
FC matrix and Δtij denote time-delays. nu and nv are two independent additive
white Gaussian noise terms with zero mean, unity variance and noise strength
D. The functions g and h describe the local neural activity according to the
FHN model, where we use the notation of Refs. [7, 8]:

u̇ = g(u, v) = τ

(
v + γu− u3

3

)
(4)
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Fig. 1. Time evolution of the activator variable of the FitzHugh-Nagumo neural model
for an isolated node under noise with different intensity.

v̇ = h(u, v) = − 1

τ
(u− α+ bv − I) , (5)

where I is magnitude of an external stimulus, which is assumed to be 0 in our
model of the resting state dynamics [7]. The system parameters are chosen as α =
0.85, β = 0.2, γ = 1.0 and τ = 1.25 to render solutions with damped oscillatory
behaviour of a node dynamics, i.e. at the onset of instability, in the absence of
the connectivity in the network [7, 8]. Representative time-series of the dynamics
of an isolated node are shown in Fig. 1 for different noise strengths D = 0 (no
noise), D = 0.01 (small noise) and D = 0.05 (large noise). We solve the system
of coupled differential equations with time-delays and additive noise using the
Python-module pydelay [21]. The algorithm is based on the Bogacki-Sampine
method [22, 23], which is also implemented in Matlab’s dde23. We calculate
time-delays for a physiologically realistic value of the propagation velocity (v =
7 m/s) via Δtij = dij/v, where dij are approximated by the Euclidean distances
between the centers of the spherical regions, i.e. network nodes i and j. A colour-
coded representation of the dij values is shown in Fig. 2. We simulate 7.5 minutes
of the real time using a time step of 1 ms. When time-delays, system noise and
global coupling are taken into account, the simulated dynamics of the neural
activity exhibit a behaviour that are exemplary shown in Fig. 3.

Simulation of the BOLD Activity: To infer the BOLD activity from the sim-
ulated neural activity we assume the Baloon-Windkessel hemodynamic model
[16]. Simulated BOLD signals are band-passed in the frequency interval (0.01 -
0.15) Hz to match low-frequency oscillations present in the experimental BOLD
data and finally down-sampled to 2.3 s to match the temporal resolution of the
MRI scanner.
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Fig. 2. Distance matrix {dij}, i, j =
1, . . . , N , between cortical regions in
colour code. dij are calculated as Eu-
clidean distance between centers of spher-
ical regions in anatomical space. Matrix
is ordered in a way that corresponding
contra-lateral regions are symmetrically
arranged with respect to the matrix cen-
tre (right hemisphere regions, nodes 1 -
30; left hemisphere regions, nodes 35 - 64).
4 regions selected along the midline are
placed in the middle of the matrix (nodes
31 - 34).

Fig. 3. Time-series of neural network
nodes dynamics for one highly and one
sparsely connected nodes in visual cortex
(V1, blue) and anterior intraparaetal sul-
cus (AIS hIP2, red), respectively. Network
dynamics are modelled with time-delays,
large noise (D = 0.05) and weak cou-
pling (c = 0.016). Parameters: α = 0.85,
β = 0.2, γ = 1.0 and τ = 1.25. The inset
shows the corresponding power spectra.

3 Results

Empirical Functional Connectivity. FC matrices obtained from fMRI data
and its binarized versions for different thresholds are shown in Fig. 4 (left) and
the top panels Fig. 4 (right), respectively. In the latter figure, the threshold
values are chosen as r = 0.26, 0.38 and 0.5. r = 0.26 represents mean value of all
correlations in the empiricaly derived FC and also the value at wich connection
density (κ) of the network drops below 0.5, (κ = 0.48). Values r = 0.38 and 0.5
are one and two standard deviations away from the mean, respectively.

Horizontal-plane view illustrate the anatomical maps of the corresponding
networks structure in the bottom panels of the Fig. 4 (right). In this represen-
tation each cortical region is treated as a network node with the connections or
links to the other nodes in network if the matching correlation exceeds given
threshold. FC networks show a pronounced left to right symmetry for differ-
ent values of the correlation thresholds. However, distributions of the areas with
most connections depend on the threshold applied. The areas showing high num-
bers of links for the lower threshold network differ from the areas that appear
as highly connected at higher thresholds. We expect that nodes with increased
connectivity play an important role in the system’s dynamics.

Simulated Functional Connectivity. FC of the simulated BOLD activ-
ity are shown in Fig. 5. The data are obtained varying correlation threshold r,

pelster@zedat.fu-berlin.de



350 V. Vuksanović and P. Hövel

Fig. 4. (Left) Functional connectivity matrix constructed by calculating Pearson cor-
relations on all pairwise combinations of the BOLD data from 64 cortical regions. The
matrix is ordered as in the Fig. 2. The anti-diagonals reveal existing high correlations
between contra-lateral regions. (Right) Top panels: Binarized functional-connectivity
matrix at thresholds r = 0.26, 0.38, and 0.5. Each element is either black (if there is
no significant connections between the regions) or white (if there is). Bottom Panel:
Visualization of thresholded matrices in anatomical space by locating each region ac-
cording to its x and y coordinates and drawing a link between significantly connected
regions.

i.e. network topology and global coupling strength c while keeping other model
parameters at constant values. Correlations in the brain FC networks may not
necessarily originate from direct connections. Therefore, we vary the network
topologies by changing the correlation threshold r in the binary filter applied
to the empirically derived FC network. We use the corresponding FC matrices
to study the dynamics that result in the appearance of these correlations. Fur-
thermore we uniformly scale all connections strengths c between the network
nodes. For low correlation thresholds and weak coupling strengths (c ≤ 0.05)
the simulated BOLD signals are weakly correlated as the underlying neuronal
activity does not show correlated behaviour either (data not shown). Increasing
the coupling strength, positive correlations among the BOLD signals emerge in
the simulated data and corresponding FC networks exhibit patterns of correlated
activity similar to the empirically derived FC.

4 Discussion/Conclusion

In this study we presented data obtained by combining both experimental and
modelling approaches to explore dynamics underlying correlated behaviour of
distant cortical regions. We showed that increasing global coupling strength be-
tween the network nodes introduces correlations into simulated BOLD activity.
The spatial patterns of the correlated activity resembled those observed in cor-
responding experimental data. However, to get tangible measures of similarity
between experimentally and theoretically derived FC networks our next step
would be to apply graph-theoretical analysis to the obtained data.
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Fig. 5. Functional connectivity (FC) of simulated BOLD activity for different correla-
tion thresholds r applied to the empirically derived FC matrix and different coupling
strengths c. Other parameters as in Fig. 3.

Our results are consistent with recent findings showing that stronger struc-
tural couplings generates more globally connected and globally integrated
BOLD signals [11]. Since functional connectivity implies possible role of indi-
rect anatomical connections further studies, showing how our findings relate to
known anatomical connections between cortical regions could lead to the better
understanding of FC networks formation.

Acknowledgments. This work was supported by BMBF (grant no. 01Q1001B)
in the framework of BCCN Berlin (Project B7). We thank John-Dylan Haynes
and his group for helpful discussions concerning the data processing.

References

1. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nature Reviews Neuroscience 8(9), 700–
711 (2007)

2. Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in
the motor cortex of resting human brain using echo-planar mri. Magnetic Reso-
nance in Medicine 34(4), 537–541 (1995)

3. Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J.,
Smith, S.M., Beckmann, C.F.: Consistent resting-state networks across healthy
subjects. Proc. Natl. Acad. Sci. U.S.A. 103(37), 13848–13853 (2006)

4. Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C.,
Zempel, J.M., Snyder, L.H., Corbetta, M., Raichle, M.E.: Intrinsic functional ar-
chitecture in the anaesthetized monkey brain. Nature 447(7140), 83–86 (2007)

pelster@zedat.fu-berlin.de



352 V. Vuksanović and P. Hövel
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Wächter, Matthias
Department of Physics/Forwind
Universität Oldenburg
26129 Oldenburg
Germany
matthias.waechter@uni-oldenburg.de

Wang, Tao
Department of Physics
Technische Universität Kaiserslautern
Erwin Schrödinger Str. 46
67663 Kaiserslautern
Germany
tauwaang@gmail.com

Weitz, Martin
Institute for Applied Physics
Universität Bonn
Wegelerstr. 8
53115 Bonn
Germany
martin.weitz@uni-bonn.de

Wille, Carolin
Fachbereich Physik
Freie Universität Berlin
Arnimallee 14
14195 Berlin
Germany
carolin.wille@fu-berlin.de

Woodman, Michael Marmaduke
Aix-Marseille Université
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Plöderl, M. , 181

Robnik, M., 43
Roth, G., 165

Schiepek, G., 181
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