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Conventions and Nomenclature
Throughout this thesis the Einstein summation convention is used. The range of each summation
is either explicitly mentioned or emerges from the context. For first class constraints only latin
indices are used and for second class constraints greek indices.

An equality on the submanifold, induced by the constraints, is indicated by the symbol ≈.
It shall not be mistaken for an approximation, for which we use '.

In Section 8 we use the usual four-vector notation, where the indices µ,ν,λ run from 0 to 3
and i,j,k from 1 to 3. The components of a contravariant vector will be denoted with superscripts

xµ = (x0, x1, x2, x3)T , (0.1)

and the covariant components with subscripts

xµ = (x0, x1, x2, x3)T . (0.2)

An index is raised or lowered by the Minkowski metric

xµ = ηµνxν , xµ = ηµνx
ν , (0.3)

where the latter is given by

ηµν = ηµν := diag(+1,−1,−1,−1) . (0.4)

The partial derivative with respect to the contravariant coordinates is denoted as

∂ϕ

∂xµ
= ∂µϕ = ϕ,µ , (0.5)

especially the time derivative by a dot

∂0ϕ = ϕ̇ . (0.6)

The latter does not contain a factor c−1 since we are working in Heaviside units. Within this
four-formalism the spatial components Ai of a four-vector Aµ just differ from their covariant
components by a minus sign.

The three dimensional Levi-Civita tensor is defined as

εijk :=


+1 if (ijk) is an even permutation of (1, 2, 3)
−1 if (ijk) is an odd permutation of (1, 2, 3)
0 if two or more indices are identical

(0.7)

The Kronecker symbol in three dimensions

δij = δj
i = δij , δij = δij (0.8)

is defined to be equal to 1 if i = j and 0 else. A generalization to the four-formalism is obvious.
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1. Introduction

1 Introduction
In the last few decades there has been rapid developments in the realm of quantum field theory
and especially gauge field theory. To quote one of the greatest physicists of our time:

Three principles - the conformability of nature to herself, the applicability of the
criterion of simplicity, and the ’unreasonable effectiveness’ of certain parts of math-
ematics in describing physical reality - are thus consequences of the underlying law
of the elementary particles and their interactions. Those three principles need not be
assumed as separate metaphysical postulates. Instead, they are emergent properties
of the fundamental laws of physics. - Murray Gell-Mann: “Beauty and truth in
physics”, talk in march 2007 in Monterey, California on TED TV

Gauge theory is a tremendous accomplishment of the human mind and combines a plenitude of
mathematical notions and techniques. But as physicists we do not study theories just because
of their beauty, we have to keep an eye on physical application. For instance, theoretical
elementary particle physics utilizes the methods of gauge theory to construct a description of
the fundamental particles and their interactions. The discovery of the SU(3) symmetry and the
development of the theory, today known as Quantum-Chromodynamics, mainly by Gell-Mann,
was a milestone in that physical field. We might be hopeful that a unification of all fundamental
forces is accessible in a description with gauge fields.

Now, one is tempted to ask, why we are talking about gauge field theory. What is the
relation between gauge field theory and singular systems? As we will expose within this thesis,
gauge field theories are just a special class of singular Lagrangian, respectively Hamiltonian,
systems. The physical systems we are dealing with contain gauge theories as a subset. Hence
this thesis is supposed to be a fundamental work, which may illuminate the underlying structure
of gauge theory from another perspective.

Section 2 clarifies the notions of a singular physical system and constraints on the classical
phase space. It turns out that the presence of singularities causes such constraints and vice
versa, so that we may use these notions synonymously. The following sections attend to the
study of the constraints. Within the Dirac-Bergmann algorithm we identify all the constraints.
There are in general two possibilities to differentiate the emerging constraints. The classification
into primary and secondary refers to the origin of the specific constraint, and the classification
into first and second class refers to their properties. The precise meaning of these concepts will
become apparent in the thesis. Especially the study of first class constraints will be interesting,
since here we encounter the relation to gauge theory. After studying the properties of the
constraints, our ultimate goal is to perform the transition to quantum theory. Section 6 briefly
recalls the canonical quantization program and describes the problems arising in the presence
of constraints. Furthermore, this section presents a consistent way to incorporate the classical
restrictions on phase space into a quantum theory. The limiting process to an infinite number
of degrees of freedom to arrive at a field theoretical description is done in Section 7. Finally, we
want to complete the treatment by discussing Maxwell’s electrodynamics as an example.

This description of singular systems and their quantization is mainly conform to those of
K. Sundermeyer [24] and M.Henneaux/C. Teitelboim [16]. Furthermore, we extensively used
the textbooks of T. Kugo [20] and W. Greiner [13]. Of course, these textbooks are just a small
excerpt of the list of references used to compose this thesis.
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2. Singular Systems

2 Singular Systems
This section serves as an initiation to the concept of singularities in the Lagrange formalism.
We will introduce some basic notions such as constraints arising due to the singularities and the
definition of the canonical momenta.

We will start our discussion of constrained systems with the principle of least action. Ac-
cording to the latter a physical system can be described by a function L depending on the
positions and velocities

L = L(q(t), q̇(t)) . (2.1)

We assume for the sake of simplicity that this Lagrange function exhibits no explicit time
dependence. The abbreviations q(t) and q̇(t) stand for the set of all positions q(t) = {qi(t)} and
velocities q̇(t) = {q̇i(t)}, respectively, with i = 1, ..., N . The system’s motion proceeds in a way
that the action integral

A =
∫ t2

t1
dtL(q(t), q̇(t)) (2.2)

becomes stationary under infinitesimal variations δqi(t). Assuming that the end points are fixed
during the variation, i.e. δqi(t1) = δqi(t2) = 0, yields the equations of motion for the classical
path

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 . (2.3)

Executing the total time derivative gives

q̈j
∂2L

∂q̇j∂q̇i
= ∂L

∂qi
− q̇j ∂2L

∂qj∂q̇i
. (2.4)

In this form we recognize that the accelerations q̈i can be uniquely expressed by the positions
qi and the velocities q̇i if and only if the Hessian matrix

Hij = ∂2L

∂q̇i∂q̇j
(2.5)

is invertible. In other words its determinant must not vanish

detHij 6= 0 . (2.6)

Since we are interested in the Hamiltonian formulation, we have to perform a Legendre trans-
formation from the velocities to the momenta. The latter are defined as

pi = ∂L

∂q̇i
. (2.7)

In the case that the determinant vanishes, the Hessian (2.5) is singular and some of the ac-
celerations are not determined by the velocities and positions. This means that some of the
variables are not independent from each other. The singularity of the Hessian is equivalent to
the noninvertibility of (2.7). As a consequence, in a singular system we are not able to display
the velocities as functions of the momenta and the positions. This gives rise to the existence of
R relations between the positions and momenta

φr(p, q) = 0, r = 1, ..., R , (2.8)

if the rank of (2.5) is (N−R). These conditions, which obviously cannot be equations of motion,
are called primary constraints. They follow directly from the structure of the Lagrangian and
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2. Singular Systems

the definition of the momenta (2.7). The interesting point is that these functions are real
restrictions on the phase space. All constraints together define a submanifold ΓP in phase space
of dimension (2N − R), which contains all physically achievable variables. In the following
it is not the structure of this manifold which we are interested in, but simply the physical
implications due to the existence of such a manifold.

There is an ambiguity in the functional form of (2.8). With φr = 0 we also have that
(φr)2 = 0. This means the submanifold can be overdetermined, there exist many equivalent
ways in representing ΓP . In order to have a minimal set of constrained functions we have to
impose regularity conditions. That is simply, the Jacobian matrix

J = ∂(φ1, ..., φR)
∂({qi}, {pi})

, (2.9)

has to be of rank R on the constraint surface. Alternatively, one can characterize the regularity
conditions by the statement that the gradients of φr have to be linearly independent. In the
following we will assume that this requirement is fulfilled and the φr are independent of each
other.
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3. Dirac-Bergmann Algorithm

3 Dirac-Bergmann Algorithm

Knowing about the concept of singularities in the Lagrange formalism, we work out the conse-
quences for the transition to the Hamiltonian formulation.

3.1 Equations of Motion with Primary Constraints

The transition to the Hamilton formulation of mechanics is given by the Legendre transformation

H(p(t), q(t)) = pi(t)q̇i(t)− L(q(t), q̇(t)) . (3.1)

Although some of the velocities q̇i(t) cannot be expressed as functions of the positions and
momenta, the Hamilton function is not a function of the velocities. This can be seen as follows:

dH = d(piq̇i)− dL

= q̇idpi + pidq̇
i − ∂L

∂qi
dqi − ∂L

∂q̇i
dq̇i

= q̇idpi −
∂L

∂qi
dqi , (3.2)

where we used the definition of the momenta (2.7) from the second to the third line. We
recognize that the velocity differentials completely disappear, only differentials of the positions
and momenta are left. As a consequence, the Hamilton function cannot be a function of the
velocities. Using (3.1), one can write the action as

A =
∫
dt
[
pi(t)q̇i(t)−H(p(t), q(t))

]
. (3.3)

Recall that in the Lagrange formalism constraints are taken into account by coupling them to
the Lagrangian via multipliers λr(t)

L(qi(t), q̇i(t)) + λr(t)φr(q(t), q̇(t)) . (3.4)

Herein the multipliers act as new dynamical variables. This can also be done within the Hamilton
formalism. If we perform the Legendre transformation and couple the primary constraints (2.8),
we arrive at the action

A =
∫
dt
[
pi(t)q̇i(t)−H(p(t), q(t))− λr(t)φr(p(t), q(t))

]
. (3.5)

The variation of this action gives

δA = δ

∫
dt
[
piq̇

i −H(p, q)− λrφr(p, q)
]

=
∫
dt
[
δpiq̇

i + piδq̇
i − δH − δλrφr − λrδφr

]
=
∫
dt

[
δpiq̇

i − ṗiδqi −
∂H

∂qi
δqi − ∂H

∂pi
δpi − δλrφr − λr

(
∂φr
∂pi

δqi + ∂φr
∂pi

δpi

)]
=
∫
dt

[(
−ṗi −

∂H

∂qi
− λr ∂φr

∂qi

)
δpi +

(
q̇i − ∂H

∂pi
− λr ∂φr

∂pi

)
δqi − φrδλr

]
. (3.6)
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3.1 Equations of Motion with Primary Constraints

Since the classical path is obtained by the principle of least action, the variation has to vanish.
Because the variations of the positions δqi, momenta δpi and multipliers δλr are regarded as
independent of each other, the three integrands have to vanish separately

ṗi = −∂H
∂qi
− λr ∂φr

∂qi
, (3.7a)

q̇i = ∂H

∂pi
+ λr

∂φr
∂pi

, (3.7b)

φr = 0 . (3.7c)

The first two sets of these equations are the Hamiltonian equations of motion and the third set are
just the primary constraints. We recognize that the theory is invariant under the transformation
H → H + µrφr, since it would result in a renaming of the multipliers λr → λr + µr.

Defining the Poisson bracket of two phase space functions F (p, q) and G(p, q) as

{F,G} = ∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi
, (3.8)

we can write the fundamental Hamilton equations of motion (3.7a), (3.7b) as

ṗi = {pi, H}+ λr{pi, φr} (3.9a)
q̇i = {qi, H}+ λr{qi, φr} . (3.9b)

For a general phase space function F (p, q) the equation of motion reads

Ḟ = ∂F

∂pi

dpi
dt

+ ∂F

∂qi
dqi

dt

= ∂F

∂pi

(
−∂H
∂qi
− λr ∂φr

∂qi

)
+ ∂F

∂qi

(
∂H

∂pi
+ λr

∂φr
∂pi

)
= {F,H}+ λr{F, φr} . (3.10)

At this stage we introduce the so called primary Hamiltonian

HP = H + λrφr . (3.11)

This is nothing but the canonical Hamiltonian with the constraints coupled via Lagrange mul-
tipliers. Using this Hamilton function the equation of motion gains its ordinary form as if there
were no constraints

Ḟ = {F,HP } − {F, λr}φr
≈ {F,HP } . (3.12)

Here we used the fact that the constraints vanish on the physical submanifold. This is indicated
by the symbol ≈ meaning weak equality, that is an equality on the manifold induced by the
constraints. Consequently, we should write the constraints as φr ≈ 0. Thus, in our context the
symbol ≈ has not the meaning of an approximation. The above result is not very astonishing,
since we already recognize this primary Hamiltonian in the action (3.5).
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3.2 Consistency Checks and Secondary Constraints

3.2 Consistency Checks and Secondary Constraints

To get reasonable results one has to demand for consistency, that the system must not leave the
physical submanifold at any time. In other words, the time derivative of the primary constraints
has to vanish at least weakly:

φ̇r = {φr, H}+ λs{φr, φs}
!≈ 0 . (3.13)

In order to fulfill this equation we can distinguish four different cases. Defining the matrix
Prs ≡ {φr, φs} we have:

(i) {φr, H} 6≈ 0, detPrs 6≈ 0
All Lagrange multipliers are (weakly) fixed λs = −P rs{φr, H} and the equations of motion
become Ḟ = {F,H} − {F, φr}P rs{φs, H}.

(ii) {φr, H} 6≈ 0, detPrs ≈ 0
Will be discussed further.

(iii) {φr, H} ≈ 0, detPrs 6≈ 0
Only the trivial solution λr ≈ 0 exists. If {φr, H} ≈ 0 originates from H = 0, one has to
impose detPrs ≈ 0, otherwise it is hard to find a physical interpretation, since a vanishing
Hamiltonian does not allow for any time development at all. Indeed, the vanishing of
the canonical Hamiltonian is a quite interesting case, because this is what happens in
the description of a relativistic free particle. A discussion of this system as well as its
quantization may be found in Ref. [24].

(iv) {φr, H} ≈ 0, detPrs ≈ 0
Some of the multipliers are fixed, depending on the rank of Prs.

Note that the inverse of the matrix Prs is denoted by P rs, so that they satisfy P rr′
Pr′s = δrs.

We will adopt this notation for any other matrix and its inverse respectively. In the following
we will discuss the second case further.

The vanishing of the determinant causes the existence of (R−E) nulleigenvectors er(%), if E
is the rank of the matrix Prs:

{φr, φs}er(%) ≈ 0, % = 1, ..., (R− E) . (3.14)

Multiplying (3.13) with such a vector we obtain

φ̇re
r
(%) ≈ {φr, H}e

r
(%) + λs{φr, φs}er(%)

≈ {φr, H}er(%)
!≈ 0 . (3.15)

For each nulleigenvector these equations could yield conditions on the phase space variables
which are independent of the primary constraints. Let there be K ′ of such new independent
conditions which we will call secondary constraints χk′ . In contrast to the primary ones, we had
to make explicitly use of the equations of motion. Now all constraints, no matter if primary or
secondary, form a new submanifold Γ′ in phase space.

The consistency requirement demands that the time derivatives of those secondary con-
straints also have to vanish

χ̇k′ ≈ {χk′ , H}+ λs{χk′ , φs}
!≈ 0 , k′ = 1, ...,K ′ , (3.16)
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3.3 Classification to First and Second Class

where the weakly vanishing now refers to the submanifold Γ′. Observe that the matrix {χk′ , φs}
is not quadratic anymore and consequently the above procedure using nulleigenvectors breaks
down. Although we cannot specify an algorithm as above, (3.16) may lead to further constraints.

Up to now there are K ′′ ≥ K ′ secondary and R primary constraints, all restricting the
motion of the system to the submanifold Γ′′. This procedure has to be repeated until no more
independent relations arise. After a finite number of steps, we arrive at the following linear
system of equations for the Lagrange multipliers

{φr, H}+ λs{φr, φs} ≈ 0, r = 1, ..., R , (3.17a)
{χk, H}+ λs{χk, φs} ≈ 0, k = 1, ...,K ≥ ... ≥ K ′′ ≥ K ′ . (3.17b)

All primary and secondary constraints together form our physical submanifold, we will simply
call Γ, in phase space.

To complete this subsection we state an important property of a weakly vanishing function.
Namely a phase space function F , vanishing on the submanifold Γ, can be expressed as a “linear”
combination of the constraints

F ≈ 0 ⇐⇒ F = f rφr + gkχk . (3.18)

In general the coefficients f i and gk can be functions of the phase space variables. A proof of
that property may be found in Ref. [16].

3.3 Classification to First and Second Class

According to Dirac [6] it is possible to distinguish two different kinds of phase space functions.
A function is called first class if its Poisson brackets with all constraints vanish at least weakly

{F, φr} ≈ 0 , (3.19a)
{F, χk} ≈ 0 , (3.19b)

otherwise it is called to be of second class. In the following we will see that the distinction
between primary and secondary constraints is not substantial. However, mathematically as
well as physically significant differences between the constraints arise when we perform the
decomposition into first and second class.

φr = (φa, φα) =⇒ λrφr = ηaφa + καφα , (3.20a)
χk = (χb, χβ) . (3.20b)

The latin indices a, a′, ... (b, b′, ...) cover the primary (secondary) first class constraints and
the greek indices α, α′, ... (β, β′, ...) the primary (secondary) second class constraints. This
decomposition yields for the consistency relations

{φa, H} + ηa
′{φa, φa′} + κα

′{φa, φα′} ≈ {φa, H} ≈ 0 , (3.21a)
{χb, H} + ηa

′{χb, φa′} + κα
′{χb, φα′} ≈ {χb, H} ≈ 0 , (3.21b)

{φα, H}+ ηa
′{φα, φa′}+ κα

′{φα, φα′} ≈ {φα, H}+ κα
′{φα, φα′} ≈ 0 , (3.21c)

{χβ, H}+ ηa
′{χβ, φa′}+ κα

′{χβ, φα′} ≈ {χβ, H}+ κα
′{χβ, φα′} ≈ 0 . (3.21d)

Here we see that it is possible to solve the linear system of equations for such multipliers, which
couple the (primary) second class constraints to the canonical Hamiltonian. The first class
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3.3 Classification to First and Second Class

multipliers completely disappear. Later we will see that this disappearance has a precise physical
meaning. In order to distinguish easier between the two classes of constraints, we rename all
first class constraints as (φa, χb) = γm and the second class constraints as (φα, χβ) = ξµ. With
this we can write the consistency relations (3.21) in a more compact form

{γm, H} = 0 , (3.22a)
{ξµ, H}+ κα{ξµ, ξα} = 0 . (3.22b)

Introducing the matrix consisting of the Poisson brackets of all second class constraints

∆µν =
(
{φα, φα′} {φα, χβ′}
{χβ, φα′} {χβ, χβ′}

)
=
(
{ξµ, ξν}

)
, (3.23)

yields for the second class part of the consistency relations (3.22b)

{ξµ, H}+ κα∆µα ≈ 0 . (3.24)

The ∆-matrix is, indeed, non-singular and hence possesses an inverse ∆µν . The multiplication
of (3.24) with the inverse ∆-matrix leads to

κα ≈ −∆αν{ξν , H} , (3.25a)
κβ ≈ −∆βν{ξν , H} ≈ 0 . (3.25b)

Note the important fact that, although the secondary second class constraints are not explicitly
included in (3.11), they are encoded in the Lagrange multipliers κµ. The multipliers coupling the
secondary second class constraints vanish weakly, according to (3.25b), and we can symmetrize
(3.24) with respect to the ∆-matrix

{ξµ, H}+ κν∆µν ≈ 0 . (3.26)

Inserting the multipliers fixed that way into the equations of motion gives

Ḟ ≈ {F,H}+ λr{F, φr}
≈ {F,H}+ ηa{F, φa}+ κα{F, φα}
≈ {F,H}+ ηa{F, γa} − {F, φα}∆αν{ξν , H} . (3.27)

And with the help of (3.25b) in the symmetrized form

Ḟ ≈ {F,H}+ ηa{F, γa} − {F, ξµ}∆µν{ξν , H} . (3.28)

Now these are the equations of motion at which we arrive with the Dirac-Bergmann algorithm.
Herein all constraints appear, except for the secondary first class ones. In the following sections
we study the structure of these equations and the constraints.

There is one thing left to be mentioned in the discussion of this algorithm. In a similar
treatment as presented in Ref. [20], one could have regarded the secondary constraints formal
as primary ones and included them in the Hamiltonian (3.11) by coupling via new multipliers.
After proceeding this way, one would have looked for more constraints arising from this new
“primary” Hamiltonian. This may be confusing, since we would have changed the Hamiltonian,
and hence the equations of motion, during the algorithm weakly. Nevertheless the determination
of the multipliers would have led immediately to the equations of motion using the extended
Hamiltonian to be discussed later.
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4. Second Class Constraints

4 Second Class Constraints
In this section we study the case as if there were no first class constraints, so that the equations
of motion become

Ḟ ≈ {F,H} − {F, ξµ}∆µν{ξν , H} . (4.1)

4.1 The Dirac Bracket

First of all we define the Dirac bracket of two phase space functions F and G as

{F,G}D(∆) = {F,H} − {F, ξµ}∆µν{ξν , H} . (4.2)

The ∆ in the index is used to emphasize that the Dirac bracket is evaluated with the ∆-matrix.
If there will be no confusions we will omit the ∆ in the index. With the help of this definition
the equations of motion (4.1) read

Ḟ ≈ {F,H}D(∆) . (4.3)

The Dirac bracket exhibits several algebraic identities:

(i) {F,G}D = −{G,F}D, Antisymmetry

(ii) {c1F1 + c2F2, G}D = c1{F1, G}D + c2{F2, G}D, Linearity

(iii) {c, F}D = 0, c = const.

(iv) {F, {G,H}D}D + {G, {H,F}D}D + {H, {F,G}D}D = 0 Jacobi identity

(v) {FG,H}D = F{G,H}D + {F,H}DG Product rule

They are essentially the same as for the Poisson bracket. The only but crucial difference is that
the Dirac bracket does not obey the fundamental commutation relations. Soon it will become
clear that this circumstance is not a defect but a necessity for the consistency of the quantum
theory for constrained systems.

It is possible to define for every phase space function F , which may be second class, a first
class conjugate F ∗

F ∗ = F − ξµ∆µν{ξν , F} . (4.4)
To proof the first class property of F ∗ its Poisson bracket with all constraints has to vanish

{ · , F ∗} = { · , F} − { · , ξµ∆µν{ξν , F}}
= { · , F} − { · , ξµ}∆µν{ξν , F} − ξµ{ · ,∆µν{ξν , F}} . (4.5)

The “dot” in the Poisson brackets serves as a placeholder for first or second class constraints.
For second class constraints we have

{ξκ, F ∗} = {ξκ, F} − {ξκ, ξµ}∆µν{ξν , F} − ξµ{ξκ,∆µν{ξν , F}}
= {ξκ, F} − δκν{ξν , F} − ξµ{ξκ,∆µν{ξν , F}}
≈ 0 . (4.6)

The first two terms cancel identically and the last term vanishes weakly, since ξµ is constrained
to vanish. The Poisson brackets with first class constraints yield

{γm, F ∗} = {γm, F} − {γm, ξµ}∆µν{ξν , F} − ξµ{γm,∆µν{ξν , F}}
≈ {γm, F} . (4.7)
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4.2 Connection to Reduced Phase Space

Here the second term vanishes weakly due to the first class property of the γ’s and the last one
vanishes weakly as before. Now we are left with one term, which in general does not vanish.
However, we will see in the next section that this term can be omitted, because it is connected
to a gauge transformation. If the phase space function is the Hamilton function, this term has
to vanish due to the consistency relations (3.22a).

With the definition of the Hamilton function H∗ we can write the equations of motion (4.1)
as

Ḟ ≈ {F,H∗} , (4.8)

and identify
{F,G}D ≈ {F,G∗} . (4.9)

The proof of that does not cause any effort:

{F,G∗} = {F,G} − {F, ξµ∆µν{ξν , G}}
= {F,G} − {F, ξµ}∆µν{ξν , G} − ξµ{F,∆µν{ξν , G}}
≈ {F,G}D . (4.10)

We just used the definition of the Dirac bracket (4.2) and the constraints ξµ.

4.2 Connection to Reduced Phase Space

Up to now we are dealing with the entire phase space, where we restricted the dynamics in an
embedded submanifold. This is due to the constraints, because not all coordinates and their
conjugate momenta are independent. But actually we just want to work in the reduced phase
space containing the true degrees of freedom. Unfortunately, in a given situation it is hard if
not impossible to identify the canonical variables spanning this reduced vector space. In the
following we will see the Dirac bracket in another light as just writing the equations of motion
in a compact way.

Consider a constrained system with canonical variables qi and pi. It was shown by Maskawa
and Nakajima [21], that one can construct two sets of variables Qk, Qm with their conjugates
Pk, Pm by a canonical transformation, such that the constraints read Qm = 0 and Pm = 0.
The left variables Qk and Pk are free and, thus, form the reduced phase space. If one defines
ξ1m = Qm and ξ2m = Pm, the ∆ matrix (3.23) can be written as

∆ =
(
{Qm,Qn} {Qm,Pn}
{Pm,Qn} {Pm,Pn}

)
=
(

0 δmn
−δmn 0

)
. (4.11)

The inverse is
∆−1 = −∆ , (4.12)

so that we have for the Dirac brackets

{F,G}D(∆) = {F,G}+ {F,Qm}{Pm, G} − {F,Pm}{Qm, G}

= {F,G} − ∂F

∂Qm
∂G

∂Pm
+ ∂G

∂Qm
∂F

∂Pm

= ∂F

∂Qk
∂G

∂Pk
− ∂G

∂Qk
∂F

∂Pk
, (4.13)

which is nothing else but the Poisson bracket for the unconstrained variables. Now it becomes
clear that the fundamental Dirac brackets must not be fulfilled, otherwise we immediately
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4.2 Connection to Reduced Phase Space

recognize that the calculations in (4.13) would not hold. The construction of the canonical
transformation would not be possible, since a canonical transformation does not change the
fundamental Poisson brackets. We draw the important conclusion that the Dirac bracket acts
in the constrained phase space as the Poisson bracket in the reduced phase space. Hence, the
Dirac bracket is closely connected to the reduced phase space.
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5 First Class Constraints
We will study the properties of the equation of motion only containing first class constraints.
Without second class constraints the equations of motion (3.28) reduce to

Ḟ ≈ {F,H}+ ηa{F, γa} , (5.1)

only containing primary first class constraints.

5.1 Generators for Gauge Transformations

The multipliers ηa in the above equation of motion are completely free. Therefore, we may
expect arbitrary functions of time in the general solution. Of course, this arbitrariness cannot
have any physical meaning and there has to be a transformation mediating between the different
time developments of the phase space function F .

Consider two phase space functions Fη and Fη′ with two different multipliers η and η′ evolving
from the same initial value F0. Expanding these functions for small times

F (t) ' F (0) + dF

dt

∣∣∣∣
t=0

t+ 1
2
d2F

dt2

∣∣∣∣
t=0

t2 + ... , (5.2)

and inserting the equations of motion (5.1), one obtains up to first order in time

F (t) ' F0 + ({F0, H}+ µa{F0, γa})t+ ... . (5.3)

The difference between the two functions is

Fη − Fη′ ' (ηa − η′a)t{F0, γa} . (5.4)

For an infinitesimal time evolution δt the difference is given by

δF = εa{F, γa} , (5.5)

which represents the demanded gauge transformation. Of course we can expect, that not only
the sum of all first class constraints generates a gauge transformation, but that each first class
constraint does this by itself. Therefore we can write

δεF = ε{F, γa} . (5.6)

In a special case, where the phase space functions are just the canonical variables, we have

p′i = pi − ε
∂γa
∂qi

, (5.7)

q′i = qi + ε
∂γa
∂pi

. (5.8)

Here we immediately recognize that the infinitesimal gauge transformations are associated with
infinitesimal canonical transformations with the first class constraints being the generating
functions.

So far we proved that primary first class constraints generate gauge transformations. One
may ask, what about the secondary first class constraints? Originally, Dirac conjectured in
his lectures [6] to take all first class constraints into account. Indeed, there are several hints
to proceed that way. For instance, as we will see later in the application of the Maxwell
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field, we have to consider all first class constraints to relate them with the local U(1) gauge
transformations of the four-potential Aµ. Therefore, one may include all constraints to the
canonical Hamiltonian and obtain the extended Hamiltonian

HE = H + ηmγm + κµξµ = H∗ + ηmγm . (5.9)

Using this Hamilton function the equations of motion become

Ḟ ≈ {F,HE} ≈ {F,H}+ µm{F, γm} − {F, ξµ}∆µν{ξν , H} . (5.10)

This is the final equation of motion containing all constraints. Especially we have that all first
class constraints generate gauge transformations. In the next section, when we come to the
quantization of the theory, we will make use of these equations of motion and particularly the
first class constraints will play an important role.

5.2 Group Properties of First Class Constraints

In this subsection we deepen our understanding in the gauge generating characteristic of the
first class constraints. For this purpose we have to prove a potentially obvious property of the
Poisson bracket. Namely the Poisson bracket of two first class functions is again first class.

We already know, that in general a weakly vanishing function is a linear combination of all
constraints

{F, φi} = fi
jφj , {G,φi} = gi

jφj . (5.11)

Here the summation over j is meant to cover all the constraints. The proof is straightforward,
just using the Jacobi identity and the product rule yields the desired result:

{{F,G}, φi} = −{{G,φi}, F} − {{φi, F}, G}
= {F, fijφj} − {G, gijφj}
= fi

j{F, φj}+ {F, fij}φj − gij{G,φj} − {G, gij}φj
= fi

jfj
kφk + {F, fij}φj − gijgjkφk − {G, gij}φj

≈ 0 . (5.12)

Especially the Poisson bracket of two first class constraints is first class

{γm, γn} = fmn
`γ` . (5.13)

So we can draw the important conclusion, that first class constraints form a closed Lie algebra
and therewith represent a subgroup in the group of constraints with the Poisson bracket as the
underlying product operation. This property will be very important in the following discussion.
Consider the infinitesimal canonical transformation (5.6)

δεF = ε{F, γm} .

This can be written in the form
δεF = εT̂mF , (5.14)

where we define the operator
T̂m ≡ { · , γm} . (5.15)
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5.2 Group Properties of First Class Constraints

The calculation of the commutator is straightforward:[
T̂m, T̂n

]
= {{ · , γn}, γm} − {{ · , γm}, γn}

= −{{γn, γm}, · } − {{γm, · }, γn} − {{ · , γm}, γn}
= { · , {γn, γm}}
= { · , fnm`γ`}
= { · , fnm`}γ` + fnm

`{ · , γ`} . (5.16)

If the structure coefficients fmn` are functions of the phase space variables, the group property
holds at least weakly [

T̂m, T̂n
]
≈ fnm`T̂` . (5.17)

The operators T̂m together with the commutation relation define a Lie algebra. In this de-
scription it is obvious that each first class constraint is a generator of a gauge transformation
δεF , because it is part of the operator generating the symmetry transformation. We have to
emphasize, that the closed algebraic structure of the first class constraints was essential in the
derivation of the commutator. In the Appendix A we give some remarks on Lie algebras, Lie
groups, and their relation to gauge transformations.
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6. Quantization of Constrained Dynamics

6 Quantization of Constrained Dynamics
After the classification of the constraints and studying their properties, it is our aim to perform
the transition from classical to quantum theory.

6.1 The Canonical Quantization Program

Canonical quantization was one of the first steps in the development of the new quantum theory
of finite dimensional regular systems. The main purpose of this thesis is to present a consistent
way, how to extend the formalism to singular systems. To this end we briefly recall the postulates
for the canonical quantization program1:

(i) Describe the quantum state of a physical system by a (normed) vector |ψ〉. It is an element
of a finite/infinite dimensional Hilbert space H, with a scalar product 〈ϕ|ψ〉.

(ii) Any measurable quantity has to be represented by a linear, hermitean operator Â. In
general the operators could exhibit an explicit time dependence, whereas for our purposes
they shall not.
The outcome of a measurement is always an eigenvalue of such an operator, because of the
hermiticity these values are real. For the sake of simplicity, we assume that the eigenvalues
are non-degenerate. If |ai〉 denotes the eigenvectors of the operator Â

Â |ai〉 = ai |ai〉 , (6.1)

one can expand each vector |ψ〉 in a series of these eigenvectors

|ψ〉 =
∑
i

ci |ai〉 . (6.2)

The probability, that the eigenvalue ai occurs in a single measurement, is given by

| 〈ai|ψ〉 |2 = | 〈ai|
∑
j

cj |aj〉 |2 = |
∑
j

cj 〈ai|aj〉 |2 = |ci|2 . (6.3)

(iii) The dynamical evolution of a state is given by the Schrödinger equation

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 . (6.4)

The Schrödinger equation implies the equation of motion for the expectation value of an operator
〈F̂ 〉 = 〈ψ| F̂ |ψ〉, where we neglect an explicit time dependence:

d

dt
〈ψ| F̂ |ψ〉 =

(
d

dt
〈ψ|
)
F̂ |ψ〉+ 〈ψ| F̂

(
d

dt
|ψ〉
)

= − 1
i~
〈ψ| ĤF̂ |ψ〉+ 〈ψ| F̂ 1

i~
Ĥ |ψ〉

= 1
i~
〈ψ| F̂ Ĥ − ĤF̂ |ψ〉

= 1
i~
〈[F,H]〉 . (6.5)

1In this subsection we shall not use the summation convention and therefore explicitly mention when there is
a summation.
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This equation is formally identical to the classical Hamiltonian equation of motion for an un-
constrained system, if we perform the substitution

{F,H} −→ 1
i~

[
F̂ , Ĥ

]
. (6.6)

In general we can retain, that the transfer to quantum theory is done by the following corre-
spondence rule [

F̂ , Ĝ
]

= i~{̂F,G} . (6.7)

However, it must be remarked that this canonical quantization method even in the regular case,
where we do not consider constraints, is too naive and works only for some special Hamiltonians.
In general we encounter operator ordering problems, because classical observables commute, the
corresponding quantum operators do not. If there are constraints reducing the classical phase
space, the situation becomes even more severe.

6.2 Problems in Quantization with Constraints

The above description gives us a simple tool to quantize regular systems. There exist several
ways how to consider constraints and just as many problems with these descriptions. In the
following we discuss some of them.

To take into account that the classical phase space is reduced by the constraints, one may
quantize the theory as mentioned above and restrict that part of the Hilbert space as physically
relevant, by imposing certain relations on the states. One possibility of this approach is to
demand the vanishing of matrix elements of each constraint〈

ψ′
∣∣ σ̂κ |ψ〉 = 0 , (6.8)

whereas σ̂κ have to be understood as the quantum analogues of the classical constraints. And
already here we face a serious problem of this approach, since the operator analogue of a classical
constraint may be not well-defined. This is mainly due to the ordering problem of the operator
formalism. Furthermore, the above condition is not very handy for practical calculations as one
needs to know the full spectrum of the Hamiltonian first before deciding which states belong to
the physical Hilbert space. Despite these difficulties this quantization method may work. For
instance, it was used by S. Gupta [14] and K. Bleuler [3] for the quantization of the Maxwell
field in the relativistic covariant Lorentz gauge.

Another possibility is that we impose direct conditions on the states according to

σ̂κ |ψ〉 = 0 . (6.9)

Of course these equations imply (6.8) but they are significantly stronger conditions on the states
as just the vanishing of matrix elements. In the classical theory we obtained the result that first
class constraints form a closed algebra. Naively one could expect that the quantum analogue of
relation (5.13) would be

[γ̂m, γ̂n] = f̂mn
`γ̂` . (6.10)

But there is no reason that the “structure-operators” f̂mn` are always to the left of the constraints
γ̂`. And therefore we may have

[γ̂m, γ̂n] |ψ〉 6= 0 , (6.11)
for some combinations of m and n. But this is in sharp contradiction to the consistency, since
we have to have from (6.9) that the commutator of two first class constraints applied to any
physical state vector vanishes

[γ̂m, γ̂n] |ψ〉 = 0 . (6.12)
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6.3 Gauge Reduction

Nevertheless it is possible that this approach works for some special, “docile” constraints. An
important example is the treatment of the free relativistic particle, as done in Ref. [24], leading
to the Klein-Gordon equation.

If we are dealing with second class constraints the situation becomes even more severe. On
the classical level the Poisson bracket of two second class constraints in general does not vanish.
After the transition to quantum mechanics we would expect some relations[

ξ̂µ, ξ̂ν
]
|ψ〉 6= 0 (6.13)

But this is already in contradiction to (6.9), since we have to demand the same consistency
relation for the second class commutator as in the above first class case. In this approach there
is no possibility that we get a consistent quantum theory if second class constraints arise on the
classical level.

These examples illustrate that the quantization of a theory containing constraints is non-
trivial and we have to face many problems which partially go beyond the operator ordering
problem. In the next section we will present one way out of this misery.

6.3 Gauge Reduction

Our ultimate goal is to quantize a singular system. But this cannot be possible if we work in the
constrained phase space. If we would apply standard operator methods and quantize the system
by imposing the commutation relation (6.7), inconsistencies arise immediately. Since there are
dependent variables, this would create uncertainties where none should be. In a theory, where
gauge freedom is present, it turns out that one must remove this gauge freedom. Indeed, first
class constraints generate gauge transformations, as a consequence we are forced to remove the
first class constraints from our theory. Before we explain how to proceed, we want to motivate
this gauge reduction.

The best way to understand the physical significance of this reduction process gives the
path integral formulation of quantum mechanics. All the physical information of a quantum
mechanical system is given by the transition amplitude. This amplitude can be expressed as an
integral over all possible paths a particle can move [18]. The original expression was derived in
configuration space by Feynman

〈qf , tf |qi, ti〉 =
∫
Dq exp

{
i

~

∫
dtL(q(t), q̇(t))

}
. (6.14)

Since we are working in phase space, the Hamiltonian representation would be more apropriate

〈qf , tf |qi, ti〉 =
∫
DqDp exp

{
i

~

∫
dt
[
pj(t)q̇j(t)−H(p(t), q(t))

]}
. (6.15)

We recognize the action integral in the exponent of the phase. The path integral describes
nothing but the transition amplitude of a particle from an initial state |qi, ti〉 to a final state
|qf , tf 〉 as a sum over all possible paths. In a regular system each path corresponds to one single
physical configuration. However, in a singular system there are superfluous functions. One
single physical configuration is described by more than one canonical pair of variables p and
q. If there would be no gauge reduction, the path integral is allowed to sum over all possible
configurations, especially over the physically equivalent ones. As a consequence the path integral
cannot converge. To enforce the possibility of convergence we have to fix the gauge somehow.
This fixation picks out one physical “gauge orbit”.
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6.3 Gauge Reduction

There are several methods for this gauge fixation. One possibility is given by adding a so
called gauge fixing term to the Lagrangian density, so that there are no first class constraints
in the first place. In the case of the Maxwell theory this could be the well known, Lorentz
covariant Fermi term −α

2 (∂µAµ)2 [9]. The parameter α should not be interpreted as a Lagrange
multiplier, since it is no new dynamical variable of the theory. It is just a c-number which can
be freely chosen. Nevertheless the particular choice represents different gauges, for example the
choice α = 1 is known as the Feynman gauge. Further discussions about this gauge fixing term
and its implications for propagators can be found in Refs. [13, 17]. Within the path integral
formalism, this method has been extended by Fadeev and Popov [7, 8]. It is quite elegant and
its justification is based on the BRS-transformation [1] of non-abelian Yang-Mills fields, whereat
the Maxwell theory is just a special abelian case with the only infinitesimal generator equal to
unity T̂ a = 1. We will not go into this transformation any further because this would go way
beyond this thesis.

The method we prefer is simply to “choose” a particular gauge. This implicitly means to
fix the undetermined multipliers in the equations of motion by imposing “external” conditions
Ωm. There are as many gauge conditions as there are first class constraints. In order to fix the
gauge completely, the conditions have to fulfill two restrictions:

(i) Invertibility:
det

(
{Ωm, γn}

)
= det G̃mn 6= 0 . (6.16)

(ii) Attainability: There must exist a transformation from the arbitrary values of the gauge
variables to those fulfilling Ωm.

Admissible gauge constraints also have to fulfill the consistency relations, which are now formu-
lated with the extended Hamiltonian:

Ω̇m ≈ {Ωm, HE} ≈ {Ωm, H
∗}+ ηn{Ωm, γn}

!≈ 0 . (6.17)

Due to the restrictions on Ωm one can solve these equations for ηn:

ηn ≈ −G̃mn{Ωm, H
∗} , (6.18)

with the inverse matrix
G̃mn =

(
{Ωm, γn}

)−1
. (6.19)

The equations of motion become

Ḟ ≈ {F,HE} ≈ {F,H∗} − {F, γm}G̃mn{Ωn, H
∗} . (6.20)

Unfortunately, the constraints appear in an asymmetric manner. To symmetrize the equations
we collect the first class and gauge constraints in a new vector ϕv = (γm,Ωn) and then introduce
a new matrix

Ḡvw =
(
{ϕv, ϕw}

)
=
(
{γm, γn} {γm,Ωn}
{Ωm, γn} {Ωm,Ωn}

)
. (6.21)

We recognize that the matrix separates into independent subblocks and, because of the first
class property of the γ’s, one of them vanishes

Ḡvw =
(

0 (−G̃nm)
(G̃mn) (G′mn)

)
=
(

0 −G̃T
G̃ G′

)
. (6.22)
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6.3 Gauge Reduction

The block structure makes it easy for us to find the inverse

Ḡvw =
(

G′′ G̃−1

−(G̃T )−1 0

)
. (6.23)

Herein G′ and G′′ are just some matrices whose concrete form will not be of any interest. They
just have to fulfill the following identity

G̃G′′ −G′(G̃T )−1 = 0 . (6.24)

Using (6.23) we can symmetrize the second term in the equations of motion (6.20), which can
be seen as follows

{F, φv}Ḡvw{φw, H∗} = {F, γm}G′′mn{γn, H∗}
− {F,Ωm}G̃nm{γn, H∗}
+ {F, γm}G̃mn{Ωn, H

∗}
≈{F, γm}G̃mn{Ωn, H

∗} . (6.25)

So the equations of motion read

Ḟ ≈ {F,H∗}D(Ḡ) ≈ {F,H
∗} − {F,ϕv}Ḡvw{ϕw, H∗} . (6.26)

Due to the restriction on the gauge constraints det ({Ω, γ}) ≈ 0 the first class constraints have
to become second class. Now there are no more generators for gauge transformations and the
equation of motion is unique. By arranging all constraints, now being second class, in the vector
σκ = (γm,Ωn, ξµ) and introducing the final matrix

Gκω =
(
{σκ, σω}

)
, (6.27)

we finally arrive at the equations of motion, where all multipliers are fixed

Ḟ ≈ {F,H}D(G) ≈ {F,H} − {F, σκ}Gκω{σω, H} . (6.28)

The proof, that this equation follows from (6.26), is quite long and does not give any new insight.
Nevertheless, we can convince ourselves that this form has to hold. Due to the “external” gauge
conditions the former first class constraints γm become second class. Now all the constraints σκ
are second class as mentioned before. But (6.28) is exactly the form for second class constraints
only.

After removing all first class constraints, by construction we are only left with second class
constraints. One may ask how to deal with this kind of constraints, since in the last section
it seemed they cause more troubles than first class constraints. The answer is given by the
following discussion.

In Section 4.2 we studied the connection of the reduced phase space with the Dirac bracket.
It turned out that the Poisson brackets, calculated with the reduced set of variables, equal the
Dirac brackets. But the reduced phase space is nothing but the physical space of independent
variables. Indeed, after the gauge reduction on the classical level all gauge freedom has been
removed and the physical phase space is uniquely determined. Therefore, it seems reasonable
that we can consistently quantize a singular system by changing the third postulate in Section
6.1 into [

F̂ , Ĝ
]

= i~{̂F,G}D(G) . (6.29)
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6.3 Gauge Reduction

This recipe works quite well, but unfortunately it is not the golden rule for quantization with
constraints. This canonical substitution rule is suited to implement constraints, nevertheless it
contains all the difficulties of the operator formalism, for instance operator ordering. Therefore
modern methods use path integral quantization as an adequate technique [18]. But this for-
malism is highly sophisticated and an extensive treatment would go beyond the scope of this
thesis.
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7 Translation to Field Theory
Up to now we are able to quantize a singular system with a finite number of degrees of freedom.
Regrettably, nearly all physically interesting examples are in the range of field theory. Actually,
there are examples in point mechanics but most of these are technically constructed and do
not have a great physical meaning. In field theory we are dealing with an infinite number
of degrees of freedom, hence the developed theory is not applicable without any modification.
The naive generalization is straightforward, the formulae we get are very similar to the point
mechanic case and the translation rules to an infinite number of degrees of freedom are quite
obvious. Nevertheless due to this limiting process some subtle peculiarities arise. But before
we study these special features of constrained field theories, we develop the Hamilton formalism
for continuous regular systems. Then the generalization taking constraints into account will not
cause any difficulties.

First of all, consider the Lagrange function, now being a functional of the fields and their
time derivatives

L(t) = L[ϕµ(x, t); ϕ̇µ(x, t)], µ = 1, ..., N . (7.1)
Because we restrict ourselves to local field theories it is possible to write the Lagrange function
as a volume integral over the density function L

L =
∫
d3xL(ϕµ(x, t);∇ϕµ(x, t); ϕ̇µ(x, t)) . (7.2)

The Lagrange density is a function depending on the fields and their spatial as well as time
derivatives. We have to emphasize that in this section the index µ only counts the number
of fields, it has not the meaning of a four-vector index. Hence, it makes no statement about
the transformation properties of the fields. However, in the application of the formalism to the
Maxwell field we specialize the fields to be components of a four-vector.

To pass into the Hamiltonian formulation one has to define a canonical conjugate momentum
field as the functional derivative of the Lagrange function with respect to the time derivative of
the fields

πµ = δL

δϕ̇µ
= δL

δ(∂0ϕµ) = δL

δϕµ,0
. (7.3)

As in the Lagrangian case, the field theoretic Hamiltonian is a functional depending on the fields
and their canonical momenta

H(t) = H[ϕµ(x, t);πµ(x, t)] . (7.4)

It can be obtained from the Lagrangian by the Legendre transformation

H =
∫
d3x (πµϕ̇µ)− L =

∫
d3xH(πµ;ϕµ;∇πµ;∇ϕµ) , (7.5)

where we can read off the Hamilton density H = πµϕ̇
µ−L. The functional Hamilton equations

of motion are given by minimizing the action

A =
∫
d4xL =

∫
d4x (πµϕ̇µ −H) . (7.6)

The standard procedure for the variation yields

ϕ̇µ = ∂H
∂πµ

− ∂i
∂H
∂πµ,i

= δH

δπµ
, (7.7a)

π̇µ =− ∂H
∂ϕµ

+ ∂i
∂H
∂ϕµ,i

=− δH
δϕµ

, (7.7b)
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where we have introduced the functional derivative as

δ

δϕµ
:= ∂

∂ϕµ
− ∂i

∂

∂ϕµ,i
. (7.8)

The summation over i covers only the spatial derivatives. Using this definition of the functional
derivative, we recognize that the equations of motion look like in point mechanics.

The Poisson bracket of two functionals F [ϕµ, πµ] and G[ϕµ, πµ] is defined as

{F (x), G(y)} =
∫
d3z

(
δF (x)
δϕµ(z)

δG(y)
δπµ(z) −

δG(y)
δϕµ(z)

δF (x)
δπµ(z)

)
. (7.9)

It is understood that the Poisson bracket, as well as the Dirac bracket, are calculated at equal
times so that we may drop the time dependence in the functionals and fields for brevity. Nev-
ertheless, we have to keep in mind that the time dependence is not gone. Furthermore, the
notation F (x) means that the fields, which are in some kind the variables for the functionals,
depend on x. Because one can write a function as a functional depending on itself

ϕµ(x, t) =
∫
d3x′ ϕµ(x ′, t)δ3(x − x ′) , (7.10)

the functional derivative is defined according to

δϕµ(x, t)
δϕν(x ′, t) = δµνδ

3(x − x ′) . (7.11)

So the equations of motion can be written as

Ḟ [ϕµ, πµ] =
∫
d3x

(
δF

δϕµ
ϕ̇µ + δF

δπµ
π̇µ

)
=
∫
d3x

(
δF

δϕµ
δH

δπµ
− δH

δϕµ
δF

δπµ

)
= {F,H} . (7.12)

So far nothing changed in the transfer from finite to infinite degrees of freedom. Consequently,
we may hope that our formalism will be applicable to field theories.

From now on constraints are taken into account. Again we have to face the fact that the
constraints are not any longer algebraic relations. In the transition to field theory they become
functionals of the fields, their canonical conjugate momenta and, additionally, the multiplier
fields

Φ(t) = Φ[ϕµ, πµ, λ] =
∫
d3xλ(x, t)φ(x, t) . (7.13)

The actual constraints we are dealing with are now density functions, depending on the fields,
their canonical conjugates and spatial derivatives. These constraint densities are coupled to the
canonical Hamiltonian via the multiplier fields

HP = H + Φ[ϕµ, πµ, λr] = H +
∫
d3xλr(x, t)φr(x, t) . (7.14)

The equations of motion with the coupled constraint densities (7.7a) and (7.7b) can be obtained
from the primary action

A =
∫
d4x (πµϕ̇µ −H− λrφr) . (7.15)
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The results of the variation are

ϕ̇µ = δH

δπµ
+ δΦ[ϕµ, πµ, λr]

δπµ
= {ϕµ, H}+ {ϕµ,Φ[ϕµ, πµ, λr]}

= {ϕµ, H}+
∫
d3y λr(y, t){ϕµ(x), φr(y)} , (7.16a)

π̇µ =− δH
δϕµ
− δΦ[ϕµ, πµ, λr]

δϕµ
= {πµ, H}+ {πµ,Φ[ϕµ, πµ, λr]}

= {πµ, H}+
∫
d3y λr(y, t){πµ(x), φr(y)} , (7.16b)

or for a general phase space functional F [ϕµ, πµ]

Ḟ = {F,H}+ {F,Φ[ϕµ, πµ, λr]} = {F (x), H(y)}+
∫
d3y λr(y, t){F (x), φr(y)} . (7.17)

The Dirac-Bergmann algorithm to identify secondary constraints, as well as the classification to
first and second class will not change during the transition to field theory, so that the resulting
formulae are quite similar. Therefore, we do not write down all the results explicitly, but just
mention the most important equations to be used in the next section.

The above discussion serves as a guide for the transition rules to field theory:

(i) The phase space variables and the Lagrange multipliers become fields depending on the
coordinates.

(ii) A function of the phase space variables becomes a functional of the fields and their con-
jugate momentum fields: F (qi, pi) −→ F [ϕη, πµ] .

(iii) Whenever there is a summation over the canonical variables or the multipliers, there has
to be a three-dimensional volume integral over the sum of the fields.

With these transition rules we can immediately read off the field-theoretic expression for the
gauge transformations generated by first class constraints

δεF = {F,Φ[ϕµ, πµ, ε]} =
∫
d3y ε(y){F (x), φ(y)} , (7.18)

and the Dirac bracket of two functionals

{F (x), G(y)}D(G) = {F (x), G(y)}−
∫∫

d3u d3v {F (x), σκ(u)}Gκω(u, v){σω(v), G(y)} . (7.19)

We see that the second term is nothing but a matrix multiplication for discrete and continuous
variables. The matrix Gκω(x,y) is the inverse of

Gκω(x,y) = {σκ(x), σω(y)} , (7.20)

whereas the inverse is defined by the integral relation∫
d3z Gκω

′(x, z)Gω′ω(z,y) = δκωδ
3(x − y) . (7.21)

One could be tempted to use these naive transition rules for granted and apply all the results
achieved in point mechanics. Unfortunately, we encounter several problems due to this limiting
process. A rigorous treatment would go to far and we refer to Ref. [24] for further reading.
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8 Application to the Maxwell Field
In this section we finally apply the developed theory to a physical system, the Maxwell field.
The fields, we are dealing with, form a four vector Aµ and the index µ runs from 0 to 3.

8.1 Maxwell Field as Singular System

At first we have to point out that the Maxwell field is a singular system. Its Lagrangian in
Heaviside units is given by

L = −1
4F

µνFµν − jµAµ = −1
2(∂µAν∂µAν − ∂µAν∂νAµ)− jµAµ , (8.1)

with the electromagnetic field strength tensor

Fµν = ∂µAν − ∂νAµ , (8.2)

which is antisymmetric in the permutation of the two indices. The components of the field
strength tensor are related to the components of the electric and magnetic fields by

F 0i = ∂0Ai − ∂iA0 = ∂0A
i + ∂iA

0 = Ȧi + ∂iA
0 = −Ei , (8.3a)

F ij = ∂iAj − ∂jAi = −∂iAj + ∂jA
i = −εijkBk , (8.3b)

where εijk is the usual Levi-Civita-tensor. We see that the definition of the field strength tensor
(8.2) immediately leads us to the homogeneous group of Maxwell’s equations. The variation of
the action integral with the above Lagrange density (8.1) yields the inhomogeneous group of
Maxwell’s equation

∂µF
µν = jν . (8.4)

The singular nature of electrodynamics becomes apparent by the definition of the canonical
momentum fields

πµ = ∂L
∂(∂0Aµ) = −F 0µ . (8.5)

We immediately recognize, due to the antisymmetry of the field strength tensor, that there is
no momentum field for A0

π0 = 0 . (8.6)

This is the primary constraint of the theory and the proof that the Maxwell field is, indeed, a
constrained system. Additionally, we identify the canonical momentum field with the electric
field

πi = Ei , (8.7)

by comparing (8.3a) with (8.5).

8.2 Dirac-Bergmann Algorithm for the Maxwell Field

At first let us perform a (3+1)-decomposition of the Lagrangian (8.1)

L = −1
4F

ijFij −
1
4F

i0Fi0 −
1
4F

0jF0j − j0A0 − jiAi (8.8)

Inserting (8.5) reduces this to

L = −1
4F

ijFij −
1
2π

iπi − j0A0 − jiAi . (8.9)
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The Legendre transformation H = πµȦµ − L, yields the Hamilton density

H = πiȦi + 1
4F

ijFij + 1
2π

iπi + j0A0 + jiAi . (8.10)

With the help of (8.2) the “velocities” Ȧi can be expressed in terms of the momenta as

F0i = ∂0Ai − ∂iA0 = −πi
∂0Ai = Ȧi = −πi + ∂iA0 , (8.11)

and the Hamilton density takes the form

H = 1
4F

ijFij −
1
2π

iπi − ∂iπiA0 + j0A0 + jiAi . (8.12)

The primary Hamilton density is obtained by coupling the only primary constraint (8.6) via a
Lagrange multiplier field λ1

HP = H+ λ1π
0 , (8.13)

and the Hamiltonian is just the spatial volume integral

HP =
∫
d3xHP = H +

∫
d3xλ1π

0 . (8.14)

The calculation of the fundamental Poisson brackets without worrying about the constraint

{Aµ(x), πν(y)} =
∫
d3z

(
δAµ(x)
δAλ(z)

δπν(y)
δπλ(z) −

δπν(y)
δAλ(z)

δAµ(x)
δπλ(z)

)
=
∫
d3z δµ

νδ3(x − z)δ3(y − z)

= δµ
νδ3(x − y) , (8.15)

shows their incompatibility with the primary constraint (8.6). And here is the need for the
Dirac brackets, if we want to go over to quantum theory.

The demand for consistency yields

{π0(x), HP (y)} =
∫
d3z

(
δπ0(x)
δAλ(z)

δHP (y)
δπλ(z) −

δHP (y)
δAλ(z)

δπ0(x)
δπλ(z)

)

= −
∫
d3z

δHP (y)
δAλ(z) δ

0
λδ

3(x − z)

= −δHP (y)
δA0(x)

= (∂iπi − j0)(x) !≈ 0 . (8.16)

This is our secondary constraint, which is nothing else than Gauss’ law in terms of the mo-
mentum fields. A short calculation shows that the consistency requirement of this secondary
constraint

{(∂iπi − j0)(x), HP (y)} !≈ 0 , (8.17)

yields no further independent constraints. Coupling both constraints to the canonical Hamilto-
nian yields

HE = 1
4F

ijFij −
1
2π

iπi − ∂iπiA0 + j0A0 + jiAi + λ1π
0 + λ2∂iπ

i . (8.18)

This function is the extended Hamilton density in Maxwell theory.
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8.3 Gauge Fixing and Dirac Bracket

The Dirac-Bergmann algorithm yields the following two independent constraints

π0 ≈ 0 , (8.19a)
∂iπ

i − j0 ≈ 0 . (8.19b)

Both constraints are first class, since

{π0(x), (∂iπi − j0)(y)} =
∫
d3z

(
δπ0(x)
δAλ(z)

δ(∂iπi − j0)(y)
δπλ(z) − δ(∂iπi − j0)(y)

δAλ(z)
δπ0(x)
δπλ(z)

)
= 0 (8.20)

vanishes identically. As expected we have to deal with gauge transformations generated by these
first class constraints. But how are they related to the well known gauge transformation

Aµ −→ Aµ + ∂µε , (8.21)

of the four potential? To answer that question we have to have a closer look at the group
properties of the theory.

As mentioned above, the Poisson bracket (8.20) is essentially not just a linear combination
of the constraints, it vanishes identically. Consequently, all structure factors fmn` in the Lie
algebra (5.13) vanish and the commutators of the gauge generating operators (5.15) fulfill[

T̂m, T̂n
]

= 0 . (8.22)

In other words, the symmetry group induced by the two constraints is abelian. This is a
necessary condition that this group can be identified with the symmetry group of the Maxwell
field, which is the most simple unitary, abelian group U(1). The gauge transformatons generated
by (8.19a) read

δε1Aµ =
∫
d3y ε1(y){Aµ(x), π0(y)} = δµ

0ε1(x) (8.23a)

δε1π
µ =

∫
d3y ε1(y){πµ(x), π0(y)} = 0 . (8.23b)

and correspondingly we obtain for (8.19b)

δε2Aµ =
∫
d3y ε2(y){Aµ(x), (∂iπi − j0)(y)} = δµ

i∂iε2(x) (8.24a)

δε2π
µ =

∫
d3y ε2(y){πµ(x), (∂iπi − j0)(y)} = 0 . (8.24b)

With the identifications

δγ1A0 = ε1(x) = δA0 , δγ1Ai = 0 , (8.25a)
δγ2Ai = −∂iε2(x) = δAi , δγ2A0 = 0 , (8.25b)

we, indeed, recognize the gauge transformations of the unitary group U(1). As a result, the
group, which is generated by the constraints, is in this case an isomorphism of the symmetry
group of the Maxwell field.

In order to arrive at a quantum theory we have to remove all the gauge freedom. This
means that we have to impose as many gauge constraints “by hand” as there are first class
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constraints. These gauge constraints convert the first class constraints γm into second class and
we can quantize the system according to (6.29). There are several common gauges available in
the Maxwell theory. The most popular choices are the Lorentz gauge

∂µA
µ = 0 , (8.26)

being manifestly Lorentz-invariant, and the Coulomb gauge

∂iA
i = 0 , (8.27)

breaking the Lorentz-invariance. Unfortunately, we cannot handle the Lorentz gauge with the
formalism developed in this form. This circumstance is due to the fact, that the Lorentz gauge
contains the time derivative of A0. It is possible to extend the formalism to handle such rela-
tivistic constraints, but this would be too extensive to be presented here, we just refer to [11]
for further reading.

The Coulomb gauge is much more suited for our formalism of gauge fixing. However, the
gauge condition (8.27) does not remove all the gauge freedom. There is one condition to impose
left, since we need as many gauge conditions as there are first class constraints. We choose A0
to vanish and arrive at the radiation gauge

Ω1 = A0 ≈ 0 , (8.28a)
Ω2 =∂iAi ≈ 0 . (8.28b)

As we will see soon, these two equations, indeed, fix the gauge completely. Additionally, this
gauge choice implicitly means that the zeroth component of the current four-vector vanishes
j0 ≈ 0. This can be seen by imposing the Coulomb gauge constraint (8.27) to Maxwell’s
equations (8.4), which yields

∂i∂
iA0 ≈ j0 . (8.29)

With these additional gauge constraints we are able to calculate the G-matrix

G(x,y) =


{γ1, γ1} {γ1, γ2} {γ1,Ω1} {γ1,Ω2}
{γ2, γ1} {γ2, γ2} {γ2,Ω1} {γ2,Ω2}
{Ω1, γ1} {Ω1, γ2} {Ω1,Ω1} {Ω1,Ω2}
{Ω2, γ1} {Ω2, γ2} {Ω2,Ω1} {Ω2,Ω2}

 . (8.30)

Because of the first class property of the γ’s we have

{γm, γn} = 0 . (8.31)

It is easy to verify that the gauge constraints are also first class

{Ωm,Ωn} = 0 , (8.32)

but in order to fulfill the invertibility condition (6.16) at least some of the “mixed” Poisson
brackets must not vanish. A straightforward calculation shows that this is, indeed, the case

{γ1(x),Ω1(y)} = −δ3(x − y) , (8.33a)
{γ2(x),Ω1(y)} = ∇2δ3(x − x) , (8.33b)
{γ1(x),Ω2(y)} = 0 , (8.33c)
{γ2(x),Ω2(y)} = 0 . (8.33d)
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The resulting G-matrix reads

G(x,y) =


0 0 −1 0
0 0 0 ∇2

1 0 0 0
0 −∇2 0 0

 δ3(x − y) =
(

0 A
−A 0

)
, (8.34)

where A is a (2 × 2)-matrix. Because of this block structure we can immediately read off the
inverse as

G−1(x,y) =
(

0 −A−1

A−1 0

)
. (8.35)

The problem of finding the inverse of the G-matrix reduces to find the inverse of the subblock A.
Fortunately, it is diagonal and so we just have to invert the diagonal elements separately. The
inverse of the delta function is simply the delta function itself and the inverse of the Laplacian
∇2 is − 1

4π|x−y| . So the inverse of the G-matrix becomes

G−1(x,y) =


0 0 δ3(x − y) 0
0 0 0 1

4π|x−y|
−δ3(x − y) 0 0 0

0 − 1
4π|x−y| 0 0

 . (8.36)

The existence of the inverse matrix proves that the gauge conditions really fix the gauge com-
pletely. Having calculated the inverse, we are now able to write down the Dirac brackets using
(7.19)

{F (x), G(y)}D(G) = {F (x), G(y)} −
∫∫

d3u d3v {F (x), σκ(u)}Gκω(u, v){σω(v), G(y)} .

The first two fundamental Dirac brackets vanish identically

{Aµ(x), Aν(y)}D(G) = 0 , (8.37)
{πµ(x), πν(y)}D(G) = 0 , (8.38)

and, therefore, do not differ from the Poisson bracket. The last one needs a little more work to
calculate

{Aµ(x), πν(y)}D(G) = {Aµ(x), πν(y)}

−
∫∫

d3u d3v {Aµ(x), σκ(u)}Gκω(u, v){σω(v), πν(y)} . (8.39)

Inserting (8.36) yields at first

{Aµ(x), πν(y)}D(G) = {Aµ(x), πν(y)}

−
∫∫

d3u d3v {Aµ(x), γ1(u)}δ3(u − v){Ω1(v), πν(y)}

−
∫∫

d3u d3v {Aµ(x), γ2(u)} 1
4π|u − v|{Ω2(v), πν(y)}

+
∫∫

d3u d3v {Aµ(x),Ω1(u)}δ3(u − v){γ1(v), πν(y)}

+
∫∫

d3u d3v {Aµ(x),Ω2(u)} 1
4π|u − v|{γ2(v), πν(y)} , (8.40)
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which reduces to

{Aµ(x), πν(y)}D(G) = δµ
νδ3(x − y)−

∫
d3v δµ

0δ3(x − v)δ0
νδ3(v − y)

−
∫∫

d3u d3v δµ
i∂iδ

3(u − x) 1
4π|u − v|η

νj∂jδ
3(v − y)

= (δµν − δµ0δ0
ν)δ3(x − y)− δµiηνj∂i∂j

1
4π|x − y| . (8.41)

The important conclusion is that the only Dirac brackets deviating from the Poisson brackets
are the following

{A0(x), πµ(y)}D(G) = 0 (8.42a)
{Aµ(x), π0(y)}D(G) = 0 (8.42b)

{Ai(x), πj(y)}D(G) = δi
jδ3(x − y) + ∂i∂

j 1
4π|x − y| . (8.42c)

These brackets are by construction compatible with all the constraints. Especially the last one
is interesting, because it is nothing but a representation of the transverse delta function in real
space

δ3
⊥i
j(x − y) ≡ δijδ3(x − y) + ∂i∂

j 1
4π|x − y| . (8.43)

In the Appendix B we discuss some properties of that function or rather distribution. Now
that we know the fundamental Dirac brackets, we can go over to quantum theory. Using the
substitution rule (6.29) yields [

Âi(x), π̂j(y)
]

= i~ δ3
⊥i
j(x − y) . (8.44)

Writing this in a more familiar form we get[
Âi(x), π̂j(y)

]
=
[
Âi(x), Êj(y)

]
= −i~ δ3

⊥
ji(x − y) , (8.45)

which is precisely the commutation relation extensively used in quantum optics [5]. Note that
the minus sign is due to the transition to contravariant variables Âi = −Âi. After all the
calculations we see that the Dirac-Bergmann algorithm gives us very naturally a consistent
commutation relation. Indeed, this commutation relation gives us already a hint about the true
degrees of freedom. As pointed out in the Appendix B the transverse delta function acts as
the unity operator in the space of transverse vector fields. Since the Dirac bracket equals the
Poisson bracket in the reduced phase space, we can conclude that the true degrees of freedom
for the Maxwell field are just the transverse components. A detailed discussion would show that
this is, indeed, the case.
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9 Conclusion and Outlook

In this thesis we investigated the properties of singular physical systems. We developed a con-
sistent theory for the dynamical evolution of such systems within the Hamiltonian formulation
of point mechanics. The transition to the Hamiltonian treatment required a Legendre trans-
formation, whereat the canonical momenta had to be introduced. Due to the singular nature
of the Lagrangian, this gave rise to certain relations between the phase space variables. These
relations could be interpreted as conditions on the physical phase space and are therefore con-
straint functions. The formalism gave us a natural distinction between these constraints into
first and second class.

We were able to show that first class constraints generate gauge transformations, since the
Lagrange multipliers coupling these functions cannot be fixed with consistency requirements.
This is due to the fact that they form a closed Lie algebra with the Poisson bracket as the
underlying operation. Because of this property, that the Poisson brackets of two first class
constraints is again a linear combination of first class constraints, we defined linear operators
containing first class constraints. These operators also satisfy a Lie algebra with the commutator
as underlying operation. According to the theory of Lie groups, shortly presented in Appendix
A, the operators act as infinitesimal generators. Hence, each physical system involving first
class constraints possesses gauge symmetries. In contrast to first class constraints, it is possible
to fix the multipliers coupling second class constraints. This led us to the definition of the
Dirac bracket, which is a generalization of the Poisson bracket for systems with second class
constraints.

After investigating the two classes of constraints, we attended to the quantization of the
developed theory. A general discussion containing path integrals showed that it was necessary to
get rid of the first class constraints. We demonstrated how to remove the first class constraints
from the theory by imposing new, so called gauge constraints, and therewith all the gauge
freedom. Using the Dirac bracket we were able to handle all remaining second class constraints,
and quantize the gauged system. The “justification” of this procedure is given by the important
result of Maskawa and Nakajima [21]. They proved that the Dirac bracket is nothing but the
Poisson bracket calculated with the variables of the reduced phase space. Consequently, it is
reasonable to quantize a singular system by the quntization rules as described in Section 6.

Since most of all physically interesting examples lie in the branch of field theory, our next
step was to generalize the theory developed so far to field theory. We could indicate ”naive”
translation rules so that the limiting process to infinite degrees of freedom, as it is the case for
field theory, could be performed for each formula. However, it must be emphasized that this
limiting process is problematic.

Finally, we applied the whole apparatus to a physically interesting example: the Maxwell
field. We identified two first class constraints generating gauge transformations. The latter
could be identified with the known U(1) gauge transformations as expected. After removing the
gauge freedom by imposing gauge constraints, in our case the radiation gauge, we calculated
the fundamental Dirac brackets. In the transition to quantum theory it turned out, that the
Dirac brackets yield a consistent commutation relation for the field operators, which is precisely
the starting point for quantum optics.

Despite the problems of the operator formalism, there are several possibilities for further
investigations in this formalism itself as well as applications to real physical systems. An impor-
tant example for the latter is linearized quantum gravity. Consider the action of the Einstein
field

A =
∫
d4x
√
−gR , (9.1)
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where g is the determinant of the metric tensor gµν and R the Ricci scalar. Expanding the
metric for small perturbations hµν around the Minkowski metric ηµν up to second order, yields
the linearized Lagrange density

Llin = hµνGµν , (9.2)

with the linearized Einstein tensor

Gµν ' −
1
2(hµν,λλ + hλλ,µν − hλµ,νλ − hλν,µλ) + 1

2ηµν(hλλ,κκ − hλκ,λκ) . (9.3)

This is the Fierz-Pauli Lagrangian for the linearized free gravitational field [10]. Introducing
the fields

φµν = hµν −
1
2ηµνh

λ
λ , (9.4)

the linearized Lagrangian can be written as

Llin = −1
2φ

µν,λφµν,λ + 1
2φ

µν,λφλµ,ν + 1
2φ

µν,λφλν,µ + 1
4φ

µ
ν,
λφµν,λ . (9.5)

At first sight this Lagrangian looks quite complicated. But a closer look reveals that this
structure is very similar to the one for the electromagnetic field, apart from that we deal in
Maxwell theory with tensors of first rank, whereas in linearized gravity with tensors of second
rank. The introduction of these new fields is supposed to emphasize the analogy to the Maxwell
field. In fact, linearized gravity allows the following gauge transformations

hµν −→ hµν − ξµ,ν − ξν,µ , (9.6)

which resemble the gauge transformations of the four potential in Maxwell theory. Therefore,
one may expect that the formalism for quantization in a “Coulomb-like” gauge will be very
similar to the Maxwell theory as developed in Section 8.

Additionally, we could generalize the developed theory in several aspects. In the transition
to quantum theory we only considered the bosonic case, because we replaced the Poisson bracket
and Dirac bracket, respectively, by a commutator of operators. Nevertheless, an application to
fermionic particles and fields would be interesting as well. In fact such a generalization is not
excluded and requires the theory of Grassmann algebras. Important works in that regime have
been done by Belinfante et al. [2] and Casalbuoni [4]. Furthermore it would be nice if the
formalism could be applied to relativistic constraints. In the application of the formalism in
Section 8.3 we mentioned that difficulties arise, when considering the relativistically covariant
Lorentz gauge. A discussion how to include covariant constraints could be found in Ref. [24]
and was originally worked out by Fradkin and Fradkina [11]. In addition, the limiting process
to field theory naively done in Section 7 has to be revised more carefully. For instance, it is
dubious whether the summations for a finite number of degrees of freedom could be replaced
by integrals in the infinite case and, therefore, wether our constrained field theory is based on
a consistent mathematical footing.

Concluding all these considerations we can state, that there are several topics worth to be
investigated further as it was possible within this thesis.
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A Lie Groups and Lie Algebras
Of course, the topic of Lie groups and Lie algebras is way to broad to be presented here in all
detail. The reader is assumed to be familiar with the general concepts of groups and manifolds
since we cannot introduce each term used in the following discussion. Nevertheless we want to
mention some important properties to clarify the connection between Lie algebras, Lie groups
and gauge transformations. Therefore, the following section is quite mathematical, since we
may introduce abstractly the concepts of Lie algebras and Lie groups. Anyhow, we do not claim
for mathematical correctness. In our discussion we follow the treatment of W. Miller [22], M.
Hausner/J. T. Schwartz [15] and T. Frankel [12].

An abstract algebra (∗,V) is a vector space V over a field K with an operation ∗. The field
can be either R or C. The operation assigns to each pair of vectors x,y ∈ V another vector
z ∈ V via the multiplication mapping

∗ : V × V → V , (x,y) 7→ x ∗ y = z . (A.1)

This mapping has to be bilinear for vectors x,y, z ∈ V and scalars α, β ∈ K

(i) (αx + βy) ∗ z = αx ∗ z + βy ∗ z

(ii) z ∗ (αx + βy) = αz ∗ x + βz ∗ y

A Lie algebra is an algebra with the Lie bracket as underlying operation. Additionally to
the bilinearity it has to satisfy two more conditions

(i) Alternating: [x,x] = 0 for all x ∈ V ,

(ii) Jacobi identity: [x, [y, z]] + [y, [z,x]] + [z, [x,y]] = 0 .

The second term to be introduced is the Lie group. An n-dimensional global Lie group (∗,G)
is an n-dimensional differentiable manifold G occupied with a product operation ∗

∗ : G × G → G , (P,Q) 7→ P ∗Q , (A.2)

making G a group. Note that this product operation is not to be confused with the one in
(A.1). The group multiplication and inversion have to be analytic with respect to the manifold
structure or in other words the mappings have to be diffeomorphisms2.

We arrive at the concept of local Lie groups by endowing the manifold G at some point
P ∈ G with a definite “coordinate” mapping. The latter maps P and an open neighborhood U
to Kn. We denote these “coordinates” by

g =
(
g1, ..., gn

)
. (A.3)

In the following we will restrict ourselves to the study of such local Lie groups. At this stage,
one may ask what is the relation between the above mentioned Lie algebras and Lie groups? It
will be set out that any abstract Lie algebra corresponds to a local Lie group and vice versa.

To make this evident, we introduce the curve g(t) on a manifold G. Since we are working in
a local access, the curve can be parametrized in a certain coordinate system by

g(t) =
(
g1(t), ..., gn(t)

)
. (A.4)

2A diffeomorphism is a bijective, continuous differential mapping, whose inverse mapping is also continuous
differentiable.
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We have to distinguish between the curve itself and its trace. Two different parametrizations for
t yield two different curves, but the trace of them may be the same. But this subtlety will not
busy us since we are interested in an other concept independent of the specific parametrization.
The vector

x ≡ g′(t0) = dg(t)
dt

∣∣∣∣
t=t0

(A.5)

is called the tangent vector at the point P = g(t0). The set of all tangent vectors in a point
P ∈ G forms a vector space which will be denoted as GP . Our special interest lies in the tangent
vector space at P = e = (0, ..., 0), which is the identity for the group operation in G. We expand
the product between two group elements g and h in a Taylor series around that point. The i-th
component of this vector valued function becomes

(g ∗ h)i = gi + hi + cijkg
jhk +O(3) , (A.6)

where the last term denotes higher orders in g and h. The coefficients cijk are given by

cijk = ∂2(g ∗ h)i

∂gj∂hk

∣∣∣∣
g=h=e

. (A.7)

It turns out that the properties of the whole group can be described in an infinitesimal neigh-
borhood of e. To be more specific, the commutator of two tangent vectors x and y

([x,y])i = (cijk − cikj)xjyk = aijk x
jyk , (A.8)

contains all the information of the group via the structure coefficients aijk. The Lie algebra
L(G) of a local Lie group is the vector space formed by all tangent vectors at e equipped with
the Lie bracket as group operation. This is precisely the connection we were after. We can
identify the vector space V from (A.1) with the tangent vector space Ge and the commutator
with the abstract Lie bracket. Conversely, one can show that an abstract Lie algebra defines a
local Lie group via a mapping called the exponential map.

Let G be a local Lie group and L(G) its Lie algebra. The exponential map

exp : L(G)→ G , x 7→ g = exp(x) , (A.9)

maps a neighborhood of 0 ∈ L(G) in a one-to-one manner to a neighborhood of the identity
e ∈ G. So, any element of the local Lie group can be represented as the exponential map of an
element of its generating algebra. In the case of a linear Lie group, which is simply a group of
quadratical matrices, the exponential map is nothing but the exponential of the matrix. Indeed,
linear Lie groups have numerous applications in gauge theories.

After revealing the relation between Lie algebras and Lie groups, we have to clarify the
connection to gauge transformations. The underlying structure of a gauge transformation is
a continuous gauge symmetry, which is precisely a Lie group. In fact, in modern field theo-
retical approaches to condensed matter or elementary particles one constructs Lagrangians by
imposing several symmetries. Examples for the latter could be Lorentz-invariance or special
transformation properties of the fields. Now it becomes apparent that the identification of an
algebraic structure for first class constraints is fundamental for the understanding of their gauge
generating character.
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B Transverse Delta Function
In this section we investigate some properties of the transverse Delta function, following the
description in [5]. Therefore, we work in the abstract Hilbert space of all three-vector fields.
An element of this space is denoted in Dirac notation by |A〉. We begin the discussion of
the transverse delta function by introducing an operator which projects the vector |A〉 to its
transverse subspace

|A⊥〉 = P⊥ |A〉 . (B.1)

The components of this vector in |k, ei〉 basis are given by

〈k, ei|A⊥〉 = 〈k, ei| P⊥ |A〉

= 〈k, ei| P⊥
∑
j

∫
d3k′

∣∣k′, ej〉 〈k′, ej |A〉
=
∑
j

∫
d3k′ 〈k, ei| P⊥

∣∣k′, ej〉 〈k′, ej |A〉 , (B.2)

where we inserted in the second line the completeness relation. Executing these projections
yields a representation of these abstract vectors and matrix elements in k-space

A⊥i(k) =
∑
j

∫
d3k′ P⊥ij(k, k′)Aj(k′) . (B.3)

The matrix elements of the transverse projection operator in this basis are given by

P⊥ij(k, k′) =
(
δij −

kikj

k2

)
δ3(k − k′) . (B.4)

This identity follows from a short calculation if we work in k-space using

A⊥(k) =
∑
ε

(A(k) · ε) ε , (B.5)

where ε are the two unit transverse vectors [5]. The change to the real space basis |r , ei〉 is
done by a Fourier transformation of the matrix elements

P⊥ij(r , r ′) =
∫

d3k

(2π)3/2

∫
d3k′

(2π)3/2 e
ik·re−ik

′·r ′P⊥ij(k, k′) . (B.6)

Note the minus sign in the second Fourier transformation. Inserting (B.4) yields

P⊥ij(r , r ′) =
∫

d3k

(2π)3 e
ik·(r−r ′)

(
δij −

kikj

k2

)
= δijδ

3(r − r ′) + ∂i∂j
1

4π|r − r ′| . (B.7)

We recognize that the transverse projection operator in |r , ei〉 can be identified with the trans-
verse delta function as introduced in (8.43). Therefore we have the interpretation that the
transverse delta function really maps a three-vector field on its transverse components. Conse-
quently, it acts as a unity operator in the space of transverse vector fields.
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