

Simulating Anyonic Statistics in Few-Body Dynamics

Philipp Preiß Physikalisches Institut Universität Heidelberg

Anyon Physics of Ultracold Atomic Gases 14.12.2018

Anyonic quasiparticles with ultracold atoms

Fractional Statistics

2D topologically ordered systems

See also the next talk by Christof Weitenberg

One-dimensional anyon models

Fractional statistics

$$\begin{split} a_j a_k^{\dagger} - e^{-i\theta \text{sgn}(j-k)} a_k^{\dagger} a_j &= \delta_{jk} \\ a_j a_k &= e^{i\theta \text{sgn}(j-k)} a_k a_j \end{split} \qquad \begin{array}{l} \theta = 0 \quad \text{bosons} \\ \theta = \pi \quad \text{pseudo-fermions} \\ \end{array}$$

Keilmann et al., Nature Communications 2, 361(2011)

What are the phases and dynamics of anyonic particles in one dimension?

Engineering anyonic statistics

Engineering of effective anyonic statistics:

- Raman-assisted tunneling
- Lattice shaking
- Lattice depth modulation

Sebastian Greschner, Luis Santos, Thassilo Keilmann, Marco Roncaglia, Axel Pelster, André Eckardt, Yunbo Zhang, and many others ...

Keilmann *et al.*, Nature Communications **2**, 361(2011)

Outline

Simulation of Anyons with one-dimensional Bosons

I. Engineering occupation-dependent tunneling

Lattice modulation in Mott insulators

II. Identify a suitable experimental setting

Quantum walks of two bosons

Ask anything any time!

The team

Greiner group Harvard University

Markus Greiner Ruichao Ma Eric Tai Matthew Rispoli Jon Simon Rajibul Islam

R. Ma *et al.*: Photon-Assisted Tunneling in a Biased Strongly Correlated Bose Gas PRL 107, **095301** (2011)
P. M. Preiss *et al.*: Strongly Correlated Quantum Walks in Optical Lattices Science **347** 1229 (2015)

Anyon-Boson Mapping

single particle: no phase shifts

two particles: occupation-dependent phase

Lattice amplitude modulation

L. Cardarelli *et al.,* PRA **94**, 023615 (2016) C. Sträter *et al.,* PRL **117**, 205303 (2016)

Bose-Hubbard Model

$$H_{\rm BH} = -\sum_{i} J(t)(a_i^{\dagger}a_{i+1} + \text{h.c.}) + \sum_{i} iEn_i + \sum_{i} \frac{U}{2}n_i(n_i - 1)$$

tunneling J

interaction U

 $J \ll U$

Mott insulator Initialize one particle per site **Anyon-Boson Mapping**

single particle: no phase shifts

two particles: occupation-dependent phase

Strong tilt: suppress direct tunneling

L. Cardarelli *et al.,* PRA **94**, 023615 (2016) C. Sträter *et al.,* PRL **117**, 205303 (2016)

Anyon-Boson Mapping

single particle: no phase shifts

two particles: occupation-dependent phase

Restore individual processes

$$J(t) = J + \delta J \cos(\omega_{\text{mod}}t + \phi)$$

 $\hbar\omega_{\rm mod} = E$

δJ/√2 $\hbar\omega_{\rm mod} = U + E$ U

 $\hbar\omega_{\rm mod} = U - E$

L. Cardarelli et al., PRA 94, 023615 (2016) C. Sträter et al., PRL 117, 205303 (2016)

Experiment

Bosonic quantum gas microscope

- Rubidium 87 in 2D square lattice
- Site-resolved imaging
- Initialize one particle per site

Photon-assisted tunneling

R. Ma et al. PRL 107, 095301 (2011)

Photon-assisted Tunneling

R. Ma et al. PRL 107, 095301 (2011)

Photon-assisted tunneling

R. Ma et al. PRL 107, 095301 (2011)

Photon-assisted many-body dynamics

Photon-assisted tunneling

Summary

- Suppression of free tunneling
- Selective assisted tunneling
- Coherent many-body dynamics
- Combine for multi-chromatic drive

All ingredients demonstrated

Outline

Simulation of Anyons with one-dimensional Bosons

I. Engineering occupation-dependent tunneling

Lattice modulation in Mott insulators

II. Identify a suitable experimental setting

Quantum walks of two bosons

Experimental settings

Picking the right scenario

Focus on few-body dynamics

Experiment

Numerics

Control over individual Bosons

3) target state

Single-Particle Quantum Walk

Free quantum walks of individual particles

Single realization

Single-Particle Quantum Walk

				1											
				1		1							1	1	
				1										1	
										ľ					

Single-Particle Quantum Walk

Free quantum walks of individual particles

Single realization

Average density evolution

How do we know it is really quantum motion?

Tilt: Bloch Oscillations

Refocusing of matter wave: absolutely impossible for classical motion

Single-Particle Bloch Oscillations

		1													
			· · ·											· · · ·	· · · ·
														······································	· · ·
														!	

Single-Particle Bloch Oscillations

		1													
			· · ·											· · · ·	· · · ·
														······································	· · ·
														!	

Single-Particle Bloch Oscillations

• Temporal period
$$T_B =$$

, spatial width
$$\, L_B = {4 J \over F} \,$$

- Delocalized over ~14 sites = 10μm.
- Revival probability 96(3)%

E. Haller et al., PRL104, 200403 (2010) See also: M. Genske et al., PRL 110, 190601 (2013)

Hanbury Brown-Twiss Interference

Bunching of non-interacting bosons

Single realization

 $U \ll J$

Histogram of many runs

$$\Gamma_{i,j} = \langle a_i^{\dagger} a_j^{\dagger} a_j a_i \rangle$$

Sensitivity to quantum statistics

Time evolution of two free bosons

$$H_{free} = -J \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + \text{h.c.}) \qquad |\Psi(t)\rangle = e^{-\frac{it}{\hbar}H} |\Psi(0)\rangle$$
$$= 1 + (-\frac{it}{\hbar}H) + \frac{1}{2}(-\frac{it}{\hbar}H)^2 + \dots$$

Each tunneling step = phase i

Correlation properties from microscopic tunneling phases

Fermionization of Bosons

Bosons with strong repulsive interactions

Weak interactions u<1

Strong interactions u>>1

In 1D, hard-core bosons \iff free spinless fermions

Experiments on Tonks-Girardeau gas: Weiss group, Bloch group

T. Kinoshita et al., Science 305 (2004), B. Paredes et al., Nature 429 (2004)

(l) u = 0.7

10

-10

0

10

0

10

0

-10

See also: K.Winkler *et al.*, Nature **441** 853 (2006) A. Ahlbrecht *et al.*, New J. Phys. **14**, 073050 (2012)

10

0

Position i (sites)

-10

-10

-10

Bloch Oscillations of Two Bosons

Weak interaction

- Independent oscillations
- Clean revival

See also: R. Khomeriki et al., PRA 81 065601 (2010), G. Corrielli et al., Nature Comm. 41556 (2013)

Summary

Quantum Walks

Coherent dynamics

Sensitivity to statistics

Formation of bound state

Numerical calculations

Strong overlap with other proposals:

L.Wang et al., PRA 90, 063618 (2014)

- S. Greschner et al., PRA 97, 053605 (2018)
- L. Cardarelli et al., PRA 94, 023615 (2016)

Bound state formation

Partially paired phase

Bosons with photon-assisted tunneling U' = 0; E'=0

See also: Wang et al., PRA 90, 063618 (2014)

Bound state formation

Partially paired phase

Bosons with photon-assisted tunneling U' = 0; E'=0

Mapping out the bound state with different initial placements

Quantum walk asymmety

Re-introduce interactions

U' = 2; δ=0

$$\hbar\omega_{\rm mod} = E + U + \tilde{u}$$
$$\hbar\omega_{\rm mod} = E - U - \tilde{u}$$

Interaction- and statistics-induced asymmetry

Bloch oscillations

Non-interacting walkers with gradient

U' = 0; δ=1

Destruction and frequency tripling of Bloch oscillations

Summary

Boson dynamics and engineered tunneling

- Occupation-dependent tunneling demonstrated
- Fully controlled two-particle dynamics
- Signatures with available systems sizes & scales

Acknowledgements

Few-fermion systems in optical tweezers

Group of Selim Jochim @ Heidelberg University

Thank you for your attention!

