@I

IQOQI
UNIVERSITY OF INNSBRUCK
AUSTRIAN ACADEMY OF SCIENCES

Lecture 2: Majorana Fermions as an example of non-Abelian Anyons

M. Baranov

Institute for Quantum Optics and Quantum Information, Center for Quantum Physics, University of Innsbruck

Anyon Physics of Ultracold Atomic Gases
Kaiserslautern 10 - 15 December 2018

Lecture 2 :

Majorana fermions as non-Abelian anyons
Majorana fermions in Kitaev wire
Braiding protocol
Demonstration of non-Abelian statistics
Using Majorana fermions for QC

- Deutsch-Jozsa algorithm

Conclusion

Ettore Majorana, 1906-1938?

Majorana "fermions" as non-Abelian anyons

Introducing Majorana "fermions"
For a (complex or Dirac) fermionic operators \hat{a} and \hat{a}^{+}
with algebra $\quad\left\{\hat{a}, \hat{a}^{+}\right\}=1,\{\hat{a}, \hat{a}\}=\left\{\hat{a}^{+}, \hat{a}^{+}\right\}=0$
two hermitian(!) Majorana operators (Majorana fermions)

$$
\begin{aligned}
& \gamma_{1}=\hat{a}+\hat{a}^{+}=\gamma_{1}^{+} \\
& \gamma_{2}=\left(\hat{a}-\hat{a}^{+}\right) / i=\gamma_{2}^{+}
\end{aligned}
$$

with algebra $\quad\left\{\gamma_{k}, \gamma_{l}\right\}=2 \delta_{k l}$
or $\quad \gamma_{1}^{2}=\gamma_{2}^{2}=1$,

$$
\gamma_{1} \gamma_{2}=-\gamma_{2} \gamma_{1}
$$

Inverse: $\quad \hat{a}=\left(\gamma_{1}+i \gamma_{2}\right) / 2 \quad$ and $\quad \hat{a}^{+}=\left(\gamma_{1}-i \gamma_{2}\right) / 2$

One fermionic mode \Longleftrightarrow Two Majoranas

Fermionic states and Majorana fusion

States: $\quad\{|0\rangle,|1\rangle\}: a|0\rangle=0,|1\rangle=a^{+}|0\rangle$

$$
\hat{n}=\hat{a}^{+} \hat{a}=\frac{i}{2} \gamma_{1} \gamma_{2}+\frac{1}{2}
$$

$$
\begin{aligned}
& \hat{n}|0\rangle=0|0\rangle \quad \square \\
& \hat{n}|1\rangle=1|1\rangle
\end{aligned} \quad \begin{aligned}
& -i \gamma_{1} \gamma_{2}|0\rangle=|0\rangle, \\
& -i \gamma_{1} \gamma_{2}|1\rangle=-|1\rangle,
\end{aligned}|1\rangle \equiv|-\rangle,
$$

fermionic mode (0 or 1 fermion)

states of two Majoranas (different fusion channels)
fermionic parity

$$
P_{F}=(-1)^{\hat{a}^{+} \hat{a}}=-i \gamma_{1} \gamma_{2}
$$

Hamiltonian and Hilbert space (states)

Complex (Dirac) fermion a

$$
H=\varepsilon\left(a^{+} a-\frac{1}{2}\right)
$$

Majorana fermions $\quad \gamma_{1}, \gamma_{2}$

$$
H=-\frac{i}{2} \varepsilon \gamma_{1} \gamma_{2}
$$

States: $\quad\{|0\rangle,|1\rangle\}: a|0\rangle=0,|1\rangle=a^{+}|0\rangle \quad P_{F}=(-1)^{a^{+} a}=i \gamma_{1} \gamma_{2}$

$$
\begin{aligned}
H|0\rangle & =-\frac{\varepsilon}{2}|0\rangle \\
H|1\rangle & =+\frac{\varepsilon}{2}|1\rangle
\end{aligned}
$$

$$
i \gamma_{1} \gamma_{2}|0\rangle=|0\rangle, \quad|0\rangle \equiv \mid+\lambda
$$

$$
i \gamma_{1} \gamma_{2}|1\rangle=-|1\rangle, \quad|1\rangle \equiv|-\rangle_{\quad} \quad \text { fermionic parity }
$$

Two Majorana fermions can correspond to either fermionic vacuum state (fuse to vacuum) $|0\rangle$ (even parity) or single-fermion state (fuse to fermion)
|1) (odd parity)

Two-Majorana states: Fusion of Majoranas

 (reminder)> State with NO fermion $|0\rangle$ and state with ONE fermion $|1\rangle$ are BOTH described by two Majorana fermions (anyons)

Fusion of two Majoranas γ_{1}, γ_{2} :
how do they behave as a combined object seen from distances much large than the separation between them $r \gg l$

The result is either
fermionic vacuum $|0\rangle(=1)$ or
single-fermion $|1\rangle(=\psi)$
$\gamma \times \gamma \rightarrow 1+\psi \quad$ - Majorana fusion rules

More degrees of freedom

For N complex (Dirac) fermions $a_{j}(j=1, \ldots, N)$:
with algebra $\left\{a_{k}, a_{l}^{+}\right\}=\delta_{k l},\left\{a_{k}, a_{l}\right\}=\left\{a_{k}^{+}, a_{l}^{+}\right\}=0$
we define $2 N$ hermitian Majorana operators $\gamma_{m}(m=1, \ldots, 2 N)$

$$
\gamma_{2 j-1}=a_{j}+a_{j}^{+} \quad \gamma_{2 j}=\left(a_{j}-a_{j}^{+}\right) / i
$$

with algebra $\gamma_{m} \gamma_{n}+\gamma_{n} \gamma_{m}=2 \delta_{m n} \quad$ - Clifford algebra

Inverse:

For $2 N$ hermitian Majorana operators $\gamma_{m}(m=1, \ldots, 2 N)$
we define N complex (Dirac) fermions $a_{j}(j=1, \ldots, N)$

$$
a_{j}=\left(\gamma_{2 j-1}+i \gamma_{2 j}\right) / 2 \quad a_{j}^{+}=\left(\gamma_{2 j-1}-i \gamma_{2 j}\right) / 2
$$

Hamiltonian:

$$
\begin{array}{ll}
\gamma_{2 j-1}=a_{j}+a_{j}^{+} & \gamma_{2 j}=\left(a_{j}-a_{j}^{+}\right) / i \\
a_{j}=\left(\gamma_{2 j-1}+i \gamma_{2 j}\right) / 2 & a_{j}^{+}=\left(\gamma_{2 j-1}-i \gamma_{2 j}\right) / 2 \\
H=\sum_{j=1}^{N}\left(\varepsilon_{j}-\frac{1}{2}\right) a_{j}^{+} a_{j}=\frac{i}{2} \sum_{j=1}^{N} \varepsilon_{j} \gamma_{2 j-1} \gamma_{2 j}
\end{array}
$$

Fermionic parity operator:

$$
P_{F}=(-1)^{\sum_{j=1}^{N} a_{j}^{\dagger} a_{j}}=\prod_{j=1}^{N}\left(-i \gamma_{2 j-1} \gamma_{2 j}\right)
$$

State description

2^{N} possible states can be described in two equivalent ways:

1. By occupations $n_{j}=0,1$ of the N fermionic modes $a_{j} \quad(j=1, \ldots, N)$

$$
\text { or } \quad \hat{n}_{j}=a_{j}^{+} a_{j}=\left(1+i \gamma_{2 j-1} \gamma_{2 j}\right) / 2
$$

2. By fusion channels $(1, \psi)_{j}$ for N pairs $\gamma_{2 j-1}, \gamma_{2 j}$ of Majoranas

$$
\begin{aligned}
& \quad(j=1, \ldots, N) \\
& n_{j}=0
\end{aligned} \begin{aligned}
& \text { or } \\
& n_{j}=1
\end{aligned} \quad \begin{aligned}
& \text { or }
\end{aligned} \quad-i \gamma_{2 j-1} \gamma_{2 j}\left|0_{j}\right\rangle=\left|0_{j-1}\right\rangle \text { corresponds to fusion channel } 1_{j}\left|1_{j}\right\rangle=-\left|1_{j}\right\rangle \text { corresponds to fusion channel } \psi_{j}
$$

State description (reminder)

$$
n_{j}=0 \text { or }-i \gamma_{2 j-1} \gamma_{2 j}\left|0_{j}\right\rangle=\left|0_{j}\right\rangle \text { fusion channel } 1_{j}
$$

ψ for odd n_{ψ}
Fermionic parity
1 for even n_{ψ}

When it becomes nontrivial?

The formal mapping one fermion \rightarrow two Majorana fermions becomes of interest if we can make spatially separated Majorana fermions (non-local fermion)

Spatially separated Majorana fermions can be braided to test and make use of their non-abelian statistics

Majorana fermions in Kitaev wire

Majorana edge states in Kitaev wire

Kitaev wire: spinless fermions with "p-wave" pairing on a1D chain of size L

$$
H=\sum_{j=1}^{L-1}\left(-\underset{\text { hopping }}{\left(-J \hat{a}_{j}^{+}\right.} \hat{a}_{j+1}+\underset{\prod_{j}}{\Delta \hat{a}_{j}} \hat{a}_{j+1}+\text { h.c. }-\mu \hat{a}_{j}^{+} \hat{a}_{j}\right)
$$

Symmetries: \quad The pairing amplitude Δ breaks the $U(1)$ gauge symmetry

$$
a_{j} \rightarrow e^{i \varphi} a_{j}
$$

down to the Z_{2} symmetry

$$
a_{j} \rightarrow-a_{j}
$$

Parity is a conserved quantum number, not the number of particles
can be measured in cold-atom systems!

Solving Kitaev wire $\quad \Delta \neq J>0,|\mu|<2 J$

$$
\begin{aligned}
& H=\sum_{j=1}^{L-1}\left(-J \hat{a}_{j}^{+} \hat{a}_{j+1}+\Delta \hat{a}_{j} \hat{a}_{j+1}+\text { h.c. }-\mu \hat{a}_{j}^{+} \hat{a}_{j}\right) \\
& \prod \begin{array}{l}
\text { Bogoliubov transformation } \\
\hat{\alpha}_{m}=\sum_{j}\left(u_{m j}^{*} \hat{a}_{j}+v_{m j}^{*} \hat{a}_{j}^{+}\right)
\end{array} \\
& H=\sum_{m=1}^{L} E_{m} \hat{\alpha}_{m}^{+} \hat{\alpha}_{m}=\sum_{v=1}^{L-1} E_{v} \hat{\alpha}_{v}^{+} \hat{\alpha}_{v}+E_{M} \hat{\alpha}_{M}^{+} \hat{\alpha}_{M} \\
& \text { gapped bulk } \\
& \text { modes }
\end{aligned}
$$

Robustness

"Zero-energy" eigenvalue is robust against static disorder

This robustness against imperfection is a consequence of the topological order in the bulk - topological protection

Topological order in the bulk

Hamiltonian in (quasi)momentum space

$$
\begin{gathered}
H=\sum_{k \in(-\pi, \pi)}\left(a_{k}^{+}, a_{-k}\right)\left(\begin{array}{cc}
\xi_{k} & \Delta_{k} \\
\Delta_{k}^{*} & -\xi_{k}
\end{array}\right)\binom{a_{k}}{a_{-k}^{+}} \\
\text {matrix } \mathscr{H}_{k} \\
\text { with } \quad \xi_{k}=-J \cos k-\mu / 2 \\
\Delta_{k}=-i \Delta \sin k
\end{gathered}
$$

Excitation spectrum

$$
E_{k}=2 \sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}} \quad \text { (has to be gapped !) }
$$

Topological order in the bulk
Ground state (BCS)

$$
|B C S\rangle=\prod_{k \in \mathrm{BZ}}\left(u_{\vec{k}}+v_{\vec{k}} a_{-k}^{+} a_{k}^{+}\right)|0\rangle
$$

with $\quad u_{\vec{k}}=\sqrt{\left(E_{k}+\xi_{k}\right) / 2 E_{k}}, \quad v_{\vec{k}}=\Delta_{k} / \sqrt{2 E_{k}\left(E_{k}+\xi_{k}\right)}$

Unit vector $\quad \vec{n}_{\vec{k}} \quad n_{x, k}=u_{k} v_{k}^{*}+u_{k}^{*} v_{k}=-\operatorname{Re}\left(\Delta_{k}\right) / E_{k}=0$

$$
\begin{aligned}
& n_{y, k}=i\left(u_{k} v_{k}^{*}-u_{k}^{*} v_{k}\right)=\operatorname{Im}\left(\Delta_{k}\right) / E_{k} \\
& n_{z, k}=u_{k} u_{k}^{*}-v_{k} v_{k}^{*}=\xi_{k} / E_{k}
\end{aligned}
$$

is well-defined for $E_{k}=2 \sqrt{\xi_{k}^{2}+\left|\Delta_{k}\right|^{2}}>0 \quad$ (gapped state)

Topological order in the bulk

Important: unit vector \vec{n}_{k} is in the $y z$-plane for all $k \in \mathrm{BZ}=(-\pi, \pi) \sim S^{1}$

Unit vector \vec{n}_{k} determines mapping $S^{1} \rightarrow S^{1}$

$$
\text { classified by } \pi_{1}\left(S^{1}\right)=\mathrm{Z}
$$

Winding number

$$
v=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d k \vec{e}_{x} \cdot\left(\vec{n}_{k} \times \partial_{k} \vec{n}_{k}\right) \in \mathrm{Z}
$$

counts the number of times \vec{n}_{k} winds around the origin
characterizes topological order (in this case!)

For Kitaev wire with $|\mu| \leq 2 J$
$v=1 \quad$ indicates nontrivial topological order

Closer look at the "zero-energy" mode

$$
\hat{\alpha}_{M}=\left(\gamma_{L}+i \gamma_{R}\right) / 2
$$

$$
\gamma_{L}, \gamma_{R} \text { - Majorana operators }
$$

In Majorana basis $\gamma_{2 j-1}=\hat{a}_{j}+\hat{a}_{j}^{+} \quad \gamma_{2 j}=\left(\hat{a}_{j}-\hat{a}_{j}^{+}\right) / i$

$$
\begin{array}{ll}
\gamma_{L} \sim \sum_{j}\left(x_{+}^{j}-x_{-}^{j}\right) \gamma_{2 j-1} \\
\gamma_{R} \sim \sum_{j}\left(x_{+}^{L-j}-x_{-}^{L-j}\right) \gamma_{2 j} & x_{ \pm}=\frac{-\mu \pm \sqrt{\mu^{2}+4 \Delta^{2}-4 J^{2}}}{2(\Delta+J)} \\
\left|x_{+}\right|,\left|x_{-}\right|<1 \text { for } \Delta \neq J>0,|\mu|<2 J
\end{array}
$$

$\left.\begin{array}{lll}\gamma_{L} & \text { "lives" near the left edge } \\ \gamma_{R} & \text { "lives" near the right edge } & x_{+}^{j}-x_{-}^{j} \sim \exp (-\kappa j) \\ -\kappa=\ln \min \left(\left|x_{ \pm}\right|\right)\end{array}\right] \begin{aligned} & \text { Majorana edge } \\ & \text { modes }\end{aligned}$

$\hat{\alpha}_{M}$ - non-local fermion living on both edges

The energy of the "zero-energy" mode

The energy of the non-local fermion $\hat{\alpha}_{M}$

$$
E_{M} \sim \Delta \frac{x_{+}^{L+1}-x_{-}^{L+1}}{x_{+}-x_{-}} \sim \exp (-\kappa L)
$$

is exponentially small with the size of the wire L

The Hamiltonian of the non-local fermion $\hat{\alpha}_{M}$

$$
\begin{aligned}
H_{M}=E_{M} \hat{\alpha}_{M}^{+} \hat{\alpha}_{M}= & \frac{i}{2} E_{M} \gamma_{L} \gamma_{R}+\frac{1}{2} E_{M} \\
& E_{M} \sim \exp (-\kappa L) \text { - coupling between Majorana modes }
\end{aligned}
$$

Quasi degenerate ground state: with different fermionic parity

$$
\begin{aligned}
& |0\rangle\left(\hat{\alpha}_{m}|0\rangle=0\right) \text { and } \\
& |M\rangle=\hat{\alpha}_{M}^{+}|0\rangle
\end{aligned}
$$

In the "ideal" case $\quad \Delta=J>0, \mu=0$
Zero-energy mode $\quad \hat{\alpha}_{M}=\left(\gamma_{1}+i \gamma_{2 L}\right) / 2=\left(\hat{a}_{1}+\hat{a}_{1}^{+}+\hat{a}_{L}-\hat{a}_{L}^{+}\right) / 2$

$$
E_{M}=0
$$

Majoranas $\quad \gamma_{L}=\gamma_{1}$ and $\gamma_{R}=\gamma_{2 L}$ are completely decoupled

Gapped modes

$$
\hat{\alpha}_{v}=\left(\gamma_{2 v}+i \gamma_{2 v+1}\right) / 2=i\left(\hat{a}_{v+1}+\hat{a}_{v+1}^{+}-\hat{a}_{v}+\hat{a}_{v}^{+}\right) / 2
$$

$E_{v}=2 J$

$\gamma_{L}=\gamma_{1} \longrightarrow$ 年 $=\gamma_{2 L}$

Degenerate ground state: states $|0\rangle\left(\hat{\alpha}_{m}|0\rangle=0\right)$ and $|M\rangle=\hat{\alpha}_{M}^{+}|0\rangle$
have the same energy but different parity

Long-range fermionic correlations

$$
\begin{aligned}
&\langle \pm| P_{F}| \pm\rangle=\langle \pm|(-1)^{\sum_{j} a_{j}^{+a}}| \pm\rangle=\langle \pm|(-i) \gamma_{1} \gamma_{2}(-i) \gamma_{3} \gamma_{4} \ldots \quad \ldots(-i) \gamma_{2 N-1} \gamma_{2 N}| \pm\rangle \\
&=1 \quad=1 \cdots \quad=1 \\
&=\langle \pm|(-i) \gamma_{1} \gamma_{2}(-i) \gamma_{1}\left|\gamma_{4} \cdots \quad \ldots(-i) \gamma_{2 N-1}\right| \gamma_{2 N}| \pm\rangle \\
& \rightarrow\langle \pm|-i \gamma_{1} \gamma_{2 N}| \pm\rangle=-\langle \pm|\left(a_{1}+a_{1}^{+}\right)\left(a_{N}-a_{N}^{+}\right)| \pm\rangle= \pm 1
\end{aligned}
$$

fermionic correlations between sites 1 and N

Explicit ground state wave functions

These states have identical local properties

$$
\text { but different fermionic number parity } \quad\langle \pm| P_{F}| \pm\rangle= \pm 1
$$

"Making" Kitaev wire with cold atoms

System: fermionic atoms in an optical lattice

$$
\begin{aligned}
& \text { hopping term } \quad-J \sum_{i}\left(a_{i}^{+} a_{i+1}+\text { h.c. }\right) \\
& \text { continuous version }-\left(\hbar^{2} / 2 m\right) \int d \vec{r} \hat{\psi}^{+} \Delta \hat{\psi}
\end{aligned}
$$

Reservoir: molecular BEC (or BCS) cloud
pairing term $\quad \sum_{l}\left(\Delta a_{i}^{+} a_{i+1}^{+}+\right.$h.c. $)$
continuous version $\Delta_{0} \int d \vec{r}\left(\hat{\psi}^{+} \nabla \hat{\psi}^{+}+\right.$h.c. $)$

Basic idea

Reservoir
BCS Cooper pair / molecule

$$
H=\sum_{i=1}^{N-1}\left(-J a_{i}^{+} a_{i+1}+\Delta a_{i} a_{i+1}+\text { h.c. }-\mu a_{i}^{+} a_{i}\right)
$$

L. Jiang, et al, Phys. Rev. Lett. 106, 22042 (2011)
S. Nascimbène, J. Phys. B 46, 134005 (2013)

Braiding protocol

Braiding of Majorana fermions

$$
\begin{aligned}
& \gamma_{1} \rightarrow-\gamma_{2} \\
& \gamma_{2} \rightarrow \gamma_{1}
\end{aligned}
$$

How to realize?

T-junction:

Moving Majoranas around by changing the local potential
J. Alicea et al, Nat. Phys. 7412 (2011)

Can also be done in atomic wires setup.

Could cold atoms provide something else?

Braiding of Majorana fermions in atomic wires setup

$$
U_{13}=e^{i \frac{\pi}{8}} \exp \left(-\frac{\pi}{4} \gamma_{1} \gamma_{3}\right)=e^{i \frac{\pi}{8}} \frac{1}{\sqrt{2}}\left(1-\gamma_{1} \gamma_{3}\right)
$$

Braiding of Majorana fermions in atomic wires

Two (nearest) Kitaev wires:

$$
\begin{aligned}
H & =\sum_{j}\left(-J a_{u, j}^{+} a_{u, j+1}+\Delta a_{u, j} a_{u, j+1}+\text { h.c. }-\mu a_{u, j}^{+} a_{u, j}\right) \leftarrow \text { upper wire } \\
& +\sum_{j}\left(-J a_{l, j}^{+} a_{l, j+1}+\Delta a_{l, j} a_{l, j+1}+\text { h.c. }-\mu a_{l, j}^{+} a_{l, j}\right) \leftarrow \text { lower wire }
\end{aligned}
$$

Four Majorana fermions $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$, we braid $\gamma_{1}=c_{1}$ and $\gamma_{3}=d_{1}$

Braiding protocol:

Advantages: - small number of steps

- only four sites and links between them are involved (local)

Requirement: - local cite/link addressing
J. Simon, et. al, Nature (London) 473:307-312, 2011
C. Weitenberg, et. al, Nature (London) 471:319-324, 2011
T. Fukuhara, et. al, Nat. Phys. 9:235, 2011

Needed local operations:

Single-link: switching on/off adiabatically

$$
\begin{gathered}
\text { hopping } \begin{aligned}
H_{j l}^{(J)}= & -J a_{j}^{+} a_{l}-\text { h.c. and pairing } H_{j l}^{(p)}=\Delta a_{j}^{+} a_{l}^{+}+\text {h.c. } \\
& \text { between nearest sites } j \text { and } l
\end{aligned} \text {. }
\end{gathered}
$$

Together give "Kitaev coupling" $\quad H_{j l}^{(K)}=H_{j l}^{(J)}+H_{j l}^{(p)}$

Single-site: switching on/off adiabatically

$$
\text { on-site potential } \quad H_{j}^{(l o c)}=V a_{j}^{+} a_{j}
$$

Braiding protocol: Step I

ϕ_{t} changes adiabatically from 0 to $\pi / 2$

Turn off the couplings between sites 1-2 and 3-4; turn on hopping between sites 1-3

$$
\begin{array}{r}
H_{I}=\left(H_{12}^{(K)}+H_{34}^{(K)}\right) \cos \phi_{t}+H_{13}^{(J)} \sin \phi_{t} \\
\gamma_{1}\left(\phi_{t}\right)=\left(2 c_{1} \cos \phi_{t}-d_{3} \sin \phi_{t}\right) / \sqrt{1+3 \cos ^{2} \phi_{t}} \\
\gamma_{3}\left(\phi_{t}\right)=\left(2 d_{1} \cos \phi_{t}-c_{3} \sin \phi_{t}\right) / \sqrt{1+3 \cos ^{2} \phi_{t}}
\end{array}
$$

$$
\begin{aligned}
& \gamma_{1}=c_{1} \rightarrow-d_{3} \\
& \gamma_{3}=d_{1} \rightarrow-c_{3}
\end{aligned}
$$

Braiding protocol: Step II

Turn on the couplings between sites 3-4; turn on pairing between sites 1-3

$$
\begin{aligned}
& H_{I I}=H_{13}^{(J)}+\left(H_{13}^{(p)}+H_{34}^{(K)}\right) \sin \phi_{t} \\
& \begin{array}{l}
\gamma_{1}\left(\phi_{t}\right)=\left[2 c_{1} \sin \phi_{t}-d_{3}\left(1-\sin \phi_{t}\right)\right] / \sqrt{4 \sin ^{2} \phi_{t}+\left(1-\sin \phi_{t}\right)^{2}} \\
\gamma_{3}\left(\phi_{t}\right)=-c_{3}
\end{array}
\end{aligned}
$$

Braiding protocol: Step III

ϕ_{t} changes adiabatically from 0 to $\pi / 2$

Ramp up local potential on site 1; turn off couplings between sites1-3

$$
H_{I I I}=H_{1}^{(l o c)} \sin \phi_{t}+H_{13}^{(K)} \cos \phi_{t}+H_{34}^{(K)}
$$

$$
\begin{aligned}
& \gamma_{1}\left(\phi_{t}\right)=\left(J c_{1} \cos \phi_{t}+V d_{1} \sin \phi_{t}\right) / \sqrt{\left(J \cos \phi_{t}\right)^{2}+\left(V \sin \phi_{t}\right)^{2}} \\
& \gamma_{3}\left(\phi_{t}\right)=-c_{3}
\end{aligned}
$$

Braiding protocol: Step IV

ϕ_{t} changes adiabatically from 0 to $\pi / 2$

Ramp down local potential on site1; turn on couplings between sites 1-2

$$
H_{I V}=H_{12}^{(K)} \sin \phi_{t}+H_{1}^{(l o c)} \cos \phi_{t}+H_{34}^{(K)}
$$

$$
\begin{aligned}
& \gamma_{1}\left(\phi_{t}\right)=d_{1} \\
& \gamma_{3}\left(\phi_{t}\right)=-\left(J c_{1} \sin \phi_{t}+V c_{3} \cos \phi_{t}\right) / \sqrt{\left(J \sin \phi_{t}\right)^{2}+\left(V \cos \phi_{t}\right)^{2}}
\end{aligned}
$$

Result of the braiding protocol:

$$
\begin{aligned}
\begin{array}{l}
\gamma_{1} \rightarrow-\gamma_{3} \\
\gamma_{3} \rightarrow \gamma_{1}
\end{array} \quad \text { generated by } \quad U_{13} & =e^{i \frac{\pi}{8}} \exp \left(-\frac{\pi}{4} \gamma_{1} \gamma_{3}\right) \\
& =e^{i \frac{\pi}{8}} \frac{1}{\sqrt{2}}\left(1-\gamma_{1} \gamma_{3}\right) \\
\gamma_{1} \rightarrow-\gamma_{3}=U_{13}^{-1} \gamma_{1} U_{13} & \\
\gamma_{3} \rightarrow \gamma_{1}=U_{13}^{-1} \gamma_{3} U_{13} &
\end{aligned}
$$

Physics behind
one fermion is taken from the system (either from the lower or from the upper wire) and inserted into the lower wire

Physical consequences:

$$
U_{13}=e^{i \frac{\pi}{8}} \frac{1}{\sqrt{2}}\left(1-\gamma_{1} \gamma_{3}\right)
$$

In the basis $\{|++\rangle,|--\rangle\}$ of eigenfunctions of $-i \gamma_{1} \gamma_{2}$ and $-i \gamma_{3} \gamma_{4}$

$$
\left.\left.\begin{array}{l}
-i \gamma_{1} \gamma_{2} \\
-i \gamma_{3} \gamma_{4}
\end{array}\right\}\left|p_{1}, p_{2}\right\rangle=\begin{array}{l}
\left.p_{1}\right\} \\
p_{2} f
\end{array}\right\}\left|p_{1}, p_{2}\right\rangle \quad \text { parity of the upper wire }
$$

we have

$$
U_{13}=\frac{1}{\sqrt{2}} e^{i \frac{\pi}{8}}\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right) \quad \text { and } \quad U_{13}^{2}=e^{-i \frac{\pi}{4}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Physical consequences:

$$
\begin{aligned}
& U_{13}=e^{i \frac{\pi}{8}} \frac{1}{\sqrt{2}}\left(1-\gamma_{1} \gamma_{3}\right) \\
& U_{13}^{2}=e^{-i \frac{\pi}{4}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Starting from $\quad|++\rangle$

Demonstration of non-Abelian character

Three wires

$$
\begin{aligned}
& U_{13}=e^{i \frac{\pi}{8}} \frac{1}{\sqrt{2}}\left(1-\gamma_{1} \gamma_{3}\right) \\
& U_{35}=e^{i \frac{\pi}{8}} \frac{1}{\sqrt{2}}\left(1-\gamma_{3} \gamma_{5}\right)
\end{aligned}
$$

Starting from $|+++\rangle$ - eigenstate of $-i \gamma_{1} \gamma_{2},-i \gamma_{3} \gamma_{4},-i \gamma_{5} \gamma_{6}$

Another possibility: $\sigma_{13} \sigma_{35}$ and $\sigma_{35} \sigma_{13}$

$$
\begin{aligned}
& U_{13}=e^{i \frac{\pi}{8}} \frac{1}{\sqrt{2}}\left(1-\gamma_{1} \gamma_{3}\right) \\
& U_{35}==e^{i \frac{\pi}{8}} \frac{1}{\sqrt{2}}\left(1-\gamma_{3} \gamma_{5}\right)
\end{aligned}
$$

Starting from $|+++\rangle$
$\left(\sigma_{13} \sigma_{35}\right)\left(\sigma_{35} \sigma_{13}\right) \neq\left(\sigma_{35} \sigma_{13}\right)\left(\sigma_{13} \sigma_{35}\right)$ do not commute!

Using Majorana fermions for QC

Implementation of the Deutsch-Jozsa algorithm for two qubits

Although braiding does not provide a tool to build a universal set of gates, it still can be used for QC.

Example: Deutsch-Jozsa algorithm

Deutsch-Jozsa algorithm (2 qubits)

Function $g:\{|0\rangle,|1\rangle\} \otimes\{|0\rangle,|1\rangle\} \mapsto\{0,1\} \quad$ (oracle)
can be either constant or balanced

	$\|00\rangle$	$\|01\rangle$	$\|10\rangle$	$\|11\rangle$
g_{0}	0	0	0	0
g_{1}	0	0	1	1
g_{2}	0	1	1	0
g_{3}	0	1	0	1

Question: is a given but unknown g constant or balanced?

Naïve way: three measurements (in the worst case)

Deutsch-Jozsa algorithm for two qubits: only one measurements!
When oracle is realized as a unitary $U_{g}|x\rangle=(-1)^{g(x)}|x\rangle$

H Hadamard gate
$g(x)$ constant: probability to measure $|00\rangle$ is 1
$g(x)$ balanced: probability to measure $|00\rangle$ is 0

Realization of the algorithm via braiding

C.V. Kraus, P. Zoller, and M.A. Baranov, PRL 111, 203001 (2013)

Setup: 3 Kitaev wires

$$
\begin{aligned}
& f_{1}=\left(\gamma_{1}+i \gamma_{2}\right) / 2 \\
& f_{2}=\left(\gamma_{3}+i \gamma_{4}\right) / 2 \\
& f_{3}=\left(\gamma_{5}+i \gamma_{6}\right) / 2
\end{aligned}
$$

L. Georgiev, Phys. Rev. B 74 (2006)

Hadamard gate
$H \otimes H$
$H \otimes 1=U_{12} U_{23} U_{12}$
$1 \otimes H=U_{56} U_{45} U_{56}$

$$
\begin{array}{ll}
U_{g_{0}}=1 & U_{g_{1}}=U_{12}^{2} \\
U_{g_{2}}=U_{34}^{2} & U_{g_{3}}=U_{56}^{2}
\end{array}
$$

Realization of the algorithm via braiding (optimum sequence)

$$
U_{D-J}\left(g_{i}\right)=U_{45} U_{56} U_{23} U_{12} U_{g_{i}} U_{56} U_{45}^{U} U_{12} U{ }_{23}
$$

Realization of the algorithm in five steps!

Results:

$$
\begin{array}{cc}
U_{D-J}\left(g_{0}\right)|00\rangle=|00\rangle & U_{D-J}\left(g_{0}\right)|00\rangle=|11\rangle \\
U_{D-J}\left(g_{1}\right)|00\rangle=i|10\rangle & U_{D-J}\left(g_{1}\right)|00\rangle=i|01\rangle
\end{array}
$$

Read out: measuring parities (particle numbers) in the wires

Conclusion

Majorana fermions provide an example of non-Abelian anyons

- fundamental physical interest
- applications for quantum computation

Cold atomic/molecular systems provides a possibility to implement and to manipulate Majorana fermions

Thank you for your attention!

