





IQOQI AUSTRIAN ACADEMY OF SCIENCES

UNIVERSITY OF INNSBRUCK

# Introduction to the Physics of Anyons with Majorana Fermions as an Example

#### M. Baranov

Institute for Quantum Optics and Quantum Information, Center for Quantum Physics, University of Innsbruck

Anyon Physics of Ultracold Atomic Gases Kaiserslautern 10 – 15 December 2018 Lecture 1: Appearance of Anyons

Lecture 2: Majorana Fermions as an example of non-Abelian Anyons

Lecture 1: Appearance of Anyons

Exchange and statistics

Why dimension 2?

Braid group. Abelian and no-Abelian anyons

Formal introduction of anyons: Fusion of anyons and anyon Hilbert space Exchange and statistics

Particle exchange and statistics



Behavior of the state (wave function) under the exchange of two identical (quasi)particles

Exchange of two (quasi)particles



 $\Psi(\vec{r}_1,\vec{r}_2,\ldots) \to \Psi(\vec{r}_2,\vec{r}_1,\ldots) = ? \Psi(\vec{r}_1,\vec{r}_2,\ldots)$ 

Properties of many-body wave functions:

$$\psi(\vec{R}_1,\vec{R}_2,\ldots;\vec{r}_1,\vec{r}_2,\ldots)$$

- $\vec{R}_i$  positions of quasiparticles
- $\vec{r}_i$  positions of particles



but not necessarily with respect to quasiparticle coordinates  $R_i$ 

# Exchange as adiabatic dynamical evolution General statements:

1. Adiabatic theorem: States in a (possibly degenerate) energy subspace separated from others by a gap remain in the subspace when the system is changed adiabatically without closing the gap.

2. Change under adiabatic transport = combination of Berry's phase/matrix and transformation of instantaneous energy eigenstate (explicit monodromy)

3. Change under adiabatic transport is invariant, but Berry's phase/matrix and eigenstate transformation depend on choice of gauge (and can be shifted from one to the other)

#### Exchange as adiabatic dynamical evolution

For a unique ground state  $|\Psi\rangle$  (single-valued) separated by a gap from excited states

Berry phase  $\alpha = i \int dt \langle \psi | \frac{d}{dt} \psi \rangle = \alpha_g (\text{path}) + \vartheta$ (single-valued w.f.)

 $\alpha_{g}$  (path) geometrical phase

 $\mathscr{G}$  (topology of the path) statistical angle - of interest! Exchange statistics  $|\psi\rangle \rightarrow e^{i\vartheta} |\psi\rangle$ 

# Why dimension 2?



Is  $\hat{\sigma}^2$ an identity?

3D case:  $\hat{\sigma}^2 = 1$  (identity!)



The contour C can be deformed to a point  $\vec{R}_{12} = \text{const} (= \vec{R}_{12,i})$ (i.e., to the case when nothing happens) without crossing the origin  $\vec{R}_{12} = 0$ 



Conclusion: in 3D only bosons ( $\mathcal{G} = 0$ ) or fermions ( $\mathcal{G} = \pi$ )  $|\psi\rangle \rightarrow \pm |\psi\rangle$ 

## 2D case: $\hat{\sigma}^2 \neq 1$



The contour C cannot be deformed to a point  $\vec{R}_{12} = \text{const} (= \vec{R}_{12,i})$ (i.e., to the case when nothing happens) without crossing the origin  $\vec{R}_{12} = 0$ 



Conclusion: in 2D more possibilities, not only bosons or fermions

Braid group. Abelian and non-Abelian anyons

#### Particle exchange in 2D: Braid group (for N particles)

Trajectories that wind around starting from initial positions  $\vec{R}_1, \ldots, \vec{R}_N$ to final positions  $\vec{R}_1, \ldots, \vec{R}_N$  (the same set – identical particles)

generated by  $\hat{\sigma}_i$ (**braiding** of particles i and i+1)

defining relations



$$\hat{\sigma}_{i}\hat{\sigma}_{j} = \hat{\sigma}_{j}\hat{\sigma}_{i} \text{ for } |i-j| \ge 2$$
$$\hat{\sigma}_{i}\hat{\sigma}_{i+1}\hat{\sigma}_{i} = \hat{\sigma}_{i+1}\hat{\sigma}_{i}\hat{\sigma}_{i+1}$$

Note: 1. Braid group is infinite dimensional ( $\hat{\sigma}^2 \neq 1!$ ) in contrast to finite-dimensional permutation group ( $\hat{p}^2 = 1$ ) 

2. Braid group is non-Abelian  $\hat{\sigma}_i \hat{\sigma}_{i+1} \neq \hat{\sigma}_{i+1} \hat{\sigma}_i$ 

Representations of the braid group: statistics of particles

Elements of the braid group (trajectories of particles)



Changes of the states under the evolution (particle statistics)

1. One-dimensional representations: unique (ground) state

2. Higher-dimensional representations: degenerate (ground) state

1. One-dimensional (Abelian) representations

Unique (ground) state  $|\psi\rangle$ 

Transformation under braiding operation  $\,\hat{\sigma}\,$ 

$$|\psi\rangle \xrightarrow{\hat{\sigma}} e^{i\vartheta} |\psi\rangle$$

with arbitrary  $\,\mathcal{G}\,$  - Abelian anyons

Examples: 1. bosons ( $\mathcal{G} = 0$ ) and fermions ( $\mathcal{G} = \pi$ )

2. quasiholes in the at FQHE Laughlin state v = 1/M

$$\mathcal{G} = \pi / M$$

#### Example 2. quasiholes in the FQHE Laughlin state v = 1/M

R. Laughlin, 1983

Trial wave function for N fermions at positions  $\vec{r}_i$ with n quasiholes at positions  $\vec{R}_{\alpha}$ :  $z_i = (x_i + iy_i)/l_B$   $Z_{\alpha} = (X_{\alpha} + iY_{\alpha})/l_B$ 

Choice 1  $\psi_{\frac{1}{M}}(Z_{\alpha}, z_{i}) = \prod_{\alpha < \beta}^{n} (Z_{\alpha} - Z_{\beta})^{\frac{1}{M}} e^{\frac{-1}{4M}\sum_{\mu=1}^{n}|Z_{\mu}|^{2}} \prod_{\substack{\gamma=1 \ i=1 \ quasihole}}^{n} \prod_{\substack{i=1 \ quasihole}}^{N} (Z_{\gamma} - z_{i}) \prod_{\substack{k<l \ k<l \ quasihole}}^{N} (z_{k} - z_{l})^{M} e^{-\frac{1}{4}\sum_{j=1}^{N}|z_{j}|^{2}}$ normalization  $\int \prod_{i=1}^{N} d^{2}z_{i} |\psi_{\frac{1}{M}}(Z_{\alpha}, z_{i})|^{2} = 1 + O(e^{-|Z_{\alpha} - Z_{\beta}|})$ 

Berry's phase = Aharonov-Bohm phase (geometric)  $\alpha_g$  (path) =  $\frac{e}{M} \frac{\Phi_B}{\hbar c}$ of a charge q = e/M encircling flux of  $\Phi_B = BA$ 

Exchanging two quasiholes give a phase of  $\mathcal{G} = \pi / M$  from eigenstate transformation (explicit monodromy)

D. Arovas, J.R. Schrieffer, F.Wilczek, 1984 R. Laughlin, 1987 B. Blok, X.G. Wen, 1992 Example 2. quasiholes in the FQHE Laughlin state v = 1/M

Choice 2 (different "gauge": single-valued )

$$\psi_{\frac{1}{M}}(Z_{\alpha}, z_{i}) = \prod_{\alpha < \beta}^{n} \left| Z_{\alpha} - Z_{\beta} \right|^{\frac{1}{M}} e^{\frac{-1}{4M} \sum_{\mu=1}^{n} \left| Z_{\mu} \right|^{2}} \prod_{\gamma=1}^{n} \prod_{i=1}^{N} (Z_{\gamma} - z_{i}) \prod_{k < l}^{N} (z_{k} - z_{l})^{M} e^{-\frac{1}{4} \sum_{j=1}^{N} \left| z_{j} \right|^{2}}$$

Eigenstate transformation (analytic continuation) = trivial

Berry's phase = Aharonov-Bohm phase + statistical angle  $\mathcal{G} = \pi / M$ 

#### 2. Higher-dimensional representations

Degenerate ground state with an orthonormal basis  $|\psi_{\alpha}\rangle, \alpha = 1, ..., g$ 



Transformation under braiding operation  $\,\hat{\sigma}\,$ 

$$\begin{split} \left| \psi_{\alpha} \right\rangle & \xrightarrow{\hat{\sigma}} U(\hat{\sigma})_{\alpha\beta} \left| \psi_{\beta} \right\rangle \\ \text{with matrix } U(\hat{\sigma}) &= Pexp(i \int dt \widehat{m}) \mathcal{M} \qquad (\hat{m})_{\alpha\beta} = i \left\langle \psi_{\alpha} \mid \frac{d}{dt} \psi_{\beta} \right\rangle \\ & \text{Berry matrix} \qquad \text{explicit monodromy of the w.f.} \end{split}$$

Particles are non-Abelian anyons if  $U(\hat{\sigma}_1)_{\alpha\beta}U(\hat{\sigma}_2)_{\beta\gamma} \neq U(\hat{\sigma}_2)_{\alpha\beta}U(\hat{\sigma}_1)_{\beta\gamma}$ for at least two  $\hat{\sigma}_1$  and  $\hat{\sigma}_2$  (do not commute!)

Examples: Ising anyons (Majorana fermions,  $\nu = 5/2$  qH-state), Fibonacci anyons Conditions for non-Abelian anyons:

Robust degeneracy of the ground state:

The degeneracy cannot be lifted by local perturbations (which are needed, i.e., for braiding)

Degenerate ground states cannot be distinguished by local measurements

$$\left\langle \psi_{\alpha} \middle| V_{\rm loc} \middle| \psi_{\beta} \right\rangle = C \delta_{\alpha\beta}$$

Braiding of identical particles changes state within the degenerate manifold, but should not be visible for local observer

Nonlocal measurements: parity measurements (for Majorana fermions), etc.

Require topological states of matter with topological degeneracy and long-range entanglement

Comment: In real world (finite systems, etc.): GS degeneracy is lifted



Condition on the time of operations:

 $\frac{\hbar}{\Delta} << T << \frac{\hbar}{\varepsilon}$ 

slow enough to be adiabatic

fast enough to NOT resolve the GS manifold

Formal introduction of Anyons:

Fusion rules and Hilbert space

Set of particles (anyons)  $1, a, b, c \dots 1$  - vacuum

Fusion of anyons

Fusion of two Anyons a, b:

how do they behave as a combined object seen from distances much large than the separation between them r >> l



#### **Fusion rules**



Hilbert space – fusion chains ( $N_{ab}^c \le 1$  for simplicity) (no creation and annihilations operators!)

$$\mathcal{H}_n$$
: n anyons,  $a_1, \dots, a_n$  where  $a_1, \dots, a_{n-1}$  fuse into  $a_n$   
 $(\dots (a_1 \times a_2) \times a_3) \times \dots) \times a_{n-1} = a_n$ 

**Basis vectors** 

 $a_1$  and  $a_2$  fuse into  $e_1$ ,  $e_1$  and  $a_3$  into  $e_2$ , ...,  $e_{n-3}$  and  $a_{n-1}$  into  $e_n$  uniquely specified by the intermediate fusion outcomes  $e_1$ , ...,  $e_{n-3}$ 

Dimension 
$$\dim \mathcal{H}_n = \sum_{e_1...e_{n-3}} N_{a_1 a_2}^{e_1} ... N_{e_{n-3} a_{n-1}}^{e_n}$$

Associativity of braiding:  $(a \times b) \times c = a \times (b \times c) = d$ 



F-matrix (basis change)

guaranties the invariance of the Hilbert space construction:

Different fusion ordering is equivalent to the change of the basis vectors

Exchange properties of anyons (in a given fusion channel)

$$a \qquad b \qquad a \qquad b$$

$$= R_c^{ab} \qquad f^c$$

R-matrix (braiding in a given fusion channel)

#### Consistency conditions for F- and R-matrices



F- and R-matrices satisfy the pentagon and hexagon consistency relations

## Pentagon relation



$$\left(F_{5}^{12c}\right)_{da}\left(F_{5}^{a34}\right)_{cb} = \sum_{e} \left(F_{d}^{234}\right)_{ce} \left(F_{5}^{1e4}\right)_{db} \left(F_{b}^{123}\right)_{ea}$$

#### Hexagon relation



$$\sum_{b} \left( F_4^{231} \right)_{cd} R_4^{1b} \left( F_4^{123} \right)_{ba} = R_c^{13} \left( F_4^{213} \right)_{ca} R_a^{12}$$

Set of anyons with F- and R-matrices satisfying the pentagon and hexagon equations completely determine an Anyon model.

If no solution exists the hypothetical set of anyons and fusion rule are incompatible with local quantum physics.

Alternative approach: topological field theories

## Examples:

- 1: Fibonacci anyons 1,  $\tau$ 
  - Fusion rules:  $\tau \times \tau = 1 + \tau$  $1 \times \{1, \tau\} = \{1, \tau\}$
- 2: Ising anyons  $1, \gamma, \psi$ 
  - $\gamma$  non-Abelian anyon  $\psi$  fermion
  - Fusion rules: $\gamma \times \gamma = 1 + \psi$  $\gamma \times \psi = \gamma$  $\psi \times \psi = 1$  $1 \times \{1, \gamma, \psi\} = \{1, \gamma, \psi\}$

(more in the next lecture)

Hilbert space for 2N Majorana fields  $\gamma_m$  (m = 1,...,2N)Fusion rules: $\gamma \times \gamma = 1 + \psi$  $\gamma \times \psi = \gamma$  $\psi \times \psi = 1$  $1 \times \{1, \gamma, \psi\} = \{1, \gamma, \psi\}$ 

1. Split in N pairs  $\gamma_{2j-1}, \gamma_{2j}$ 

2. Specify fusion channels  $(1, \psi)_j$  for each pair (j = 1, ..., N)

The fusion tree is now uniquely define. The resulting "charge" is either 1 or  $\psi$  depending on the number  $n_{\psi}$  of the  $\psi$  fusion outputs:



Equivalent to the Hilbert space for N fermionic modes

# End of the Lecture 1

# Thank you for your attention!