1Q0Ql
UNIVERSITY OF INNSBRUCK AUSTRIAN ACADEMY OF SCIENCES

Introduction to the Physics of Anyons
with
Majorana Fermions as an Example

M. Baranov

Institute for Quantum Optics and Quantum Information,
Center for Quantum Physics, University of Innsbruck

Anyon Physics of Ultracold Atomic Gases
Kaiserslautern 10 — 15 December 2018



Lecture 1: Appearance of Anyons

Lecture 2: Majorana Fermions as an
example of non-Abelian Anyons



Lecture 1: Appearance of Anyons

Exchange and statistics
Why dimension 27?

Braid group. Abelian and no-Abelian anyons

Formal introduction of anyons:
Fusion of anyons and anyon Hilbert space



Exchange and statistics



Particle exchange and statistics

Behavior of the state (wave function)
Statistics <> under the exchange of two
identical (quasi)particles

Exchange of two (quasi)particles

V(7. ) —> PG, ) =2 P(F 7, )



Properties of many-body wave functions:

w(R,R,,...;1,7,,...)

ﬁi positions of quasiparticles

;7J. positions of particles

—

has to be single-valued with respect to particle coordinates 7

—

but not necessarily with respect to quasiparticle coordinates R,



Exchange as adiabatic dynamical evolution
General statements:

1. Adiabatic theorem: States in a (possibly degenerate) energy subspace
separated from others by a gap remain in the subspace when the system
is changed adiabatically without closing the gap.

2. Change under adiabatic transport = combination of Berry’s phase/matrix
and transformation of instantaneous energy eigenstate (explicit monodromy)

3. Change under adiabatic transport is invariant, but Berry’s phase/matrix and
eigenstate transformation depend on choice of gauge (and can be shifted from
one to the other)



time t

Exchange as adiabatic dynamical evolution

5 i For a unique ground state |¥) (single-valued)

separated by a gap from excited states

—> ‘l//>—)€l¢ l//>, go:—%fth(t)Jra
\ dynamicTaI phase

Berry phase « =Tifdt<gu |%z//> =a,(path) +J
1 2
O (single-valued w.f.)

&, (path) geometrical phase

& (topology of the path) statistical angle - of interest!
Exchange statistics ‘l//> — e

v)



Why dimension 27



Constraint on the exchange R, , relative position

Vo

exchange double exchange O

—
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Is & °an identity?



3D case: 6> =1 (identity!)

The contour C can be deformed

—

toa point R, =const (= I_élz,i)

(i.e., to the case when nothing happens)

—

without crossing the origin R, =0

12,i

Conclusion: in 3D only bosons (&£ =0 ) or fermions ( %= )

v)>E|y)



2D case: o #1

The contour C cannot be deformed

—_

to a point R, = const (= I_éIZ,i)

(i.e., to the case when nothing happens)

without crossing the origin Rn =0

e

Rl2,i

Conclusion: in 2D more possibilities, not only bosons or fermions



Braid group. Abelian and non-Abelian anyons



Particle exchange in 2D: Braid group (for N particles)

Trajectories that wind around starting from initial positions R

R
Ir n oo Ry
to final positions R,,..., R, (the same set — identical particles)

generated by &,

defining relations
(braiding of particles i and i+1)

6-1'6-]' :é\-j&i for ‘l—]‘

Note:

1. Braid group is infinite dimensional (&~ = 1!) |n contrast
to finite-dimensional permutation group (p° =

2. Braid group is non-Abelian o¢,0,,, # &,,,0; \/'J



Representations of the braid group: statistics of particles

Elements of the braid group
(trajectories of particles)

ﬂ representation

Changes of the states under the evolution
(particle statistics)

1. One-dimensional representations: unique (ground) state

2. Higher-dimensional representations: degenerate (ground) state



1. One-dimensional (Abelian) representations

Unique (ground) state |y)

Transformation under braiding operation &

w)——=e"|y)

with arbitrary & - Abelian anyons

Examples: 1. bosons (% = Q) and fermions (:% = 7x)

2. quasiholes in the at FQHE Laughlin state vV =1/ M
G=n/M



Example 2. quasiholes in the FQHE Laughlin state v=1/M

: : _ - _ R. Laughlin, 1983
Trial wave function for N fermions at positions 7;

with n quasiholes at positions R _: . .
. P o 2 =(x +iy)/, Z,=(X, +i¥)/],
Choice 1 N
H Z‘Zﬂ‘ N Iy _ié‘zf‘z
v\ 2z =1 -2 "5 T, -2 [ -2)"e
M a<ﬂ | y=l i=1 k<l |
\ Y J Y
normaIYization quasihole Laughlin w.f.

N
de2Zi v, (Z,,z z)| =1+0(e 1 Zﬁ‘)
i=1 M

(DB
M hc

Berry’s phase = Aharonov-Bohm phase (geometric) ¢, (path) =—
of a charge g=e/M encircling flux of ®, = BA

: : : D. Arovas, J.R. Schrieffer,F.Wilczek,1984
Exchanging two quasiholes give a phase of $=7/M g Laughlin, 1987

from eigenstate transformation (explicit monodromy)  B. Blok, X.G. Wen, 1992



Example 2. quasiholes in the FQHE Laughlin state v=1/M

Choice 2 (different “gauge”: single-valued )

4]\112‘2#‘2 n_ N N v _iZ‘Zj‘z
W (Zyr2,) = |HZ —Z \Me [TT1Z, -z —z)"e ™7
M a<p y=l i=1 k<l

Eigenstate transformation (analytic continuation) = trivial

Berry’s phase = Aharonov-Bohm phase + statistical angle $=7/M



2. Higher-dimensional representations

excited
states
Degenerate ground state
with an orthonormal basis ‘Wa >, a=1...,g gap| A
v.)

Transformation under braiding operation &

‘//ﬂ>

R . d
with matrix U(&) — Pexp(i j dtfﬁ)M (m)aﬂ = l<wa |Ewﬂ>
N,

‘ Wa > L) U(&)aﬂ

Berry matrix explicit monodromy of the w.f.

Particles are non-Abelian anyons it U(6,),,U(6,),, #U(6,),,U(6,),

for at least two &, and O,
(do not commute!)

Examples: Ising anyons (Majorana fermions, v = 5/2 gH-state),
Fibonacci anyons



Conditions for non-Abelian anyons:

Robust degeneracy of the ground state:

The degeneracy cannot be lifted by local perturbations
(which are needed, i.e., for braiding)

Degenerate ground states cannot be distinguished
by local measurements

<‘//a‘Vloc l//ﬂ> =C0,

Braiding of identical particles changes state within the degenerate manifold,
but should not be visible for local observer

Nonlocal measurements: parity measurements (for Majorana fermions), etc.

Require topological states of matter with
topological degeneracy and long-range entanglement



Comment: In real world (finite systems, etc.): GS degeneracy is lifted

excited
states

*
gap | A

V) —= [= 7 o<

Condition on the time of operations: — << T << —

/ A &

slow enough to be adiabatic

fast enough to NOT resolve the GS manifold



Formal introduction of Anyons:

Fusion rules and Hilbert space



Set of particles (anyons) 1,a, b, c... 1 - vacuum

Fusion of anyons

Fusion of two Anyons  a, b

how do they behave as a combined object seen from distances
much large than the separation between them 7 >>/

?
. —0O
“Observer”



Fusion rules

C

L
“Observer”

aXb:chfb C N?, -integers
C

Non-Abelian anyons if Z N, >1 forsomeaandb



Hilbert space — fusion chains (N, <1 forsimplicity)
(no creation and annihilations operators!)

j—[n :nanyons, a4,--,a, where aq,-,a,_1 fuseinto a,
(- (a1Xaz) Xag) X)) Xap_1 = ay

Basis vectors

A, daz Ay Apn—20a,_1

S A D I

e, ey €n-3

4 and A, fuse into €1, €1 and Agzinto €3, ..., €43 and Ap—1into €n
uniquely specified by the intermediate fusion outcomes €1, ***, €3

Dimension  dim %, = z Ngta,..No"



Associativity of braiding: (axb) Xc=ax(bXc)=d

a b C a b C
L abc '
€ o z (Fd )ee' €
e' A
d d
a,b fuse to e; b,c fuse to e’;
e,c fuse tod e’,afusetod

F-matrix (basis change)

guaranties the invariance of the Hilbert space construction:

Different fusion ordering is equivalent to the change of the basis vectors



Exchange properties of anyons (in a given fusion channel)

R-matrix
(braiding in a given fusion channel)



Consistency conditions for F- and R-matrices

b C a

b c a b a b
AN
o =2 )\?/ § =R \/
e' ! !

d d

F- and R-matrices satisfy the pentagon and hexagon
consistency relations



Pentagon relation

1 2 3 4

¢ F
\Y/ §

N br

1 2 3 4 1 2 3 4
F e
% ]

(2 ) (), = 2 (EE (B, (7).,



Hexagon relation

R &
PN RN
\<4/\R \>/

2 ! 3 2 1 3 4
—_—
a fod
4 4

Z (F 4231 )cd Rzltb (F 4123 )ba — Rcl3 (F 4213 )ca Rclzz

b



Set of anyons with F- and R-matrices satisfying the pentagon
and hexagon equations completely determine an Anyon model.

If no solution exists the hypothetical set of anyons and fusion rule
are incompatible with local quantum physics.

Alternative approach: topological field theories



Examples:

1: Fibonacci anyons I, 7

Fusion rules: TXT=14+T71

Ix{l,7} =4{1,7}

2: Ising anyons Ly, w

Y - non-Abelian anyon YW _ fermion

Fusion rules: yxy=1+y yXY =Yy
wxy =1 1X{197/9W}:{197/9l//}

(more in the next lecture)



Hilbert space for 2N Majorana fields 7, ( m=1,...,2N )
Fusion rules: yxy =1+ yXY =Yy
yxy =1 Ix{Ly,wi=1Ly,v}
1. Splitin N pairs V2j-1,Y2j

2. Specify fusion channels (1, l//)j foreach pair ( j=L...,N )

The fusion tree is now uniquely define. The resulting “charge” is
either 1 or y depending on the number My, of the Y/ fusion outputs:

1 for even ny Y forodd ny,
Yi Y2 Y3 Ya V5 Ve Y2N-1 V2N

1 Y
N a

Lor¥ lor¥” lor¥

Equivalent to the Hilbert space for N fermionic modes



End of the Lecture 1

Thank you for your attention!



