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Lecture 2: Majorana Fermions as an       

example of non-Abelian Anyons

Lecture 1: Appearance of Anyons



Lecture 1: Appearance of Anyons

Formal introduction of anyons:

Fusion of anyons and anyon Hilbert space 

Braid group. Abelian and no-Abelian anyons

Why dimension 2?

Exchange and statistics



Exchange and statistics



Particle exchange and statistics
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Exchange of two (quasi)particles

Statistics
Behavior of the state (wave function)

under the exchange of two

identical (quasi)particles
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has to be single-valued with respect to particle coordinates

Properties of many-body wave functions:
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positions of quasiparticles

positions of particles

but not necessarily with respect to quasiparticle coordinates iR
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Exchange as adiabatic dynamical evolution

General statements:

1. Adiabatic theorem: States in a (possibly degenerate) energy subspace

separated from others by a gap remain in the subspace  when the system

is changed adiabatically without closing the gap. 

2. Change under adiabatic transport = combination of Berry’s phase/matrix 

and transformation of instantaneous energy eigenstate (explicit monodromy)

3. Change under adiabatic transport is invariant, but Berry’s phase/matrix and

eigenstate transformation depend on choice of gauge (and can be shifted from

one to the other) 



Exchange as adiabatic dynamical evolution
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For a unique ground state         (single-valued)
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separated by a gap from excited states

Exchange statistics
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, ie

Berry phase

g (path) geometrical phase

 (topology of the path) statistical angle  - of interest!
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Why dimension 2?
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Constraint on the exchange

double exchange

2̂Is       an identity?
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Conclusion:     in 3D only bosons  (          )  or fermions  (           )

3D case:

 

The contour C can be deformed

0  

0

1ˆ 2  (identity!)

C

without crossing the origin 
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to a point 

0

(i.e., to the case when nothing happens) fR ,12
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2D case:

The contour C cannot be deformed

0

C

without crossing the origin 

to a point 

0

(i.e., to the case when nothing happens) 

Conclusion:     in 2D more possibilities, not only bosons or fermions
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Braid group. Abelian and non-Abelian anyons



Particle exchange in 2D: Braid group (for N particles)
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Trajectories that wind around starting from initial positions 

Note:

NRR
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to final positions                       (the same set – identical particles) 
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generated by defining relations
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1. Braid group is infinite dimensional (           !) in contrast

to finite-dimensional permutation group (          )

1ˆ 2 
1ˆ 2 p

2. Braid group is non-Abelian iiii  ˆˆˆˆ
11  

(braiding of particles i and i+1)



Representations of the braid group: statistics of particles

1. One-dimensional representations:  unique (ground) state

Elements of the braid group 

(trajectories of particles)

2. Higher-dimensional representations:  degenerate (ground) state

Changes of the states under the evolution 

(particle statistics)

representation



1. One-dimensional (Abelian) representations

1. bosons (             ) and fermions (            )

Transformation under braiding operation

Unique (ground) state

  ie
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0  Examples:

2. quasiholes in the at  FQHE Laughlin state 

with arbitrary - Abelian anyons
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Exchanging two quasiholes give a phase of 

from eigenstate transformation (explicit monodromy)

Berry’s phase = Aharonov-Bohm phase (geometric)

of a charge         encircling flux of

Trial wave function for N fermions at positions

with n quasiholes at positions        : 

Example 2. quasiholes in the FQHE Laughlin state M/1

M/ 
D. Arovas, J.R. Schrieffer,F.Wilczek,1984 

R. Laughlin, 1987

B. Blok, X.G. Wen, 1992 
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normalization quasihole Laughlin w.f.

Choice 1



Example 2. quasiholes in the FQHE Laughlin state M/1

Berry’s phase = Aharonov-Bohm phase + statistical angle 

(different “gauge”: single-valued )Choice 2
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Eigenstate transformation (analytic continuation) = trivial 

M/ 



𝑈  𝜎 = 𝑃𝑒𝑥𝑝(𝑖  𝑑𝑡  𝑚)ℳ

Examples: Ising anyons (Majorana fermions,                 qH-state), 

Fibonacci anyons

for at least two       and

2. Higher-dimensional representations

Degenerate ground state

g,,1, with an orthonormal basis

Transformation under braiding operation
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Particles are non-Abelian anyons if
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excited 

states

gap

Berry matrix explicit monodromy of the w.f.



𝜈 = 5/2



Conditions for non-Abelian anyons:

Robust degeneracy of the ground state:

  CV loc

The degeneracy cannot be lifted by local perturbations

(which are needed, i.e., for braiding)

Degenerate ground states cannot be distinguished

by local measurements

Nonlocal measurements: parity measurements (for Majorana fermions), etc.

Require topological states of matter with 

topological degeneracy and long-range entanglement

Braiding of identical particles changes state within the degenerate manifold,

but should not be visible for local observer 



Comment: In real world (finite systems, etc.): GS degeneracy is lifted

Condition on the time of operations:
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slow enough to be adiabatic

fast enough to NOT resolve the GS manifold



Fusion rules and Hilbert space

Formal introduction of Anyons:



Fusion of anyons

Set of particles (anyons) cba ,,,1 1 - vacuum 

b

a

“Observer”
l

r

how do they behave as a combined object seen from distances 

much large than the separation between them

Fusion of two Anyons            :ba,

lr 

?



Fusion rules
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abN - integers
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: n anyons,                      where                         fuse into     

and             into      and       into      , …, 

Hilbert space – fusion chains

𝑒1, ⋯ , 𝑒𝑛−3

𝑎1, ⋯ , 𝑎𝑛−1 𝑎𝑛

𝑎2

𝑎1

𝑎4𝑎3 𝑎𝑛−1

𝑎𝑛
𝑒1

⋯

𝑒2 𝑒𝑛−3

𝑎𝑛−2

1c

abN(                   for simplicity)

𝑎1 𝑎2and       fuse into      ,𝑒1 𝑒1 𝑎3 𝑒2 𝑒𝑛−3 𝑎𝑛−1 𝑒𝑛
uniquely specified by the intermediate fusion outcomes  

Dimension dimℋ𝑛 =  

𝑒1…𝑒𝑛−3

𝑁𝑎1𝑎2⋯
𝑒1 𝑁𝑒𝑛−3𝑎𝑛−1

𝑒𝑛

𝑎1, ⋯ , 𝑎𝑛
(⋯ (𝑎1× 𝑎2) × 𝑎3) × ⋯) × 𝑎𝑛−1 = 𝑎𝑛

Basis vectors

(no creation and annihilations operators!)

ℋ𝑛



 
'

'
e

ee

abc

dF

a b c

e

d

a b c

d

'e

Associativity of braiding:

a,b fuse to e; 

e,c fuse to d

b,c fuse to e’; 

e’,a fuse to d

F-matrix (basis change)

𝑎 × 𝑏 × 𝑐 = 𝑎 × 𝑏 × 𝑐 = 𝑑

guaranties the invariance of the Hilbert space construction:

Different fusion ordering is equivalent to the change of the basis vectors



R-matrix 
(braiding in a given fusion channel)
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a b
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Exchange properties of anyons (in a given fusion channel)



Consistency conditions for F- and R-matrices
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F- and R-matrices satisfy the pentagon and hexagon 

consistency relations



Pentagon relation
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Hexagon relation
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If no solution exists the hypothetical set of anyons and fusion rule 

are incompatible with local quantum physics.

Alternative approach: topological field theories

Set of anyons with F- and R-matrices satisfying the pentagon 

and hexagon equations completely determine an Anyon model.



Examples:

2: Ising anyons

1: Fibonacci anyons

 ,,1

  1  

1 },,1{},,1{1  

Fusion rules:

,1

  1

},1{},1{1  

Fusion rules:

 - non-Abelian anyon - fermion

(more in the next lecture)



1. Split in      pairs

Hilbert space for         Majorana fields         (                       )m Nm 2,,1

N

N2

𝛾2𝑗−1, 𝛾2𝑗

2. Specify fusion channels               for each pair   j),1(  Nj ,,1( )

The fusion tree is now uniquely define. The resulting “charge” is

either     or      depending on the number       of the     fusion outputs:  

  1  

1 },,1{},,1{1  

1  𝑛𝜓

1 for even 𝑛𝜓 for odd 𝑛𝜓

Fusion rules:

…
𝛾1 𝛾2 𝛾3 𝛾4 𝛾2𝑁−1 𝛾2𝑁𝛾5 𝛾6

1 or 1 or

1 or
1 or

1 or

1 or

Equivalent to the Hilbert space for         fermionic modesN

1 or



Thank you for your attention!

End of the Lecture 1


