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Short advertisement:
Majoranas in cold atom systems
without proximity
Ruhman, EB, and Altman, arXiv:1412:3444

“trivial” “topological” “trivial” “topological” “trivial”

Wang, Yu, Fu, Miao, Huang, Chai, Zhai, and Zhang, PRL (2012).
Cheuk, Sommer, Hadzibabic, Yefsah, Bakr, and Zwierlein, PRL (2012).

Probing scheme: ramp down .
the Zeeman field and SOC! |
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Adding electrons to the chain

Metal Superconductor

/NG

"Majorana |
Zero modes” : ]
at both endsl! |




Lessons from the one dimensional
topological superconductor

Superconductor
e &—t—k—t—t—k—t—& 2

Gapped system, two degenerate ground states,
characterized by having a different fermion parity
Defects (in this case, the edges of the system) carry
protected zero modes described by anti-commuting
operators: 172 = —7271

Ground state degeneracy is “topological”: no local
measurement can distinguish between the two states!
Useful as a “"quantum bit"?



Non-Abelian Anyons

Degeneracy increases with
number of anyons

En ffffffffffffffffffffffffffffff
“quantum . | v A A A A A A AT A
dimension”[dlmHGS- A ]

Robust to local
perturbations!




Non-Abelian Statistics:
Braiding
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Braid \/ = k
group: \ \

1 0O
Majorana Fermions: el — (O )

]
2D vortices: Ivanov, Read & Green,..
1D wire network: Alicea et.al (2010)



The quest for non-Abelian systems

3D conventional

superconducto@

3D Topological
insulator
_Bm 2D p+ip
Frgctlonal superconductors Superconductor - 3D Top. Insulator
Q (Semiconductor) heterostructures

All of these realize Ising anyons
(i.e. Majoranas)

Can we get something richer?



» The braiding of Majorana zero modes
are non-universal:
a general unitary transformation cannot
be performed in a protected way

* Can we get something richer than
Majorana fermions in 1D ?

“Theorem” (Fidkowsky, 2010; Turner, Pollmann,
and EB, 2010).

Gapped, local Hamiltonians of
fermions or bosons in 1D, can give (at
best) Majorana zero modes.



Gapped phases of fermions
A. Turner, F. Pollmann, EB (2010)

No symmetries: only one gapped phase in 1D
(N. Shuch et al., 2011)

e Conservation of fermion parity with Q = (—1)"Vroral
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“Fractionalization” of the parity 0=0,0
operator (in low-energy subspace) A=<B
0,0, either fermionic or bosonic!
{ QAQB _ e'i,u.QBQA )

B two distinct phases with 1 = 0,7




Beyond Majorana fermions

Consider the effectively 1D boundaries
of 2D a topological phase
which supports (abelian) anyons.

"Fractional topological
insulator”: Fractional
Laughlin Quantum Hall state Topological
with: Insulator
v=1/m for spin up (FTI)
v=-1/m for spin down (m odd)

Stable phase: Levin and Stern (2010)

Majorana fermions at SC/FM interfaces: Fu and Kane (2009)



Fractional Quantum Hall effect

Electrons in two dimensions, high magnetic field

Special density (number of electrons/flux quantum),
ultra clean, low temperature:
v = 1/m Fractional Quantum Hall (Laughlin) state

Gapped bulk, gapless chiral edge states
Excitations: fractional charge, fractional statistics!
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> 1D “chiral”
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Beyond Majorana fermions

Fractional quantum Hall "realizations”
of a Fractional Topological Insulator

. FQH state i

e
e ’/‘

/

" e tunneling

Lindner, EB, Stern, Refael (2013);
Clarke, Alicea, Shtengel (2013);
Cheng (2013)



Ground state degeneracy
Physical picture:

2 Charges in SC conserved mod(2)
o Spins in FM conserved mod(2)
2 (el. spin=1)
Spin and charge are conjugate variables:
e’l:Tl'S,ie'iWQj — 6%(5?:’3.4_1_57:’3')6@%@3‘ 627‘(’5Z

Q Q, QJ. =n/m, n=0,...,2m-1
AN
Q, S, = n/m, n=0,...,2m-1
2N domains, fixed total Q, S: (2m)N-!
approximately degenerate ground states

Interface “"anyon” with quantum dimension v2m



Effective Model for Fractional
Topological Insulator Edge States

N\

Non-chiral Luttinger liquid edge state:

1
K ()

U
H =
2TV |

/ dx [K (2) (9:0)° + (0,6)°



Effective Model for Fractional
Topological Insulator Edge States

1
K ()

H=—""[du [K (2) (8.0)° +

2y

(axe)?]

— /daz lgs (x) cos (2mo) + gr () cos (2mb)]

N—— N——

bptop + He.  Uhn + He. !

T

Comm. Relations: [¢(z),0(z")] =i—6(z' — )

m

Charge density: »

2N domains

Spin density: s* = -0.¢
Electron:  Yr.L €’

Laughlin q.p.: Xr.L x €’



Ground state degeneracy
Large cosine terms (strong coupling to SC/FM)

- /d:z: gs (x) cos (2mo) + gr () cos (2mb)]

¢, 0 pinned near the minima of the cosines:

| s

Op=—n, nel 1l ....2m—1
m
s

O, =—n, £ke0,1,...,2m —1
m

But... ¢, 6 are dual varariables: cannot be
“localized” simultaneously

6'239(:1:)6-23@6(:1:’) __ 673%@(:17—:1:’)61’@’)(:1:)6-239(:1:)

2N domains: ~(2m)N approximately
degenerate ground states



Q and S operators

In terms of the ¢, 0 fields, one can define the Q,
S operators:

KM SC KM SC
) S () s

X X X X

1 2 3 .

pimQ2 _ i), dr0z0 _ i[0(ws)—6(x1)]
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[6271’5'2' em’Qj _ ezm(5i,j+1—5i,j_1)€z7er G’Lﬂ'Si]




"Fractionalized Majorana operators”

X O +1,0
i]’ Qj lej s I Qj+1

Xr,o"qID"°’qj?"';S> o ‘ql,...,qj +1,...;8 + O’>

[H’Xra] =0 (Xm )2m =1

Xro have q.p commutation relations
4 )

_im/m
Xj ,an,T =€ Xk,? XJ' O 1D model of “Parafermions”:

_j P. Fendley, arXiv:1209.0472
_e i7/m
Aj.oXk,| = X\ Xjo




Coupling of interfaces

XZj,a Qj X2j+1,(7 S Qj+1
~_
q.p. tunneling
Hgo = —txgj,gX;jH’U + h.c. = =2t cos (WQj)
XZj,a Qj X2j+1,a S Qj+1
~_  __—
q.p. tunneling

Hg = _tX2j+1,0X£j—|—2,a + h.c. = =2t cos (WSJ')



Braiding

Braiding domain walls 3 and 4:

For an arbitrary coupling of any three domain walls,
the ground state degeneracy remains (2m)?
as long as only one spin species is allowed to tunnel.



Braiding
Braiding interfaces * : o
2

H(z) 40, /




Braiding

Braiding domain walls 3 and 4:

EXO“’\P'C: m=3 {2 = 2p + 3q (p — Ov 17 27 (q = 07 1)

2
Usq = exp (z%qg) = exp (—z’%qQ) exp (i%]f)

(Majorana) ® (Something new!)



The Braid Group
[Ui,i+1aﬁj,j+l] =0 (i —j| > 1),
ﬁj,j+1Uj+l,j+2ﬁj,j+1 — Uj+l,j+2ﬁjaj+1ﬁj+1,j+2

(Yang-Bax'rer' equa’rion)

7 \

--_- -_-3-
S

Both equa’rions hold: rep. of the braid group



Fractionalized zero modes at
"twist defects” in topological phases

Ends of line defects that interchange anyon types
("topological symmetry”)

—q q

The “defect line” can permute anyon types.

Barkeshli, Jian, Qi (2013); Fidkowski, Lindner, Kitaev (unpublished)



Fractionalized zero modes at
"twist defects” in topological phases

Another example: v=1/3 bilayer

7
L
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Fractionalized zero modes at
"twist defects” in topological phases

Another example: v=1/3 bilayer

Cut:

£

T, 1
B,1

/

A B

Back-

B2 scattering

T, 2



Fractionalized zero modes at
"twist defects” in topological phases

v=1/3 bilayer




Fractionalized zero modes at
"twist defects” in topological phases

v=1/3 bilayer

“"Twist defect” /

& : 3 2




Fractionalized zero modes at
"twist defects” in topological phases

“"Twist defect”




Fractionalized zero modes at
"twist defects” in topological phases

Alternate A,B domains:

Parafermions without superconductivity! High
genus

B2
T, 2



Origin of topological degeneracy:
Degeneracy on high genus surfaces

Qi

\l\l' VZ = € " wz."\/l
[w,,Hl=0 [w, Hl=o

X. G. Wen (1991)



Outline

* "Fractionalized Majoranas” on fractional

quantum Hall edges
- Fractionalized 1D superconductors

- Twist defects

* Anyonic defects in non-Abelian
systems



Enriching non-Abelian phases by
defects

Defects in Abelian phases (e.g. FQH) have
non-Abelian properties.

However, the non-Abelian statistics of defects in
Abelian phases is never universal for TQC.

Begin with a non-Abelian phase and “enrich” its
properties by defects?



Ising anyons
v=5/2 QHE

px+ipy Superconductors ﬁ @ @ /
Kitaev's hexagonal spin model

Three types of particles: I (vacuum), y (fermion), o (vortex)

Fusion rules: v x¢y =1 oxy=1
oxo=1+1Y




Defects in a bilayer Ising phase

What is the mathematical description of the zero
modes associated with the defects?

Can the zero modes realize universal TQC even
though the host Ising phase is not universal?

A 4

//@/ : Bilayer of
‘ O (»

y4

/ / n=5/2/p+ip SC/ ...




Ground states

States can be described fluxes of holes, and
measured by fermion loop operators

(031 (]
() (05

F; =0,1 Z, flux: represent as F; = (1+07)/2

Not all flux states are ground states



Creating flux states

Flux states can be created by o loops

o loop operator W, ; flips F; and F,



Blocking rules

Act with two neighbor W operators:




Blocking rules

Act with two neighbor W operators:

A 1y excitation is created!




Blocking rules

Final state has vy excitation!

[ W, Wyt =0 ] (projected to

the ground state subspace)



Tunneling operators

Nearest neighbors: form in a convenient gauge:

Z
% cf- i 3 of O of
1 2 2 3 “‘”‘."n.... ......u"‘::. 4 4 6 6

4 A -
1+ OF Hermitian
Wil = ol 5 L o3y -not unitary
(projected)

- J




Tunneling operators

General form: defined by tri-algebra

_ ein:/S(W

m
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mn




Braiding

( 1+ (73Z \ o
U34 - 0,0,
\ 2 ) Phase gate
/ \ needed to
z make Ising
n 1-o; T4« theory
9) universall!

\ )
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Conclusion

New paradigm for realizing non-abelian
anyons: defects on edges of two-dimensional
topological phases.

/1/mT< )/

— /y

Future directions:
Classification of 1D gapped edge states of 2D
topological theories?
Experimental signatures?

Thank you.




