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Majorana zero modes 

The process outlined above is immune to
noise and decoherence. The only mechanism that
may alter the quantum state of the qubit in an
uncontrolled fashion is a quantum or thermal
fluctuation that creates an anyon–anti-anyon pair
from the vacuum; the pair braids around two of
the qubit’s anyons, and finally annihilates (Fig.
1D). The probability for such a process decreases
exponentially with decreasing temperature and
with increasing distance between the anyons.

A quantum computer needs to have a min-
imal set of gates that allow it to efficiently ap-
proximate any unitary transformation in its space
of logical states. Such a set is commonly called
universal (12, 13). For example, a universal set
may be composed of two single-qubit gates and a
two-qubit controlled-not gate (CNOT). For some
non-Abelian states, all of these gatesmay be carried
out in a topologically protected way (2, 4–6).

Fortunately, even when that is not the case, uni-
versality may still be obtained by combining topo-
logical and nontopological operations, as shown
below (14, 15).

Zero Modes and Majorana Fermions
A useful concept for understanding the stability
of the degeneracy of the ground state in non-
Abelian systems is that of localized “zeromodes”
(16, 17). These are operators that act only within
the subspace of ground states, and whose op-
eration is confined to a localized spatial region.
Generally, the number of independent operators
that transfer the system between orthogonal
ground states must be even. Thus, when there is
only one such operator acting within a given
spatial region, it must be Hermitian (note that
Hermitian conjugation does not change the
location of the operator). Consequently, it must

have a partner in a different spatial region. If the
system is subjected to a perturbation that acts
locally within one of the regions, the local zero
mode cannot be eliminated, because its partner is
not subjected to that perturbation.

The position and wave function of the zero
modes depend on the parameters of the system.
Braiding operations are carried out by a cyclic
trajectory in this parameter space. The braiding of
world lines in two dimensions (18, 19) is a
particular example of topologically distinct
classes of cyclic trajectories in the parameter
space. More generally, the unitary transformation
applied by a cycle is determined by the topolog-
ical class to which the cycle belongs. This allows
for braiding operations in systems that are not
2D, such as networks of 1Dwires (20–22) (Fig. 2).

The simplest non-Abelian states of matter,
those that carry Majorana fermions (16, 17), can
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Fig. 3. Majorana end modes in a quantum wire. (A) A schematic plot of
the sample: a quantum wire lying on a superconductor. B is the magnetic
field that couples to the electron’s spin, and Bso is the effective magnetic
field induced by spin-orbit scattering. (B) A picture of the sample. Scale
bar, 1 mm. (C and D) The measured differential conductance as a function
of voltage at a range of magnetic fields (C) and magnetic field orien-
tation (D) in the experiments reported in (28) and (29), respectively. The
peak at zero voltage may be a sign of a Majorana fermion zero mode. (E)

The experimental device of the type used in (50, 58) to measure inter-
ference of quasiparticles in the n = 5/2 state. The periodicity of the
interference pattern as a function of magnetic field and gate voltage
reflects the non-Abelian nature of the quasiparticles (54–56). Indicated
are the interference loop (A), the interfering trajectories (dashed lines),
ohmic contacts (a to d), and gates (numbered). [(A), (B), and (C) reprinted
from (28); (D) reprinted from (29) by permission of Macmillan Publishers
Ltd., copyright 2012; (E) reprinted from (58)]
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We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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Mourik et al. (2012) 

Das et al. (2012) 



Short advertisement: 
Majoranas in cold atom systems 

without proximity 
Ruhman, EB, and Altman, arXiv:1412:3444 

Probing scheme: ramp down 
the Zeeman field and SOC! 



Outline 

•  “Fractionalized Majoranas” on fractional 
quantum Hall edges 
- Fractionalized 1D superconductors 
- Twist defects  

•  Anyonic defects in non-Abelian 
systems 

•  Brief review of Majorana 
fermions 



Majorana fermions in a 
superconducting wire 

Superconductor 

Kitaev (2002), Sau et al. (2010), Oreg et al. (2010), ... 
The process outlined above is immune to

noise and decoherence. The only mechanism that
may alter the quantum state of the qubit in an
uncontrolled fashion is a quantum or thermal
fluctuation that creates an anyon–anti-anyon pair
from the vacuum; the pair braids around two of
the qubit’s anyons, and finally annihilates (Fig.
1D). The probability for such a process decreases
exponentially with decreasing temperature and
with increasing distance between the anyons.

A quantum computer needs to have a min-
imal set of gates that allow it to efficiently ap-
proximate any unitary transformation in its space
of logical states. Such a set is commonly called
universal (12, 13). For example, a universal set
may be composed of two single-qubit gates and a
two-qubit controlled-not gate (CNOT). For some
non-Abelian states, all of these gatesmay be carried
out in a topologically protected way (2, 4–6).

Fortunately, even when that is not the case, uni-
versality may still be obtained by combining topo-
logical and nontopological operations, as shown
below (14, 15).

Zero Modes and Majorana Fermions
A useful concept for understanding the stability
of the degeneracy of the ground state in non-
Abelian systems is that of localized “zeromodes”
(16, 17). These are operators that act only within
the subspace of ground states, and whose op-
eration is confined to a localized spatial region.
Generally, the number of independent operators
that transfer the system between orthogonal
ground states must be even. Thus, when there is
only one such operator acting within a given
spatial region, it must be Hermitian (note that
Hermitian conjugation does not change the
location of the operator). Consequently, it must

have a partner in a different spatial region. If the
system is subjected to a perturbation that acts
locally within one of the regions, the local zero
mode cannot be eliminated, because its partner is
not subjected to that perturbation.

The position and wave function of the zero
modes depend on the parameters of the system.
Braiding operations are carried out by a cyclic
trajectory in this parameter space. The braiding of
world lines in two dimensions (18, 19) is a
particular example of topologically distinct
classes of cyclic trajectories in the parameter
space. More generally, the unitary transformation
applied by a cycle is determined by the topolog-
ical class to which the cycle belongs. This allows
for braiding operations in systems that are not
2D, such as networks of 1Dwires (20–22) (Fig. 2).

The simplest non-Abelian states of matter,
those that carry Majorana fermions (16, 17), can
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Fig. 3. Majorana end modes in a quantum wire. (A) A schematic plot of
the sample: a quantum wire lying on a superconductor. B is the magnetic
field that couples to the electron’s spin, and Bso is the effective magnetic
field induced by spin-orbit scattering. (B) A picture of the sample. Scale
bar, 1 mm. (C and D) The measured differential conductance as a function
of voltage at a range of magnetic fields (C) and magnetic field orien-
tation (D) in the experiments reported in (28) and (29), respectively. The
peak at zero voltage may be a sign of a Majorana fermion zero mode. (E)

The experimental device of the type used in (50, 58) to measure inter-
ference of quasiparticles in the n = 5/2 state. The periodicity of the
interference pattern as a function of magnetic field and gate voltage
reflects the non-Abelian nature of the quasiparticles (54–56). Indicated
are the interference loop (A), the interfering trajectories (dashed lines),
ohmic contacts (a to d), and gates (numbered). [(A), (B), and (C) reprinted
from (28); (D) reprinted from (29) by permission of Macmillan Publishers
Ltd., copyright 2012; (E) reprinted from (58)]
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Superconductor 

Kitaev (2002), Sau et al. (2010), Oreg et al. (2010), ... 

e

The process outlined above is immune to
noise and decoherence. The only mechanism that
may alter the quantum state of the qubit in an
uncontrolled fashion is a quantum or thermal
fluctuation that creates an anyon–anti-anyon pair
from the vacuum; the pair braids around two of
the qubit’s anyons, and finally annihilates (Fig.
1D). The probability for such a process decreases
exponentially with decreasing temperature and
with increasing distance between the anyons.

A quantum computer needs to have a min-
imal set of gates that allow it to efficiently ap-
proximate any unitary transformation in its space
of logical states. Such a set is commonly called
universal (12, 13). For example, a universal set
may be composed of two single-qubit gates and a
two-qubit controlled-not gate (CNOT). For some
non-Abelian states, all of these gatesmay be carried
out in a topologically protected way (2, 4–6).

Fortunately, even when that is not the case, uni-
versality may still be obtained by combining topo-
logical and nontopological operations, as shown
below (14, 15).

Zero Modes and Majorana Fermions
A useful concept for understanding the stability
of the degeneracy of the ground state in non-
Abelian systems is that of localized “zeromodes”
(16, 17). These are operators that act only within
the subspace of ground states, and whose op-
eration is confined to a localized spatial region.
Generally, the number of independent operators
that transfer the system between orthogonal
ground states must be even. Thus, when there is
only one such operator acting within a given
spatial region, it must be Hermitian (note that
Hermitian conjugation does not change the
location of the operator). Consequently, it must

have a partner in a different spatial region. If the
system is subjected to a perturbation that acts
locally within one of the regions, the local zero
mode cannot be eliminated, because its partner is
not subjected to that perturbation.

The position and wave function of the zero
modes depend on the parameters of the system.
Braiding operations are carried out by a cyclic
trajectory in this parameter space. The braiding of
world lines in two dimensions (18, 19) is a
particular example of topologically distinct
classes of cyclic trajectories in the parameter
space. More generally, the unitary transformation
applied by a cycle is determined by the topolog-
ical class to which the cycle belongs. This allows
for braiding operations in systems that are not
2D, such as networks of 1Dwires (20–22) (Fig. 2).

The simplest non-Abelian states of matter,
those that carry Majorana fermions (16, 17), can
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Fig. 3. Majorana end modes in a quantum wire. (A) A schematic plot of
the sample: a quantum wire lying on a superconductor. B is the magnetic
field that couples to the electron’s spin, and Bso is the effective magnetic
field induced by spin-orbit scattering. (B) A picture of the sample. Scale
bar, 1 mm. (C and D) The measured differential conductance as a function
of voltage at a range of magnetic fields (C) and magnetic field orien-
tation (D) in the experiments reported in (28) and (29), respectively. The
peak at zero voltage may be a sign of a Majorana fermion zero mode. (E)

The experimental device of the type used in (50, 58) to measure inter-
ference of quasiparticles in the n = 5/2 state. The periodicity of the
interference pattern as a function of magnetic field and gate voltage
reflects the non-Abelian nature of the quasiparticles (54–56). Indicated
are the interference loop (A), the interfering trajectories (dashed lines),
ohmic contacts (a to d), and gates (numbered). [(A), (B), and (C) reprinted
from (28); (D) reprinted from (29) by permission of Macmillan Publishers
Ltd., copyright 2012; (E) reprinted from (58)]
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Majorana fermions in a 
superconducting wire 



Superconductor 

Kitaev (2002), Sau et al. (2010), Oreg et al. (2010), ... 

e

The process outlined above is immune to
noise and decoherence. The only mechanism that
may alter the quantum state of the qubit in an
uncontrolled fashion is a quantum or thermal
fluctuation that creates an anyon–anti-anyon pair
from the vacuum; the pair braids around two of
the qubit’s anyons, and finally annihilates (Fig.
1D). The probability for such a process decreases
exponentially with decreasing temperature and
with increasing distance between the anyons.

A quantum computer needs to have a min-
imal set of gates that allow it to efficiently ap-
proximate any unitary transformation in its space
of logical states. Such a set is commonly called
universal (12, 13). For example, a universal set
may be composed of two single-qubit gates and a
two-qubit controlled-not gate (CNOT). For some
non-Abelian states, all of these gatesmay be carried
out in a topologically protected way (2, 4–6).

Fortunately, even when that is not the case, uni-
versality may still be obtained by combining topo-
logical and nontopological operations, as shown
below (14, 15).

Zero Modes and Majorana Fermions
A useful concept for understanding the stability
of the degeneracy of the ground state in non-
Abelian systems is that of localized “zeromodes”
(16, 17). These are operators that act only within
the subspace of ground states, and whose op-
eration is confined to a localized spatial region.
Generally, the number of independent operators
that transfer the system between orthogonal
ground states must be even. Thus, when there is
only one such operator acting within a given
spatial region, it must be Hermitian (note that
Hermitian conjugation does not change the
location of the operator). Consequently, it must

have a partner in a different spatial region. If the
system is subjected to a perturbation that acts
locally within one of the regions, the local zero
mode cannot be eliminated, because its partner is
not subjected to that perturbation.

The position and wave function of the zero
modes depend on the parameters of the system.
Braiding operations are carried out by a cyclic
trajectory in this parameter space. The braiding of
world lines in two dimensions (18, 19) is a
particular example of topologically distinct
classes of cyclic trajectories in the parameter
space. More generally, the unitary transformation
applied by a cycle is determined by the topolog-
ical class to which the cycle belongs. This allows
for braiding operations in systems that are not
2D, such as networks of 1Dwires (20–22) (Fig. 2).

The simplest non-Abelian states of matter,
those that carry Majorana fermions (16, 17), can

1 
µm

A

C D E

B

0.5

0.3

0.1 1.0

1.1

1.2

1.3

1.4

1.5

1.6

75
60
50
0

-400 -200 200 4000 100

d c

ba

A

-100 200-200 0

0 mT

490 mT

V (µV) VS0 (µV)

dI
/d

V
 (

2e
2 /

h)

G
 (

e2 /
h)

1

2

3

s-wave
superconductor

B

BSO

Fig. 3. Majorana end modes in a quantum wire. (A) A schematic plot of
the sample: a quantum wire lying on a superconductor. B is the magnetic
field that couples to the electron’s spin, and Bso is the effective magnetic
field induced by spin-orbit scattering. (B) A picture of the sample. Scale
bar, 1 mm. (C and D) The measured differential conductance as a function
of voltage at a range of magnetic fields (C) and magnetic field orien-
tation (D) in the experiments reported in (28) and (29), respectively. The
peak at zero voltage may be a sign of a Majorana fermion zero mode. (E)

The experimental device of the type used in (50, 58) to measure inter-
ference of quasiparticles in the n = 5/2 state. The periodicity of the
interference pattern as a function of magnetic field and gate voltage
reflects the non-Abelian nature of the quasiparticles (54–56). Indicated
are the interference loop (A), the interfering trajectories (dashed lines),
ohmic contacts (a to d), and gates (numbered). [(A), (B), and (C) reprinted
from (28); (D) reprinted from (29) by permission of Macmillan Publishers
Ltd., copyright 2012; (E) reprinted from (58)]
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Superconductor 

Kitaev (2002), Sau et al. (2010), Oreg et al. (2010), ... 

e

The process outlined above is immune to
noise and decoherence. The only mechanism that
may alter the quantum state of the qubit in an
uncontrolled fashion is a quantum or thermal
fluctuation that creates an anyon–anti-anyon pair
from the vacuum; the pair braids around two of
the qubit’s anyons, and finally annihilates (Fig.
1D). The probability for such a process decreases
exponentially with decreasing temperature and
with increasing distance between the anyons.

A quantum computer needs to have a min-
imal set of gates that allow it to efficiently ap-
proximate any unitary transformation in its space
of logical states. Such a set is commonly called
universal (12, 13). For example, a universal set
may be composed of two single-qubit gates and a
two-qubit controlled-not gate (CNOT). For some
non-Abelian states, all of these gatesmay be carried
out in a topologically protected way (2, 4–6).

Fortunately, even when that is not the case, uni-
versality may still be obtained by combining topo-
logical and nontopological operations, as shown
below (14, 15).

Zero Modes and Majorana Fermions
A useful concept for understanding the stability
of the degeneracy of the ground state in non-
Abelian systems is that of localized “zeromodes”
(16, 17). These are operators that act only within
the subspace of ground states, and whose op-
eration is confined to a localized spatial region.
Generally, the number of independent operators
that transfer the system between orthogonal
ground states must be even. Thus, when there is
only one such operator acting within a given
spatial region, it must be Hermitian (note that
Hermitian conjugation does not change the
location of the operator). Consequently, it must

have a partner in a different spatial region. If the
system is subjected to a perturbation that acts
locally within one of the regions, the local zero
mode cannot be eliminated, because its partner is
not subjected to that perturbation.

The position and wave function of the zero
modes depend on the parameters of the system.
Braiding operations are carried out by a cyclic
trajectory in this parameter space. The braiding of
world lines in two dimensions (18, 19) is a
particular example of topologically distinct
classes of cyclic trajectories in the parameter
space. More generally, the unitary transformation
applied by a cycle is determined by the topolog-
ical class to which the cycle belongs. This allows
for braiding operations in systems that are not
2D, such as networks of 1Dwires (20–22) (Fig. 2).

The simplest non-Abelian states of matter,
those that carry Majorana fermions (16, 17), can
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Fig. 3. Majorana end modes in a quantum wire. (A) A schematic plot of
the sample: a quantum wire lying on a superconductor. B is the magnetic
field that couples to the electron’s spin, and Bso is the effective magnetic
field induced by spin-orbit scattering. (B) A picture of the sample. Scale
bar, 1 mm. (C and D) The measured differential conductance as a function
of voltage at a range of magnetic fields (C) and magnetic field orien-
tation (D) in the experiments reported in (28) and (29), respectively. The
peak at zero voltage may be a sign of a Majorana fermion zero mode. (E)

The experimental device of the type used in (50, 58) to measure inter-
ference of quasiparticles in the n = 5/2 state. The periodicity of the
interference pattern as a function of magnetic field and gate voltage
reflects the non-Abelian nature of the quasiparticles (54–56). Indicated
are the interference loop (A), the interfering trajectories (dashed lines),
ohmic contacts (a to d), and gates (numbered). [(A), (B), and (C) reprinted
from (28); (D) reprinted from (29) by permission of Macmillan Publishers
Ltd., copyright 2012; (E) reprinted from (58)]
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Majorana fermions in a 
superconducting wire 



Superconductor 

Kitaev (2002), Lutchyn et al. (2010), Oreg et al. (2010), ... 

e

The process outlined above is immune to
noise and decoherence. The only mechanism that
may alter the quantum state of the qubit in an
uncontrolled fashion is a quantum or thermal
fluctuation that creates an anyon–anti-anyon pair
from the vacuum; the pair braids around two of
the qubit’s anyons, and finally annihilates (Fig.
1D). The probability for such a process decreases
exponentially with decreasing temperature and
with increasing distance between the anyons.

A quantum computer needs to have a min-
imal set of gates that allow it to efficiently ap-
proximate any unitary transformation in its space
of logical states. Such a set is commonly called
universal (12, 13). For example, a universal set
may be composed of two single-qubit gates and a
two-qubit controlled-not gate (CNOT). For some
non-Abelian states, all of these gatesmay be carried
out in a topologically protected way (2, 4–6).

Fortunately, even when that is not the case, uni-
versality may still be obtained by combining topo-
logical and nontopological operations, as shown
below (14, 15).

Zero Modes and Majorana Fermions
A useful concept for understanding the stability
of the degeneracy of the ground state in non-
Abelian systems is that of localized “zeromodes”
(16, 17). These are operators that act only within
the subspace of ground states, and whose op-
eration is confined to a localized spatial region.
Generally, the number of independent operators
that transfer the system between orthogonal
ground states must be even. Thus, when there is
only one such operator acting within a given
spatial region, it must be Hermitian (note that
Hermitian conjugation does not change the
location of the operator). Consequently, it must

have a partner in a different spatial region. If the
system is subjected to a perturbation that acts
locally within one of the regions, the local zero
mode cannot be eliminated, because its partner is
not subjected to that perturbation.

The position and wave function of the zero
modes depend on the parameters of the system.
Braiding operations are carried out by a cyclic
trajectory in this parameter space. The braiding of
world lines in two dimensions (18, 19) is a
particular example of topologically distinct
classes of cyclic trajectories in the parameter
space. More generally, the unitary transformation
applied by a cycle is determined by the topolog-
ical class to which the cycle belongs. This allows
for braiding operations in systems that are not
2D, such as networks of 1Dwires (20–22) (Fig. 2).

The simplest non-Abelian states of matter,
those that carry Majorana fermions (16, 17), can
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Fig. 3. Majorana end modes in a quantum wire. (A) A schematic plot of
the sample: a quantum wire lying on a superconductor. B is the magnetic
field that couples to the electron’s spin, and Bso is the effective magnetic
field induced by spin-orbit scattering. (B) A picture of the sample. Scale
bar, 1 mm. (C and D) The measured differential conductance as a function
of voltage at a range of magnetic fields (C) and magnetic field orien-
tation (D) in the experiments reported in (28) and (29), respectively. The
peak at zero voltage may be a sign of a Majorana fermion zero mode. (E)

The experimental device of the type used in (50, 58) to measure inter-
ference of quasiparticles in the n = 5/2 state. The periodicity of the
interference pattern as a function of magnetic field and gate voltage
reflects the non-Abelian nature of the quasiparticles (54–56). Indicated
are the interference loop (A), the interfering trajectories (dashed lines),
ohmic contacts (a to d), and gates (numbered). [(A), (B), and (C) reprinted
from (28); (D) reprinted from (29) by permission of Macmillan Publishers
Ltd., copyright 2012; (E) reprinted from (58)]
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Majorana fermions in a 
superconducting wire 



Superconductor 

Kitaev (2002), Sau et al. (2010), Oreg et al. (2010), ... 

e

The process outlined above is immune to
noise and decoherence. The only mechanism that
may alter the quantum state of the qubit in an
uncontrolled fashion is a quantum or thermal
fluctuation that creates an anyon–anti-anyon pair
from the vacuum; the pair braids around two of
the qubit’s anyons, and finally annihilates (Fig.
1D). The probability for such a process decreases
exponentially with decreasing temperature and
with increasing distance between the anyons.

A quantum computer needs to have a min-
imal set of gates that allow it to efficiently ap-
proximate any unitary transformation in its space
of logical states. Such a set is commonly called
universal (12, 13). For example, a universal set
may be composed of two single-qubit gates and a
two-qubit controlled-not gate (CNOT). For some
non-Abelian states, all of these gatesmay be carried
out in a topologically protected way (2, 4–6).

Fortunately, even when that is not the case, uni-
versality may still be obtained by combining topo-
logical and nontopological operations, as shown
below (14, 15).

Zero Modes and Majorana Fermions
A useful concept for understanding the stability
of the degeneracy of the ground state in non-
Abelian systems is that of localized “zeromodes”
(16, 17). These are operators that act only within
the subspace of ground states, and whose op-
eration is confined to a localized spatial region.
Generally, the number of independent operators
that transfer the system between orthogonal
ground states must be even. Thus, when there is
only one such operator acting within a given
spatial region, it must be Hermitian (note that
Hermitian conjugation does not change the
location of the operator). Consequently, it must

have a partner in a different spatial region. If the
system is subjected to a perturbation that acts
locally within one of the regions, the local zero
mode cannot be eliminated, because its partner is
not subjected to that perturbation.

The position and wave function of the zero
modes depend on the parameters of the system.
Braiding operations are carried out by a cyclic
trajectory in this parameter space. The braiding of
world lines in two dimensions (18, 19) is a
particular example of topologically distinct
classes of cyclic trajectories in the parameter
space. More generally, the unitary transformation
applied by a cycle is determined by the topolog-
ical class to which the cycle belongs. This allows
for braiding operations in systems that are not
2D, such as networks of 1Dwires (20–22) (Fig. 2).

The simplest non-Abelian states of matter,
those that carry Majorana fermions (16, 17), can
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Fig. 3. Majorana end modes in a quantum wire. (A) A schematic plot of
the sample: a quantum wire lying on a superconductor. B is the magnetic
field that couples to the electron’s spin, and Bso is the effective magnetic
field induced by spin-orbit scattering. (B) A picture of the sample. Scale
bar, 1 mm. (C and D) The measured differential conductance as a function
of voltage at a range of magnetic fields (C) and magnetic field orien-
tation (D) in the experiments reported in (28) and (29), respectively. The
peak at zero voltage may be a sign of a Majorana fermion zero mode. (E)

The experimental device of the type used in (50, 58) to measure inter-
ference of quasiparticles in the n = 5/2 state. The periodicity of the
interference pattern as a function of magnetic field and gate voltage
reflects the non-Abelian nature of the quasiparticles (54–56). Indicated
are the interference loop (A), the interfering trajectories (dashed lines),
ohmic contacts (a to d), and gates (numbered). [(A), (B), and (C) reprinted
from (28); (D) reprinted from (29) by permission of Macmillan Publishers
Ltd., copyright 2012; (E) reprinted from (58)]
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superconducting wire 



Adding electrons to the chain 

“Majorana 
Zero modes”  
at both ends! 

The process outlined above is immune to
noise and decoherence. The only mechanism that
may alter the quantum state of the qubit in an
uncontrolled fashion is a quantum or thermal
fluctuation that creates an anyon–anti-anyon pair
from the vacuum; the pair braids around two of
the qubit’s anyons, and finally annihilates (Fig.
1D). The probability for such a process decreases
exponentially with decreasing temperature and
with increasing distance between the anyons.

A quantum computer needs to have a min-
imal set of gates that allow it to efficiently ap-
proximate any unitary transformation in its space
of logical states. Such a set is commonly called
universal (12, 13). For example, a universal set
may be composed of two single-qubit gates and a
two-qubit controlled-not gate (CNOT). For some
non-Abelian states, all of these gatesmay be carried
out in a topologically protected way (2, 4–6).

Fortunately, even when that is not the case, uni-
versality may still be obtained by combining topo-
logical and nontopological operations, as shown
below (14, 15).

Zero Modes and Majorana Fermions
A useful concept for understanding the stability
of the degeneracy of the ground state in non-
Abelian systems is that of localized “zeromodes”
(16, 17). These are operators that act only within
the subspace of ground states, and whose op-
eration is confined to a localized spatial region.
Generally, the number of independent operators
that transfer the system between orthogonal
ground states must be even. Thus, when there is
only one such operator acting within a given
spatial region, it must be Hermitian (note that
Hermitian conjugation does not change the
location of the operator). Consequently, it must

have a partner in a different spatial region. If the
system is subjected to a perturbation that acts
locally within one of the regions, the local zero
mode cannot be eliminated, because its partner is
not subjected to that perturbation.

The position and wave function of the zero
modes depend on the parameters of the system.
Braiding operations are carried out by a cyclic
trajectory in this parameter space. The braiding of
world lines in two dimensions (18, 19) is a
particular example of topologically distinct
classes of cyclic trajectories in the parameter
space. More generally, the unitary transformation
applied by a cycle is determined by the topolog-
ical class to which the cycle belongs. This allows
for braiding operations in systems that are not
2D, such as networks of 1Dwires (20–22) (Fig. 2).

The simplest non-Abelian states of matter,
those that carry Majorana fermions (16, 17), can
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Fig. 3. Majorana end modes in a quantum wire. (A) A schematic plot of
the sample: a quantum wire lying on a superconductor. B is the magnetic
field that couples to the electron’s spin, and Bso is the effective magnetic
field induced by spin-orbit scattering. (B) A picture of the sample. Scale
bar, 1 mm. (C and D) The measured differential conductance as a function
of voltage at a range of magnetic fields (C) and magnetic field orien-
tation (D) in the experiments reported in (28) and (29), respectively. The
peak at zero voltage may be a sign of a Majorana fermion zero mode. (E)

The experimental device of the type used in (50, 58) to measure inter-
ference of quasiparticles in the n = 5/2 state. The periodicity of the
interference pattern as a function of magnetic field and gate voltage
reflects the non-Abelian nature of the quasiparticles (54–56). Indicated
are the interference loop (A), the interfering trajectories (dashed lines),
ohmic contacts (a to d), and gates (numbered). [(A), (B), and (C) reprinted
from (28); (D) reprinted from (29) by permission of Macmillan Publishers
Ltd., copyright 2012; (E) reprinted from (58)]
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Superconductor 
�1 �2

•  Gapped system, two degenerate ground states, 
characterized by having a different fermion parity 

•  Defects (in this case, the edges of the system) carry 
protected zero modes described by anti-commuting 
operators:  

•  Ground state degeneracy is “topological”: no local    
measurement can distinguish between the two states! 

•  Useful as a “quantum bit”? 

�1�2 = ��2�1

Lessons from the one dimensional 
topological superconductor 



Non-Abelian Anyons 

Degeneracy increases with 
number of anyons 

 
 
 

dim N
GSH λ:

E 
“quantum  
dimension” 

Robust to local  
perturbations! 



Non-Abelian Statistics:  
Braiding  

  2D vortices: Ivanov, Read & Green,… 
1D wire network: Alicea et.al (2010) 

( ) 1 24 1 0
0

e
i

π γ γ ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Majorana Fermions: 

ground state is separated from the excited part of
the spectrum by an energy gap. The elementary
particles of the system may form collective com-
posite particles, known as “non-Abelian anyons.”
When that occurs, the ground state becomes de-
generate. In the limit of a large number of anyons,
N, the ground-state degeneracy is lN, and the
anyon is said to have a “quantum dimension” of
l. This degeneracy is not a result of any obvious
symmetry of the system. As such, it is robust and
cannot be lifted with the application of any local
perturbation (11).

Transformations between the degenerate
ground states may be induced by exchanging
the anyons’ positions. The canonical example is
that of a two-dimensional (2D) system, where
anyons may be regarded as point particles.
Imagine a set of anyons that are initially positioned
on a plane at (R1…RN). They are made to move
along a set of trajectories [R1(t)…RN(t)] that ends
with their positions permuted. The motion is slow
enough not to excite the system out of the sub-
space of ground states.When viewed in a 3D plot,
the set of trajectories, known also asworld lines,Ri
(t) look like entangled strands of spaghetti. A
“braid” is defined as a set of spaghetti config-
urations that can be deformed to one another
without spaghetti strands being cut. Remarkably,
the unitary transformation implemented by the
motion of the anyons depends only on the braid
and is independent of the details of the trajec-
tories. These unitary transformations must satisfy
a set of conditions that result from their topo-
logical nature, such as the Yang-Baxter equation
(Fig. 1A).

Notably, for the braid in which two anyons of
types a and b are encircled by a third that is far
away (Fig. 1B), the corresponding transformation
will not be able to resolve the two anyons’ types;
from a distance they would look as if they “fused”
to one anyon, of type c. The fusion of a pair of
non-Abelian anyonsmay result in several different
outcomes that are degenerate in energy when the
anyons are far away from one another (leading to
the ground-state degeneracy). The degeneracy is
split when the fused anyons get close. The list of
cs to which any a-b pair may fuse constitutes the
“fusion rules.” For each anyon of type a, there is
an “anti-anyon” ā such that the twomay annihilate
one another, or be created as a pair.

Topological Quantum Computation
The properties of non-Abelian states that are im-
portant for our discussion are the quantum dimen-
sions of the anyons, the unitary transformations
that they generate by braiding, and their fusion
rules. Different non-Abelian systems differ in
these properties. To turn a non-Abelian system
into a quantum computer, we first create pairs
of anyons and anti-anyons from the “vacuum,” the
state of zero anyons. In the simplest computational
model, a qubit is composed of a group of several
anyons, and its two states, |0〉 and |1〉, are two

possible fusion outcomes of these anyons. (A
qudit is formed if there are more than two possible
fusion outcomes.) The creation from the vacuum
initializes qubits in a well-defined state. The uni-

tary gates are implemented by the braid transfor-
mations (Fig. 1C). At the end of the computation,
the state is read off by measuring the fusion out-
come of the anyons (2–6).

Fig. 1. (A) The Yang-Baxter equation states that two exchange paths that can be deformed into each
other without cutting the world lines of the particles (blue curves) define the same braid. (B) Two
anyons labeled a and b are encircled by a third anyon d. The resulting transformation depends only on
the fusion outcome of a and b. (C) A canonical construction for a qubit, in a system of Ising anyons,
consists of four anyons that together fuse to the vacuum. The two possible states can then be labeled by
the fusion charge, say, of the left pair. A single qubit p/4 gate can be used by exchanging anyons 1 and
2 (depicted), whereas a Hadamard gate can be used by exchanging anyons 2 and 3. Such a construction
can be realized using Majorana fermions. (D) Decoherence of information encoded in the ground-state
space. Thermal and quantum fluctuations nucleate a quasiparticle-antiquasiparticle pair (red, white).
The pair encircles two anyons encoding quantum information, and annihilates. The result of the process
depends on the fusion charge of the two anyons, leading to decoherence of the encoded quantum
information.
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C D

=
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b

4321

d

A B C
1
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Fig. 2. Braiding in a system hosting Majorana fermions (zero modes or their fractionalized
counterparts). For a manipulation of the subspace of ground states to lead to a topological result,
the number of ground states should remain fixed. (A) Two zero modes initially at locations 1 and 2
are to be interchanged. A pair of coupled zero modes, 3 and 4, is created from the vacuum and
may reside, for example, at the two ends of a short wire. As long as 3 and 4 are coupled (blue line),
they are not zero modes and do not change the degeneracy of the ground state. Next, location 1 is
coupled to 3 and 4 (red dashed line). The coupled system of 1, 3, and 4 must still harbor a zero
mode. Thus, this step does not vary the degeneracy of the ground state, but it does redistribute the
wave function of that zero mode among the three coupled sites. Location 4 is then decoupled from
1 and 3, and the localized zero mode is now at location 4. The outcome is then that 1 was copied to
location 4. (B) In a similar fashion, 2 is copied to location 1. (C) Finally, 1 is copied from location 4
to location 2. At the end of this series, 3 and 4 are again coupled to one another, but 1 and 2 have
been interchanged.
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The quest for non-Abelian systems 

2D  p+ip 
superconductors Fractional 

QH 
Superconductor - 3D Top. Insulator 
(Semiconductor) heterostructures 

All of these realize Ising anyons  
(i.e. Majoranas) 

Can we get something richer? 

3D Topological 
      insulator 

3D conventional 
superconductor 



•  The braiding of Majorana zero modes 
are non-universal: 
a general unitary transformation cannot 
be performed in a protected way 

•  Can we get something richer than 
Majorana fermions in 1D ? 

 “Theorem” (Fidkowsky, 2010; Turner, Pollmann, 
and EB, 2010): 
  Gapped, local Hamiltonians of 
fermions or bosons in 1D, can give (at 
best) Majorana zero modes. 
 
 



Gapped phases of fermions 

QA QB 

“Fractionalization” of the parity 
operator (in low-energy subspace)  Q = QA QB 

QA ,QB either fermionic or bosonic! 

A. Turner, F. Pollmann, EB (2010) 

No symmetries: only one gapped phase in 1D 
(N. Shuch et al., 2011)	




Beyond Majorana fermions 

 
Fractional 
Topological 
Insulator 

(FTI) 

FM1 

FM2 

SC1 

SC2 

“Fractional topological 
insulator”:  

Laughlin Quantum Hall state 
with:  

ν=1/m for spin up 
ν=-1/m for spin down (m odd) 

Stable phase: Levin and Stern (2010) 

Majorana fermions at SC/FM interfaces: Fu and Kane (2009) 

Consider the effectively 1D boundaries  
of 2D a topological phase 

which supports (abelian) anyons. 



Fractional Quantum Hall effect 
Electrons in two dimensions, high magnetic field 

Special density (number of electrons/flux quantum),  
ultra clean, low temperature: 

ν = 1/m Fractional Quantum Hall (Laughlin) state 

B 

q = e/m
1D “chiral”  
edge state 

Gapped bulk, gapless chiral edge states 
Excitations: fractional charge, fractional statistics! 

e
2⇡i
m



Beyond Majorana fermions 

Fractional quantum Hall “realizations”  
of a Fractional Topological Insulator 

be explained using the concept of zero modes.
Such systems usually combine spin-orbit cou-
pling, superconductivity, and Zeeman coupling
to the electron spin (23–27). In superconductors,
operators that take the system from one energy
state to another are superpositions of electron
creation and annihilation operators. In certain
conditions, localized zero modes occur, in which
the amplitude for the creation and annihilation
operators is equal in magnitude, and the resulting
operator is Hermitian. These operators are com-
monly referred to as Majorana fermions. The non-
Abelian state of matter occurs when the zero
modes are spatially separated from one another.
Like all zero modes, Majorana fermions occur in
pairs. A pair of Majorana fermions form a com-
plex conventional fermion that spans a Hilbert
space of two dimensions. The quantum dimension
of a single Majorana fermion is therefore

ffiffiffi
2

p
.

Because a superconductor is gapped, Majo-
rana fermions in a superconducting system can
only occur where the superconducting gap closes
locally. In 2D systems, Majorana fermions are to
be found in vortex cores (16, 18), whereas in 1D
systems they are to be found at the interfaces be-
tween different types of superconductivity, or at
the system’s ends (17). In vortex cores of s-wave
superconductors, the presence of two spin direc-
tions per each electronic state does not allow for
an isolated Majorana fermion zero mode. The
places to look for isolated Majorana fermions are
superconductors with only one spin direction per
each electronic state. Examples are superconduc-
tors with spin-polarized p-wave pairing (16, 17),
surfaces of 3D and edges of 2D topological in-
sulators (23, 24), and 2D/1D systems featuring

both spin-orbit and Zeeman couplings (25–27) in
proximity to superconductors.

Recent experiments (28–32) support the
existence of Majorana fermions at the ends of
semiconducting wires in which strong spin-orbit
coupling, together with Zeeman coupling of the
spin to a magnetic field, creates a range of
densities at which spin degeneracy is removed.
The wires are made superconducting through
their proximity to a superconductor, and zero
modes are expected to form at their ends, which
are separated from metallic contacts by poten-
tial barriers. When a current is driven through the
wires in the absence of the end modes, the com-
bination of the barriers and the superconducting
gap suppresses the current at low voltages. The
Majorana end modes allow current to flow, re-
sulting in a sharp peak in the wires’ differential
conductance at zero voltage. This peak was ob-
served in several experiments (Fig. 3) and its char-
acteristics are consistent with Majorana end modes
in quantum wires.

Although these are encouraging observations,
it is still too early to identify them unambiguously
as originating fromMajorana fermions. The wires
used in the experiments were short enough that
coupling between the two ends may be expected
to split the degeneracy between the end modes.
Future experiments may observe the decay of this
splittingwith increasingwire length. Differentmea-
surements using the Josephson effect, Coulomb
blockade, and scanning tunneling microscopes
may provide additional information.

The Majorana fermions on the ends of quan-
tum wires offer useful insights into the physics
of non-Abelian systems. In the absence of the

Majorana fermions, the ground state of a clean
superconducting wire has an even number of
electrons paired to Cooper pairs. Adding another
electron is costly in energy, because this elec-
tron has no pairing partner. When the two
Majorana fermions are localized at the ends of
the wire, the odd electron can join at no cost of
energy. The two degenerate ground states are then
of different electron parities. When there are N
wires, there are 2N zero modes and 2N states,
with each wire having either an even or odd num-
ber of electrons. This manner of counting explains
the quantum dimension of

ffiffiffi
2

p
.

Magic State Distillation and
Surface Codes
Majorana fermions realize fusion and braiding
rules analogous to those of “Ising anyons.”
Interchanging Majorana fermions at the ends of
the same wire is equivalent to rotating the wire;
this preserves the parity of the electron number
while implementing a relative phase shift of p/2
between states of different parities. The braiding
of two Majorana fermions of two different
wires (Fig. 2) leads to a unitary transformation
that takes the two wires from a state of well-
defined parities to a state that is a superposition
of even and odd parities, with equal probabilities.
For example, the state |even1,even2〉 is transformed
to the state 1/

ffiffiffi
2

p
[|even1,even2〉 ± i|odd1,odd2〉],

where the sign of the second term depends on
the details of the interchange. Because only two
types of interchanges are possible—intrawire and
interwire—there is no topologically protected way
to turn two wires that start, say, at even parities
|even1,even2〉 into an arbitrary superposition of the

ν = 1/m

A B
B

B

ν = 1/m

ν = –1/m ν = 1/m

SC

SC

Fig. 4. Fractionalized Majorana zero modes at the interface between the
superconductor and tunneling regions. (A) An electron-hole bilayer where the
two layers are in a FQHE where the Hall conductivities are quantized at n =±1/m
(in units of e2/h), wherem is an odd integer. The direction of the edge modes is
indicated by the blue arrows. An s-wave superconductor (SC; orange) coupled to
the edge of the two-layer system can gap the edgemodes. In nonsuperconducting

regions, spin-flipping electron tunneling between the top and bottom layer (black
arrows) opens a gap on the edge. These can be enhanced by coupling the edge to
a ferromagnet. Two layers of graphene may be a possible realization for such a
system. (B) Single-layer realization, with a trench cut in a FQHE state with n = 1/m
exposing counterpropagating edge states. In spin-polarized quantum Hall states,
spin-orbit interaction would couple these modes to a superconductor.
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be explained using the concept of zero modes.
Such systems usually combine spin-orbit cou-
pling, superconductivity, and Zeeman coupling
to the electron spin (23–27). In superconductors,
operators that take the system from one energy
state to another are superpositions of electron
creation and annihilation operators. In certain
conditions, localized zero modes occur, in which
the amplitude for the creation and annihilation
operators is equal in magnitude, and the resulting
operator is Hermitian. These operators are com-
monly referred to as Majorana fermions. The non-
Abelian state of matter occurs when the zero
modes are spatially separated from one another.
Like all zero modes, Majorana fermions occur in
pairs. A pair of Majorana fermions form a com-
plex conventional fermion that spans a Hilbert
space of two dimensions. The quantum dimension
of a single Majorana fermion is therefore

ffiffiffi
2

p
.

Because a superconductor is gapped, Majo-
rana fermions in a superconducting system can
only occur where the superconducting gap closes
locally. In 2D systems, Majorana fermions are to
be found in vortex cores (16, 18), whereas in 1D
systems they are to be found at the interfaces be-
tween different types of superconductivity, or at
the system’s ends (17). In vortex cores of s-wave
superconductors, the presence of two spin direc-
tions per each electronic state does not allow for
an isolated Majorana fermion zero mode. The
places to look for isolated Majorana fermions are
superconductors with only one spin direction per
each electronic state. Examples are superconduc-
tors with spin-polarized p-wave pairing (16, 17),
surfaces of 3D and edges of 2D topological in-
sulators (23, 24), and 2D/1D systems featuring

both spin-orbit and Zeeman couplings (25–27) in
proximity to superconductors.

Recent experiments (28–32) support the
existence of Majorana fermions at the ends of
semiconducting wires in which strong spin-orbit
coupling, together with Zeeman coupling of the
spin to a magnetic field, creates a range of
densities at which spin degeneracy is removed.
The wires are made superconducting through
their proximity to a superconductor, and zero
modes are expected to form at their ends, which
are separated from metallic contacts by poten-
tial barriers. When a current is driven through the
wires in the absence of the end modes, the com-
bination of the barriers and the superconducting
gap suppresses the current at low voltages. The
Majorana end modes allow current to flow, re-
sulting in a sharp peak in the wires’ differential
conductance at zero voltage. This peak was ob-
served in several experiments (Fig. 3) and its char-
acteristics are consistent with Majorana end modes
in quantum wires.

Although these are encouraging observations,
it is still too early to identify them unambiguously
as originating fromMajorana fermions. The wires
used in the experiments were short enough that
coupling between the two ends may be expected
to split the degeneracy between the end modes.
Future experiments may observe the decay of this
splittingwith increasingwire length. Differentmea-
surements using the Josephson effect, Coulomb
blockade, and scanning tunneling microscopes
may provide additional information.

The Majorana fermions on the ends of quan-
tum wires offer useful insights into the physics
of non-Abelian systems. In the absence of the

Majorana fermions, the ground state of a clean
superconducting wire has an even number of
electrons paired to Cooper pairs. Adding another
electron is costly in energy, because this elec-
tron has no pairing partner. When the two
Majorana fermions are localized at the ends of
the wire, the odd electron can join at no cost of
energy. The two degenerate ground states are then
of different electron parities. When there are N
wires, there are 2N zero modes and 2N states,
with each wire having either an even or odd num-
ber of electrons. This manner of counting explains
the quantum dimension of

ffiffiffi
2

p
.

Magic State Distillation and
Surface Codes
Majorana fermions realize fusion and braiding
rules analogous to those of “Ising anyons.”
Interchanging Majorana fermions at the ends of
the same wire is equivalent to rotating the wire;
this preserves the parity of the electron number
while implementing a relative phase shift of p/2
between states of different parities. The braiding
of two Majorana fermions of two different
wires (Fig. 2) leads to a unitary transformation
that takes the two wires from a state of well-
defined parities to a state that is a superposition
of even and odd parities, with equal probabilities.
For example, the state |even1,even2〉 is transformed
to the state 1/

ffiffiffi
2

p
[|even1,even2〉 ± i|odd1,odd2〉],

where the sign of the second term depends on
the details of the interchange. Because only two
types of interchanges are possible—intrawire and
interwire—there is no topologically protected way
to turn two wires that start, say, at even parities
|even1,even2〉 into an arbitrary superposition of the

ν = 1/m

A B
B

B

ν = 1/m

ν = –1/m ν = 1/m

SC

SC

Fig. 4. Fractionalized Majorana zero modes at the interface between the
superconductor and tunneling regions. (A) An electron-hole bilayer where the
two layers are in a FQHE where the Hall conductivities are quantized at n =±1/m
(in units of e2/h), wherem is an odd integer. The direction of the edge modes is
indicated by the blue arrows. An s-wave superconductor (SC; orange) coupled to
the edge of the two-layer system can gap the edgemodes. In nonsuperconducting

regions, spin-flipping electron tunneling between the top and bottom layer (black
arrows) opens a gap on the edge. These can be enhanced by coupling the edge to
a ferromagnet. Two layers of graphene may be a possible realization for such a
system. (B) Single-layer realization, with a trench cut in a FQHE state with n = 1/m
exposing counterpropagating edge states. In spin-polarized quantum Hall states,
spin-orbit interaction would couple these modes to a superconductor.
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FQH state 



Ground state degeneracy 
Physical picture: 

2N domains, fixed total Q, S: (2m)N-1 

approximately degenerate ground states  

1	


2	
 3	


4	


5	
6	


FTI 
ν=1/m 

S1 

Q1 Q2 

Q3 

S2 S3 

Charges in SC conserved mod(2) 
Qj = n/m, n = 0,...,2m-1 

Spins in FM conserved mod(2)  
(el. spin=1) 

Sj = n/m, n = 0,...,2m-1 

Spin and charge are conjugate variables: 
 

Interface “anyon” with quantum dimension √2m 



Effective Model for Fractional 
Topological Insulator Edge States 

FTI 
ν=1/m 

Non-chiral Luttinger liquid edge state: 



Effective Model for Fractional 
Topological Insulator Edge States 

2N domains 

1	


2	
 3	
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5	
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FTI 
ν=1/m 

FM 

SC 

 R L +H.c.

{
 †
R L +H.c.

{
Electron:  R,L / eim(�±✓)

Laughlin q.p.: �R,L / ei(�±✓)

[�(x), ✓(x0)] = i

⇡

m

⇥(x0 � x)Comm. Relations: 

Charge density: ⇢ =
1

⇡
@
x

✓

sz =
1

⇡
@
x

�Spin density: 



Ground state degeneracy 
Large cosine terms (strong coupling to SC/FM) 

φ, θ pinned near the minima of the cosines: 

But... φ, θ are dual varariables: cannot be 
“localized” simultaneously  

2N domains: ~(2m)N approximately 
degenerate ground states  



Q and S operators 

In terms of the φ, θ fields, one can define the Q, 
S operators: 

FM SC FM SC 

x1 x3 x2 x4 



“Fractionalized Majorana operators” 

jQ 1jQ +
2 ,j σχ 2 1,j σχ +

[ ], 0rH σχ =

have q.p commutation relations 

, ,, ,
i m

j jk ke πσ σχ χ χ χ↑ ↑=

, ,, ,
i m

j jk ke π
σ σχ χ χ χ−

↓ ↓=

rσχ

, 1 1,..., ,...; ,..., 1,...;r j jq q s q q sσχ σ= + +∝	


( )2 1m
rσχ =

1D model of “Parafermions”: 
P. Fendley, arXiv:1209.0472  



Coupling of interfaces 

jQ 1jQ +
2 ,j σχ 2 1,j σχ + Sj 

q.p. tunneling 

jQ 1jQ +
2 ,j σχ 2 1,j σχ + Sj 

q.p. tunneling 



Braiding 

Braiding domain walls 3 and 4:  

For an arbitrary coupling of any three domain walls, 
the ground state degeneracy remains (2m)2    

as long as only one spin species is allowed to tunnel. 



Braiding 
Braiding interfaces     : 

S2 

Q1 Q2 

Q3 

S3 S1 

2

1
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4

56
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Braiding 

Braiding domain walls 3 and 4:  

Example: m=3 

(Majorana) ⊗ (Something new!) 



The Braid Group 

(Yang-Baxter equation) 

Both equations hold: rep. of the braid group 



Fractionalized zero modes at  
“twist defects” in topological phases 

Barkeshli, Jian, Qi (2013); Fidkowski, Lindner, Kitaev (unpublished) 

Ends of line defects that interchange anyon types  
(“topological symmetry”)  

⌫ = 1/3

⌫ = 1/3�q q

SC	


The “defect line” can permute anyon types. 



Fractionalized zero modes at  
“twist defects” in topological phases 

Another example: ν=1/3 bilayer 



Fractionalized zero modes at  
“twist defects” in topological phases 

Another example: ν=1/3 bilayer 

T, 1 
B ,1 

T, 2 
B ,2 

A	
 B	


Back- 
scattering 

Cut: 



Fractionalized zero modes at  
“twist defects” in topological phases 

ν=1/3 bilayer 

T, 1 
B ,1 

T, 2 
B ,2 

A	
 B	




Fractionalized zero modes at  
“twist defects” in topological phases 

ν=1/3 bilayer 

“Twist defect” 

T, 1 
B ,1 

T, 2 
B ,2 

Rotate 

A	
 B	


q.p.	
 q.p.	
q.p.	


q.h.	




Fractionalized zero modes at  
“twist defects” in topological phases 

“Twist defect” 

T, 1 
B ,1 

T, 2 
B ,2 

A	
 B	




Fractionalized zero modes at  
“twist defects” in topological phases 

T, 1 
B ,1 

T, 2 
B ,2 

A	
 B	
 A	


Alternate A,B domains: 
High 
genus 
surface 

Ngs = 3Nholes

Parafermions without superconductivity! 



Origin of topological degeneracy: 
Degeneracy on high genus surfaces 

X. G. Wen (1991) 



Outline 

•  “Fractionalized Majoranas” on fractional 
quantum Hall edges 
- Fractionalized 1D superconductors 
- Twist defects  

•  Anyonic defects in non-Abelian 
systems 



Enriching non-Abelian phases by 
defects 

Defects in Abelian phases (e.g. FQH) have  
non-Abelian properties. 

However, the non-Abelian statistics of defects in 
Abelian phases is never universal for TQC. 

Begin with a non-Abelian phase and “enrich” its 
properties by defects? 



Ising anyons 
ν = 5/2 QHE 
px+ipy Superconductors 
Kitaev’s hexagonal spin model 

𝜓  

𝜓  

1IRψψ = −

𝝈  
𝝈  

/8I iR e π
σσ

−=
3 /8iR eψ π

σσ =

𝜓  
𝝈  

( )2 1Rσψ = −

Three types of particles: I (vacuum), ψ (fermion), σ (vortex) 

Fusion rules:   ⇥  = I � ⇥  = I

� ⇥ � = I +  



Defects in a bilayer Ising phase  

•  What is the mathematical description of the zero 
modes associated with the defects? 

•  Can the zero modes realize universal TQC even 
though the host Ising phase is not universal?   

σ	
 σ	

Bilayer of 

n=5/2/p+ip SC/… 



Ground states 

States can be described fluxes of holes, and 
measured by fermion loop operators 
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 2

 1

 2

F0	
 F1	
 F2	
 F3	
 F4	
 F5	
 F6	


Fj = 0, 1 Z2 flux: represent as                      Fj = (1 + �z
j )/2

Not all flux states are ground states 



Creating flux states 

Flux states can be created by σ loops 
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 F3	
 F4	
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 F6	
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�1
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σ loop operator W2,3 flips F1 and F2 



Not all flux configurations are ground states:  
flips  ,  

 

Blocking rules 

Act with two neighbor W operators: 
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Not all flux configurations are ground states:  
flips  ,  

 
flips  ,  

 

Blocking rules 

Act with two neighbor W operators: 

�1

�2

�1

�2

A ψ excitation is created! 

�1

�2 �3 �4

  



Not all flux configurations are ground states:  
flips  ,  

 

Blocking rules 

Final state has ψ excitation! 

�1

�2

�1

1 1
1 2 1 2 0WW W W− − = (projected to  

the ground state subspace) 
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W1 W2



Nearest neighbors: form in a convenient gauge: 
 

0
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(projected) 
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Tunneling operators 



General form: defined by tri-algebra 
 

0
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Tunneling operators 



Braiding 

U34 =
1+σ 3

z

2

!
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1−σ 3
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Phase gate 
needed to 
make Ising 
theory 
universal!  



Conclusion 
New paradigm for realizing non-abelian 

anyons: defects on edges of two-dimensional 
topological phases. 

Future directions: 
Classification of 1D gapped edge states of 2D 

topological theories? 
Experimental signatures? 

Thank you. 
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be explained using the concept of zero modes.
Such systems usually combine spin-orbit cou-
pling, superconductivity, and Zeeman coupling
to the electron spin (23–27). In superconductors,
operators that take the system from one energy
state to another are superpositions of electron
creation and annihilation operators. In certain
conditions, localized zero modes occur, in which
the amplitude for the creation and annihilation
operators is equal in magnitude, and the resulting
operator is Hermitian. These operators are com-
monly referred to as Majorana fermions. The non-
Abelian state of matter occurs when the zero
modes are spatially separated from one another.
Like all zero modes, Majorana fermions occur in
pairs. A pair of Majorana fermions form a com-
plex conventional fermion that spans a Hilbert
space of two dimensions. The quantum dimension
of a single Majorana fermion is therefore

ffiffiffi
2

p
.

Because a superconductor is gapped, Majo-
rana fermions in a superconducting system can
only occur where the superconducting gap closes
locally. In 2D systems, Majorana fermions are to
be found in vortex cores (16, 18), whereas in 1D
systems they are to be found at the interfaces be-
tween different types of superconductivity, or at
the system’s ends (17). In vortex cores of s-wave
superconductors, the presence of two spin direc-
tions per each electronic state does not allow for
an isolated Majorana fermion zero mode. The
places to look for isolated Majorana fermions are
superconductors with only one spin direction per
each electronic state. Examples are superconduc-
tors with spin-polarized p-wave pairing (16, 17),
surfaces of 3D and edges of 2D topological in-
sulators (23, 24), and 2D/1D systems featuring

both spin-orbit and Zeeman couplings (25–27) in
proximity to superconductors.

Recent experiments (28–32) support the
existence of Majorana fermions at the ends of
semiconducting wires in which strong spin-orbit
coupling, together with Zeeman coupling of the
spin to a magnetic field, creates a range of
densities at which spin degeneracy is removed.
The wires are made superconducting through
their proximity to a superconductor, and zero
modes are expected to form at their ends, which
are separated from metallic contacts by poten-
tial barriers. When a current is driven through the
wires in the absence of the end modes, the com-
bination of the barriers and the superconducting
gap suppresses the current at low voltages. The
Majorana end modes allow current to flow, re-
sulting in a sharp peak in the wires’ differential
conductance at zero voltage. This peak was ob-
served in several experiments (Fig. 3) and its char-
acteristics are consistent with Majorana end modes
in quantum wires.

Although these are encouraging observations,
it is still too early to identify them unambiguously
as originating fromMajorana fermions. The wires
used in the experiments were short enough that
coupling between the two ends may be expected
to split the degeneracy between the end modes.
Future experiments may observe the decay of this
splittingwith increasingwire length. Differentmea-
surements using the Josephson effect, Coulomb
blockade, and scanning tunneling microscopes
may provide additional information.

The Majorana fermions on the ends of quan-
tum wires offer useful insights into the physics
of non-Abelian systems. In the absence of the

Majorana fermions, the ground state of a clean
superconducting wire has an even number of
electrons paired to Cooper pairs. Adding another
electron is costly in energy, because this elec-
tron has no pairing partner. When the two
Majorana fermions are localized at the ends of
the wire, the odd electron can join at no cost of
energy. The two degenerate ground states are then
of different electron parities. When there are N
wires, there are 2N zero modes and 2N states,
with each wire having either an even or odd num-
ber of electrons. This manner of counting explains
the quantum dimension of

ffiffiffi
2

p
.

Magic State Distillation and
Surface Codes
Majorana fermions realize fusion and braiding
rules analogous to those of “Ising anyons.”
Interchanging Majorana fermions at the ends of
the same wire is equivalent to rotating the wire;
this preserves the parity of the electron number
while implementing a relative phase shift of p/2
between states of different parities. The braiding
of two Majorana fermions of two different
wires (Fig. 2) leads to a unitary transformation
that takes the two wires from a state of well-
defined parities to a state that is a superposition
of even and odd parities, with equal probabilities.
For example, the state |even1,even2〉 is transformed
to the state 1/

ffiffiffi
2

p
[|even1,even2〉 ± i|odd1,odd2〉],

where the sign of the second term depends on
the details of the interchange. Because only two
types of interchanges are possible—intrawire and
interwire—there is no topologically protected way
to turn two wires that start, say, at even parities
|even1,even2〉 into an arbitrary superposition of the

ν = 1/m

A B
B

B

ν = 1/m

ν = –1/m ν = 1/m

SC

SC

Fig. 4. Fractionalized Majorana zero modes at the interface between the
superconductor and tunneling regions. (A) An electron-hole bilayer where the
two layers are in a FQHE where the Hall conductivities are quantized at n =±1/m
(in units of e2/h), wherem is an odd integer. The direction of the edge modes is
indicated by the blue arrows. An s-wave superconductor (SC; orange) coupled to
the edge of the two-layer system can gap the edgemodes. In nonsuperconducting

regions, spin-flipping electron tunneling between the top and bottom layer (black
arrows) opens a gap on the edge. These can be enhanced by coupling the edge to
a ferromagnet. Two layers of graphene may be a possible realization for such a
system. (B) Single-layer realization, with a trench cut in a FQHE state with n = 1/m
exposing counterpropagating edge states. In spin-polarized quantum Hall states,
spin-orbit interaction would couple these modes to a superconductor.
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