Lattice vibrations

An atomic chain with one atom per unit cell is shown in Fig. 4.1. From a formal point of view, this is a one dimensional atomic lattice with one atom per unit cell and a lattice vector of length \(a \). This means that the reciprocal lattice is also one-dimensional and the reciprocal lattice vector has a length of \(2\pi/a \). The atoms at the lattice sites shall be connected with springs of a force constant \(\gamma \). If we take only nearest neighbour interactions into account, the equation of motion for atom \(n \) is

\[
M \frac{d^2 u_n}{dt^2} = -\gamma (u_n - u_{n-1}) + \gamma (u_{n+1} - u_n)
\]

or

\[
M \frac{d^2 u_n}{dt^2} = -\gamma [2u_n - u_{n-1} - u_{n+1}].
\]

where \(u_n \) is the displacement of the \(n \)th atom in the chain. This can be solved by a kind of wave which is only defined on the lattice sites

\[
\omega_n(t) = u e^{i(kn-\omega t)},
\]

(4.8)

where \(k = 2\pi/\lambda \) is the one dimensional wave vector of the wave with the wave length \(\lambda \) and \(u \) is the amplitude of the oscillation. Substituting this into the equation of motion gives

\[
-M \omega^2 e^{i(kn-\omega t)} = -\gamma [2 - e^{-ika} - e^{ika}] e^{i(kn-\omega t)} = -2\gamma (1 - \cos ka) e^{i(kn-\omega t)}.
\]

(4.9)

and this has a solution if we choose the \(\omega = \omega(k) \) such that

\[
\omega(k) = \sqrt{\frac{2\gamma (1 - \cos ka)}{M}} = 2\sqrt{\frac{\gamma}{M}} \sin \frac{ka}{2}.
\]

(4.10)
Lattice vibrations

- The motion of atoms in a linear chain is coupled, giving rise to propagating waves
- The frequency of oscillation depends on the wavelength (i.e. the wave vector) of the propagating wave
- For an infinite chain, the possible frequency of oscillations is a continuous
- For a finite chain of quantum oscillator, only a discrete set of frequencies is possible
- Each propagating wave with a certain frequency and hence a certain group velocity is called a phonon
- The frequency of atomic vibrations in a phonon depends on the phonon wave vector – k: This defines the dispersion relation.
- Phonon wave vectors for a 1D chain of length L are n·2π/L, where n is integer. Number of phonons is
- All phonon wave vectors lie between –π/a and π/a. Therefore the number of phonons in a 1D chain is 2π/a / 2π/L = L/a
- Each phonon can be treated itself as a quantum oscillation. For low temperatures every atom can be approximated by an harmonic oscillator, the energy of the oscillation is

\[E_l(k) = \left(l + \frac{1}{2} \right) \hbar \omega(k) \]
Lattice vibrations

It is only needed to know the dispersion relation in the range between $-\frac{\pi}{a}$ and $\frac{\pi}{a}$.

Equation (4.10) suggests that the dispersion is periodic in k with a periodicity of $2\pi/a$. This is precisely the reciprocal lattice vector! The reciprocal lattice is not only useful to describe lattice-periodic quantities like the charge density in a Fourier series. It is also fundamental for describing waves in a lattice: In the present case, as in general, the wave is unchanged when we add a reciprocal lattice vector to its wave vector k. This is illustrated in Fig. 4.2, which shows the instantaneous displacement of atoms for two waves which differ by a reciprocal lattice vector. The displacement is the same. Another way of viewing this is that the shortest possible wavelength in a lattice of spacing a is $\lambda = 2a$ or $k = \pi/a$ which corresponds to the situation where neighbouring atoms move exactly out of phase. Any wave which is even shorter can be equivalently described by a longer wavelength.

\[\lambda = 10a \]
\[k = \frac{2\pi}{10a} \]
\[\lambda = \frac{10}{11}a \]
\[k = \frac{2\pi}{10a} + \frac{2\pi}{a} \]

Figure 4.2: Instantaneous position of atoms in a chain for two different wavelengths with $\lambda = 10a$ and $\lambda = (10/11)a$. Note that the wave is transversal for illustrative purposes. Otherwise, we have only considered longitudinal waves in one dimensional chains.
Two atoms per unit cell

\[\begin{align*}
M_1 \frac{d^2 u_n}{dt^2} &= -\gamma [2u_n - v_{n-1} - v_n] \\
M_2 \frac{d^2 v_n}{dt^2} &= -\gamma [2v_n - u_n - u_{n+1}]
\end{align*} \]

ansatz

\[\begin{align*}
u_n(t) &= u e^{i(kbn - \omega t)} \\
v_n(t) &= v e^{i(kbn - \omega t)}
\end{align*} \]

two linear equations, two unknowns

\[\begin{align*}
-\omega^2 M_1 u &= \gamma v (1 + e^{-ikb}) - 2\gamma u \\
-\omega^2 M_2 v &= \gamma v (e^{ikb} + 1) - 2\gamma v
\end{align*} \]

(system of homogeneous linear equations)
Two atoms per unit cell

\[-\omega^2 M_1 u = \gamma u (1 + e^{-ikb}) - 2\gamma u \quad -\omega^2 M_2 u = \gamma u (e^{ikb} + 1) - 2\gamma u.\]

this has only a solution when

\[
\begin{vmatrix}
2\gamma - \omega^2 M_1 & -\gamma (e^{ikb} + 1) \\
-\gamma (1 + e^{-ikb}) & 2\gamma - \omega^2 M_2
\end{vmatrix} = 0
\]

two solutions for every value of k

\[
\omega^2 = \gamma \left(\frac{1}{M_1} + \frac{1}{M_2} \right) \pm \gamma \left[\left(\frac{1}{M_1} + \frac{1}{M_2} \right)^2 - \frac{4}{M_1 M_2} \sin^2 \frac{kb}{2} \right]^{1/2}
\]
Two atoms per unit cell

\[\omega^2 = \gamma \left(\frac{1}{M_1} + \frac{1}{M_2} \right) \pm \gamma \left[\left(\frac{1}{M_1} + \frac{1}{M_2} \right)^2 - \frac{4}{M_1 M_2} \sin^2 \frac{kb}{2} \right]^{1/2} \]
Akustische und optische Gitterschwingungen

M₁ und M₂ schwingen gegenphasig

longitudinal optisch

transversal optisch

longitudinal akustisch

transversal akustisch

first Brillouin zone

\[k = \frac{2\pi}{\lambda} \]
Periodic boundary conditions

Max Born and Theodore von Karman (1912)

chain with \(N \) atoms:

\[
\mathbf{u}_{N+n} = \mathbf{u}_n
\]

longest wavelength for wave solutions

\[
e^{ika} = e^{i(aN+n)}
\]

\[
e^{ikan} = e^{i(aN+n)}
\]

So there are \(N \) possible different vibrations (\(m=0,\ldots,N-1 \))
Finite chain with 10 unit cells and one atom per unit cell

\[k = \frac{2\pi}{aN} \]

- N atoms give N so-called normal modes of vibration.
- For long but finite chains, the points are very dense.

\[k = \frac{2\pi}{\lambda} \]
Long atomic chain: quantum model

\[E_l(k) = \left(l + \frac{1}{2} \right) \hbar \omega(k) \]

- The excitations of these oscillators are called phonons.
- Strong analogy with photons: both bosonic excitations
- Both described by quantum mechanical harmonic oscillators
- Wave-particle duality
Phonons in 3D crystals: Aluminium

- Results from inelastic x-ray scattering / neutron scattering.
Phonons in 3D crystals: diamond

- Results from inelastic x-ray scattering / neutron scattering.
- Acoustic and optical branches present.