10. Übungsblatt zur "Festkörperphysik für Bachelor" WS 2009/10

M. Wolf/A. Melnikov

Ausgabe: 12. 1. 2010 Abgabe: Dienstag, den 19. 1. 2010 (vor der Vorlesung)

1. Zyklotronmasse und Zyklotronfrequenz (8 P)

Kristallelektronen bewegen sich in einem Magnetfeld im k-Raum auf Flächen konstanter Energie senkrecht zum Feld *B*.

- a) Im Experiment werden stets extremale Bahnen beobachtet. Begründen Sie diese Tatsache qualitativ (1P).
- b) Welche Form besitzen die Extremalbahnen im k-Raum für eine isotrope Dispersionsrelation $E(k) = \hbar^2 k^2 / 2m^*$? Berechnen Sie die resultierende Zyklotronfrequenz ω_c und zeigen Sie, dass hierbei die Zyklotronmasse $m_c = eB/\omega_c$ mit der effektiven Masse m* übereinstimmt (2P).
- c) Betrachten Sie Energieflächen, welche die Form von Rotations-Ellipsoiden mit transversaler bzw. longitudinaler effektiver Masse m_t und m_l aufweisen:

$$E(k) = \frac{\hbar^2}{2} \left\lceil \frac{\left(k_x^2 + k_y^2\right)}{m_t} + \frac{k_z^2}{m_l} \right\rceil$$

Berechnen Sie die resultierende Zyklotronfrequenz ω_c für den Fall eines in z-Richtung angelegten Magnetfeldes und leiten Sie daraus die Zyklotronmasse m_c der Ladungsträger ab. Wie ändert sich ω_c und m_c wenn das Magnetfeld senkrecht zur z-Richtung steht? (5P)

2. Landauniveaus (7 P)

Das Elektronengas eine Na-Kristalls mit den Kantenlängen $D_x = D_y = D_z = 1$ cm besitzt die Dichte n = 2,54 10²² cm⁻³.

- a) Berechnen Sie den Radius k_F der Fermi-Kugel und die Anzahl Z der besetzten Zustände im k-Raum. (2P)
- b) An die Probe wird nun in z-Richtung ein Magnetfeld mit Flussdichte B = 1 Tesla angelegt. Die Zustandsdichte wird im Magnetfeld quantisiert. Wie viele Kreise konstanter Energie $E_n(k_z=0)$, n = 0,1,... (Umfang der Landau-Röhre) befinden sich innerhalb der ursprünglichen Grenzen der Fermi-Kugel? Zeigen Sie, dass der Entartungsgrad p eines solchen Kreises geben ist durch $p = D_x D_y eB/2\pi\hbar$ (5P).