4. Übungsblatt zur "Einführung in die Festkörperphysik" WS 05/06

M. Wolf/K. Starke/I. Torrente

Ausgabe: 14.11.05

Abgabe: Dienstag, 22.11.2005, bis 17 Uhr
Postfach Torrente, bei Raum 0.3.18

Postfach Starke, bei Raum 1.2.46

1. Dispersionsrelation im Eindimensionalen (8 P)

Bestimmen Sie die Dispersionsrelation $\omega(q)$ der Schwingungen eines linearen (eindimensionalen) Gitters, bei dem die Kraftkonstanten zwischen benachbarten Atomen abwechselnd C_1 und C_2 sind. Die Masse der Atome sei m und der Atomabstand a/2. Berechnen Sie $\omega(q)$ für q=0 und $q=\pi/a$ und skizzieren Sie den Verlauf der Dispersionsrelation. Diskutieren Sie, was bei $C_1=C_2$ sowie $C_1<< C_2$ passiert.

2. Phononen in Argon (10 P)

Die potentielle Energie zweier Argonatome im Abstand R im Edelgaskristall wird durch

$$U(R) = 4\varepsilon [(R/R_0)^{-12} - R/R_0)^{-6}]$$

mit ε = 10.4. meV und R₀ = 3,4 Å realistisch angenähert. Betrachten Sie die Bewegung einer linearen Kette von Ar Atomen in 3 Dimensionen, die durch eine äußere Zugspannung um 10 % gedehnt ist.

- a) Berechnen Sie die Zugkraft und die Kraftkonstanten für Auslenkungen entlang und senkrecht zur Kette (d.h. für longitudinale und transversale Moden).
- b) Zeichnen Sie die verschiedenen Zweige der Phononen-Dispersion $\omega(q)$ und diskutieren Sie den Unterschied zwischen longitudinalen und transversalen Moden.

3. Singularitäten in der Phononen-Zustandsdichte (8 P)

a) Gegeben sei eine eindimensionale lineare Kette aus N Atomen mit harmonischen Wechselwirkungen zwischen den nächsten Nachbarn. Man erhält eine Dispersion longitudinaler Phononen der Form (a = Gitterkonstante):

$$\omega = \omega_0 |\sin(qa/2)|$$

Zeigen Sie, dass für diesen Fall die Zustandsdichte D(ω) für $\omega = \omega_0$ singulär wird.

b) Nehmen Sie an, dass in einem dreidimensionalen Gitter ein optischer Phononenzweig nahe q = 0 die Form:

$$\omega(\mathsf{q}) = \omega_0 - \mathsf{A}\mathsf{q}^2$$

habe. Geben Sie einen Ausdruck für die Zustandsdichte in der Nähe von $\omega = \omega_0$ an. In diesem Falle ist D(ω) für $\omega = \omega_0$ nicht singulär, sondern lediglich unstetig.