Local magnetic fields in antiferromagnetic Bi$_2$CuO$_4$: as seen from 63,65Cu and 209Bi nuclear resonance

D.F. Khozeeva*, A.A. Gippiusa, E.N. Morozovaa, A.N. Vas'il'eva, A.V. Zalesskya, W. Hoffmannb, K. Lüdersb, G. Dhalennec, A. Revcolevshic

aMoscow State University, 119899 Moscow, Russia
bFree University of Berlin, D-14195 Berlin, Germany
cUniversity of Paris, 91405 Orsay CEDEX, France

Abstract

A complex spin-echo spectrum of 63,65Cu and 209Bi has been observed in antiferromagnetic Bi$_2$CuO$_4$ at 4.2 K. The spectrum consists of 63,65Cu AFNR and 209Bi NQR. The Cu AFNR is characterized by the internal field $H_{\text{int}} = 99$ kOe at Cu nuclei and by the $^{63}_Q$ = 10 MHz. It is argued that the low-limit of the internal field at the 209Bi nuclei is 4.3 kOe. The occurrence of H_{int} at 209Bi nuclei shows that Bi$^{3+}$ anions take part in the superexchange interaction between Cu atoms along the Cu–O–Bi–O–Cu bonds. © 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: AFNR; NQR

The structure of Bi$_2$CuO$_4$ does not allow an ordinary Cu–O–Cu superexchange interaction between Cu$^{2+}$ cations. The AF order is maintained by strongly anisotropic inter- and intra-sublattice interactions involving at least several anions by two possible ways: Cu–O–Bi–O–Cu [1] or Cu–O–O–Cu [2]. There is still no understanding of the role of Bi ions in these interactions. Here we present spin-echo studies in pure AF samples of Bi$_2$CuO$_4$.

Cu NQR spectra were obtained using a point-by-point technique at 4.2 K. In order to separate the 63,65Cu part of the observed complex spectrum from 209Bi we measured the zero-field spectrum of Bi$_2$CuO$_4$ enriched by the 85Cu isotope (Figs. 1–3). This allows to conclude, that all the observed resonance lines below 80 MHz belong to 209Bi nuclei.

We have assigned the upper frequency triplet with the intense central line at 112.5 MHz in Fig. 3 to a quadrupole splitted spectrum of 63Cu isotope. Using the experimental frequencies of the left- and right-side peaks (107.0(1) and 117.0(1) MHz) of the triplet, the second-order perturbation treatment for $\eta = 0$ and $\theta = 90^\circ$ yields $^{63}_Q = 112.0(1)$ MHz and $^{63}_Q = 10.0(1)$ MHz. The calculated frequency for the central line, 112.2 MHz, lies within the limits of experimental error of peak position.

The obtained Larmor frequency $^{63}_Q = 112.0(1)$ MHz corresponds to a hyperfine field of 99.0(1) kOe. Using the hyperfine coupling constant for Cu$^{2+}$ equal to 120 kOe/μ_B and ignoring the dipolar contribution, we obtain a magnetic moment of 0.82μ_B which is close to the value of 0.85μ_B deduced from neutron diffraction [3].

From the principal axes directions of the electric field gradient tensor it is evident that in the elementary cell of Bi$_2$CuO$_4$ there are four pairs of crystallographic sites of Bi atoms which become inequivalent when a magnetic field appears at Bi sites. Such a magnetic inequivalency might be the reason for the abundance of resonance lines observed in Bi$_2$CuO$_4$ (Figs. 1–3), which considerably hampers the interpretation of the spectrum.

In the presence of a high internal magnetic field H_{int} and the asymmetry parameter η close to unity, the Bi nuclei could exhibit Zeeman transitions ($-m \leftrightarrow m$) with

*Corresponding author.

E-mail address: ltemp@phys.msu.su (D.F. Khozeev)

0921-4526/00/$-$see front matter © 2000 Published by Elsevier Science B.V. All rights reserved.

PII: S0921-4526(99)02528-4
the highest probability for \((-\frac{1}{2} \leftrightarrow \frac{1}{2})\) [4]. Since the low-frequency spectrum cannot fit Bi NQR, we assume that the resonance line at 26.35 MHz corresponds to the \((-\frac{1}{2} \leftrightarrow \frac{1}{2})\) transition. We estimate the minimum value of \(H_{\text{int}}\) necessary to create this transition to be \(H_{\text{int}}(\text{min}) = 4.3\) kOe.

This value is almost one order of magnitude larger than \(H_{\text{dip}}\), which supports our assumption about a comparatively large \(H_{\text{hf}}\) contribution to \(H_{\text{int}}\) at Bi atoms.

Acknowledgements

This work was supported by the “Volkswagen-Stiftung, Federal Republic of Germany”, Grant No. 1/73680.

References