

Physica B 284-288 (2000) 1377-1378

www.elsevier.com/locate/physb

Local magnetic fields in antiferromagnetic Bi₂CuO₄: as seen from ^{63,65}Cu and ²⁰⁹Bi nuclear resonance

D.F. Khozeev^{a,*}, A.A. Gippius^a, E.N. Morozova^a, A.N. Vasil'ev^a, A.V. Zalessky^a, W. Hoffmann^b, K. Lüders^b, G. Dhalenne^c, A. Revcolevshi^c

^aMoscow State University, 119899 Moscow, Russia ^bFree University of Berlin, D-14195 Berlin, Germany ^cUniversity of Paris, 91405 Orsay CEDEX, France

Abstract

A complex spin-echo spectrum of 63,65 Cu and 209 Bi has been observed in antiferromagnetic Bi₂CuO₄ at 4.2 K. The spectrum consists of 63,65 Cu AFNR and 209 Bi NQR. The Cu AFNR is characterized by the internal field $H_{int} = 99$ kOe at Cu nuclei and by the ${}^{63}v_Q = 10$ MHz. It is argued that the low-limit of the internal field at the 209 Bi nuclei is 4.3 kOe. The occurrence of H_{hf} at 209 Bi nuclei shows that Bi $^{3+}$ anions take part in the superexchange interaction between Cu atoms along the Cu–O–Bi–O–Cu bonds. © 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: AFNR; NQR

The structure of Bi_2CuO_4 does not allow an ordinary Cu–O–Cu superexchange interaction between Cu²⁺ cations. The AF order is maintained by strongly anisotropic inter- and intra-sublattice interactions involving at least several anions by two possible ways: Cu–O–Bi–O–Cu [1] or Cu–O–O–Cu [2]. There is still no understanding of the role of Bi ions in these interactions. Here we present spin-echo studies in pure AF samples of Bi_2CuO_4 .

Cu NQR spectra were obtained using a point-by-point technique at 4.2 K. In order to separate the 63,65 Cu part of the observed complex spectrum from 209 Bi we measured the zero-field spectrum of Bi₂CuO₄ enriched by the 65 Cu isotope (Figs. 1–3). This allows to conclude, that all the observed resonance lines below 80 MHz belong to 209 Bi nuclei.

We have assigned the upper frequency triplet with the intense central line at 112.5 MHz in Fig. 3 to a quadrupole splitted spectrum of ⁶³Cu isotope. Using the experimental frequencies of the left- and right-side peaks

(107.0(1) and 117.0(1) MHz) of the triplet, the secondorder perturbation treatment for $\eta = 0$ and $\theta = 90^{\circ}$ yields ${}^{63}v_{\rm L} = 112.0(1)$ MHz and ${}^{63}v_{Q} = 10.0(1)$ MHz. The calculated frequency for the central line, 112.2 MHz, lies within the limits of experimental error of peak position.

The obtained Larmor frequency $^{63}\nu_{\rm L} = 112.0(1)$ MHz corresponds to a hyperfine field of 99.0(1) kOe. Using the hyperfine coupling constant for Cu²⁺ equal to 120 kOe/ $\mu_{\rm B}$ and ignoring the dipolar contribution, we obtain a magnetic moment of $0.82\mu_{\rm B}$ which is close to the value of $0.85\mu_{\rm B}$ deduced from neutron diffractometry [3].

From the principal axes directions of the electric field gradient tensor it is evident that in the elementary cell of Bi_2CuO_4 there are four pairs of crystallographic sites of Bi atoms which become inequivalent when a magnetic field appears at Bi sites. Such a magnetic inequivalency might be the reason for the abundance of resonance lines observed in Bi_2CuO_4 (Figs. 1–3), which considerably hampers the interpretation of the spectrum.

In the presence of a high internal magnetic field H_{int} and the asymmetry parameter η close to unity, the Bi nuclei could exhibit Zeeman transitions ($-m \Leftrightarrow m$) with

^{*} Corresponding author.

E-mail address: ltemp@phys.msu.su (D.F. Khozeev)

Fig. 1. Low-frequency part of the zero-field spectra of Bi_2CuO_4 . Ceramic sample enriched by ⁶⁵Cu. Inset: the low-frequency line of this spectrum in the same frequency scaling.

Fig. 2. Middle-frequency part of the zero-field spectra of Bi_2CuO_4 . Ceramic sample enriched by ⁶⁵Cu.

the highest probability for $(-\frac{1}{2} \Leftrightarrow \frac{1}{2})$ [4]. Since the low-frequency spectrum cannot fit Bi NQR, we assume that the resonance line at 26.35 MHz corresponds to the $(-\frac{1}{2} \Leftrightarrow \frac{1}{2})$ transition. We estimate the minimum value of H_{int} necessary to create this transition to be $H_{\text{int}}(\text{min}) = 4.3 \text{ kOe}.$

Fig. 3. High-frequency part of the zero-field spectra of different Bi_2CuO_4 samples: (a,b) different single crystals and (c) ceramic sample enriched by ^{65}Cu .

This value is almost one order of magnitude larger than H_{dip} , which supports our assumption about a comparatively large H_{hf} contribution to H_{int} at Bi atoms.

Acknowledgements

This work was supported by the "Volkswagen-Stiftung, Federal Republik of Germany", Grant No. 1/73680.

References

- [1] J.L. Garcia-Munos et al., J. Phys.: Condens. Matter 2 (1990) 2205.
- [2] R. Troc et al., J. Phys.: Condens. Matter 2 (1990) 6989.
- [3] K. Yamada et al., J. Phys. Soc. Japan 60 (1991) 2406.
- [4] M.H. Cohen, Phys. Rev. 96 (1954) 1278.