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The Planck – Kleinert Crystal hypothesis is analyzed for an ideal cubic fcc crystal formed by
Planck particles. In this type of a quasi-continuum the energy, momentum, and mass transport are
described by the classical balance equations. The transverse wave is the electromagnetic wave, and its
velocity equals the velocity of light. The quasi-stationary collective movement of mass in the crystal
is equivalent to the particle (body), and such an approach enables derivation of the Schrödinger
equation. The diffusing interstitial Planck particles create a gravity field, and the computed value
of G is within the accuracy of experimental data. The model predicts four different force fields and a
vast amount of the “dark matter and dark energy” in the crystal lattice. It allows for a self-consistent
interpretation of multiscale phenomena.
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1. Introduction

Physics Today was opened in 1999 by F. Wilczek’s
article “The persistence of ether”, concerned with
speculations on the physical vacuum and continuum,
named ether [1]. Arguments supporting the contin-
uum concept are provided by statistical mechanics [2].
When the ratio between macro- and microscopic scales
becomes very large, collective properties emerge that
are not noticeable in the behaviour of individual par-
ticles. To some degree, quantum space can be consid-
ered as analogue to a crystal which, through its atomic
structure, changes the propagation of light relative to
that through a vacuum [3]. Already in 1987 Klein-
ert proposed a simple three-dimensional Euclidean
World Crystal model [4]. He successfully recovered
Einstein’s gravity from a defect model of a crystal in
which some elastic terms vanish. Recently, Kleinert
and Zaanen explained the absence of torsion in space-
time [5].

In the present work the World Crystal is a three-
dimensional quasi-continuum, x ∈ R

3, that will be
called the Planck – Kleinert Crystal (PKC). The PKC
is a cubic fcc crystal showing the Frenkel disorder.
The proposed model is based on: (i) the solid so-
lution assumption, (ii) the ability of defects to dif-
fuse, (iii) the classical conservation laws connecting
the mechanic and thermodynamic laws, (iv) the pos-
tulate that gravity is the result of diffusing defects (dif-
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fusing Planck particles), (v) the deformation and ve-
locity vanish when defining the collective Planck mass
movement, and (vi) the assumption that the electric
field strength equals the negative of the rotation of the
displacement vector. The properties of the crystal are
shown in Table 1.

2. The Planck – Kleinert Crystal

The building blocks of a PKC are Planck particles,
P, that obey the laws of mass, momentum and energy
conservation. Each particle exerts a short range force
at the Planck length, lP. The crystal is an ideal (central
forces act between particles) cubic fcc crystal showing
the Frenkel disorder. The PKC is mechanically simple,
i. e., its mechanical properties do not depend on strain,
Table 1.

2.1. Defects in the PKC

Defects are treated as an ideal solid solution. The
process one can consider is the formation of intrinsic
Frenkel defects: PP →← VP + Pi, where PP, VP and Pi

denote a particle in lattice position, vacancy and in-
terstitial particle, respectively. The densities of lattice
sites (ρ = [PP]+ [VP]) and defects (ρP = [Pi] > [VP])
differ by orders of magnitude, ρ ∼= 4l−3

P = const� ρP,
where ρP = NPρ and NP is the concentration ratio of
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Table 1. The physical constants of the Planck – Kleinert Crystal (ideal regular fcc).

Physical quantity Unit Symbol for unit Value in SI units SI unit Reference
Lattice parameter Planck length lP 1.61624(12) ·10−35 m [6]
Poisson ratio ν 0.25 – [7]
Mass of particle Planck mass mP 2.17645(16) ·10−8 kg [6]
Frequency of the internal process Inverse of Planck time fP = 1/tP 1.85486(98) ·1043 s−1 [6]
Lamé constants Energy density λ = µL 1.853240963 ·10114 kg m−1 s−2 This work
Planck potential Square of velocity µ0 = kTP/mP 8.987534456 ·1016 M2 s−2 This work
Standard mechanical potential Square of velocity µm

0 = µ0/2 4.493767228 ·1016 M2 s−2 This work
Number of particles in unit cell 4 This work
Planck mobility Duration of the jump BP 5.391203018 ·10−44 s This work
Temperature Planck temperature TP 1.41679(11) ·1032 K [6]

interstitial Planck particles to lattice sites. The self-
diffusivities of the Planck mass, D∗, and of interstitial
defects, D∗P, are related by D∗ = (ρP/ρ)D∗P. From the
Nernst-Einstein relation (D∗= BkT ) [8], the analogous
relation holds for the mobilities:

B = (ρP/ρ)BP, (1)

where BP and B denote the mobilities of the defects
and Planck particles, respectively.

The collective movement (“the particle-like” be-
haviour) is common in fluids (e. g., vortex, soli-
ton) and solids (e. g., complex defects and standing
waves [9]). The particle (i. e., body) is equivalent to
such a wave and is characterized by its energy, Mc2 =
4mPl−3

P
∫ ∞
−∞ edv, were M is the mass that is attributed

to the particle and e denotes the total energy density in
the PKC. If the particle is treated as complex, then by
analogy, its mobility, BM , equals

BM = (mP/M)BP. (2)

The drift velocity concept is used to define
fluxes [10, 11]. The local (υi), diffusional (υd

i )
and common drift velocities (drift due to deforma-
tion, υdrift = υσ ) in PKC are related by

υi := υi(t,x) = υd
i (t,x)+ υσ (t,x),

where υσ =
∂u
∂t

.
(3)

u is the displacement vector. The diffusion fluxes,
Jd

i (t,x), are given by the Nernst-Planck formula [12]

Jd
i = ρiυd

i = ρiBiF = ρiBi grad µm, (4)

where i denotes the Planck particle (Pi) or complex
(M), F and µm are the force and mechanical potential.

The calorimetric equation of state implies that U =
U(S,V,m). When a fixed volume is considered:U/V =

ε̌ = ε̌(š,ρm) or ρmε = ε̌(ρms,ρm), where ε̌ and š de-
note the internal energy and entropy expressed as the
energy per unit volume, ε and s are expressed per mass
unit, ρm = ρm(t,x) = mPρ is the density of mass, and
mP is the Planck mass. Thus, the Gibbs equation be-
comes [13]

d(ρmε) = T d(ρms)+ µmdρm

or d(ρε) = T d(ρs)+ µmdρ ,
(5)

where µm = ∂(ερm)/∂ρm denotes the mechanical po-
tential.

Equation (5) is used to compute the rate of entropy
production as a result of defect formation and diffu-
sion [14]. The formation of defects and their diffusion
does not affect the energy density. Both processes de-
crease the thermal (T sρ) and increase the mechanical
(µmρ) energy and are represented by the last terms
in (11) and (12).

When the deformation is small, the mechanical po-
tential depends on the total energy density:

µm = µm
0 + µm

0 ln(e/µm
0 )

or e = µm
0 exp((µm− µm

0 )/µm
0 )

=
µ0

2
exp(2(µm− µm

0 )/µ0) ,
(6)

where µ0 and µm
0 are the Planck and standard mechani-

cal potentials, see Table 1. To distinguish the energy of
the local deformation field, µm

Re, and the energy of the
“internal process”, µm

Im, the following notation is used:

µm = µm
0 + µm

Re− iµm
Im. (7)

Combining (6) and (7) and the relation between the po-
tentials (Table 1), the energy density is expressed by

e =
µ0

2
exp(2(µm

Im− iµm
Im)/µ0) . (8)
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2.2. Mass, Momentum and Energy Balances

These are described by classical formulae with rig-
orous use of the caloric equation of state. To simplify
and shorten the problem, the assumptions of a flat
temperature field in the crystal (negligible heat flux,
Jq = 0) and negligible viscosity are introduced. Conse-
quently, the conservation of mass (particles), momen-
tum and energy are given by

∂ρ/∂t =−div(ρυ) =−div(ρυσ + ρυd), (9)

ρ∂υ/∂t = ρυ grad υ + div σ , (10)

∂(µmρ)/∂t =−div(µmρυ)+ σ : gradυ
+ ρυd grad µ + γρe,

(11)

∂(T sρ)/∂t =−div(T sρυ)−ρυd gradµm−γρe, (12)

∂(ρe)/∂t = div(σ ⊗υ−ρeυ), (13)

where e = ε + 1/2υ2 = Ts + µm + 1/2υ2 is the en-
ergy density (sum of the internal and kinetic energy)
and σ = σ ′/mP. In the thermal, (12), and mechani-
cal parts, (11), of the total energy balance, (13), the
terms describing the Frenkel defect formation, ±γρe,
and diffusion,±ρυd grad µm, were introduced [14].

2.3. Mechanical Properties

The stress tensor of an ideal regular crystal is

given by σ = σ ′/mP = (λ/mPtrD)1+2µL/mPD λ=µL=
(λ/mPtrD)1 + 2λ/mPD, where D denotes the defor-
mation tensor (the symmetrical part of the strain ten-
sor) and λ = µL are the Lamé coefficients of an ideal
regular crystal.

It was shown by Cauchy and Saint Venant that, if
the particles composing a regular crystal interact pair-
wise through central forces, then there is an additional
symmetry requiring C44 = C12 [15]. This implies the
Poisson ratio 0.25 and µL = λ [15]. Using the identity:
grad div u = div grad u+ rot rot u, we have

divσ = 2λ/mP grad div u+ λ/mP div grad u
≡ 3λ/mP div grad u+ λ/mP rot rot u.

(14)

The Young modulus and the ratio of the longitudinal to
the transverse wave velocities equal (cL/cT)2 = 3 and
E = 2.5λ [15].

Only the isothermal processes are analyzed, conse-
quently fP, TP, BP , λ , γ = const. Upon introducing the

mass diffusion flux, (3) and (4), and stress tensor, (14),
formulae (9) – (13) become

∂ρ/∂t = div(ρNPBP grad µm)− div(ρυσ ), (15)

ρDυ/Dt|υ = 3
λ

mP
div grad u+

λ
mP

rot rot u, (16)

∂(µmρ)/∂t =−div(µmρυ)+ σ : Gradυ
+ ρυd grad µm + γρe,

(17)

∂(ρe)/∂t = div(σ ⊗υ−ρeυ). (18)

The unknowns are ρ , u, µm and e. Below, only uncou-
pled, elementary processes will be analyzed.

2.4. Newtonian Constant of Gravitation

The mechanical energy conservation, (17), allows us
to estimate the gravity field generated by the immo-
bile body, mass M, in the PKC. Gravity is created by
diffusing Planck particles. The immobile body implies
a quasi-stationary situation and the deformation, mass
and energy in a space occupied by the body are “fixed”:
µm = µm(x), ρ = ρ(x) and υσ = ∂u/∂t ∼= 0. One can
assume: σ : Gradυ ∼= 0. Thus, combining (3) and (17):

µm div(ρPυd
P) = γρe. (19)

The diffusion velocity depends on the real part of the
mechanical potential µm ∼= µm

Re, and becomes

υd
P =−BP grad µm

Re(t,x). (20)

The mass-energy equivalence in the PKC, mPρe =
c2ρM (E = Mc2), implies:

e = c2ρM/(mPρ). (21)

Assuming that the defect concentration does not vary
markedly, ρP ∼= const., and combining (19) – (21):

div gradµm
Re
∼=−ρM(γc2)/(mPµmBPρP). (22)

When the local energy density due to the mass M
does not change markedly, the average value of
the mechanical potential in the PKC can be used:
µm ∼= µ̄m = 2µm

0 /π = µ0/π . The density of defects
and the frequency of their formation are given by
ρP ∼= αl−3

P exp(−E f /kTP) and γ ∼= fPα exp(−E f /kTP),
where α and fP are the geometrical factor and the
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Table 2. The computed physical constants of the Planck – Kleinert Crystal.

Physical Quantity Unit
Symbol for unit
and relations
with other units

Value in SI units SI unit Reference

Planck density Mass density 4mPl−3
P 2.062008662 ·1097 kg m−3 This work

Gravitational constant G = c2lP/mP
6.67418999 ·10−11

6.6742(10) ·10−11 m3 kg−1 s−2 This work
[6]

Self-diffusion coefficient Planck diffusivity D∗P 4.845362288 ·10−27 m2 s−1 This work

Planck energy Energy E0 = l3
Pλ/4 1.9560971 ·109

1.9560932 ·109 kg m2 s−2 This work
[6]

Planck constant (Particle energy in
one cycle) · 4π h = 2πmPBPc2 6.626069311 ·10−34

6.6260693(11) ·10−34 kg m2 s−1 This work
[6]

Speed of transverse wave Velocity c =
√

l3
Pλ/4mP

299 792 458
299 792 458 m s−1 This work

[6]

Speed of longitudinal wave Velocity cL =
√

3c 519 255 769 m s−1 This work

Planck frequency [16]. Upon substituting the above re-
lations and data from Tables 1 and 2, (22) becomes

div gradµm
Re =−4πρM(l3

P fPc2)/(mPµ0BP)

=−4πρM(lPc2)/mP

=−4πGρM,

(23)

which is the equation discovered by the French math-
ematician Siméon-Denis Poisson, and G = 6.674189 ·
10−11 is the Newtonian constant of gravitation (NIST
data: G = 6.6742(10) · 10−11 [7]). It was shown that
the diffusing interstitial Planck particles are equivalent
to weakly interactive massive particles and create the
gravitational interaction between matter. One can con-
sider the analogies between the “dark matter” and dif-
fusing Planck particles as well as between the “dark
energy” and energy of the diffusing Planck particles.

2.5. The Time-Dependent Schrödinger Equation

The deformation and its velocity as well as dif-
fusion of defects are now assumed to be negligible,
υσ = υd

P = 0 and div(σ ⊗ υ) ∼= 0. The process that
governs the de Broglie waves is the fast internal pro-
cess. We analyze the case when the driving force of
the transport (the collective Planck mass movement,
i. e., the movement of a complex of particles showing
an energy E and mass M = Ec−2) is controlled by the
imaginary part of the mechanical potential, µm = µm

Im.
The flux given by (4) equals Jd

M = −ρMBM grad µm
Im =

−ρeBM grad µm
Im, and (18) becomes

∂(ρe)/∂t = BM div(ρegrad µm
Im). (24)

By combining (2), (8) and (24) one gets

∂exp(2(µm
Re− iµm

Im)/c2)/∂t =

(mPBP)/M div(exp(2(µm
Re− iµm

Im)/c2)grad µm
Im).

(25)

By denoting ψ = exp((µm
Re − iµm

Im)/c2), E = mP/

(2Mc2)BP(( µm
Im)2 + c2∆µm

Re + ( µm
Re)

2) and using
the identity ψ−1∆ψ = ∆(µm

Re− iµm
Im)/c2 + ( (µm

Re −
iµm

Im)/c2)2, (25) becomes the standard Schrödinger
equation:

i∂ψ/∂t =−(mPBPc2)/(2M)div gradψ + Eψ
=−h/(4πM)div gradψ + Eψ .

(26)

Using data shown in Table 1 one can compute the value
of Planck’s constant, Table 2.

2.6. Transverse Waves in Planck – Kleinert Crystal

The wave propagation can be analyzed in two limit-
ing situations, the longitudinal wave: rotu = 0, and the
transverse one: div gradu = 0. When mass transport
occurs solely due to deformation (υ = υσ ), the defor-
mation is low (ρ ∼= const.) and the longitudinal wave
is excluded, (16) becomes the equation of a transverse

wave with the velocity given by c =
√

l3
Pλ/4mP:

∂υσ /∂t = ∂2u/∂t2 = λ l3
P/(4mP) rot rot u. (27)

2.7. Maxwell Equations in Vacuum

Suppose that E = − rot u, B = υσ and the perme-
ability equals µB

0 = 4mP/l3
Pλ = ρm/λ . Then, (27) be-

comes

µB
0 ∂B/∂t =− rot E. (28)
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The second equation follows straightforwardly. Dif-
ferentiation of the electric field strength, E = − rot u,
yields ∂E/∂t = −∂ rot u/∂t = − rot∂u/∂t, which by
substituting B = υσ = ∂u/∂t results in

ε0∂E/∂t =− rot B. (29)

The permittivity, ε0, equals one, and ε0µB
0 = c−2. The

other relations that form the Maxwell system are the
consequence of an “empty lattice” and low deforma-
tion. From (15), the usual formula for noncompressible
flow follows: divυσ = 0. Thus, from the assumption of
low deformation:

divB = divυσ = 0. (30)

The charged particles are not included in the present
analysis. Upon differentiating the constitutive equa-
tion for E one gets: divE =−div rot u. Consequently,
from the identity div rot u = 0, it follows that

divE = 0. (31)

Equations (28) – (31) form the Maxwell system in vac-
uum.

3. Summary

The results support the physical reality at the
Planck scale and allow for the interpretation of gravity,
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quantum mechanics and electromagnetic phenomena.
Faster than light velocities of the longitudinal wave
might be considered as unphysical, and this requires
“fine-tuning” or higher symmetry to make all “sound
speeds” equal. Here, the different velocities are related
to specific force fields and were analyzed as real quan-
tities that mark different time scales. The diffusing in-
terstitial Planck particles (defects) create the gravita-
tional interaction between matter. The collective be-
haviour of the particles forming the Planck-Kleinert
Crystal is equivalent to the particle (body). Such an
approach enables the Schrödinger equation to be de-
rived. The transverse wave in the PKC is equivalent to
an electromagnetic wave in vacuum. The PKC model
allows the derivation of the classical Newton’s law of
gravity (the Poisson equation). The consequence of
the equation of internal energy conservation is the ex-
istence of waves involving temperature, but not the
mechanical potential variations. They are analogous
to “the second sound” described by Landau and Lif-
schitz [14].
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