Volume 22, number 3

PHYSICS LETTERS 15 August 1966

THE ALGEBRA OF SCALAR AND VECTOR VERTEX STRENGTHS
IN REGGE RESIDUES

N.CABIBBO
CERN, Geneva

L.HORWITZ *
Institut de Physique Théorigue, Université de Genéve
and

Y.NE'EMAN **

Tel Aviv University
Institul de Physique Théorique, Université de Gen2ve and
CERN, Geneva

Received 4 July 1966

An algebra of 'strong' scalar and vector currents coupled to Regge residues accounts for the composite
model predictions in high-energy elastic scattering. Some new relations are given; o(K™N) = o(K*P) is

accounted for in a simple way.

We shall present an approach based upon the
identification of an algebra of scalar and vector
currents in the structure of the residue functions
associated with Regge trajectories, somewhat in
analogy to the way in which the weak and electro-
magnetic transitions of the hadrons define the
system of vector and axial-vector currents. Ap-
plying the theory directly to high-energy scatter-
ing, we find we can predict some hitherto unex-
plained features. In so doing, we also produce a
theoretical interpretation of a number of good
results {1-5] whose derivation has generally been
considered to imply a composite-particle struc-
ture for the hadrons.

Physical intuition based upon somewhat un-
realistic models has twice before within recent
years opened up new extensions of unitary sym-
metry; in both cases [6, 7] - non-relativistic
SU(6) and too-relativistic SU(6,6) - excellent re-
sults have been obscured at times by difficulties
and dilemmas in the theoretical foundations {8].
Much clarification, a new understanding and a
series of new results were each time provided
by the definition of an algebraic methodology
[9, 10] which was gradually improved and made
congistent with relativistic quantum theory {11].
It is our contention that the present use of a
"naive" quark model, - leading to a new subpar-
ticle physics with methods emulating those used
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in nuclear structure and the many-body problem -
should be regarded in the same light as the pre-
vious suggestive break-ins.

It is with this motivation in mind - an algebraic
foundation for the high-energy results - that we
make our suggestions. We deal with the simple
case of forward scattering, though it is probable
that the treatment can be extended to other situa-
tions. Qur formulation should be regarded as a
first rough definition, to be further refined ex-
tensively.

The description of high-energy baryon-baryon
and baryon-meson phenomena in terms of Regge
trajectories has been highly [12] successful and
supplies the most appropriate framework for our
treatment. In a series of recent studies [13], one
finds a useful and consistent parametrization of
the data, based upon the residue functions g(#) and
the pole trajectories a(f), where ¢ is the square
of the momentum transfer and the energy depen-
dence is explicit. The real part of the trajectory
is effectively described by its intercept a(0) and
its slope at that point.

The factorization theorem [14] allows us to re-
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place g{t) by a product of two vertex strength
functions y‘:‘:B(t), which are analogous to form

factors in quantum electrodynamics; 'yéB stands
for example for an upper vertex where the tra-
jectory C occurs as an intermediate state in the
t channel scattering of incoming particles A and
B and as an exchanged system (Regge pole) in the
s channel scattering of A into B.

Actual high-energy phenomenology has
achieved a general fit of known processes in
terms of vertex strength functions coupled to
two even intrinsic-parity trajectories with op-
posite signature, dominated by two meson unitary
nonets withj = 1”7 and 2%. Some differences
exist between the workers in the field, mainly
with respect to the number of 2+ unitary singlet-
dominated trajectories. We shall here adopt the
view that one is faced with an octet-singlet set
for each signature, including the Pomeranchuk
trajectory.

Observations indicate that apart from the lat-
ter (whose intercept a_q(0) =1, where st denotes
an even-signature trajectory corresponding to the
ith unitary index, counting from 0 to 8), all tra-
jectories s? and v? (v denotes odd signature) have
a(0) ~ 0.5, Deviations from the Pomeranchuk lim-
it vAB = GAB ghould thus tend to disappear with
increasing energy at some general common rate.
Variegation in the "law of force" picture seems
to result in the main from differences between
residues.

We assume that the vertex strengths yéB(O)
in the limit of forward scattering are given by
matrix elements of algebraic operators belonging
to a U(12) algebra. We introduce a system of nine
strengths St with scalar densities; when adjoined
to a second nonet of strengths V? with the same
algebraic properties as the unitary spin genera-
tors, they close on a U(3) X U(3) sub-algebra
completely isomorphic to the [U(3) x U(3)] con-
tained in the [U(6) x U(6)] "good" rest symme-
try * defined by Dashen and Gell-Mann.

The matrix elements of the system of St and

Vi strengths are to be identified with the ¥ B(O)
and 'yAiB(O) respectively as
v

* It is not clear that our strengths are really to be iden-
tified with the space integrals of the currents asso-
ciated directly with weak transitions. For instance,
we may be dealing with a class of source currents of
strong transitions, consistently definable in terms of
the Regge formalism. The complete U(12) algebra of
strengths would contain pseudoscalar and axial-vector
operators (corresponding to trajectories with 0~ and
1% exchange). These additional operators cannot re-
present rest symmetries,

53 (pa-PB)YAP(0) = (A| [ D(eo®rE; x, 0)a%|B)
1)

53(py - pB)YAP(0) = (A | fA0*XE; x,00d%|B) (2)

where the integrals are carried out in the rest
Jframe of the incident particle **. Note that to ac-
count for spin flip we would use an entire set of
U(6) X U(6) generators. In the following we shall
deal with elastic scattering only, thus using in
fact 0© with £ = 0, 3, 8 only. The $* and V* would
be written in a quark representation as

=4 [ a3 q*prig 3)
vi=1[d3xq" Ng . (4)
We note that
[st, 8] =1 79, V¥ (5)
[V, s] =i fii},s%. (6)

The effect of 8 in the U(12) algebra can be re-
presented in terms of constituent (1,0, 0) repre-
sentations - mathematical quarks [15] - as addi-
tive (positively) in quark and antiquark unitary
charges. SO, for example, has eigenvalues pro-
portional to the number of "quark charges" plus
"antiquark charges" (in opposition to VO which is
proportional to baryon charge, i.e., to the number
of "quark charges"” minus anthuark charges").
St adds up A% contributions of quarks plus A~ con-
tributions of antiquarks (V% picks out the differ-
ences, since -\’~ is the unitary spin representa-
tion of the aptiquarks). It is for the above reason
that using S* densities reproduces the results of
"quark-additivity" and "quark counting" applied
in composite models. As a simplest example,
consider this crude derivation of the o;+p/opp
ratio. Fig. 1 shows the ¢ channel exchange of a
Pomeranchuk trajectory. Assuming this to be
dominant# at the highest energies, we derive for
the total cross sections the Levin-Frankfurt
ratio [1].

mr PP
Y. o(0) ¥_q (0)
150070 © -

o~
_

Wi

PP PP, . PP
Y g0 0) v 50 (0)
since y 0(0) is, according to its definition, just

the elgenvalue ngo of the generator SO. We have
used, of course, the [U(6) x U(G)]B assignments

** The densities will supply form factors; however we
deal with ¢ # 0 elsewhere.

* Similar considerations with both S° and S8 contribut-
ing predict Gpp > Okp as can be seen from the table
below. We are indebted to Dr. J.J.J.Kokkedee for
this remark.
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Fig.1.

of (56,1)* and (6,6*)” for baryons and mesons
respectively. In this connection we wish to em-
phasize an approximation, implicit in our adop-
tion of the Regge formalism, in which we have
defined the vertex strengths at each vertex inde-
pendently. It may be that'a complete theory would
require us to treat both vertices simultaneously
and that the same classification of states in upper
and lower vertices cannot be maintained as far as
the §¢ part of [U(3) x U(3)] goes. The possibility
of an alteration in F/D ratlo at one vertex should
therefore be taken into account for the §¢ matrix
elements (this is the only allowed alteration); we
discuss this later in connection with the compa-
rison of our ideas with experiment. However,

in cases such as eq.(7), where the ratio of cross
gsections with the same baryon-scalar vertices is
computed, this possible effect cancels out com-
pletely and no approximation is involved.

Note that the commutation relations fix the
relative scales of Ygi and Yyi by imposing a qua-
dratic relation.

We assume that the elastic scattering ampli-
tude is given by * (¥A now stands for yAA, etc.)

RO SRR AR CHE

X1+exp(-i1roti)1"(ai+3)( )oz ()
sinnaz? r‘(a§+1)
v v
i o o2t F(Zvil)( f(t)f
i
where

v = (total energy in c.m.) + 3¢ - mi - m123 . {9)

g(as) is a ghost-killing factor which we have to

separate explicitly in order to cancel out the pole
at @$ = 0. We shall assume that in the neighbour-
hood of £=0, g(ais) =~ 1. Since these trajectories
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Table 1
Total cross sections
PN - Gt(s’ + 3t§ - t; + etg + o8ty - t‘3’
PN = 6t(s) + 3t§ - t; - 6t:)' - By t;’
PP - 6l + 35+ # - 6Ly - B4 - L
PP = stg + 3t§ + t; + etg + 3t§ + t;
P = 4t§ + 2t§ - 2t;
TP = 4t§ + 2t§ + 2t;
K*P = a4y - i o+t - sty -ty
K-P = 4t§ - t; + t; + 3t; + t;
KN = 4ty - 5 - £ - Bty vty
KN = 4t(s) - t; - t; + 3t; - t;

describe the exchange of 2% and 1- particles res-
pectively, the absolute signs of their contribu-
tions are determined by the requirement that they
give rise to forces between equal particles which
are respectively attractive and repulsive. We as-
sume no ambivalence is introduced by the ¢ depen-
dence.

The j = 1~ trajectory may couple to the 1- par-
ticles in the usual way. As to the j = 2+ mesons,
they cannot couple directly with scalar quantities,
but our prescription is appropriate for the coupl-
ing of their trajectory at a@ = 0. The problem of
coupling to Regge recurrences is not special to
the scalar, but occurs also for the other trajec-
tories.

The contribution of each pole to the total cross
section is equal to the product of vertex strengths
defined according to egs. (1) and (2), a factor
(tv or ts) depending upon energy and the position”
of the pole and a sign determined by the signa-
ture in eq. (8) (negative for the vector contribu-
tion). Our basic result is given in table 1, where
a normalization corresponding to tr )\2 = 2 is used
to avoid fractional coefficients.

The coefficients actually correspond to over-
all F coupling for the vector trajectories and for
the mesons and baryons D and F coupling, res-
pectively, to the scalar trajectories. SU(3) sym-
metry would imply the equality /3 = t% and t¥ =
= #%; U(3) among the vector contributions would
imply ¢y = £ =tg and [SU(3)x SU(3) ] p (excluding

+ We neglect w-@ mixing since we consider the case in
which their trajectories are essentially degenerate.
Our identification of sO with the Pomeranchuk trajec~
tory requires no s - s8 mixing at & = 0,
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tS) would finally imply (¢§ = £§) that all * but the
Pomeranchuk coefficients are equal. We note
here that tg = t‘é alone immediately implies that
(5]

K*P =K*N . (10)

This relation is well satisfied between 6 and

20 GeV/c and may be interpreted in our theory
as a close degeneracy between the sg and vg in-
tercepts (both contributions become small, how-
ever at higher energies).

The parameter tg is positive; it follows from
our basic picture that all 5 and £ are positive
numbers and we derive the following 1nequaut1es,
valid without any other restriction:

K-P >K-N

7P >qgtp

K-P >K*P

K™P >K*'N
K-P - K'N > |K*P - K*N|
K'P +K"P >K'N + K°N

(11)

The relations (11) are strikingly verified.
For baryon-baryon scattering we obtain

PP > PP

PP > PN

PP > PN (12)
PP - PP >PN - PN
PP + PP > PN + PN

Four identities also follow since there are 10
relations and only 6 parameters:

K*P - K*N = PP - NP [5]
K™P - K'N = PP - PN [5]
3(n*P +7~P) = PN + PN + PP + PP [2,4]
K*P+7"P+K"N =K"P + 7*P + KN [2]

(13)

Following the procedure used for table 1 we ob-
tain

_p,S v
AP —6t0+6t0 (14)

and therefore
AP - PP =K-N - 7*P [2]. (15)

The additional "antisymmetric" (t? cancelling)
relations follow from SU(3) (the Johnson-Treiman

* A rest symmetry in the ¢ channel and degeneracy of

the trajectories implies equality of the scale factors
Vs and v,..

relation [16]) and U(3), for the Freund [3] rela-
tion,

PP - PP = %—(f’N-PN) =5(m-P-7*P) . (16)

As to the other "symmetric” v(t‘.’ cancelling) rela-
tions of Lipkin and Scheck [2]

PP + PP = 2[n*"P+71"P]-:[K'P +K P]
K*P + K™P = 3[7*P+7"P +K*N +K"N]

they require SU(3) among the scalar trajectories,
which is a stronger condition and seems to be less
well satisfied.

Imposing the [SU(2) X SU(2) ]ﬁ relation t3 = t3
[leading immediately to (10)] as well as SU(3)
among the vector trajectories (tV = tV) we obtain

(17)

K°N = 3#(K-P +K*P) [5], (18)

which is well satisfied. However, setting also
t§ = t§ (imposing SU(3) among the scalar trajec-
torles) one obtains [5]

TP=KP
7P = K°N

which are not as good. As mentioned above we
should expect some mixing of the (56, 1) with
other [U(6) X U(6) |5 states, which would generate
some D coupling at the scalar trajectory mucleon
vertex, affecting mainly tg. Adjoining a small
negative admixture of D coupling to this vertex,
the experimental meson-nucleon data can be fit
to within a millibarn, taking common £f and ¢

(j #0). Alternatively, solving for the coefficients,
one notices that tﬁ is rather large.

(19)
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Two general methods used in the framework of
the algebra of currents to obtain sum rules have
been extensively studied in a previous paper [1]
to which we refer for details and notations. The
aim of this note is to compare both methods in a
particular case from which the Adler-Weisber-
ger L2,3] sum rule follows.

1% The basis quantity of interest is a causal
amplitude

TP=1d,x exp(-ig, 60, |75 (), T5(0) 1|7 1>(1)

where o and B8 are unitary spin indices.

We define g1 as 4, =pg +4q3 - pl and for sim-
plicitg' we consider only the case where p% =p5 =
= -M4, As usual, we introduce convenient four
vectors

P =3(py+p2); Q= 3@1+9); A=p1-P3=9%-11
and the scalar variables
v :-qz.P :-ql.P =Q.P,

We restrict ourselves, in the following, to the
part of the amplitudes skew symmetric in the ex-
change of the unitary spin indices a « 3.
20 The Fubini method [4] applied twice, gives
the equation [1]:
ppof o _oaf oB 4

5T ppdy = VP +c 5 pl@ " @lp) (@)
where V@Bis defined by the commutator of the
current divergences:

t=-n2,
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vP=1fd,xexp(-igy D0(xNp, |[TX0,750)] | ;) .
(3)

The caB are the U(3) structure constants and
the second term of the right hand side of eq. (2) is
called the equal time commutator contribution.
Such an equality is obtained replacing the momenta
g1 and g9 by the divergence operator and integrat-
ing by parts. The divergence term - also usually
called the surface term - is assumed to vanish at
infinity.

The Adler method [5] gives the general equa-
tion [1]:

af_ ap .«
VTpo‘ Upo-cyﬁx

x(by|P,TY (0)+P, IY(0) -£,, P-T N0} p) (4)
where

N .
Upf =- 3P, [ d,xexp(-ig,-x)6(x) x

x<py [0 5, 70)] - [T ),2% TEO)1p,). (5)

Using the definition of v : v = -3(¢4 +q9). P the
same technique of integration by parts is applied
for the Adler method. p._aB

o]
The scalar quantity qy T iy g, can be computed
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