Critical Properties
of $\phi^4$-Theories
Critical Properties
of $\phi^4$-Theories

Hagen Kleinert and Verena Schulte-Frohlinde

Freie Universität Berlin
Preface

During the past 25 years, field theory has given us much understanding of critical phenomena. Development in this area was extremely rapid and has reached a certain degree of maturity. Perturbative calculations of the critical exponents in $4 - \varepsilon$ dimensions have been carried out to the level of five loops, in 3 dimensions to seven loops, with great effort. The resulting power series diverge and their evaluation requires resummation methods, which have been developed at the same time to a considerable degree of accuracy.

The present monograph started life as lecture notes for a course on quantum field theory delivered regularly by the first author (H.K.) at the Freie Universität Berlin since the early seventies. In 1989, two of his students, J. Neu and the second author (V. S.-F.) attended this course while working on their Master’s thesis. Ambitiously, they undertook the arduous task of recalculating the five-loop renormalization constants of $O(N)$-symmetric $\phi^4$-theories published by K.G. Chetyrkin, S.G. Gorishny, S.A. Larin, and S.V. Tkachov, and discovered several errors. They traveled to Moscow to discuss their findings with the Russian authors who confirmed them after repeated checks. The correct results were subsequently published in a joint paper. In her Ph.D. thesis, V. S.-F. extended the five-loop calculations to a mixture of interactions with $O(N)$ and cubic symmetry. The complete five-loop results are contained in this book.

At present it would be extremely difficult to increase the number of loops in the exact calculations any further without injection of new ideas. We therefore believe it is time to put together the available field-theoretic techniques in this monograph, so that future workers on this subject may profit from it.

We are grateful to J. Neu for many discussions at an early stage in the preparation of this book until 1991. He wrote the computer program for enumerating the Feynman diagrams with the associated weight factors in Chapter 14. More recently, Dr. E. Babaev, Dr. A. Pelster, Dr. Pai-Yi Hsiao, Dr. C. Bevillier contributed with comments.

We would further like to thank Dr. J.A. Gracey for several useful communications on the large-$n$ limits of the critical exponents, and to Drs. Butera and Comi for permission to use their high-temperature expansions in Chapter 20 which we made available as files on the internet pages of this book (http://www.physik.fu-berlin.de/~kleinert/re.html#b8).

Most importantly, we are indebted to Dr. B. Kastening for his intensive reading of the book. His corrections and useful suggestions greatly helped improve the final draft. Many printing and stylistic errors were pointed out by Dr. Annemarie Kleinert and by Jeremiah Kwok, our editor of World Scientific Publishing Company.

None of the above persons can, of course, be blamed for the errors introduced in the subsequent correction process.

---

All quoted papers published by our research group in Berlin can be downloaded from the internet, the more recent ones from the Los Alamos server (http://xxx.lanl.gov/find), the older ones from our local server (http://www.physik.fu-berlin.de/~kleinert/re0.html).

Finally, H.K. thanks his secretary Ms. S. Endrias for her invaluable help in finishing the book.

_Hagen Kleinert and Verena Schulte-Frohlinde_

Berlin, May 2001
# Contents

**Preface**

1 Introduction ................................................. 1
   1.1 Second-Order Phase Transitions .......................... 1
   1.2 Critical Exponents ..................................... 3
       1.2.1 Correlation Functions .............................. 3
       1.2.2 Other Critical Exponents .......................... 5
       1.2.3 Scaling Relations .................................. 7
   1.3 Models for Critical Behavior ............................ 9
       1.3.1 Landau Theory ..................................... 9
       1.3.2 Classical Heisenberg Model ........................ 11
   1.4 Fluctuating Fields ..................................... 15
       1.4.1 Ginzburg-Landau Energy Functional .................. 16
       1.4.2 Ginzburg Criterion .................................. 18
       1.4.3 Kleinert Criterion .................................. 20
   1.5 General Remarks ....................................... 23
 Appendix 1A Correlations and Structure Factor ............... 27
 Notes and References ....................................... 27

2 Definition of $\phi^4$-Theory ................................. 32
   2.1 Partition Function and Generating Functional .......... 32
   2.2 Free-Field Theory ..................................... 34
   2.3 Perturbation Expansion ................................. 37
   2.4 Composite Fields ...................................... 39
 Notes and References ....................................... 40

3 Feynman Diagrams .............................................. 41
   3.1 Diagrammatic Expansion of Correlation Functions ........ 41
   3.2 Diagrammatic Expansion of the Partition Function ........ 46
   3.3 Connected and Disconnected Diagrams ...................... 47
       3.3.1 Multiplicities of Disconnected Diagrams .......... 47
       3.3.2 Cancellation of Vacuum Diagrams ................... 48
   3.4 Connected Diagrams for Two- and Four-Point Functions .... 49
   3.5 Diagrams for Composite Fields .......................... 50
 Notes and References ....................................... 51

4 Diagrams in Momentum Space ................................. 52
   4.1 Fourier Transformation .................................. 52
       4.1.1 Free Two-Point Function ............................ 52
4.1.2 Connected n-Point Function .................................. 53
4.2 One-Particle Irreducible Diagrams and Proper Vertex Functions ................. 55
4.3 Composite Fields ................................................. 57
4.4 Theory in Continuous Dimension $D$ .................................. 58
Notes and References ................................................. 58

5 Structural Properties of Perturbation Theory .................................. 59
5.1 Generating Functionals ............................................. 59
5.2 Connectedness Structure of Correlation Functions ................................. 60
5.3 Decomposition of Correlation Functions into Connected Correlation Functions ....... 62
5.4 Functional Generation of Vacuum Diagrams .................................. 64
5.5 Correlation Functions From Vacuum Diagrams .................................. 68
5.6 Generating Functional for Vertex Functions .................................. 69
5.7 Landau Approximation to Generating Functional .................................. 74
5.8 Composite Fields ................................................... 75
Notes and References ................................................... 76

6 Diagrams for Multicomponent Fields ............................................. 77
6.1 Interactions with $O(N)$ Cubic Symmetry ................................ 77
6.2 Free Generating Functional for $N$ Fields .................................. 78
6.3 Perturbation Expansion for $N$ Fields and Symmetry Factors ....................... 79
6.4 Symmetry Factors ................................................... 80
  6.4.1 Symmetry Factors for $O(N)$ Symmetry ................................ 81
  6.4.2 Symmetry Factors for Mixed $O(N)$ and Cubic Symmetry ..................... 84
  6.4.3 Other Symmetries .............................................. 87
  6.4.4 General Symmetry Factors ..................................... 88
Notes and References ................................................... 90

7 Scale Transformations of Fields and Correlation Functions ......................... 91
7.1 Free Massless Fields ............................................... 91
7.2 Free Massive Fields ............................................... 93
7.3 Interacting Fields .................................................. 94
  7.3.1 Ward Identities for Broken Scale Invariance ................................ 95
7.4 Anomaly in the Ward Identities ....................................... 97
Notes and References .................................................. 100

8 Regularization of Feynman Integrals ............................................. 102
8.1 Regularization ..................................................... 102
8.2 Dimensional Regularization .......................................... 104
  8.2.1 Calculation in Dimensional Regularization ............................... 104
  8.2.2 Dimensional Regularization via Proper Time Representation ............... 106
  8.2.3 Tensor Structures ............................................. 108
  8.2.4 Dimensional Regularization of 't Hooft and Veltman ......................... 109
  8.2.5 Subtraction Method ............................................ 111
8.3 Calculation of One-Particle-Irreducible Diagrams ................................ 112
  8.3.1 One-Loop Diagrams ............................................ 112
  8.3.2 Two-Loop Self-Energy Diagrams ................................... 114
  8.3.3 Two-Loop Diagram of Four-Point Function .................................. 118
  8.3.4 Two-Loop Vacuum Diagrams ..................................... 120

H. Kleinert and V. Schulte-Frohlinde, Critical Properties of $\phi^4$-Theories
# 11 Recursive Subtraction of UV-Divergences by R-Operation

11.1 Graph-Theoretic Notations ............................................. 187  
11.2 Definition of $R$- and $\bar{R}$-Operation .......................... 188  
11.3 Properties of Diagrams with Cutvertices ............................ 191  
11.4 Tadpoles in Diagrams with Superficial Logarithmic Divergence 192  
11.5 Nontrivial Example for $R$-Operation ............................... 193  
11.6 Counterterms in Minimal Subtraction .............................. 193  
11.7 Simplifications for $Z_{m^2}$ ........................................... 195  
11.8 Simplifications for $Z_{\phi}$ .......................................... 196  
Notes and References ...................................................... 197

# 12 Zero-Mass Approach to Counterterms

12.1 Infrared Power Counting .............................................. 199  
12.2 Infrared Rearrangement ............................................... 200  
12.2.1 The $R$-Operation for Massless Diagrams ........................ 203  
12.2.2 Zero-Mass Simplifications for $Z_{\phi}$ ........................... 205  
12.3 Infrared Divergences in Dimensional Regularization .............. 206  
12.3.1 Nonexceptional External Momenta ............................... 207  
12.3.2 Exceptional External Momenta ................................. 207  
12.3.3 Massless Tadpole Diagrams .................................... 208  
12.4 Subtraction of UV- and IR-Divergences: $R^*$-Operation ......... 208  
12.4.1 Example for Subtraction of IR- and UV-Divergences .......... 208  
12.4.2 Graph-Theoretic Notations .................................... 210  
12.4.3 Definition of $R^*$- and $\bar{R}^*$-Operation .................. 213  
12.4.4 Construction of Infrared Subtraction Terms of Subdiagrams 214  
12.4.5 IR-Counterterms .................................................. 218  
12.5 Examples for the $\bar{R}^*$-Operation ............................... 222  
Appendix 12A Proof of Interchangeability of Differentiation and $R$-Operation .................. 224  
Notes and References ...................................................... 226

# 13 Calculation of Momentum Space Integrals

13.1 Simple Loop Integrals ............................................... 227  
13.1.1 Expansion of Loop Function .................................. 229  
13.1.2 Modified MS-Scheme and Various Redefinitions of Mass Scale 231  
13.1.3 Further Subtraction Schemes .................................. 232  
13.2 Classification of Diagrams ......................................... 232  
13.3 Five-Loop Diagrams .................................................. 233  
13.4 Reduction Algorithm based on Partial Integration ............... 235  
13.4.1 Triangle Diagram ............................................... 235  
13.4.2 General Triangle Rule ...................................... 237  
13.4.3 Reduction Algorithms ........................................ 239  
13.5 Method of Ideal Index Constellations in Configuration Space 242  
13.5.1 Dual Diagrams ................................................. 242  
13.5.2 Star-Triangle Rule for an Ideal Vertex ........................ 243  
13.5.3 One Step from Ideal Index Constellation ...................... 245  
13.5.4 Transformation of Indices .................................... 246  
13.5.5 Construction of Tables ....................................... 247  
13.6 Special Treatment of Generic Four- and Five-Loop Diagrams ... 249

H. Kleinert and V. Schulte-Frohlinde, *Critical Properties of $\phi^4$-Theories*
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6.1</td>
<td>N-Shaped Diagram</td>
<td>249</td>
</tr>
<tr>
<td>13.7</td>
<td>Computer-Algebraic Program</td>
<td>250</td>
</tr>
<tr>
<td>Appendix 13A</td>
<td>Fourier Transformation of Simple Powers in D Dimensions</td>
<td>251</td>
</tr>
<tr>
<td>Appendix 13B</td>
<td>Further Expansions of Gamma Function</td>
<td>252</td>
</tr>
<tr>
<td>Notes and References</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>14</td>
<td>Generation of Diagrams</td>
<td>255</td>
</tr>
<tr>
<td>14.1</td>
<td>Algebraic Representation of Diagrams</td>
<td>255</td>
</tr>
<tr>
<td>14.2</td>
<td>Generation Procedure</td>
<td>257</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Vacuum Diagrams</td>
<td>258</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Two-Point Diagrams</td>
<td>258</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Four-Point Diagrams</td>
<td>262</td>
</tr>
<tr>
<td>14.2.4</td>
<td>Four-Point Diagrams for Mass Renormalization</td>
<td>263</td>
</tr>
<tr>
<td>14.2.5</td>
<td>Check for Number of Connected Diagrams</td>
<td>264</td>
</tr>
<tr>
<td>Notes and References</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>15</td>
<td>Results of the Five-Loop Calculation</td>
<td>274</td>
</tr>
<tr>
<td>15.1</td>
<td>Renormalization Constants for O(N)-Symmetric Theory</td>
<td>275</td>
</tr>
<tr>
<td>15.1.1</td>
<td>Renormalization Constants up to Two Loops</td>
<td>275</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Renormalization Constants up to Five Loops</td>
<td>276</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Ratios between Bare and Renormalized Quantities up to Five Loops</td>
<td>277</td>
</tr>
<tr>
<td>15.2</td>
<td>Renormalization Constants for Theory with Mixed O(N) and Cubic-Symmetry</td>
<td>280</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Renormalization Constants up to Two Loops</td>
<td>280</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Renormalization Constants up to Three Loops</td>
<td>283</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Ratios between Bare and Renormalized Quantities up to Three Loops</td>
<td>284</td>
</tr>
<tr>
<td>15.3</td>
<td>Renormalization Constant for Vacuum Energy</td>
<td>285</td>
</tr>
<tr>
<td>Notes and References</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>16</td>
<td>Basic Resummation Theory</td>
<td>287</td>
</tr>
<tr>
<td>16.1</td>
<td>Asymptotic Series</td>
<td>287</td>
</tr>
<tr>
<td>16.2</td>
<td>Padé Approximants</td>
<td>291</td>
</tr>
<tr>
<td>16.3</td>
<td>Borel Transformation</td>
<td>292</td>
</tr>
<tr>
<td>16.4</td>
<td>Conformal Mappings</td>
<td>295</td>
</tr>
<tr>
<td>16.5</td>
<td>Janke-Kleinert Resummation Algorithm</td>
<td>297</td>
</tr>
<tr>
<td>16.5.1</td>
<td>Reexpansion Functions</td>
<td>298</td>
</tr>
<tr>
<td>16.5.2</td>
<td>Convergent Strong-Coupling Expansion</td>
<td>301</td>
</tr>
<tr>
<td>16.5.3</td>
<td>Relation with Conformal Mapping Technique</td>
<td>301</td>
</tr>
<tr>
<td>16.6</td>
<td>Modified Reexpansions</td>
<td>302</td>
</tr>
<tr>
<td>16.6.1</td>
<td>Choosing the Strong-Coupling Growth Parameter s</td>
<td>303</td>
</tr>
<tr>
<td>Notes and References</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>17</td>
<td>Critical Exponents of O(N)-Symmetric Theory</td>
<td>305</td>
</tr>
<tr>
<td>17.1</td>
<td>Series Expansions for Renormalization Group Functions</td>
<td>305</td>
</tr>
<tr>
<td>17.2</td>
<td>Fixed Point and Critical Exponents</td>
<td>306</td>
</tr>
<tr>
<td>17.3</td>
<td>Large-Order Behavior</td>
<td>308</td>
</tr>
<tr>
<td>17.4</td>
<td>Resummation</td>
<td>310</td>
</tr>
<tr>
<td>Notes and References</td>
<td></td>
<td>314</td>
</tr>
</tbody>
</table>
18 Cubic Anisotropy

18.1 Basic Properties ........................................... 315
18.2 Series Expansions for RG Functions ......................... 317
18.3 Fixed Points and Critical Exponents ........................ 320
18.4 Stability .................................................. 321
18.5 Resummation .............................................. 323
  18.5.1 Padé Approximations for Critical Exponents ......... 323
  18.5.2 Resummations for Cubic Fixed Point .................. 324
Notes and References ........................................ 327

19 Variational Perturbation Theory ............................. 329

19.1 From Weak- to Strong-Coupling Expansions .............. 329
19.2 Strong-Coupling Theory .................................. 330
19.3 Convergence ............................................. 332
19.4 Strong-Coupling Limit and Critical Exponents .......... 336
19.5 Explicit Low-Order Calculations ........................... 339
  19.5.1 General Formulas .................................... 339
  19.5.2 Perturbation Series ................................... 340
  19.5.3 Critical Exponent $\omega$ ............................. 341
  19.5.4 Critical Exponent $\nu$ ............................... 342
  19.5.5 Critical Exponent $\gamma$ .............................. 343
19.6 Three-Loop Resummation .................................. 343
19.7 Five-Loop Resummation ................................... 347
  19.7.1 Critical Exponent $\omega$ ............................. 347
  19.7.2 Critical Exponent $\nu$ ............................... 350
  19.7.3 Critical Exponents $\eta$ and $\gamma$ .................. 350
19.8 Interpolating Critical Exponents between Two and Four Dimensions .......... 353
  19.8.1 Critical Exponents $\nu$ ............................... 357
  19.8.2 Critical Exponents $\eta$ ............................... 362
Notes and References ........................................ 362

20 Critical Exponents from Other Expansions ................. 366

20.1 Sixth-Order Expansion in Three Dimensions .............. 366
20.2 Critical Exponents up to Six Loops ......................... 369
20.3 Improving the Graphical Extrapolation of Critical Exponents ........ 382
20.4 Seven-Loop Results for $N = 0, 1, 2,$ and $3$ .......... 383
20.5 Large-Order Behavior .................................... 388
20.6 Influence of Large-Order Information ..................... 394
20.7 Another Variational Resummation Method ................... 398
20.8 High-Temperature Expansions of Lattice Models .......... 403
Notes and References ........................................ 409

Conclusion .................................................... 413

A Diagrammatic $R$-Operation up to Five Loops ................ 416

A.1 Diagrams for $Z_\phi$ and $Z_{m^2}$ ............................ 416
A.2 Diagrams for $Z_\phi$ ....................................... 435
A.3 Calculation of IR-Counterterms ............................ 437
  A.3.1 Determination of IR-Counterterms by $R^*$-Operation .... 437

H. Kleinert and V. Schulte-Frohlinde, Critical Properties of $\phi^4$-Theories
A.3.2 Pole Terms of IR-Counterterms ........................................ 440

B Contributions to Renormalization-Constants .......................... 441
  B.1 Contributions to $Z_g$ and $Z_{m^2}$ .................................. 442
  B.2 Contribution to $Z_\phi$ .............................................. 449
  B.3 Symmetry Factors in $O(N)$-Symmetric Theory ...................... 450
    B.3.1 Symmetry Factors $S_2^{O(N)}$ of Two-Point Diagrams .............. 450
    B.3.2 Symmetry Factors $S_4^{O(N)}$ of Four-Point Diagrams .............. 451
  B.4 The Symmetry Factors for Cubic Symmetry .......................... 452
    B.4.1 Symmetry Factors $S_{2;L-k,k}^{\text{cub}}$ of Two-Point Diagrams .... 452
    B.4.2 Symmetry Factors $S_{4;L+1-k,k}^{\text{cub}}$ of Four-Point Diagrams .... 454

Index ................................................................................. 460
# List of Figures

1.1 Specific heat near superfluid transition of $^4$He at $T_\lambda \approx 2.18$ K .......................... 5
1.2 Specific heat near superfluid transition plotted against $\log_{10} |T/T_\lambda - 1|$ ............... 6
1.3 Doubly logarithmic plots of superfluid density $\rho_s$ divided by the total density as a function of temperature .................................................. 7

3.1 Diagrams contributing to expansion of $G_1^{(2)}$ .......................................................... 42
3.2 Diagrams in expansion of $G_2^{(2)}$ .......................................................... 44
3.3 Diagrams in expansion of $G_3^{(2)}$ .......................................................... 44
3.4 Fourth-order diagram in $G_4^{(2)}$ .......................................................... 45
3.5 Vacuum diagrams in $Z_1$ and $Z_2$ .......................................................... 47
3.6 Two disconnected diagrams and the associated integral expressions ................. 48

5.1 Diagrammatic solution of recursion relation (5.11) for the generating functional 61
5.2 Diagrammatic representation of functional differential equation (5.44) ............. 66
5.3 Diagrammatic representation of functional differential equation (5.54) ............. 68
5.4 Vacuum diagrams up to five loops and their multiplicities ........................................... 68
5.5 Diagrammatic differentiations for deriving the tree decomposition of connected correlation functions ............................................................... 73

9.1 Three superficially convergent diagrams with $\omega(G) = -2$ ................. 132
9.2 Two examples for overlapping divergences in $\phi^4$-theory ..................... 132

10.1 Flow of the coupling constant $g(\sigma)$ as the scale parameter $\sigma$ approaches zero 168

11.1 Structure of tadpole diagrams .......................................................... 192

12.1 Generic propagator-type diagram obtained after infrared rearrangement ...... 201
12.2 Simplification of massless Feynman integral by infrared rearrangement ...... 202
12.3 Simple example for generation of an IR-subdivergence by IR-rearrangement .. 202
12.4 Simplification of massless Feynman integral by infrared rearrangement ...... 203
12.5 All possible sets of infrared-disjoint subdiagrams ......................................... 213
12.6 Infrared-divergent subdiagram .......................................................... 215
12.7 Infrared rearrangement of the special five-loop diagram No. 116 .............. 218
12.8 Typical infrared counterterms depending only on $\tilde{\gamma}$ ................................ 220

13.1 Generic two- and three-loop diagrams .......................................................... 233
13.2 Examples of occurrence of generic $\phi^3$-diagrams in the IR-rearranged five-loop $\phi^4$-diagrams .......................................................... 234
13.3 Triangle diagram .......................................................... 235
13.4 Subdiagram for the KITE-Type reduction formula ..................................... 237
13.5 Mapping of generic three-loop diagrams LADDER and BENZ, and of three-loop diagrams BUG and BENZQUER .......................... 239
13.6 Reduction of LADDER- and BUG-type diagrams .................... 240
13.7 The $p$- and $x$-space representations of the integrals and the corresponding diagrams ................................. 242
13.8 Construction of dual diagrams ..................................... 243
13.9 Diagrams given by tables ............................................. 248
13.10 Diagrams whose calculation requires special methods ......... 249

14.1 Matrix representation for Feynman diagrams ....................... 257
14.2 Generation of diagrams by cutting lines ............................. 258
14.3 Vacuum diagrams without cutvertices up to seven vertices .... 259
14.4 Identical vertex permutation in vacuum diagrams ............... 261
14.5 Generation of $G_4$ diagrams ......................................... 263
14.6 Weight factors of four-point diagrams relevant for coupling constant and for mass renormalization ................................. 263
14.7 One-particle irreducible two-point diagrams up to five loops contributing to the mass renormalization constant $Z_m$ ............. 271

16.1 Fluctuations around the origin ...................................... 288
16.2 Minimal error $\Delta_{\min}(g)$ of an expansion ..................... 291
16.3 Example for Padé approximation ..................................... 292
16.4 Resummed $\varepsilon$-expansion of $g^*$ ................................. 310
16.5 Resummed $\varepsilon$-expansion of $\nu^{-1}$ ............................ 311
16.6 Resummed $\varepsilon$-expansion of $\eta$ .................................. 311
16.7 Resummed $\varepsilon$-expansion of $\omega$ ................................ 312
16.8 Critical exponents from variational perturbation theory in $4 - \varepsilon$ dimensions up tp two loops .................................. 342
16.9 Two- and three-loop critical exponent $\omega$ in $4 - \varepsilon$ dimensions for different O($N$) .............................. 344
16.10 Two- and three-loop critical exponent $\gamma$ in $4 - \varepsilon$ dimensions for different O($N$) .............................................. 345
16.11 Two- and three-loop critical exponent $\nu$ in $4 - \varepsilon$ dimensions for different O($N$) .............................................. 345
16.12 Two- and three-loop critical exponent $\eta$ from the definition $2 - \gamma/\nu$ in $4 - \varepsilon$ dimensions for different O($N$) ............ 346
16.13 Two- and three-loop critical exponent $\eta_m$ from the definition $2 - \nu^{-1}$ in $4 - \varepsilon$ dimensions for different O($N$) .............. 347
16.14 Critical exponent of approach $\omega$ calculated from $\Lambda^*_L = s^*_L = 0$, plotted against the order of approximation $L$ .............................................. 348
16.15 Approach to zero of the logarithmic derivative $(p/q)_L \equiv s^*_L = f^*_L$ of $\hat{g}(\hat{g}_B)$ as a function of the variable $x_L$ .............................. 349
16.16 Same as above, plotted against the order of approximation $L$ .............................................. 349
16.17 Critical exponent $\nu(I)$ from variational perturbation theory, plotted as a function of $x_L$ .............................. 352

H. Kleinert and V. Schulte-Frohlinde, *Critical Properties of $\phi^4$-Theories*
19.12 Same as above, plotted against the order of approximation \( L \) .......................... 353
19.13 Determination of critical exponent \( \eta \) from strong-coupling limit of \( \eta_m + \eta \), plotted as a function of \( x_L \) ................................................................. 354
19.14 Same as above, plotted against the order of approximation \( L \) .................................. 354
19.15 Critical exponent \( \gamma \) from variational perturbation theory, plotted as a function of \( x_L \) ................................................................. 355
19.16 Same as above, plotted against the order of approximation \( L \) .................................. 355
19.17 Integrands of the Padé-Borel transform (19.114) ..................................................... 357
19.18 Inverse of critical exponent \( \nu \) for classical Heisenberg model in O(3)-universality class ................................................................. 360
19.19 Analog of Fig. 19.18 for \( \nu^{-1} \) in O(4)-universality class ................................. 360
19.20 Analog of previous two figures for \( \nu^{-1} \) in O(5)-universality class ............... 361
19.21 Highest approximations \( (M = 4) \) for \( \nu^{-1} \) in O(\( N \)) universality class ........... 361
19.22 Same plot as in Figs. 19.18, but for \( \nu^{-1} \) in Ising model universality class ........... 361

20.1 Behavior of strong-coupling values \( \omega = \omega(\infty) \) with increasing order \( L \) of the approximation, for O(\( N \))-symmetric theories with \( N = 0, 1, 2, 3, \ldots \) ........ 370
20.2 Sixth-order approximations to \( \omega, \nu, \gamma, \eta \) and their \( L \to \infty \)-limit ................. 371
20.3 Behavior of self-consistent strong-coupling values \( \omega = \omega(\infty) \) from Eq. (20.21) for \( 2/q = \omega \) with increasing order \( L \) of the approximation, for O(\( N \))-symmetric theories with \( N = 0, 1, 2, 3, \ldots \) ....... 372
20.4 The \( \omega \)-exponents obtained from the expansions of \( \gamma \) and \( \nu \) for \( N = 1 \) ........ 372
20.5 Plot analogous to Fig. 20.1 of critical exponent \( \nu = \nu(\infty) \) ............................. 372
20.6 Plot analogous to Fig. 20.1 of critical exponent \( \eta = \eta(\infty) \) ............................ 373
20.7 Plot analogous to Fig. 20.1 of critical exponent \( \gamma = \gamma(\infty) \) .......................... 374
20.8 Logarithmic plot of variational perturbation result for expansion (20.15) of renormalized coupling constant \( \bar{g}(\bar{g}_B) \) with \( N = 1 \) .............................. 376
20.9 Logarithmic plot of variational perturbation result for exponent \( \nu(\bar{g}_B) \) obtained from expansion (20.18) of \( \nu(\bar{g}_B) \) with \( N = 1 \), and of the convergent re-expanded strong-coupling series (20.35) .............................. 377
20.10 Logarithmic plot of variational perturbation result for expansion (20.17) of exponent \( \eta(\bar{g}_B) \) with \( N = 1 \), and of the convergent re-expanded strong-coupling series (20.40) .................................................. 379
20.11 Doubly logarithmic plot of inverse square coherence length \( \xi^{-2} \) in arbitrary units against the reduced temperature \( \tau_{\text{red}} \equiv (T - T_c)/\Delta T_F \) ................. 380
20.12 Plot of convergent strong-coupling expansion (20.56) for the beta function \( \beta(\bar{g}) \) 381
20.13 Logarithmic plot of variational perturbation result for expansion (20.16) with \( N = 1 \), and of the convergent re-expanded strong-coupling series (20.57) for exponent \( \omega(\bar{g}_B) \), as a function of the bare coupling constant \( \bar{g}_B \) .................. 381
20.14 Behavior of strong-coupling values of the critical exponent of approach to scaling \( \omega \) with increasing orders \( L = 2, 3, 4, 5, 6 \) in variational perturbation theory for O(\( N \))-symmetric theories with \( N = 0, 1, 2, 3, \ldots \) ......................... 382
20.15 Plot analogous to Fig. 20.14 of critical exponents \( \nu \) ........................................... 383
20.16 Plot analogous to Figs. 20.14 and 20.15 of critical exponents \( \eta \) ......................... 384
20.17 Plot analogous to Figs. 20.14, 20.15, and 20.16 of critical exponents \( \gamma \) ............ 385
20.18 Strong-coupling values for the critical exponent \( \nu^{-1} \) obtained from expansion (20.18) via formula (19.16) ........................................ 386
20.19 Strong-coupling values for the critical exponent $\eta$ obtained from expansion (20.17), extended by $f_7^2$ of Eq. (20.60), via formula (19.16) ......................................... 386
20.20 Plot analogous to Fig. 20.19, but with an extrapolation found from the intersection of the straight lines connecting the last two even and odd approximants 387
20.21 Strong-coupling values for the critical exponent $\gamma = \nu(2-\eta) = (2-\eta)/(2-\eta_m)$ obtained from a combination of the expansions (20.17) and (20.18) .................. 387
20.22 Early onset of large-order behavior of coefficients of the expansions of the critical exponents $\omega$, $\eta$, and $\bar{\eta} \equiv \nu^{-1} + \eta - 2$ in powers of the renormalized coupling constant .......................................................... 393
20.23 Relative errors $f_k/f_{k,\text{large order}}$ in predicting the $k$th expansion coefficient by fitting the large-order expressions (20.68)–(20.70) for $\omega$, $\eta$, and $\bar{\eta} \equiv \nu^{-1} + \eta - 2$ to the first $k-1$ expansion coefficients ......................................................... 395
20.24 Extrapolation of resummed $\omega$, $\bar{\eta}$, $\eta$-values if one ($\omega$, $\eta$) or two ($\bar{\eta}$) more expansion coefficients of Table 20.5 are taken into account ................................................................. 396
20.25 Direct plots of the resummed $\omega$, $\bar{\eta}$, $\eta$-values for all resummed values from all extrapolated expansion coefficients of Table 20.5 ................................................................. 397
20.26 Extrapolation of resummed $\alpha$-values if two more expansion coefficients are used from Table 20.5 ................................................................. 398
20.27 Results of partial sums of series (20.88) for $\nu^{-1}(h=1)$ up to order $L$, and corresponding resummed values fitted by $c_0 + c_1/L^2 + c_2/L^4$ .................. 400
20.28 Successive truncated expansions of $\nu^{-1}(h)$ of orders $N = 2, \ldots, 12$ .................. 401
20.29 Successive variational functions $\nu_L^{-1}(x)$ and $\alpha_L(x)$ of Table 20.10 .................. 402
20.30 Critical inverse temperature $\beta_c$ from a parabolic fit to the average of the even and odd sequences (20.98) ................................................................. 406
20.31 Critical inverse temperature $\beta_c$ from the last four terms average of the even and odd sequences (20.98) ................................................................. 406
20.32 Critical Exponents $\gamma$ from the average of the sequences (20.99) .................. 407
20.33 Critical Exponents $\nu$ from the average of the slopes of the even and odd ratios 407
List of Tables

1.1 Values of lattice Yukawa potential $v_{Dl}^D(0)$ of mass $l^2$ at origin for different dimensions and $l^2$ ......................................................... 14
1.2 Critical exponents ................................................................. 16
1.3 Values of reduced patch version $w_{Dl}^D(0)$ of Yukawa potential of mass $l^2$ at origin for different dimensions and $l^2$ .................. 19

14.1 Matrix representation for all vacuum diagrams of Fig. 14.3 .................. 260
14.2 Number of two- and four-pint diagrams .................................. 262
14.3 Matrix representation for all diagrams contributing to $Z_{\psi}$, $Z_{m}$ and $Z_{g}$ .... 265
14.4 Number of connected diagrams and sums of their weight factors .......... 271

15.1 Contributions to renormalization constants up to two loops ................ 275
15.2 Symmetry factors $S^{\text{cub}}_{2i;(L-k,k)}$ for the two-point diagrams up to two loops .................. 281
15.3 Contributions to renormalization constants up to two loops in a theory with mixed O($N$) and cubic symmetry .......................... 281
15.4 Symmetry factors of four-point diagrams $S^{\text{cub}}_{4i;(L-k,k+1)}$ and $S^{\text{cub}}_{4i;(L-k,k+1)}$ up to two loops .......................... 282

17.1 Estimates of critical exponents for $N = 0, 1, 2, 3$ and $\varepsilon = 1$ .......... 312
17.2 Critical exponents of the O($N$)-models from $\varepsilon$-expansion .......... 313
17.3 Critical exponents of the O($N$)-models from $d = 3$ expansion .......... 313

18.1 Constants in expansion (18.19) for $\omega_{2}^C$ .......................... 322
18.2 Padé approximations to $\varepsilon$-expansion of critical exponents for cubic symmetry .. 324
18.3 Padé approximation in presence of anisotropic contributions to $\beta$-function .... 326

19.1 Combinations of functions $b_n(c_L^q)$ determining coefficients $b_n$ of strong-coupling expansion (19.14) .......................... 331
19.2 Critical exponent $\omega$ from three-loop strong-coupling theory in $4 - \varepsilon$ dimensions 344
19.3 Critical exponents $\nu, \eta_m, \eta$ from three-loop strong-coupling theory in $4 - \varepsilon$ dimensions .............................................. 347
19.4 Extrapolated critical exponents from five-loop $\varepsilon$-expansions, compared with results from other approaches .................................. 351
19.5 Coefficients of successive extensions of expansion coefficients in Eq. (19.116) for $\nu^{-1}$ with $N = 3$ .......................... 358
19.6 Same as above for the expansion coefficients in Eq. (19.117) of $\nu^{-1}$ with $N = 4$ .......................... 359
19.7 Same as above for the expansion coefficients in Eq. (19.118) of $\nu^{-1}$ with $N = 5$ .......................... 359
19.8 Same as above for the expansion coefficients in Eq. (19.119) of $\nu^{-1}$ with $N = 1$ .......................... 359

20.1 Critical exponents of Ref. [8] in comparison with Padé-Borel results ........ 375
20.2 Seven-loop results for critical exponents with $N = 0, 1, 2, 3$ from strong-coupling theory, improving the six-loop results of Table 20.1 ................................................. 389
20.3 Fluctuation determinants and integrals over extremal field solution ............ 389
20.4 Growth parameter of $D = 3$ perturbation expansions of $\beta(\bar{g})$, $\eta(\bar{g})$ and $\bar{\eta} = \eta + \nu^{-1} - 2$ ................................................................. 390
20.5 Coefficients of extended perturbation expansions obtained from large-order expansions (20.68)–(20.70) for $\omega$, $\bar{\eta} \equiv \nu^{-1} + \eta - 2$, $\eta$ up to $g^{12}$ .................. 391
20.6 Coefficients $f^{g_B}_{gB}^k$ of expansion $\bar{g}_B(\bar{g}) = \sum_{k=1}^{g_B} f^{g_B}_{gB}^k$, defining extended perturbation expansions deduced from large-order expansions (20.68)–(20.70) for $\omega(\bar{g})$ . 392
20.7 Coefficients $f^g_B$ of expansion $\bar{g}(g_B) = \sum_{k=1}^{g_B} f^g_B^k$, obtained by inverting the extended series in Table 20.6 ................................................................. 392
20.8 Coefficients of large-order expansions (20.68)–(20.70) fitting known expansion coefficients of $\omega$, $\eta$, $\bar{\eta}$ ......................................................... 394
20.9 Results of Padé approximations $P_{MN}(h)$ at $h = 1$ to power series $\nu^{-1}(h)$ and $\alpha(h)$ in Eq. (20.88) and Eq. (20.89), respectively ......................... 400
20.10 Variational expansions $\nu_L^{-1}(x)$ and $\alpha_L(x)$ for $L = 2, \ldots, 9$ ........... 402
20.11 Summary of lattice estimates of critical exponents for $0 \leq N \leq 3$ ............ 408
20.12 Summary of lattice estimates of critical parameters for $4 \leq N \leq 12$ ......... 409