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Renormalization Group

The renormalization procedure in the last chapter has eliminated all UV-divergences from the
Feynman integrals arising from large momenta in D = 4 − ε dimensions. This was necessary
to obtain finite correlation functions in the limit ε → 0. We have seen in Chapter 7 that the
dependence on the cutoff or any other mass scale, introduced in the regularization process,
changes the Ward identities derived from scale transformations by an additional term—the
anomaly of scale invariance. The precise consequences of this term for the renormalized proper
vertex functions were first investigated independently by Callan and Symanzik [1].

10.1 Callan-Symanzik Equation

The original derivation of the scaling properties of interacting theories did not quite proceed
along the lines discussed in Section 7.4. Callan and Symanzik wanted to find the behavior
of the renormalized proper vertex functions Γ̄(n)(k1, . . . ,kn) for n ≥ 1 under a change of the
renormalized mass m. They did this in the context of cutoff regularization and renormalization
conditions at a subtraction point as in Eqs. (9.23)–(9.33). To keep track of the parameters of
the theory, we shall from now on enter these explicitly into the list of arguments, and write
the proper vertex functions as Γ̄(n)(k1, . . . ,kn;m, g). To save space, we abbreviate the list of
momenta k1, . . . ,kn by a momentum symbol ki, and use the notation Γ̄(n)(ki;m, g). In addition,
the bare proper vertex functions depend on the cutoff, or the deviation ε = 4 − D from the
dimension D = 4, and will be denoted by Γ̄

(n)
B (ki;mB, λB,Λ).

Differentiating the bare proper vertex function Γ̄
(n)
B (ki;mB, λB,Λ) with respect to the renor-

malized mass m at a fixed bare coupling constant and cutoff gives

m
∂

∂m
Γ̄
(n)
B (ki;mB, λB,Λ)

∣

∣

∣

∣

∣

λB ,Λ

= m
∂

∂m
m2

B

∣

∣

∣

∣

∣

λB ,Λ

Γ̄
(1,n)
B (0,ki;mB, λB,Λ), (10.1)

where

Γ̄
(1,n)
B (0,ki;mB, λB,Λ) =

∂

∂m2
B

Γ̄
(n)
B (ki;mB, λB,Λ) (10.2)

is the proper vertex function associated with the correlation function containing an extra term
−φ2(x)/2 inside the expectation value [recall Eqs. (5.98) and (5.93)]:

G(1,n)(x,x1, . . . ,xn) = −
1

2
〈φ2(x)φ(x1) · · ·φ(xn)〉. (10.3)

With the help of the renormalization constants Zφ we go over to renormalized correlation
functions as in Eq. (9.31):

Γ̄
(n)
B (ki;mB, λB,Λ) = Z

−n/2
φ Γ̄(n)(ki;m, g), n ≥ 1 . (10.4)
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We also introduce a renormalization constant Z2 which makes the composite vertex function
finite in the limit λB → ∞ via

Γ̄
(1,n)
B (0,ki;mB, λB,Λ) = Z

−n/2
φ Z2 Γ̄

(1,n)(0,ki;m, g), n ≥ 1 . (10.5)

The constant Z2 is fixed by the normalization condition

Γ̄(1,n)(0, 0;m, g) = 1. (10.6)

Then we define auxiliary functions

β = m
∂g

∂m

∣

∣

∣

∣

∣

λB ,Λ

, (10.7)

γ =
1

2
Z−1

φ m
∂Zφ

∂m

∣

∣

∣

∣

∣

λB ,Λ

, (10.8)

and rewrite the differential equation (10.1) in the form
(

m
∂

∂m
+ β

∂

∂g
− nγ

)

Γ̄(n)(ki;m, g) = Z2m
∂m2

B

∂m

∣

∣

∣

∣

∣

λB ,Λ

Γ̄(1,n)(0,k;m, g), n ≥ 1 . (10.9)

The normalization conditions (9.23) requires that Γ̄(2)(0;m, g) = m2. Inserting this together
with (10.6) into Eq. (10.9) for n = 2 gives

(2− 2γ)m2 = Z2m
∂m2

B

∂m

∣

∣

∣

∣

∣

λB,Λ

. (10.10)

This permits us to express the right-hand side of (10.9) in terms of renormalized quantities,
yielding the Callan-Symanzik equation:

(

m
∂

∂m
+ β

∂

∂g
− nγ

)

Γ̄(n)(ki;m, g) = (2− 2γ)m2Γ̄(1,n)(0,k;m, g), n ≥ 1 . (10.11)

In general, the dimensionless functions β and γ depend on g and m/Λ. But since they govern
differential equations for the renormalized proper vertex functions, they do not depend on Λ
after all, being functions of g and m. Their properties will be studied in detail in the next
section.

The Callan-Symanzik equation makes statements on the scaling properties of correlation
functions by going to small masses or, equivalently, to large momenta. In this limit, one may
invoke results by Weinberg [2], according to which the right-hand side becomes small compared
with the left-hand side. From the resulting approximate homogeneous equation one may deduce
the critical behavior of the theory, provided the β-function is zero at some coupling strength
g = g∗. In the critical regime, the proper vertex functions therefore satisfy the differential
equation

(

m
∂

∂m
− nγ

)

Γ̄(n)(ki;m, g) ≈
m≈0

0, n ≥ 1 . (10.12)

By combining this with the original scaling relation (7.54) which is valid for renormalized
quantities on the basis of naive scaling arguments, we find

[

n
∑

i=1

ki∂ki
+ n(d0φ + γ)−D

]

Γ̄(n)(ki;m, g) ≈
m≈0

0, n ≥ 1 . (10.13)
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Recall that our renormalized coupling g is dimensionless by definition, just as the quantity λ̂
in (7.28).

The scaling equation (10.13) was discussed earlier in Eq. (7.74). It has the same form as
the original scaling relation for a massless theory (7.20), except that the free-field dimension
d0φ is replaced by the modified dimension dφ = d0φ + γ. By comparison with (7.75), we identify
the critical exponent η as

η = 2γ. (10.14)

The interacting theory is invariant under scale transformations (7.76) of the renormalized in-
teracting field. The critical scaling equation (10.13) is the origin of the anomalous dimensions
observed in Eq. (7.66)–(7.68).

We shall not explore the consequences of the Callan-Symanzik equation further but derive
a more powerful equation for studying the critical behavior of the theory.

10.2 Renormalization Group Equation

In Chapter 8 we have decided to regularize the theory by analytic extension of all Feynman
integrals from integer values of the dimension D into the complex D-plane, and by subtracting
the singularities in ε = 4 − D in a certain minimal way referred to as minimal subtraction.
Adding the dimensional parameter ε to the list of arguments, we shall write the bare correlation
functions as

G
(n)
B (x1, . . . ,xn;mB, λB, ε) ≡ 〈φB(x1) · · ·φB(xn)〉. (10.15)

They are calculated from a generating functional (2.13), whose Boltzmann factor contains the
bare energy functional EB[φ] of Eq. (9.73).

In the subtracted terms, one has the freedom of introducing an arbitrary mass parameter
µ. The renormalization constants of the theory will therefore depend on µ rather than on a
cutoff Λ. The renormalized correlation functions have the form

G(n)(x1, . . . ,xn;m, g, µ, ε) ≡ 〈φ(x1) · · ·φ(xn)〉, (10.16)

and are related to the bare quantities (10.15) by a multiplicative renormalization:

G
(n)
B (x1, . . . ,xn;mB, λB, ε) = Z

n/2
φ (g(µ), ε)G(n)(x1, . . . ,xn;m, g, µ, ε) , n ≥ 1 , (10.17)

where Zφ(g(µ), ε) is the field normalization constant defined by φB = Z
1/2
φ φ. For the propagator

with n = 2, this implies the relation

G
(2)
B (x1,x2;mB, λB, ε) = Zφ(g(µ), ε)G

(2)(x1,x2;m, g, µ, ε). (10.18)

After a Fourier transform according to Eq. (4.13), the same factors Zφ(g(µ), ε) renormalize the

momentum space n-point functions G
(n)
B (k1, . . . ,kn;mB, λB, ε) to G(n)(k1, . . . ,kn;m, g, µ, ε).

For the proper vertex functions Γ̄
(n)
B (k1, . . . ,kn;mB, λB, ε), which are obtained from the 1PI

parts of the connected n-point functions G
(n)
B (k1, . . . ,kn;mB, λB, ε) by amputating the external

lines, i.e., by dividing out n external propagatorsG
(2)
B (ki;mB, λB, ε), the renormalized quantities

are given by

Γ̄(n)(k1, . . . ,kn;m, g, µ, ε) = Z
n/2
φ (g(µ), ε) Γ̄

(n)
B (k1, . . . ,kn;mB, λB, ε) , n ≥ 1 . (10.19)
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These expressions remain finite in the limit ε→ 0. In the following discussion we shall suppress
the obvious ε-dependence in the arguments of all quantities, for brevity, unless it is helpful for
a better understanding.

The renormalized parameters g, m, and φ defined in Eqs. (9.72) depend on the bare quan-
tities, and on the mass parameter µ:

φ2 = Z−1
φ (g(µ), ε)φ2

B, m2 = m2(µ) ≡
Zφ(g(µ), ε)

Zm2(g(µ), ε)
m2

B, g = g(µ) ≡ µ−εZ
2
φ(g(µ), ε)

Zg(g(µ), ε)
λB .

(10.20)
The renormalized proper vertex functions Γ̄(n)(k1, . . . ,kn;m, g, µ, ε) depend on µ in two ways:
once explicitly, and once via g(µ) and m(µ). The explicit dependence comes from factors
µε which are generated when replacing λ by µε g in (8.58). By contrast, the unrenormalized

proper vertex functions Γ̄
(n)
B (k1, . . . ,kn;mB, λB, ε) do not depend on µ. On the right-hand side

of Eq. (10.19), only Zφ depends on µ via g(µ).
The bare proper vertex functions are certainly independent of the artificially in-

troduced arbitrary mass parameter µ. When rewriting them via Eq. (10.19) as

Z
−n/2
φ Γ̄(n)(k1, . . . ,kn;m, g, µ, ε), this implies a nontrivial behavior of the renormalized vertex

functions under changes of µ. The associated changes of the renormalized proper vertex func-
tions, and the other renormalized parameters, must be related to each other in a specified way.
It is this relation which ensures that the physical information in the renormalized functions
remains invariant under changes of µ.

Let us calculate these changes. We apply the dimensionless operator µ ∂/∂µ to Eq. (10.19)
with fixed bare parameters, and obtain for n ≥ 1:

[

−nµ
∂

∂µ
logZ

1/2
φ

∣

∣

∣

B
+µ

∂g

∂µ

∣

∣

∣

∣

∣

B

∂

∂g
+µ

∂m

∂µ

∣

∣

∣

∣

∣

B

∂

∂m
+µ

∂

∂µ

]

Γ̄(n)(k1, . . . ,kn;m, g, µ)=0. (10.21)

The symbol |B indicates that the bare parameters mB, λB are kept fixed. This equation ex-
presses the invariance of Γ̄(n)(k1, . . . ,kn;m, g, µ) under a transformation (µ,m(µ), g(µ)) →
(µ′, m(µ′), g(µ′)). The observables of the field system are invariant under a change of the mass
scale µ → µ′ if coupling constant g(µ) and mass m(µ) are changed appropriately. The mass
scale µ is not an independent parameter.

The appropriate dependence of g, m and Zφ on µ is described by the renormalization group

functions (RG functions):

γ(m, g, µ) = µ
∂

∂µ
logZ

1/2
φ

∣

∣

∣

B
, (10.22)

γm(m, g, µ) =
µ

m

∂m

∂µ

∣

∣

∣

∣

∣

B

, (10.23)

β(m, g, µ) = µ
∂g

∂µ

∣

∣

∣

∣

∣

B

. (10.24)

They allow us to rewrite Eq. (10.21) as the renormalization group equation (RGE) for the
proper vertex functions with n ≥ 1:
[

µ
∂

∂µ
+ β(m, g, µ)

∂

∂g
− nγ(m, g, µ) + γm(m, g, µ)m

∂

∂m

]

Γ̄(n)(k1, . . . ,kn;m, g, µ) = 0 . (10.25)

The solution of a partial differential equation like (10.25) is generally awkward, since β, γ, γm
may depend on m, g and µ. It is an important property of ’t Hooft’s minimal subtraction
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scheme [3, 4] that the counterterms happen to be independent of the mass m, and that they
depend only on the coupling constant g, apart from ε. The renormalization group functions
(10.22)–(10.24) are therefore independent of m and µ, and depend only on g:

γ(g)
MS
= µ

∂

∂µ
logZ

1/2
φ

∣

∣

∣

B
, (10.26)

γm(g)
MS
=

µ

m

∂m

∂µ

∣

∣

∣

∣

∣

B

, (10.27)

β(g)
MS
= µ

∂g

∂µ

∣

∣

∣

∣

∣

B

. (10.28)

With these, the renormalization group equation (10.25) becomes

[

µ
∂

∂µ
+ β(g)

∂

∂g
− nγ(g) + γm(g)m

∂

∂m

]

Γ̄(n)(k1, . . . ,kn;m, g, µ) = 0 , n ≥ 1 , (10.29)

which is much easier to solve than the general form (10.25).

10.3 Calculation of Coefficient Functions from Counterterms

We now calculate the renormalization group functions taking advantage of the fact that the
renormalization constants depend, with minimal subtractions, only on µ via the renormalized
coupling constant g(µ). Consider first the function β(g). Inserting the renormalization equation
λB = µεZgZ

−2
φ g of (10.20) into (10.28), we find

β(g) = −µ
(∂µλB)g
(∂gλB)µ

= −ε

[

d

dg
log(gZgZ

−2
φ )

]

−1

= −εg

[

d log gB(g)

d log g

]

−1

. (10.30)

By the chain rule of differentiation, we rewrite (10.26) as

γ(g) = µ
∂g

∂µ

∣

∣

∣

∣

∣

B

d

dg
logZ

1/2
φ = β(g)

d

dg
logZ

1/2
φ . (10.31)

With this, Eq. (10.30) takes the form

β(g) =
−ε + 4γ(g)

d log[gZg(g)]/dg
. (10.32)

Finally, we find from the relation m2
B = m2 Zm2/Zφ of (10.20) the renormalization group func-

tion

γm(g) = −
β(g)

2

[

d

dg
logZm2 −

d

dg
logZφ

]

= −
β(g)

2

d

dg
logZm2 + γ(g). (10.33)

In principle, the right-hand sides still depend on ε, so that we should really write the RG
functions as

β = β(g, ε), γ = γ(g, ε), γm = γm(g, ε). (10.34)

However, the ε-dependence turns out to be extremely simple. Due to the renormalizability of
the theory, the functions β(g, ε), γ(g, ε), γm(g, ε) have to remain finite in the limit ε→ 0, and
thus free of poles in ε. In fact, an explicit evaluation of the right-hand side of Eqs. (10.30),
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(10.31), and (10.33) demonstrates the cancellation of all poles in ε. Thus we can expand these
functions in a power series in ε with nonnegative powers εn.

Moreover, we can easily convince ourselves that, of the nonnegative powers εn, only the
first is really present, and this only in the function β(g, ε). In order to show this, we make use
of the explicit general form of the 1/ε-expansions of the renormalization constants in minimal
subtraction, which is

Zφ(g, ε) = 1 +
∞
∑

n=1

Zφ,n(g)
1

εn
, (10.35)

Zm2(g, ε) = 1 +
∞
∑

n=1

Zm2,n(g)
1

εn
, (10.36)

Zg(g, ε) = 1 +
∞
∑

n=1

Zg,n(g)
1

εn
. (10.37)

Then Eqs. (10.31)–(10.33) can be rewritten as

γ(g, ε)

[

1 +
∞
∑

n=1

Zφ,n(g)ε
−n

]

=
1

2
β(g, ε)

∞
∑

n=1

Z ′

φ,n(g)ε
−n, (10.38)

β(g, ε)

{

1 +
∞
∑

n=1

[gZg,n(g)]
′ε−n

}

= [−ε+ 4γ(g, ε)] g

[

1 +
∞
∑

n=1

Zg,n(g)ε
−n

]

, (10.39)

[−γm(g, ε) + γ(g, ε)]

[

1 +
∞
∑

n=1

Zm2,n(g)ε
−n

]

=
β(g, ε)

2

∞
∑

n=1

Z ′

m2,n(g)ε
−n. (10.40)

By inserting (10.38) into (10.39), we see that β(g, ε) can at most contain the following powers
of ε:

β(g, ε) = β0(g) + εβ1(g). (10.41)

Using this to eliminate β(g, ε) from Eqs. (10.38) and (10.40), we find γ(g, ε) and γm(g, ε) as
functions of ε. By equating the regular terms in the three equations, we find

β0 + εβ1 + β1(Zg,1 + gZ ′

g,1) = (−ε+ 4γ)g − gZg,1 ,

γ = 1

2
β1Zφ,1 ,

γm − γ = − 1

2
β1Z

′

m2,1 . (10.42)

The solutions are

β1(g) = −g, (10.43)

β0(g) = gZ ′

g,1(g) + 4gγ(g), (10.44)

γ(g) = 1

2
Z ′

φ,1(g) β1(g), (10.45)

γm(g) = 1

2
gZ ′

m,1(g) + γ(g). (10.46)

Thus, amazingly, the three functions β(g), γ(g), γm(g) have all been expressed in terms of
the derivatives of the three residues Zg,1(g), Zφ,1(g), Zm2,1(g) of the simple 1/ε -pole in the
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counterterms. The dimensional parameter ε = 4−D enters the renormalization group function
only at a single place: in the −εg-term of β(g):

β(g) = −εg + g2 Z ′

g,1(g) + 4gγ(g) . (10.47)

The finiteness of the observables β, γ, γm at ε = 0 requires that none of the higher residues
of Eqs. (10.38)–(10.40) can contribute. Indeed, we can easily verify in the available expansions
that there exists an infinite set of relations among the expansion coefficients, useful for checking
calculations:

β0(gZg,n)
′ − g(gZg,n+1)

′ = 4γ gZg,n − Zg,n+1 g, (10.48)

γZφ,n = 1

2
β0Z

′

φ,n −
1

2
gZ ′

φ,n+1, (10.49)

(γm − γ)Zm2,n = − 1

2
β0Z

′

m2,n +
1

2
gZ ′

m2,n+1. (10.50)

From the two-loop renormalization constants in Eqs. (9.115)–(9.119), we extract the residues
of 1/ε:

Zg,1 =
N + 8

3

g

(4π)2
−

5N + 22

9

g2

(4π)4
,

Zφ,1 = −
N + 2

36

g2

(4π)4
, (10.51)

Zm2,1 =
N + 2

3

g

(4π)2
−
N + 2

6

g2

(4π)4
,

so that we obtain:

β1(g) = −g , β0(g) = g2Z ′

g,1(g) + 4gγ(g) =
N + 8

3

g2

(4π)2
−

3N + 14

3

g3

(4π)4
, (10.52)

γ(g) = 1

2
Z ′

φ,1(g) β1(g) =
N + 2

36

g2

(4π)4
, (10.53)

γm(g) = 1

2
gZ ′

m2,1(g) + γ(g) =
N + 2

6

g

(4π)2
−

5(N + 2)

36

g2

(4π)4
. (10.54)

The coupling constant always appears with a factor 1/(4π)2, which is generated by the loop
integrations. We therefore introduce a modified coupling constant

ḡ ≡
g

(4π)2
, (10.55)

which brings the renormalization group functions to the shorter form:

βḡ(ḡ) = ḡ
(

−ε+
N + 8

3
ḡ −

3N + 14

3
ḡ2
)

, (10.56)

γ(ḡ) =
N + 2

36
ḡ2, (10.57)

γm(ḡ) =
N + 2

6
ḡ −

5(N + 2)

36
ḡ2. (10.58)

It is always possible to introduce a further modified coupling constant defined by an ex-
pansion of the generic type gH = G(g) = g + a2g

2 + . . . with unit coefficient of the first
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term, which has the property that the function β(gH) consists only of the first three terms
βH(gH) = −εḡ + b2g

2
H + b3g

3
H [5]. Since we shall not use this fact, we refer the reader to the

original work for a proof.
It is instructive to verify explicitly the cancellation of 1/εn-singularities in the calculation

of the renormalization group functions from Eqs. (10.30)–(10.33). Take, for instance, γ(g) of
Eq. (10.31). For a more impressive verification, let us anticipate here the five-loop results
(15.11) for the renormalization constant Zφ(ḡ) and Eq. (17.5) for the β-function, extending
our two-loop expansions (9.115) and (10.56). Selecting the case of N = 1 for brevity of the
formulas, the five-loop extension of the expansion (10.56) reads

βḡ(ḡ) = −ε ḡ + 3 ḡ2 −
17

3
ḡ3 +

[

145

8
+ 12 ζ(3)

]

ḡ4

+

[

−
3499

48
+
π4

5
− 78 ζ(3)− 120 ζ(5)

]

ḡ5 (10.59)

+

[

764621

2304
−

1189 π4

720
−

5 π6

14
+

7965 ζ(3)

16
+ 45 ζ2(3) + 987 ζ(5) + 1323 ζ(7)

]

ḡ6.

From Zφ(ḡ) of Eq. (17.5) for N = 1, we find the five-loop expansion of the logarithmic derivative
on the right-hand side of Eq. (10.31):

[logZφ(ḡ)]
′ = −

1

6ε
ḡ +

(

−1

2ε2
+

1

8ε

)

ḡ2 +
(

−3

2ε3
+

95

72ε2
−

65

96ε

)

ḡ3

+

[

−9

2ε4
+

163

24ε3
−

553

96ε2
+

3709

1152ε
+

π4

90ε
−

2 ζ(3)

ε2
−

3 ζ(3)

8ε

]

ḡ4 (10.60)

+
(

−13

48ε4
+

179

864ε3
−

23

256ε2

)

ḡ5.

When forming the product βḡ(ḡ) × [logZφ(ḡ)]
′ in (10.31) to obtain γ(ḡ), the contribution to

γ(g) comes from the product of the ε-term in βḡ(ḡ) with the 1/ε terms in [logZφ(ḡ)]
′. The

higher singularities 1/εn, 1/εn−1, . . . in the ḡn-term of [logZφ(ḡ)]
′ are reduced by one power of

1/ε when multiplied with the ε-term of βḡ(ḡ). For n ≥ 2 the resulting terms are canceled by
products of the other terms in βḡ(ḡ) with the singular terms associated with the lower powers
ḡn−1, ḡn−2, . . . in [logZφ(ḡ)]

′.
Having determined the renormalization group functions, we shall now solve the renormali-

zation group equations (10.29). In order to avoid rewriting these equations in terms of the new
reduced coupling constant ḡ, we shall rename ḡ as g and drop the subscript ḡ on the β-function.

10.4 Solution of the Renormalization Group Equation

The renormalization group equation (10.29) is a partial differential equation. Its coefficients
depend only on g. Such an equation is solved by the method of characteristics. We introduce
a dimensionless scale parameter σ and replace µ by σµ, so that variations of the mass scale µ
are turned into variations of σ at a fixed mass scale µ. Then we introduce auxiliary functions
g(σ), m(σ), called running coupling constant and running mass, which satisfy the first-order
differential equations:

β(g(σ)) = σ
dg(σ)

d σ
, g(1) = g, (10.61)

γm(g(σ)) =
σ

m(σ)

dm(σ)

d σ
, m(1) = m , (10.62)
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µ(σ) = σ
dµ(σ)

d σ
, µ(1) = µ . (10.63)

The solutions define trajectories in the (σ,m, g)-space which connect theories renormalized with
different mass parameter σµ.

The temperature dependence of the theory is introduced via the mass parameter m(1), i.e.
via the renormalized mass m(σ) at a fixed mass scale σµ with σ = 1. Specifically we assume

m2 = µ2t, t =
T

Tc
− 1. (10.64)

Recall that when setting up the energy density in Section 1.4 to serve as a starting point for
the field-theoretic treatment of thermal fluctuations, we followed Landau by taking the squared
bare mass to be proportional to the temperature deviation from the critical temperature:

m2
B ∝ t, t =

T

Tc
− 1. (10.65)

According to the renormalization equation (10.20), the renormalized mass is proportional to
the bare mass, m2 = m2

BZφ(g, µ)/Zm2(g, µ). Thus, at a fixed auxiliary mass scale µ and σ = 1,
the renormalized mass is also proportional to t, as stated in Eq. (10.64). Note that this is a
peculiarity of the present regularization procedure. In the earlier procedure used in the general
qualitative discussion of scale behavior in Section 7.4, the mass was renormalized in Eq. (7.57)
with m-dependent renormalization constants to m2 = m2

BZφ(λ,m,Λ)/Zm2(λ,m,Λ). For small
m, these change the linear behavior of the bare square mass m2

B ∝ t to the power behavior
m ∝ tν of the renormalized mass [see (7.70), (7.71)]. Such a behavior can be derived within
the present scheme if we set the mass scale µ(σ) equal to the running renormalized mass m(σ)
for some σm. This will be done when fixing the parametrization in Eq. (10.78).

The solution of (10.61) is immediately found to be

log σ =
∫ g(σ)

g

dg′

β(g′)
. (10.66)

Inserting this into the second equation (10.62), we obtain

m(σ) = m exp

[

∫ σ

1

dσ′

σ′
γm(g(σ

′))

]

. (10.67)

The last equation (10.63) is solved by

µ(σ) = µσ . (10.68)

With these functions, Eq. (10.29) becomes

[

σ
d

d σ
− nγ(g(σ))

]

Γ̄(n)(ki;m(σ), g(σ), µ(σ)) = 0 , n ≥ 1 . (10.69)

For brevity, we have written ki for k1, . . . ,kn. The solution of Eq. (10.69) is

Γ̄(n)(ki;m, g, µ) = e−n
∫

σ

1
dσ′ γ(g(σ′))/σ′

Γ̄(n)(ki;m(σ), g(σ), µσ), n ≥ 1 . (10.70)

One set of proper vertex functions specified by the arguments m, g, µ represents an infinite
family of vertex functions of the φ4-theory whose parameters are connected by a trajectory
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g(σ), m(σ), µσ in the parameter space. This trajectory is traced out when σ runs from zero to
infinity.

The renormalization group trajectory connects can be employed to study the behavior of
the theory as the mass parameter approaches zero. For this purpose we take into account the
trivial scaling behavior of the proper vertex function in all variables which follow from the
dimensional analysis in Subsection 7.3.1. The n-point correlation function is the expectation
value of n fields of naive dimension d0φ = D/2− 1. As such it has a mass dimension [compare
(7.49)]

[G(n)(x1, . . . ,xn)] = µn(D/2−1). (10.71)

When going to momentum space [see (4.13)], each of the n Fourier integrals adds a number
−D to the dimension, so that [compare (7.16)]

[G(n)(k1, . . . ,kn)] = µn(−D/2−1). (10.72)

For the two-point function, this implies

[G(2)(k1,k2)] = µ−D−2. (10.73)

The propagator G(k) with a single momentum argument arises from this by removing the
D-dimensional δ-function which guarantees overall momentum conservation [recall (4.4)]. Its
naive dimension is

[G(p)] = µ−2. (10.74)

Using Eqs. (10.72), (10.73), and the fact that the dimension of the overall δ-function is µ−D,
we find the dimension for the connected n-point proper vertex functions

[Γ̄(n)(ki;m, g, µ)] = µD−n(D/2−1) . (10.75)

If we now rescale all dimensional parameters by an appropriate power of σ, we obtain the trivial
scaling relation [compare (7.53)]

Γ̄(n)(ki;m, g, µ) = σD−n(D/2−1) Γ̄(n) (ki/σ;m/σ, g, µ/σ) . (10.76)

Inserting (10.70) into the right-hand side, we find for n ≥ 1:

Γ̄(n)(ki;m, g, µ) = σD−n(D/2−1) exp

[

−n
∫ σ

1
dσ′

γ(g(σ′))

σ′

]

Γ̄(n) (ki/σ;m(σ)/σ, g(σ), µ) . (10.77)

We now choose σ = σm in such a way that the running mass m(σ) equals the running
additional mass scale µ(σ):

m2(σm) = µ2(σm) = µ2σ2
m. (10.78)

For m2 > 0, the rescaled mass m(σ)/σ is now equal to the mass parameter µ. Then (10.77)
becomes

Γ̄(n)(ki;m, g, µ) = σD−n(D/2−1)
m exp

[

−n
∫ σm

1
dσ′

γ(g(σ′))

σ′

]

Γ̄(n) (ki/σm;µ, g(σm), µ) .

(10.79)

This equation relates the renormalized proper vertex functions Γ̄(n)(ki, m, g, µ) of an arbitrary
mass to those of a fixed mass equal to the mass parameter µ at rescaled momenta ki/σm and a
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running coupling constant g(σm). Apart from a trivial overall rescaling factor σD−n(D/2−1)
m due

to the naive dimension, there is also a nontrivial exponential function.
Our goal is to study the behavior of the proper vertex functions on the left-hand side of

(10.79) in the critical region where m→ 0. This is possible with the help of Eq. (10.79), whose
right-hand side has a fixed mass equal to the mass parameter µ. All mass dependence of the
right-hand side resides in the rescaling parameter σm. The index on σm indicates that it is
related to m. The relation is found from Eq. (10.67), which yields the ratio

m2

µ2
=

m2(σm)

µ2
exp

{

∫ σm

1

dσ′

σ′
[−2γm(g(σ

′))]

}

=
m2(σm)

σ2
mµ

2
exp

{

∫ σm

1

dσ′

σ′
[2− 2γm(g(σ

′))]

}

. (10.80)

Inserting here Eq. (10.78), we obtain

m2

µ2
= exp

{

∫ σm

1

dσ′

σ′
[2− 2γm(g(σ

′))]

}

. (10.81)

Near the critical point, experimental correlation functions show the simple scaling behavior
stated in Eq. (1.28). Such a behavior can be reproduced by Eqs. (10.81) and (10.79), if the
coupling constant g runs for m → 0 into a fixed point g∗, for which the running coupling
constant g(σ) becomes independent of σ, satisfying

[

d g(σ)

d σ

]

g=g∗

= 0. (10.82)

Assuming that γ∗m ≡ γm(g
∗) < 1, which will be found to be true in the present field theory, the

integrand in Eq. (10.81) is singular at σ = 0, and the asymptotic behavior of σm for m → 0
can immediately be found:

m2

µ2
= t

m≈0
≈ exp

{

∫ σm

1

dσ′

σ′
[2− 2γm(g

∗)]

}

= σ2−2γ∗

m

m . (10.83)

This shows that σm goes to zero for m→ 0 with the power law

σm ≈

(

m2

µ2

)1/(2−2γ∗

m)

≡ t1/(2−2γ∗

m). (10.84)

The power behavior of σm ∝ t1/(2−2γ∗

m) enters crucially into the critical behavior of all correlation
functions for T → Tc.

In the limit σm → 0, the exponential prefactor in (10.79) becomes the following power of t:

exp

[

−n
∫ σm

1
dσ′

γ(g(σ′))

σ′

]

σm≈0
≈ σ−nγ∗

m ∝ t−nγ∗/(2−2γ∗

m), (10.85)

where γ∗ ≡ γ(g∗). The n-point proper vertex function behaves therefore like

Γ̄(n)(ki;m, g, µ)
m≈0
≈ σD−n(D/2−1)−nγ∗

m Γ̄(n)(ki/σm;µ, g
∗, µ), n ≥ 1 . (10.86)

For the two-point proper vertex function this implies a scaling form

Γ̄(2)(ki;m, g, µ)
m≈0
≈ µ2σ2−2γ∗

m g̃(k/µσm), (10.87)
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with some function g̃(x). Comparison of the argument of g̃ with the general scaling expression
in Eq. (1.8), we identify µσm with the inverse correlation length ξ−1. Together with equation
(10.78), this implies that the renormalized running mass is equal to the inverse coherence length:
m(σm) = ξ−1.

Comparing further the behavior (10.84) with that in (1.10), we can identify the critical
exponent ν as

ν =
1

2− 2γ∗m
. (10.88)

With this, the relation (10.84) between σm and t = m/µ2 reads simply

σm ≈

(

m2

µ2

)ν

≡ tν . (10.89)

The length scale ξ characterizing the spatial behavior of the correlation function (10.87)
diverges for m2 → 0 like

ξ(t) = ξ0

∣

∣

∣

∣

∣

m2

µ2

∣

∣

∣

∣

∣

−ν

= ξ0 |t|
−ν, t =

∣

∣

∣

∣

T

Tc
− 1

∣

∣

∣

∣

. (10.90)

If the expression (10.87) is nonzero for m→ 0, the limit must have the momentum dependence

Γ̄(2)(ki;m, g, µ)
m→0
= const× µ2γ∗

|k|2−2γ∗

, (10.91)

with some function f̃(κ). When going over to the two-point function in x-space [recall (4.34)]

G(2)(x;m, g, µ) =
∫

dDk

(2π)D
eikx

1

Γ̄(2)(ki;m, g, µ)
(10.92)

this amounts to an x-dependence

G(2)(x;m, g, µ)
m≈0
∝

1

rD−2+2γ∗
G̃(xµσm) =

1

rD−2+2γ∗
G̃ (x/ξ) . (10.93)

This expression exhibits precisely the scaling form (1.28) discovered by Kadanoff, such that we
identify the critical exponent η as

η = 2γ∗. (10.94)

By analogy with this relation, we shall also introduce a critical exponent ηm as

ηm = 2γ∗m, (10.95)

so that (10.88) becomes

ν =
1

2− ηm
. (10.96)

10.5 Fixed Point

Let us now see how such a fixed point with the property Eq. (10.82) is derived from Eq. (10.66).
In first-order perturbation theory, the β-function has, from Eqs. (10.41), (10.43), and (10.44),
the general form

β(g) = −εg + bg2 , (10.97)
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where the constant b is, according to Eq. (10.52), equal to (N + 8)/3 [recall that we have gone
over to ḡ via (10.55) and dropped the bar over g]. The β-function starts out with negative
slope and has a zero at

g∗ = ε/b, (10.98)

as pictured in Fig. 10.1. For small ε, this statement is reliable even if we know β(g) only to
order g2 in perturbation theory. Inserting (10.97) into equation (10.66), we calculate

log σ =
∫ g(σ)

g

dg′

−εg′ + bg′2
. (10.99)

This equation shows the important consequence of any zero in the β-function: If g is sufficiently
close to a zero at g = g∗ then the value g(σ) always runs into g∗ in the limit σ → 0, no matter
whether g = g(1) lies slightly above or below g∗. The point g∗ is the fixed point of the
renormalization flow. Since g∗ is reached in the limit σ → 0, which is the small-mass limit of
the theory, one speaks of an infrared-stable fixed point. In Fig. 10.1, the flow of g(σ) for σ → 0
is illustrated by an arrow.

β(g)

g/g∗

Figure 10.1 Flow of the coupling constant g(σ) as the scale parameter σ approaches zero, i.e., in the infrared

limit. For the opposite scale change, i.e., in the ultraviolet limit, the arrows reverse and the origin is a stable

fixed point.

Using the variable 1/g instead of g, Eq. (10.99) becomes

log σ = −
1

ε

∫ 1/g(σ)

1/g

dx

1/g∗ − x
. (10.100)

This can be integrated directly to

σ =
|1/g∗ − 1/g(σ)|1/ε

|1/g∗ − 1/g|1/ε
, (10.101)

so that

g(σ) =
g∗

1 + σε (g∗/g − 1)
. (10.102)

Near the fixed point, the behavior of g(σm) can be calculated more generally. For this we go
back to Eq. (10.66) and expand the denominator around the zero of the β-function:

β(g) ∼ β ′(g∗)(g − g∗) + . . . ≡ ω(g − g∗) + . . . , (10.103)
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where we have introduced the slope of the β-function at the fixed point g∗:

ω ≡ β ′(g∗). (10.104)

This is another critical exponent, as we shall see in Section 10.8. The exponent ω governs the
leading corrections to the scaling laws. The sign of ω controls the stability of the fixed point.
For an infrared stable fixed point, ω must be positive. Then we obtain from (10.62) an equation
for σ = σm:

log σm =
∫ g(σm)

g

dg′

β(g′)
∼

1

ω
log

[

g(σm)− g∗

g − g∗

]

, (10.105)

implying the following σm-dependence of g(σm), correct to lowest order in g − g∗:

g(σm)− g∗

g − g∗
= σω

m. (10.106)

This agrees with the specific solution (10.102) derived from the β-function (10.97) which has
ω = ε.

In general, the β-function may behave in many different ways for larger g. In particular,
there may be more zeros to the right of g∗. We can see from Eq. (10.99) that, for positive β,
the coupling constant g(σ) will always run towards zero from the right. For negative β, it will
run away from zero to the right.

Note that, in general, the initial coupling g(µ) = g(1) can flow only into the zero which lies
in its range of attraction. In the present case this is guaranteed for small ε, if g(1) is sufficiently
small.

In the limit σ → ∞, we see from Eq. (10.102) that g(σ) tends to zero, which is the trivial
zero of the β-function. This happens for any zero with a negative slope of β(g). The limit
σ → ∞ corresponds to m2 → ∞, and for this reason such zeros are called ultraviolet stable. In
this limit g(σ) → 0, γ(g(σ)) → 0, and γm(g(σ)) → 0. Then scaling relation (10.84) implies
that σm = m/µ, and the correlation functions behave, by (10.86), like those of a free theory:

Γ̄(n)(ki;m, g, µ)
m≈0
≈

(

m

µ

)D−n(D/2−1)

Γ̄(n)(kiµ/m; 0, µ, µ). (10.107)

This is the behavior of a free-field theory where the fields fluctuate in a trivial purely Gaussian
way. The zero in β(g) at g = 0 is therefore called the Gaussian or trivial fixed point. In the
φ4-theory, the Gaussian fixed point is ultraviolet stable (UV-stable). Since the theory tends for
m → ∞ against a free theory, one also says that it is ultraviolet free. Note that this is true
only in less than four dimensions.

In D = 4 dimensions, where ε = 0, the β-function has only one fixed point, the trivial
Gaussian fixed point at the origin.

10.6 Effective Energy and Potential

The above considerations are useful for deriving the critical properties of a system only in the
normal phase, where T ≥ Tc. If we want to study the system in the phase with spontaneous
symmetry breakdown, which exists for T ≤ Tc, we have to perform a renormalization group
analysis for the effective energy Γ[Φ] of the system, introduced in Section 5.6, and analyze
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its behavior as a function of the mass parameter µ. For this purpose we expand the effective
energy in a power series in the field expectations in momentum space Φ(p) as

Γ[Φ;m, g, µ] =
∞
∑

n=1

1

n!

∫

dDp1
(2π)D

. . .
dDpn
(2π)D

Φ(p1) · · ·Φ(pn)Γ̄
(n)(p1, . . . ,pn;m, g, µ). (10.108)

The coefficients are the proper vertex functions. We have omitted for a moment the term n = 0
in this expansion, since it will require extra treatment. Actually, the omission calls for a new
notation for the effective action, but since the reduced sum (10.108) will appear frequently in
what follows, while the full effective action appears only in a few equations, we prefer keeping
the notation unchanged, and shall instead refer to the full effective action including the n = 0 -
term as Γtot[Φ;m, g, µ].

Let us now apply the renormalization group equation (10.29) to each coefficient. Then
we observe that the factor n in front of γ(g) in Eq. (10.29) can be generated by a functional
derivative with respect to the field expectations Φ(p), replacing

n→
∫ dDp

(2π)D
Φ(p)

δ

δΦ(p)
. (10.109)

Then we find immediately the renormalization group equation

[

µ∂µ + β(g)∂g − γ(g)
∫

dDp

(2π)D
Φ(p)

δ

δΦ(p)
+ γm(g)m∂m

]

Γ[Φ(p);m, g, µ] = 0. (10.110)

The addition of the missing n = 0 term will modify this equation as we shall see in the next
section.

A corresponding equation holds for the effective potential v(Φ). This is defined as the
negative effective energy density at a constant average field Φ(x) ≡ Φ:

v(Φ) = −L−DΓ̄[Φ;m, g, µ]|Φ(x)≡Φ. (10.111)

Here L is the linear size of the D-dimensional box under consideration. The effective potential
satisfies the differential equation

[µ∂µ + β(g)∂g − γ(g)Φ∂Φ + γm(g)m∂m] v(Φ;m, g, µ) = 0. (10.112)

Due to its special relevance to physical applications, we solve here only the latter equation
along the lines of Eqs. (10.61)–(10.70). We introduce a running field strength Φ(σ), satisfying
the differential equation

1

Φ(σ)
σ
d

dσ
Φ(σ) = −γ(g(σ)), (10.113)

with the initial condition

Φ(1) = Φ. (10.114)

The equation is solved by

Φ(σ)

Φ
= exp

{

−
∫ σ

1

dσ′

σ′
γ(g(σ′))

}

= exp

{

−
∫ g(σ)

g
dg′

γ(g′)

β(g′)

}

. (10.115)
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Using this function Φ(σ), the effective potential satisfies the renormalization group equation
[analogous to (10.70)]:

v(Φ;m, g, µ) = v(Φ(σ);m(σ), g(σ), µσ). (10.116)

Note that there is no prefactor as in (10.70).
Since Γ[Φ] is dimensionless and v(Φ) is related to Γ[Φ] by (10.111), there is a naive scaling

relation analogous to (10.76):

v(Φ;m, g, µ) = σDv
(

Φ

σD/2−1
;
m

σ
, g,

µ

σ

)

. (10.117)

Together with (10.116), this gives

v(Φ;m, g, µ) = σDv

(

Φ(σ)

σD/2−1
;
m(σ)

σ
, g(σ), µ

)

. (10.118)

At the mass dependent value σm = m(σm)/µ, we obtain the analog of (10.79) for the effective
potential

v(Φ;m, g, µ) = σD
m v

(

Φ(σm)

σ
D/2−1
m

;µ, g(σm), µ

)

. (10.119)

In the limit m→ 0, where σ → 0, we see from Eq. (10.115) that the field behaves like

Φ(σm)

Φ
≈ σ−γ∗

m . (10.120)

The effective potential has therefore the power behavior

v(Φ;m, g, µ)
m≈0
≈ σD

m v(Φ/σ
γ∗+D/2−1
m ;µ, g∗, µ), (10.121)

where σm is related to t = m2/µ2 by (10.84).
For applications to many-body systems below Tc, it is most convenient to consider, instead

of Γ̄[Φ;m, g, µ], the proper vertex functions in the presence of an external magnetization. They
are obtained by expanding Γ̄[Φ;m, g, µ] functionally around Φ(x) ≡ Φ0:

Γ̄(n)(x1, . . . ,xn; Φ;m, g, µ) ≡
δnΓ̄[Φ;m, g, µ]

δΦ(x1) . . . δΦ(xn)

∣

∣

∣

∣

∣

Φ≡Φ0

. (10.122)

In momentum space, this gives

Γ̄(n)(k1, . . . ,kn; Φ0;m, g, µ) =
∞
∑

n′=0

Φn′

0

n′!
Γ̄(n+n′)(k1, . . .kn, 0, . . . , 0;m, g, µ), (10.123)

where the zeros after the arguments k1, . . . ,kn indicate that there are n′ more momentum
arguments kn+1, . . . ,kn+n′ which have been set zero since a constant field Φ(x) ≡ Φ0 has a
Fourier transform Φ(k) ≡ Φ0δ

(D)(k). Thus the renormalization group equation for the proper
vertex function at a nonzero field, Γ̄(n)(k1, . . . ,kn; Φ0;m, g, µ), can be obtained from those at
zero field Γ̄(n+n′)(k1, . . . ,kn,kn+1, . . . ,kn+n′;m, g, µ) with the last n′ momenta set equal to zero,
i.e., from

[µ∂µ + β(g)∂g − (n+ n′)γ(g) + γm(g)m∂m]

× Γ̄(n+n′)(k1, . . . ,kn, 0, . . . , 0;m, g, µ) = 0. (10.124)
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Inserting this into (10.123), we obtain the renormalization group equation
[

µ∂µ + β(g)∂g − γ(g)

(

n + Φ0
∂

∂Φ0

)

+ γm(g)m∂m

]

× Γ̄(n)(k1, . . . ,kn; Φ0, m, g, µ) = 0. (10.125)

When treated as above, this leads to the scaling relation

Γ̄(n)(ki; Φ0;m, g, µ) = e−n
∫

σ

1

dσ
′

σ′
γ(g(σ′))Γ̄(n)(ki; Φ0(σ);m(σ), g(σ), µσ). (10.126)

Together with the trivial scaling relation

Γ̄(n)(ki; Φ0;m, g, µ) = σD−n(D/2−1)Γ̄(n)(ki/σ; Φ0/σ
D/2−1;m/σ, g, µ/σ), (10.127)

we find

Γ̄(n)(ki; Φ0;m, g, µ) = σD−n(D/2−1)e−n
∫

σ

1

dσ
′

σ′
γ(g(σ′))

× Γ̄(n)(ki/σ; Φ0(σ)/σ
D/2−1;m(σ)/σ, g(σ), µ). (10.128)

This becomes, at σ = σm of Eq. (10.78),

Γ̄(n)(ki; Φ0;m, g, µ) = σD−n(D/2−1)
m e−n

∫

σm

1

dσ
′

σ′
γ(g(σ′))

× Γ̄(n)(ki/σm; Φ0(σm)/σ
D/2−1
m ;µ, g(σm), µ), (10.129)

and thus, near the critical point,

Γ̄(n)(ki; Φ0;m, g, µ) = n(γ∗ +D/2− 1)Γ̄(n)(ki/σm; Φ0/σ
γ∗+D/2−1
m ;µ, g∗, µ). (10.130)

10.7 Special Properties of Ground State Energy

When deriving the behavior of the proper vertex functions Γ̄(n)(k1, . . . ,kn;m, g) under changes
of the scale parameter µ, the number n was restricted to positive integer values n ≥ 1. The
vacuum energy contained in Γ̄(0)(m, g) was omitted from the sum in Eq. (10.108). Indeed, the
vacuum energy does not follow the regular renormalization pattern. For the above calculation
of the critical exponents, this irregularity is irrelevant. But if we want to calculate amplitude
ratios (recall the definition in Section 1.2), we have to know the full thermodynamic potential
as the temperature approaches the critical point from above and from below. Then the special
renormalization properties of the vacuum diagrams can no longer be ignored. The fundamental
difference between the ground state energies above and below the transition was seen at the
mean-field level in Eq. (1.43). While the vacuum energy is identically zero above the tran-
sition, it behaves like −(T − Tc)

2 below Tc, which is the condensation energy in mean-field
approximation.

More subtleties appear when calculating loop corrections. The lowest-order vacuum diagram
shows a peculiar feature: with the help of (8.116) and (8.117), we find the full semiclassical
effective potential at zero average field Φ and coupling constant:

vtot(0;m, 0, µ) =
N

2

∫

dDp

(2π)D
log(p2 +m2)

=
N

2

2

D

(m2)D/2

(4π)D/2
Γ(1−D/2) =

N

2

m4

µε

1

(4π)2

[

−
1

ε
+

1

2

(

log
m2

4πµ2e−γ
−

3

2

)]

+O(ε). (10.131)
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The pole term at ε = 0 can be removed by adding to the potential a counterterm

vsg ≡
N

2

m4

µε

1

(4π)2
1

ε
. (10.132)

To find a finite effective potential order by order in perturbation theory, we must perform the
perturbation expansion with an additional term in the initial energy functional, which carries
an additional set of pole terms, to be written collectively as [6, 7]

∆E ≡ −LD m4(µ)

(4π)2g(µ)µǫ
Zv(g(µ), ε), (10.133)

where Zv(g, ε) is the renormalization constant of the vacuum which has an expansion in powers
of 1/ε analogous to the other renormalization constants in (10.35)–(10.37):

Zv(g, ε) ≡
∞
∑

n=1

Zv,n(g)
1

εn
. (10.134)

The expansion coefficients of Zv up to five loops will be given in Eq. (15.35).
The analogy of Zv with the other renormalization constants is not perfect: there is no

constant zero-loop term in Zv. Such a term would be there if we had added to the bare energy
functional a term −LDm4

BhB/λB with an arbitrary constant hB. Such a term would have a
temperature dependence ∝ m4

B ∝ t2 contributing a constant background term to the specific
heat near Tc which is needed to describe experiments. Indeed, the specific heat [see the curves
in Fig. 1.1 and their best fit (1.22)] shows a critical power behavior of t superimposed upon a
smooth background term. The latter can be fitted by an appropriate constant hB. The sum
over the pole terms in Zv, on the other hand, diverges for t → 0 and generates the critical
power behavior proportional to |t|Dν which, after two derivatives with respect to t, produces
the observed peak in the specific heat C ∝ tDν−2 ∝ |t|−α. This will be seen explicitly on the
next page.

The effective energy of the vacuum is obtained from the sum of all loop diagrams Γ
(0)
B , plus

the additional term ∆E. The total sum is the renormalized effective energy of the vacuum:

Γ(0) = Γ
(0)
B +∆E. (10.135)

Now, the bare effective energy at fixed bare quantities is certainly independent of the regular-
ization parameter µ, and therefore satisfies trivially the differential equation

µ
d

dµ
Γ
(0)
B

∣

∣

∣

∣

∣

B

= 0. (10.136)

For the renormalized effective energy (10.135), this implies that

µ
d

dµ
Γ(0)

∣

∣

∣

∣

∣

B

= µ
d

dµ
∆E

∣

∣

∣

∣

∣

B

. (10.137)

Inserting here the right-hand side of (10.133), this equation can be written as

µ
d

dµ
Γ(0)

∣

∣

∣

∣

∣

B

= −LD m4(µ)

(4π)2g(µ)µε
γv(g(µ)), (10.138)
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with the renormalization group function of the vacuum

γv(g) ≡ − [ε+ β(g, ε)/g − 4γm]Zv(g, ε) + β(g, ε)∂gZv(g, ε). (10.139)

This function depends only on the renormalized coupling constant g as a consequence of the
renormalizability of the theory and the minimal subtraction scheme. The derivative on the
left-hand side of (10.137) is converted, via the chain rule, into a sum of differentiations with
respect to the renormalized parameters, as in Eq. (10.21). Thus we obtain for Γ(0)(m, g, µ) the
renormalization group equation

[

µ
∂

∂µ
+ β(m, g, µ)

∂

∂g
+ γm(m, g, µ)m

∂

∂m

]

Γ(0)(m, g, µ) = −
LD

(4π)2
m4(µ)

µεg(µ)
γv(g(µ)) . (10.140)

On the right-hand side we have emphasized the µ-dependence of m and g, to avoid confusion
with m = m(1) and g = g(1) defined in (10.61), (10.62). Inserting the expansion (10.134) of Zv

into the right-hand side of (10.140), we find that the differentiations isolate from Zv precisely
the residue of the simple pole term 1/ε, yielding

γv = gZ ′

v,1(g). (10.141)

All higher pole terms cancel, since the functions Zv,n satisfy recursion relations similar to
(10.48)–(10.50):

gZ ′

v,n+1(g) = [4γm − β0(g)/g]Zv,n + β0(g)Z
′

v,n(g), (10.142)

with β0(g) of Eq. (10.41).
The renormalization group equation (10.140) can now be solved to find the renormalized

effective energy of the vacuum [recall (10.119)]:

Γ(0)(m, g, µ) = LDσD
m v

(

Φ(σm)

σ
D/2−1
m

;µ, g(σm), µ

)

min

−
LD

(4π)2
m4h

gµε

∫ σm

1

dσ

σ1+ε
γv(g(σ))m

4(σ).

(10.143)
In the scaling regime, where σm is small and the mass goes to zero like

m(σm) ≈ mσγ∗

m

m , (10.144)

the additional term ∆E in the effective energy of the vacuum in (10.135) is proportional to

∆E ∝ m4σ4γ∗

m−ε
m ∝ tν(4γ

∗

m−ε)+2 = tDν . (10.145)

Thus it has the same scaling behavior as the incomplete effective potential v(Φ) at Φ = 0 [i.e.,
the effective potential without the n = 0 -term in the sum (10.108)], which according to (10.89)
and (10.121) behaves like σD

m ∝ tDν . It is also the same as that for the effective potential at a
nontrivial minimum Φ = Φ0 in the ordered state, as we shall see from (10.167). This will be
important later in Subsection 10.10.3 when calculating the critical exponent of the specific heat
defined in (1.16). The calculation of the universal ratios of the amplitudes of the specific heat
and other quantities depend crucially on the renormalized vacuum energy Γ(0)(m, g, µ) [8].

10.8 Approach to Scaling

In Eq. (10.93), we derived Kadanoff’s scaling law (1.28) from the scaling relation (10.86) for
the two-point proper vertex function. From this, we extracted the critical exponents ν =
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1/(2 − 2γ∗m) governing the temperature behavior of the correlation length, and the exponent
η = 2γ∗ determining the critical power behavior of the Green function.

In Eq. (10.104), we introduced a further important critical exponent which governs the
approach to the scaling law (10.93) for g → g∗. In order to find this, we expand the right-hand
side of Eq. (10.79) around g∗ and write

Γ̄(n)(ki;m, g, µ) = σD−n(D/2−1)
m exp

[

−n
∫ σm

1
dσ′

γ(g(σ′))

σ′

]

Γ̄(n) (ki/σm, µ, g
∗, µ)

×C(n)(ki/σm;µ, g(σm), µ), (10.146)

with the correction factor C(n) given by

C(n)(ki/σm;µ, g(σm), µ) = 1 + [g(σm)− g∗]
∂

∂g
log Γ̄(n)(ki/σm;µ, g, µ)

∣

∣

∣

∣

∣

g=g∗

+ . . . . (10.147)

Using Eq. (10.106), the correction factor is rewritten as

C(n)(ki/σm;µ, g(σm), µ) = 1 + (g − g∗)σω
m

∂

∂g
log Γ̄(n)(ki/σm;µ, g, µ)

∣

∣

∣

g=g∗
+ . . . , (10.148)

where ω is the slope of the β-function at g = g∗, as defined in Eq. (10.104).
When approaching the critical point σm → 0, a finite correction to scaling is observed if

∂ log Γ̄(n)/∂g is at g = g∗ homogenous of degree ω in the variables ki/σm. For the two-point
proper vertex function such a behavior implies the following form of the correction factor

C(2)(k/σm, 1, g
∗, 1)

m≈0
≈ 1 + const × (g − g∗)σω

m × (|k|/µσm)
−ω + . . . . (10.149)

Then

Γ̄(2)(k;m, g, µ) = σ2
m exp

[

−2
∫ σm

1
dσ′

γ(g(σ′))

σ′

]

Γ̄(2) (k/σm, µ, g
∗, µ)C(2)(k/σm;µ, g(σm), µ)

(10.150)

behaves for t ≈ 0 like

Γ̄(2)(k;m, g, µ)
m≈0
≈ |k|2−ηf(|k|/µtν)



1 + (g − g∗)× const ×

(

|k|

µ

)

−ω

+ . . .



 .

(10.151)

Thus the correction to scaling is described by the exponent ω which is the slope of the β-
function at the fixed point g∗. From the above discussion it is obvious that ω is positive for an
infrared stable fixed point.

The most accurately measured approach to scaling comes from space shuttle experiments
on the specific heat in superfluid helium, plotted in Fig. 1.2. The correction factor for this
approach is obtained from Eq. (10.148) for n = 0 to have the general scaling form

C(0) = 1 + const× σω
m = 1 + const× tνω, (10.152)

where we have used (10.84) to express σm in terms of t = T/Tc−1. The exponent νω is usually
called ∆ [compare Eq. (1.22)].

At this point one may wonder about the universality of this result since, in principle, other
corrections to scaling might arise from neglected higher powers of the field of higher gradient
terms in the energy functional, for example φ6 or φ(∂φ)2. Fortunately, all such terms can be
shown to be irrelevant for the value of ω. This is suggested roughly by dimensional considera-
tions, and proved by studying the flow of these terms towards the critical limit with the help
of the renormalization group [9].



176 10 Renormalization Group

10.9 Further Critical Exponents

The critical exponents ν, η, ω determine the critical behavior of all observables and the approach
to this behavior. Let us derive the scaling relations for several important thermodynamic
quantities and correlation functions.

10.9.1 Specific Heat

Consider the specific heat as a function of temperature. The ground state energy above Tc is
given by the effective potential at zero average field vh(Φ = 0) which, according to (10.89),
(10.121), and (10.145), has the scaling behavior

vh(Φ = 0)
m≈0
≈ σD

m × const. +m4σ4γ∗

m−ε
m × const. ≈ tDν , (10.153)

the second term coming from the sum of the vacuum diagrams in Eq. (10.145). Forming the
second derivative with respect to t, we find for the specific heat at constant volume

C
t≈0
≈ tD/(2−2γ∗

m)−2 = tDν−2, t > 0. (10.154)

This behavior has been observed experimentally, and the critical exponent has been named α
[recall (1.16)]:

C
t≈0
≈ t−α; t > 0. (10.155)

Thus we can identify

α = 2−Dν = 2−D/(2− 2γ∗m), (10.156)

showing that the exponent α is directly related to ν, as stated before in the scaling relation
(1.32).

10.9.2 Susceptibility

Suppose the system at T > Tc is coupled to a nonzero external source j, which is the gen-
eralization of an external magnetic field in magnetic systems [recall Eq. (1.44) and (1.45)].
The equilibrium value of the magnetization M ≡ Φ is no longer zero but MB ≡ Φ(j). It is
determined by the equation of state [the generalization of (1.46)]

j =
∂v(Φ)

∂Φ

∣

∣

∣

∣

∣

Φ(j)

. (10.157)

From (10.121) we see that in the vicinity of the critical point

j
t≈0
≈ σm

D−γ∗
−(D/2−1)v′(Φ(j)/σγ∗+D/2−1

m ;µ, g∗, µ), t > 0. (10.158)

The susceptibility is obtained by an additional differentiation with respect to Φ [see Eq. (1.47)]:

χ−1 ≡
∂2v

∂Φ2

∣

∣

∣

∣

∣

Φ=Φ(j)

t≈0
≈ σm

D−(D−2)σ−2γ∗

m v′′(Φ(j)σ−(D−2)/2−γ∗

m ;µ, g∗, µ), t > 0. (10.159)

For O(N)-symmetric systems above Tc, this equation applies to the invariant part of the sus-
ceptibility matrix defined by Eq. (1.12). Below Tc, we must distinguish between longitudinal
and transverse susceptibilities. This will be done in Subsection 10.10.5.
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At t = 0 and zero field, one has Φ(j) = 0 and finds

χ−1 ∝ σ2−2γ∗

m = t(2−2γ∗)/(2−2γ∗

m). (10.160)

Experimentally, this critical exponent is called γ [recall (1.17)]:

χ−1 t≈0
≈ tγ, t > 0. (10.161)

The critical exponent γ should not be confused with the renormalization group function γ(g)
of Eq. (10.26). Comparing (10.161) with (10.160), we identify

γ = 2
1− γ∗

2− 2γ∗m
= ν(2 − η), (10.162)

thus reproducing the scaling relation (1.34).

10.9.3 Critical Magnetization

At the critical point, the proportionality of j and Φ (or ofH andM) is destroyed by fluctuations.
Experimentally, one observes a scaling relation [recall (1.20)]

M ≈ B1/δ, t = 0. (10.163)

This can be derived from Eq. (10.158) which shows that a finite effective potential at the critical
point, where σm = 0, requires the derivative v′ to behave like some power for small σm = 0:

v′
t≈0
≈ const.×

(

Φ/σγ∗+D/2−1
m

)δ
, t > 0. (10.164)

From the proportionality j ∝ σD−γ∗
−(D/2−1)

m v′, the power δ which makes j finite in the limit
σm → 0 must satisfy

D − γ∗ − (D/2− 1)− [γ∗ + (D/2− 1)] δ = 0. (10.165)

From this we obtain

δ =
D + 2− 2γ∗

D − 2 + 2γ∗
=
D + 2− η

D − 2 + η
, (10.166)

which is the scaling relation (1.35).

10.10 Scaling Relations Below Tc

Let us now turn to scaling results below Tc. Since all individual vertex functions in the expansion
of the effective energy (10.108) can be calculated for m2 < 0 just as well as for m2 > 0, the
main difference lies in v(Φ) not having a minimum at Φ = 0 but at Φ = Φ0 6= 0 for vanishing
external fields.
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10.10.1 Spontaneous Magnetization

Consider first the behavior of the spontaneous magnetization M0 ≡ Φ0 as the temperature
approaches Tc from below. The equilibrium value of Φ is determined by the minimum of the
effective potential v(Φ). According to (10.121), the minimum must have a constant ratio:

Φ0/σ
γ∗+D/2−1
m = const . (10.167)

Hence, Φ0 depends on m2 and thus on the reduced temperature t as follows:

M0 ≡ Φ0 ∝ σγ∗+D/2−1
m = t(γ

∗+D/2−1)/(2−2γ∗

m). (10.168)

Thus we derive the experimentally observable relation [compare (1.19)]

M0 ≡ Φ0 ∝ (−t)β, (10.169)

with the critical exponent

β =
γ∗ +D/2− 1

2− 2γ∗m
=
ν

2
(D − 2 + η). (10.170)

This relation agrees with (1.33).

10.10.2 Correlation Length

Consider now the temperature dependent correlation length below Tc. From (10.130) we read
off that the two-point function satisfies

Γ̄(2)(k; Φ0;m, g, µ)
t≈0
≈ σ2−2γ∗

m Γ̄(2)
(

k/σm; Φ0/σ
γ∗+D/2−1
m ;µ, g∗, µ

)

, t < 0. (10.171)

As in the previous case above Tc [recall (10.86), (10.87)], this is a function of

k/σm = µ ξ(t)k, (10.172)

with the same temperature behavior as in (10.90). Thus the same critical exponent governs
the divergence of the correlation length below and above Tc.

This above-below equality will now also be derived for the critical exponents α and γ of
specific heat and susceptibility, respectively. The derivation of their scaling behaviors for t < 0
requires keeping track of the change of the average field Φ0 with temperature.

10.10.3 Specific Heat

The exponent α of the specific heat below Tc follows from the Φ0 6= 0 -version of Eq. (10.153)
for the effective potential:

vh(Φ0)
t≈0
≈ σD

mv
(

Φ0/σ
γ∗+D/2−1
m , µ, g∗, µ

)

+ const.×m4σ4γ∗

m−ε
m . (10.173)

Since the temperature change of Φ0 takes place at a constant combination Φ0/σ
γ∗+D/2−1
m [see

Eq. (10.167)], the presence of Φ0 6= 0 can be ignored and we obtain the same result as in
(10.153), implying a temperature behavior

v(Φ0) ∝ σD
m ≈ tDν . (10.174)

This agrees with the T > Tc -behavior (10.153), leading to the same critical exponent of the
specific heat as in (10.156).
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10.10.4 Susceptibility

Suppose now that an external magnetic field is switched on in the ordered phase. It will cause
a deviation δΦ ≡ Φ(j) − Φ0 from Φ0. From Eqs. (10.157) and (10.158) we obtain for δΦ the
scaling relation

j → σD−(γ∗+D/2−1)
m v′((Φ0 + δΦ)/σγ∗+D/2−1

m ;µ, g∗, µ). (10.175)

Expanding this to first order in δΦ gives

δj → δΦσ2−2γ∗

m v′′(Φ0/σ
γ∗+D/2−1
m ;µ, g∗, µ). (10.176)

Since Φ0 changes with t according to (10.169), the last factor is independent of temperature,
and the susceptibility χ(t) has the same functional form as in (10.159), exhibiting the same
critical exponent γ as in (10.161).

In O(N)-symmetric systems, this result holds for the longitudinal susceptibility only. The
transverse susceptibility requires the following separate discussion.

10.10.5 Transverse Susceptibility and Bending Stiffness

Suppose now that the ground state breaks spontaneously an O(N) symmetry of the system.
Then the susceptibility decomposes into a longitudinal part and a transverse part, as shown
in Eq. (1.14), and these two parts have completely different scaling properties. Since suscep-
tibilities are proportional to correlation functions according to (1.15), we extract their scaling
properties from the lowest gradient term in the effective energy Γ̄[�;m, g, µ] in the deviation
of the average field �(x) from the equilibrium value �0. We write bold-face letters for vectors
in O(N) field space. The quadratic term in the deviation δ�(x) ≡ �(x)−�0 has the general
form

Γ̄[�;m, g, µ] ≈ ∫

dDx δ�(x)Γ̄(2)(−i∂x;�0;m, g, µ))δ�(x). (10.177)

For smooth field configurations δ�(x), we expand

Γ(2)(−i∂x;�0;m, g, µ) ≈ c1(�0;m, g, µ)− c2(�0;m, g, µ)∂
2
x
. (10.178)

The temperature dependence of the expansion coefficients c1,2(�0;m, g, µ) can be extracted
from Eq. (10.171) and (10.167). To ensure the existence of a nontrivial term proportional to
k2 on the right-hand side of (10.171), we see that

Γ̄(2)(ki;�0;m, g, µ)
t≈0
∝ σ2−2γ∗

m + const× σ−2γ∗

m k2. (10.179)

Recalling the dependence (10.89) of σm on t = m2/µ2, and the relation (10.94) for the critical
exponent η, we obtain, for smooth field configurations, the temperature dependence of the
leading terms in the effective energy

Γ̄(2)[�;m, g, µ] t≈0
∝
∫

dDx
{

t(2−η)ν�2(x) + const× t−ην [∂x�(x)]2} . (10.180)

For an O(N)-symmetric system, the order field can be decomposed into size and direction
as �(x) = Φ(x)n(x) (10.181)
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which brings the effective energy for small and smooth deviations δΦ(x) and δn(x) ≡ n(x)−n0

from the average ordered configurations to the form as

Γ̄(2)[�;m, g, µ] t≈0
∝
∫

dDx
(

t(2−η)ν
{

Φ2
0 + [δΦ(x)]2

}

+ const×t−ην
{

[∂xδΦ(x)]
2+Φ2

0 [∂xδn(x)]
2
})

.

(10.182)

In O(2)-symmetric systems, the order field has two components, and can be replaced by a
complex field Φ(x) = eiθ(x)Φ0(x) with a real Φ0(x). Then the last term in (10.182) has the form

const×
∫

dDxt−ηνΦ2
0 [∂xδθ(x)]

2 . (10.183)

In both gradient terms we can, of course, omit the deviation symbols δ. The directional devia-
tion field δn(x) possesses only a gradient term, and describes long-range (massless) excitations
whose existence is ensured by the Nambu-Goldstone theorem stated after Eq. (1.50).

From the coefficients of the quadratic terms we extract the scaling behavior of the longitu-
dinal and tranverse correlation functions in momentum space:

GcL(k) ∝
[

t(2−η)ν + const× t−ηνk2
]

−1
, (10.184)

GcT (k) ∝
[

const× t−ηνΦ2
0k

2
]

−1
. (10.185)

The longitudinal and tranverse susceptibilities are proportional to these [recall Eq. (1.15)].
Their critical behavior is given by

χ−1
cL(0) ∝ t(2−η)ν (10.186)

k−2 χ−1
c T (k) ∝

∂

∂k2
χ−1
cL(k) ∝ t−ηνΦ2

0. (10.187)

Recalling the temperature dependence (10.169) of Φ0, and using the scaling relation for the
average field Φ0 in Eq. (10.169), the second relation becomes

k−2 χ−1
cT (k) ∝

∂

∂k2
χ−1
cL(k) ∝ t(D−2)ν . (10.188)

Comparison of the last term in Eq. (10.182) with (1.110) shows that the prefactor supplies
us with the temperature behavior of the bending stiffness of the directional field n(x) near the
critical point. In superfluid helium, this is by definition proportional to the experimentally
measured superfluid density ρs [recall Eq. (1.122)]. The bending stiffness, or the superfluid
density, are therefore proportional to those in (10.188), and we obtain the temperature behavior
of the superfluid density

ρs ∝ t(D−2)ν . (10.189)

The experimental verification of this scaling behavior was described in Chapter 1, the crucial
plots being shown in Fig. ??.

10.10.6 Widom’s Relation

Finally it is worth noticing that Eq. (10.158) corresponds exactly to Widom’s scaling relation
(1.26). That relation can be differentiated with respect to M to yield the magnetic equation of
state

B = t3−αM−1−1/βψ′(t/M1/β), (10.190)
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which may also be written as
B

M δ
= f

(

t

M1/β

)

(10.191)

with some function f(x). This is easily proven with the help of Griffith’s scaling relation
δ = −1 + (2− α)/β [recall (1.29)]. In terms of the variables of our field theory, the equation of
state (10.191) may be rewritten as

j = tδβ
(

t

Φ1/β

)−δβ

f
(

t

Φ1/β

)

= tδβg
(

Φ

tβ

)

, (10.192)

where g(x) is some other function. By comparing this with (10.158), we see that

δβ = [D − γ∗ − (D/2− 1)]
1

2− 2γ∗m
=
ν

2
(D + 2− η), (10.193)

which is in agreement with (10.166), (10.170), or (1.33) and (1.35).

10.11 Comparison of Scaling Relations with Experiment

For a comparison with experiment, we may pick three sets of critical data and extract the values
of η, ν, and ω. The remaining critical exponents can then be found from the scaling relations
(1.32)–(1.35).

As an example take the magnetic system CrBr3 where one measures

β ≈ 0.368, δ ≈ 4.3, γ ≈ 1.215. (10.194)

Inserting these into Widom’s scaling relation [recall (1.30)]

β = γ/(δ − 1) , (10.195)

we see that the relation is satisfied excellently. Inserting δ into the relation

η =
D + 2− (D − 2)δ

δ + 1
, (10.196)

we find for D = 3
η ≈ 0.132, (10.197)

and from the relation ν = γ/(2− η) [recall (1.34)]:

ν ≈ 0.65. (10.198)

10.12 Critical Values g*, η , ν, and ω in Powers of ε

Let us now calculate explicitly the critical properties of the O(N)-symmetric φ4-theory in the
two-loop approximation. In Eq. (10.56) we gave the β-function

β(ḡ) = −εḡ +
N + 8

3
ḡ2 −

3N + 14

3
ḡ3. (10.199)

In D = 4 dimensions, β(ḡ) starts with ḡ2, and the only IR-stable fixed point lies at ḡ∗ = 0.
Thus the massless φ4-theory behaves asymptotically as a free theory. From Eqs. (10.52) and
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(10.53) we see that the anomalous dimensions γ and γm are zero for ḡ∗ = 0. Hence the critical
exponents in Eqs. (10.88), (10.94), and (10.104) possess the mean field values for D = 4:

η = 0 , ν = 1/2 , ω = 0 . (10.200)

In D = 4 − ε dimensions, the equation β(ḡ∗) = 0 for the fixed point has the nontrivial
solution

ḡ∗ =
3

N + 8
ε+

9(3N + 14)

(N + 8)3
ε2 + . . . . (10.201)

If this expansion is inserted into the ḡ-expansions (10.57)–(10.58), we obtain for the critical
exponents ν and η the ε-expansions:

η = 2γ∗(ε,N) =
N + 2

2(N + 8)2
ε2 + . . . , (10.202)

ν =
1

2− 2γ∗m(ε,N)
=

1

2
+

N + 2

4(N + 8)
ε+

(N + 2)(N2 + 23N + 60)

8(N + 8)3
ε2 + . . . . (10.203)

The critical exponent ω governing the approach to scaling is found from the derivative of the
β-function (10.56) at ḡ = ḡ∗ [recall (10.104)]:

ω = β ′∗(ε,N) = ε− 3
3N + 14

(N + 8)2
ε2 + . . . . (10.204)

All ε-expansions are independent of the choice of the coupling constant. The critical expo-
nents depend via ε and N only on the dimension of space and order parameter space. This is
a manifestation of the universality of phase transitions, which states that the critical behavior
depends only on the type of interaction, its symmetry, and the space dimensionality.

Let us compare the above ε-expansion with the experimental critical exponents in Section
10.11. The expansion can be used only for infinitesimal ε. For applications to three dimensions
we have to evaluate them at ε = 1, which cannot be done by simply inserting this large ε-
value, since the series diverge. Let us ignore this problem for the moment, deferring a proper
resummation until Chapters 16, 19, and 20. Inserting ε = 1, and estimating the reliability of
the result from the size of the last term in each series, we calculate for N = 0, 1, 2, 3,∞ :

ν = 1
2
+ 1

16
ε+ 15

512
ε2 + . . . = 303

512
+ . . . ≈ 0.5918± 0.0293, N = 0,

ν = 1
2
+ 1

12
ε+ 7

162
ε2 + . . . = 203

324
+ . . . ≈ 0.6265± 0.0432, N = 1,

ν = 1
2
+ 1

10
ε+ 11

200
ε2 + . . . = 131

200
+ . . . ≈ 0.6550± 0.0550, N = 2,

ν = 1
2
+ 5

44
ε+ 345

5324
ε2 + . . . = 903

1331
+ . . . ≈ 0.6874± 0.0648, N = 3,

ν = 1
2
+ 1

4
ε+ 1

8
ε2 + . . . = 7

8
+ . . . ≈ 0.8750± 0.1250, N = ∞.

(10.205)

The other critical exponents are

η = 1
64

≈ 0.016, N = 0,

η = 1
54

≈ 0.019, N = 1,

η = 1
50

≈ 0.02, N = 2,

η = 5
242

≈ 0.021, N = 3,

η = 0, N = ∞,

(10.206)
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and

ω = ε− 17
27
ε2 = 10

27
≈ 0.3704± 0.6296, N = 0,

ω = ε− 17
27
ε2 = 10

27
≈ 0.3704± 0.6296, N = 1,

ω = ε− 3
5
ε2 = 2

5
≈ 0.4± 0.6, N = 2,

ω = ε− 69
121
ε2 = 52

121
≈ 0.4298± 0.5702, N = 3,

ω = ε = 1, N = ∞.

(10.207)

The ε-expansion for ν has decreasing contributions from higher orders. The value up to order
ε2 is ν ≈ 0.627, and agrees reasonably with the experimental value ν ≈ 0.65 of Eq. (10.198).

The expansions for η contain only one term, so no convergence can be judged. The agreement
with experiment is nevertheless reasonable. The value to order ε2 at ε = 1 is η ≈ 0.019 which,
via the scaling relation ν = γ/(2 − η), leads to the exponent γ ≈ 1.287, quite close to the
experimental value γ = 1.215 in Eq. (10.194).

The expansion for ω are obviously useless since the errors are too large.

If we attempt to calculate critical exponents to higher order than ε2 by inserting ε = 1 into the
expansions, we observe that the agreement becomes worse since the series diverge. The rough
agreement for ν and ǫ up to order ε2 is a consequence of the asymptotic convergence of the series.
In Chapter 16, we shall see how high-precision estimates can still be extracted from asymptotic
series. The reader who is curious to see how the direct evaluation of the series becomes worse
with higher orders in ε may anticipate the five-loop expansions from Eqs. (17.13)–(17.15) and
insert ε = 1 into these.

For a judgment of the reliability of all numbers (10.205)–(10.207), we refer the reader to the
most accurate currently available critical exponents in Tables 20.2 and ??.

10.13 Several Coupling Constants

For fields with more than one component, several φ4-couplings are possible which may all
become simultaneously relevant in four dimensions. This was discussed in detail in Chapter
6. For each coupling constant, there exists a β-function and there may be two or more fixed
points. The stability of the fixed points depends on N and channels the flow in the space of
the coupling constants. It can be shown in general [10] that the O(N)-symmetric fixed point
is the only stable one for N ≤ 4−O(ε).

In order to have only a single wave function renormalization constant for the N field com-
ponents φα, the following condition has to be fulfilled:

Γ̄
(2)
αβ(k) ∼ Γ̄(2)(k) δαβ . (10.208)

This property is guaranteed for all theories which are symmetric under reflection φα → −φα

and under permutations of the N field indices α. The same symmetry ensures that Γ̄(4) is, to all
orders in perturbation theory, a linear combination of the tensors specifying the φ4-couplings.
For two tensors T

(1)
αβγδ and T

(2)
αβγδ, this condition reads

Γ̄
(4)
αβγδ ∼ Γ̄

(4)
1 T

(1)
αβγδ + Γ̄

(4)
2 T

(2)
αβγδ . (10.209)



184 10 Renormalization Group

If the conditions (10.208) and (10.209) are satisfied, we can find four scalar renormalization
constants ZA (A = φ,m2, g1, g2) relating the bare mass mB and the two coupling constants giB
to the corresponding physical parameters by

m2
B =

Zm2

Zφ
m2; giB = µε Zgi

(Zφ)
2 gi for i = 1, 2 . (10.210)

The renormalization group functions are introduced in the usual way:

βi(g1, g2) = µ∂µgi|g1B ,g2B ,mB ,ε = µ∂µgi
∣

∣

∣

B
, (10.211)

γ(g1, g2) = µ∂µ logZ
1/2
φ |g1B ,g2B,mB ,ε = µ∂µ logZ

1/2
φ

∣

∣

∣

B
, (10.212)

γm(g1, g2) = µ∂µ logm|g1B,g2B ,mB,ε = µ∂µ logm
∣

∣

∣

B
. (10.213)

We have written Eqs. (10.211)–(10.213) by analogy with Eqs. (10.30)–(10.33). Since the renor-
malization constants depend on g1 and g2, the functions g1 and g2 are implicitly given by

giB = µεZgiZ
−2
φ gi = giB(µ, g1(µ), g2(µ)). (10.214)

The derivatives ∂µg1 and ∂µg2 follow therefore from the two equations

∂giB
∂µ

+
∂giB
∂g1

∂g1
∂µ

+
∂giB
∂g2

∂g2
∂µ

= 0 for i = 1, 2. (10.215)

Using ∂µgiB = ε giB/µ, we find

∂ log giB
∂g1

β1 +
∂ log giB
∂g2

β2 = −ε for i = 1, 2. (10.216)

The renormalization group function γ(g1, g2) is given by

γ(g1, g2) =
β1(g1, g2)

2

∂ logZφ

∂g1
+
β2(g1, g2)

2

∂ logZφ

∂g2
, (10.217)

while γm is obtained from the equation

γm(g1, g2) = −
β1(g1, g2)

2

∂ logZm2

∂g1
−
β2(g1, g2)

2

∂ logZm2

∂g2
+ γ(g1, g2). (10.218)

Extracting the regular terms of Eqs. (10.216)–(10.218), we find the analog of Eqs. (10.43)–
(10.46) for the case with two coupling constants:

β1 = −εg1 + g1 (g1∂g1Zg1,1 + g2∂g2Zg1,1 + 4 γ) ,

β2 = −εg2 + g2 (g2∂g2Zg2,1 + g1∂g1Zg2,1 + 4 γ) ,

γ = − 1

2
g1∂g1Zφ,1 − 1

2
g2∂g2Zφ,1,

γm = 1

2
g1∂g1Zm2,1 + 1

2
g2∂g2Zm2,1 + γ. (10.219)

The stability of the fixed points can be examined using the critical exponents ω1, ω2, which
are the eigenvalues of the matrix ∂βi/∂gj . They should be positive for an infrared stable fixed
point. An example for a system with two coupling constants will be treated in Chapter 18.
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10.14 Ultraviolet versus Infrared Properties

Some remarks may be useful concerning the special role of ultraviolet divergences in critical
phenomena. In three dimensions, φ4-theories are superrenormalizable and possess finite cor-
relation functions after only a few subtractions. So one may wonder about the relevance of
ultraviolet divergences to critical phenomena, in particular, since the system at short distances
is not supposed to be represented by the field theory. The explanation of this apparent paradox
is the following. Consider some real physical system with a microstructure, such as a lattice, at
a temperature very close to the critical temperature at which the correlation length ξ extends
over many lattice spacings. There the correlation functions have three regimes. At very long
distances x ≫ ξ, they fall off exponentially like e−x/ξ. For distances much larger than the
lattice spacing but much smaller than the correlation length, they behave like a power in x.
At the critical temperature, this power behavior extends all the way out to infinite distances.
In the third regime, where distances are of the order of the lattice spacing, the behavior is
nonuniversal and depends crucially on the composition of the material. Nothing can be said
about this regime on the basis of field-theoretic studies.

Let us compare these behaviors of correlation functions of real systems with the behaviors
found in the present φ4 field theories. Here we can also distinguish three regimes. The third,
unphysical regime, lies now at distances which are shorter than the inverse cutoff Λ of the
theory. In this regime, the perturbation theory has unphysical singularities, first discussed by
Landau, that are completely irrelevant to the critical phenomena to be explained. At length
scales much shorter than the correlation length, but much longer than 1/Λ, the correlation
functions show power behavior, from which we can extract the critical exponents of the field
theory and compare them with experiments made in the above lattice system. In field theory,
this is the so-called short-distance behavior. Its properties are governed by the ultraviolet
divergences. At the critical point, the short-distance behavior extends all the way to infinity.
This is the reason why ultraviolet divergences are relevant for the understanding of long-distance
phenomena observed in many-body systems near the critical point, that are independent of the
microstructure.
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