
The only place outside of Heaven where you can be perfectly safe

from all the dangers and perturbations of love is Hell.

C. S. Lewis (1898–1963)

10
Quantum Field Theoretic Perturbation Theory

In this chapter we would like to develop a method for calculating the physical conse-
quences of a small interaction in a nearly free quantum field theory. All results will
be expressed as power series in the coupling strength. These powers series will have
many unpleasant mathematical properties to be discussed in later chapters. In this
chapter, we shall ignore such problems and show only how the power series can be
calculated in principle. More details can be found in standard textbooks [2, 3, 4].

10.1 The Interacting n-Point Function

We consider an interacting quantum field theory with a time-independent Hamil-
tonian. All physical information of the theory is carried by the n-point functions

G(n)(x1, . . . , xn) = H〈0|TφH(x1)φH(x2) · · ·φH(xn)|0〉H. (10.1)

Here |0〉H is the Heisenberg ground state of the interaction system, i.e., the lowest
steady eigenstate of the full Schrödinger Hamiltonian:

H|0〉H = E|0〉H. (10.2)

The fields φH(x) are the fully interacting time-dependent Heisenberg fields, i.e., they
satisfy

φH (x, t) = e−iHtφS(x)e
iHt, (10.3)

where

H = H0 + V (10.4)

is the full Hamiltonian of the scalar field. Note that the field on the right-hand side
of Eq. (10.3) has the time argument t = 0 and is therefore the same in any picture
φI(x, 0) = φH(x, 0) = φ(x, 0) so that we shall also write

φH (x, t) = e−iHtφ(x, 0)eiHt. (10.5)
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724 10 Quantum Field Theoretic Perturbation Theory

We now express φH(x) in terms of the field φI(x) of the interaction picture and
rewrite

G(n)(x1, . . . , xn) = H〈0|T [UI(0, t1)φI(x1)UI(t1, t2)φI(x2) · · ·
· · ·UI(tn−1, tn)φI(xn)UI (tn, 0)] |0〉H , (10.6)

where we have used the properties of the time displacement operator

U−1
I (t, 0) = U †

I (t, 0) = UI(0, t),

UI(t1, t2) = UI(t1, 0)U
−1
I (0, t2). (10.7)

We shall now assume that the state |0〉H is a non-degenerate eigenstate of the full
Hamiltonian. Then we can make use of the switching-on procedure of the interaction.
Then, in the limit t → −∞, the vacuum state will develop towards the vacuum of
the free field Hamiltonian H0. According to the Gell-Mann–Low formula we may
write [5, 6]

|0〉H =
UI (0,−∞) |0〉
〈0|UI (0,∞) |0〉 ,

H〈0| =
〈0|UI (∞, 0)

〈0|UI (∞, 0) |0〉 , (10.8)

where |0〉 is the free-particle vacuum. The presence of a switching parameter η and
its limit η → 0 at the end are tacitly assumed. After this, formula (10.6) becomes

G(n) (x1, . . . , xn) = 〈0|UI (∞, 0)T
(

UI (0, t1)φI(x1)UI (t1, t2)φI(x2) · · ·
· · ·UI(tn−1, tn)φI(xn)UI (tn, 0))UI (0,−∞) |0〉

× 1/〈0|UI (∞, 0) |0〉〈0|UI (0,−∞) |0〉. (10.9)

The product in the denominator can be combined to a single expression using the
relation (9.95):

〈0|UI (∞, 0) |0〉〈0|UI (0,−∞) |0〉 = 〈0|UI (∞,−∞) |0〉 = 〈0|S|0〉. (10.10)

The numerator consists of the S-matrix operator UI (∞,−∞), time-sliced into n+1
pieces at t1, . . . , tn, with n fields φ(xi), i = 1, . . . , n, inserted successively. It is
gratifying to observe that due to the definition of the time-ordering operator, the
expression can be written in the much more compact fashion

T
(

S φI(x1)φI(x2) · · ·φI(xn)
)

, (10.11)

so that we arrive at the simple formula

G(n) (x1, . . . , xn) = 〈0|T
(

S φI(x1) · · ·φI(xn)
)

|0〉/〈0|S|0〉 (10.12)

=
〈0|Te−i

∫

∞

−∞
dt VI (t)φI(x1) · · ·φI(xn)|0〉

〈0|e−i
∫

∞

−∞
dtVI (t)|0〉

.
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The fields φI(x) are now expressed as

φI (x, t) = eiH0tφS(x)e
−iH0t

= eiH0tφ (x, 0) e−iH0t. (10.13)

This implies that the field φI(x, t) changes in time in the same way as the Heisen-
berg field φH (x, t) would do if the Hamiltonian H were without interaction. This
observation is the key to the upcoming evaluation of the n-point functions.

What is the interaction picture of the interaction VI itself? We assumed V to
be an arbitrary time-independent functional of φS (x),

V = V [φS (x)] . (10.14)

But then we may use (10.13) to calculate

VI(t) = V [φI (x, t)] . (10.15)

Thus the potential VI(t) in the interaction picture is simply the Schrödinger inter-
action V with the fields φS(x) replaced by φI(x, t), which develop from the initial
configuration φ(x, 0) according to the free-field equations of motion.

The state |0〉 is the ground state of the free Hamiltonian H0, i.e., the vacuum
state arising in the free-field quantization of Chapters 2 and 4. If we drop the indices
I, we can state the interacting n-particle Green function as

G(n) (x1, . . . , xn) =
〈0|Te−i

∫

∞

−∞
dtV [φ(x,t)]

φ(x1) · · ·φ(xn)|0〉
〈0|Te−i

∫

∞

−∞
dtV [φ(x,t)]|0〉

, (10.16)

where φ(x, t) is the free field and |0〉 the vacuum associated with it.
Note that the functional brackets only hold for the spatial variable x. All fields

in V [φ(x, t)] have the same time argument. In a local quantum field theory, the
functional is a spatial integral over a density

e
−i
∫

∞

−∞
dt V [φ(x,t)]

e
−i
∫

∞

−∞
dt
∫

d3x v(φ(x,t))
. (10.17)

10.2 Perturbation Expansion for Green Functions

In general, it is very hard to evaluate expressions like (10.16). If the interaction
term VI is very small, however, it is suggestive to perform a power series expansion
and write

e
−i
∫

∞

−∞
dtV [φ(x,t)]

= 1− i
∫ ∞

−∞
dtV [φ(x, t)]

+
(−i)2
2!

∫ ∞

−∞
dt1dt2T (V [φ(x1, t1)]V [φ(x2, t2)]) + . . . . (10.18)

In this way, we are confronted in (10.16) with the vacuum expectation value of many
free fields φ(x), of which n are from the original product φ(x1) · · ·φ(xn), the others
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from the interaction terms. From Wick’s theorem we know that we may reduce the
expression to a sum over products of free-particle Green functions G0(x− x′), with
all possible pair contractions. The simplest formulation of this theorem was given in
terms of the generating functional of all free-particle Green functions [recall (7.840)],

Z0[j] = 〈0|Tei
∫

d4x φ(x)j(x)|0〉, (10.19)

where the subscript 0 emphasizes now the absence of interactions. This functional
can also be used to compactly specify the perturbation expansion. Let us also intro-
duce the generating functional for the interacting case, where the Green functions are
expectation values of products of the Heisenberg fields φH(x) in the full Heisenberg
vacuum state,

ZH [j] ≡ H〈0|Tei
∫

d4x φH(x)j(x)|0〉H. (10.20)

The functional derivatives of this yield the full n-point functions (10.1). The per-
turbation expansion derived above can now be phrased compactly in the formula

ZH [j] ≡ ZD[j]/Z[0], (10.21)

where Z[j] is the generating functional in the interaction or Dirac picture:

Z[j] ≡ 〈0|Te−i
∫

∞

−∞
dtV [φ(x)]+i

∫

d4xφ(x)j(x)|0〉. (10.22)

The fields and the vacuum state in Z[j] are those of the free field theory. Note
that ZH [j] and Z[j] differ only by an irrelevant constant Z[0] which appears in the
denominators of all Green functions (10.16), and which has an important physical
meaning to be understood in Section 10.3.1. The main difference between them is
the prescription of how they have to be evaluated.

As functionals of the sources j, the generating functional yields the perturbation
expansion for all n-point functions. This can be verified by functional differentiations
with respect to j and comparison of the results with (10.16) and (10.1).

Note that while the generating functional ZH [j] is normalized to unity for j ≡ 0,
this is not the case for the auxiliary functional Z[j]. However, for generating n-point
functions, Z[j] is just as useful as the properly normalized ZH [j] if one only modifies
the differentiation rule by the overall factor Z[0]−1:

G(n)(x1, . . . , xn) =

[

1

Z[j]

δ

iδj(x1)
· · · δ

iδj(xn)
Z[j]

]

j=0

. (10.23)

This is what we shall do from now on so that we can refer to Z[j] as a generating
functional. This will also be of advantage when enumerating the different pertur-
bative contributions to each Green function. Indeed, formula (10.23) enables us to
write down an immediate, although formal and implicit, solution for the interacting
generating functional: Since differentiation δ/δj(x) produces a field φ(x) we may
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rewrite the interaction V [φ(x)] as V [−iδ/δj(x)]. Then it is no longer a field op-
erator. It may be removed from the vacuum expectation value by rewriting Z[j]
as

Z[j] = e
−i
∫

∞

−∞
dtV [−iδ/δj(x)]

Z0[j]. (10.24)

Recall that Z0[j] was calculated explicitly in (7.843) from Wick’s theorem

Z0[j] = exp
{

−1

2

∫

d4y1d
4y2j(y1)G0(y1, y2)j(y2)

}

. (10.25)

The perturbation series of all n-point functions are now found by expanding the
exponential in (10.24) in powers of V and performing the derivatives with respect
to δ/δj(x). These produce precisely all Wick contractions involving the fields in the
interaction.

The explicit evaluation is quite difficult for an arbitrary interaction. It is there-
fore advisable to learn dealing with such expressions by considering simple examples.

10.3 Feynman Rules for φ4-Theory

In order to understand the systematics of the perturbation expansion let us focus
our attention on a very simple scalar field theory with the Lagrangian

L =
1

2
(∂φ)2 − m2

2
φ2 +

g

4!
φ4. (10.26)

This is usually referred to as φ4-theory. Here m is the mass of the free particles,
and g the interaction strength. We shall assume g to be small enough to be able to
expand all interacting Green functions in a power series in g. It is well-known that
the resulting series will be divergent since the coefficients of gk at large order k will
grow like k!. Fortunately, however, the limiting behavior of the coefficients is exactly
known. This has made it possible to develop powerful resummation techniques for
extracting reliable results from this series.

The interaction in the Schrödinger picture is

V [φS(x)] =
g

4!

∫

d3xφ4
S(x). (10.27)

In the interaction picture, after substituting φS(x) by the free field φ(x), the expo-
nents in the formulas (10.16), (10.22) become

e
−i
∫

∞

−∞
dtV [φS(x,t)] = e−i g

4!

∫

d4xφ4(x). (10.28)

In the functional formulation of the perturbation expansion, we have to calculate
the series

Z[j] = e−i g

4!

∫

d4x(−iδ/δj(x))4Z0[j]
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=

[

1− i
g

4!

∫

d4x

(

−i δ

δj(x)

)4

+
(−i)2
2!

(

g

4!

)2 ∫

d4x1d
4x2

(

−i δ

δj(x1)

)2 ( −iδ
δj(x2)

)2

+ . . .

]

× e−
1

2

∫

d4y1d4y2j(y1)G0(y1,y2)j(y2). (10.29)

The n-point functions are obtained according to (10.23) by expanding the exponen-
tial on the right-hand side in a power series, forming the nth functional derivatives
with respect to j, and setting j to zero. The result has to be divided by Z[0] which
is also a power series in g. Certainly, n has to be even, otherwise the result vanishes.
If we want to calculate G(n) up to a given power in g, say gk, there are many different
contributions. The denominator Z[0] has to be expanded in powers of g, and its

kth-order contributions come from the
(

−1
2

∫

jG0j
)2k

/(2k)! term in the expansion
of the exponential. Here and in most of the following structural formulas we shall
omit the integration variables, for brevity. The kth-order term has the form

Zk[0] =
(

−i g
4!

)k ∫
(

−i δ
δj1

)4

· · ·
(

−i δ
δjk

)4
1

(2k)!

(

−1

2

∫

jG0j
)2k

. (10.30)

In the numerator of (10.23), there are contributions of zeroth order in g to G(n)

from the (n/2)th terms which have the form
(

−1
2

∫

jG0j
)n/2

. Then there are those

of first order in g from the (n/2 + 2)nd terms
(

−1
2

∫

jG0j
)n/2+2

, of second order in

g from the (n/2 + 4)th term
(

−1
2

∫

jG0j
)n/2+4

, etc. Forming the product of four

derivatives (δ/δj)4 associated with every order in g, as well as the n derivatives for
the Green function G(n), the expressions of kth order have the structure

(

−i g
4!

)k
(

−i δ
δj1

)

· · ·
(

−i δ
δjn

)

×
∫

(

−i δ
δj

)4

· · ·
(

−i δ
δj

)4
1

(n/2 + 2k)!

(

−1

2
jG0j

)

n
2
+2k

. (10.31)

The Green functions accurate to order gk are then obtained by dividing the two
power series (10.31) and (10.30) through each other and expanding the result again
up to order gk.

This all seems to be a horrendous task. It is, however, possible to devise a
diagrammatic procedure for keeping track of the different contributions which will
cause many simplifications. In particular, the division process is really quite trivial
due to the fact that Z[0] appears automatically as a factor in the calculation of the
numerator of each n-point function.

Actually, formula (10.29), although it gives the most explicit answer to the prob-
lem, is quite cumbersome when it comes to actual calculations. The derivatives are
an efficient analytic way of accounting for the set of all Wick contractions of pairs
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of field operations. In the calculation of a specific n-point function, however, it is
much more advantageous to insert the expansion (10.18) into formula (10.16), and
to separate numerator and denominator by writing

G(n) (x1, . . . , xn) ≡
1

Z[0]
Ḡ(n) (x1, . . . , xn) . (10.32)

Here the unnormalized Green function Ḡ(n) (x1, . . . , xn) is the unnormalized Green
function. This has the expansion

Ḡ(n) (x1, . . . , xn) ≡

= 〈0|T
{(

1− ig

4!

∫

d4zφ(z) +
1

2!

(−ig
4!

)2 ∫

d4z1d
4z2φ

4(z1)φ
4(z2) + . . .

)

× φ(x1) · · ·φ(xn)
}

|0〉, (10.33)

whereas the denominator Z[0] in (10.32) has the series

Z[0]=〈0|T
(

1− ig

4!

∫

d4zφ4(z) +
1

2!

(−ig
4!

)2 ∫

d4z1d
4z2φ

4(z1)φ
4(z2)+ . . .

)

|0〉.
(10.34)

By performing the Wick contractions in the two expansions explicitly we obtain Ḡ(n)
p

and Zp[0], respectively, to be divided by one another.

10.3.1 The Vacuum Graphs

Because of its formal simplicity let us start a more explicit perturbation expansion
with the calculation of Z[0]. To first-order in the coupling constant g we have to
evaluate

Z1[0] = −i g
4!

∫

d4z〈0|T (φ(z)φ(z)φ(z)φ(z)) |0〉, (10.35)

where we have written down the four powers of φ(z) separately in order to see
better how to perform all pair contractions. The first field can be contracted with
the three others. After this the second field has only one choice. Thus there are 3 ·1
contractions, all of the form

−i g
4!

∫

d4zG0(z, z)G0(z, z), (10.36)

so that

Z1[0] = −i3 g
4!

∫

d4zG0(z, z)G0(z, z). (10.37)

To order g2 we have to evaluate

1

2!

(

−i g
4!

)2 ∫

d4z1d
4z2 〈0|T (φ(z1)φ(z1)φ(z1)φ(z1)φ(z2)φ(z2)φ(z2)φ(z2)) |0〉. (10.38)



730 10 Quantum Field Theoretic Perturbation Theory

Expanding the expectation value of the product of eight fields into a sum over pair
contractions, we obtain 7 · 5 · 3 · 1 = 105 contractions, 32 of them with φ(z1)’s and
φ(z2)’s contracting among each other, for example,

φ(z1)φ(z1)φ(z1)φ(z1)|φ(z2)φ(z2)φ(z2)φ(z2), (10.39)

where we have explicitly separated the two interactions by a vertical line. There
are further 4 · 3 · 2 = 24 contractions, where each φ(z1) connects with a φ(z2), for
example,

φ(z1)φ(z1)φ(z1)φ(z1)|φ(z2)φ(z2)φ(z2)φ(z2), (10.40)

and 6 · 6 · 2 = 72 of the mixed type, for example,

φ(z1)φ(z1)φ(z1)φ(z1)|φ(z2)φ(z2)φ(z2)φ(z2) . (10.41)

The factors six counts the six choices of one contraction within each factor φ4 after
which there are only two possible interconnections.
The 105 terms obtained in this way correspond to the following integrals

1

2!

(

−i g
4!

)2
[

9
(
∫

d4z1G0(z1, z1)
2
)2

+ 24
∫

d4z1d
4z1G0 (z1, z2)

4

+ 72
∫

d4zd4zG0(z1, z1)G0(z1, z2)
2G0 (z1, z2)

2G0(z2, z2)
]

. (10.42)

It is useful to picture the different contributions by means of so-called Feynman

diagrams: A line with x1, x2 at the ends

q q
x1 x2

= G0(x1, x2) (10.43)

represents a free-particle propagator. A vertex with four emerging lines

z
= −i g

4!
(10.44)

stands for the φ4(z) interaction at the point z with the convention to carry a coupling
constant −ig/4!. The spacetime variables of each vertex have to be integrated over.
Then the only diagram to first order is

3 q♥♥. (10.45)

z1
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To second order there are three diagrams

9 q♥♥ q♥♥ + 24 q q♥
..
..
..
..
...
....
....................................................
...
..
..
..
..
.. + 72 q q✐✐✐ . (10.46)

z1 z2 z1 z2 z1 z2

To third order we find 11 · 9 · 7 · 5 · 3 · 1 = 10 395 terms. The total number rapidly
proliferates. Diagrams of this type consisting only of lines which close back into
themselves are called vacuum diagrams.

When we discussed Eq. (7.140) we noticed an important statistical interpretation
of the relativistic euclidean propagator G(x, x′). It describes the probability for a
random walk of any length τ to go from x to x′, provided that its lengths are
distributed with an exponential Boltzmann-like factor e−µτ . The loop expansion of
the partition function in terms of vacuum diagrams may therefore be interpreted
as a direct picture of the various topologies of random walks in a grand-canonical
ensemble of walks of any length. For this reason, relativistic quantum field theories
may be used to study random walk ensembles, in which case they are called disorder

field theories. As mentioned in Chapter 7, such random walks appear in many
physical systems in the form of vortex lines and defect lines.

This line interpretation of quantum fields has led to an entire quantum field
theory of physical systems in which the statistical mechanics of line like excitations
play an important role for understanding the observed behavior. Consider, for ex-
ample, the phase transitions in liquid helium. Conventionally, they are understood
by describing the liquid as an ensemble of a large number of atoms interacting by a
van der Waals type of potential. At low temperatures, below the so-called λ-point
Tλ ≈ 2.17K, the atoms enter the superfluid phase in which all atoms behave in a
coherent fashion [1]. At zero temperature the entire system lies in a ground state.
As temperature rises, thermal fluctuations create small loops of vortex lines. Their
average length grows, and at Tλ it diverges. The vortex lines proliferate and fill
the entire sample. Since the inside of each vortex line contains a normal liquid, the
superfluid becomes normal. This picture gives rise to a completely alternative quan-
tum field theoretic description of superfluid He. At zero temperature, the superfluid
is a vacuum for vortex lines, i.e., the disorder field describing them has a zero ex-
pectation value. As the temperature rises, more and more disorder excitations are
generated, and the field acquires a finite expectation value.

The reader who wants to understand this interesting development is referred to
the original literature1. Some details will also be discussed in Chapter 19.2.

At this place it is also worth mentioning that the opposite direction of research
has been pursued by a number of people, who are trying to understand as field
theory as a system of an ensemble of lines. The formalism arising in this way is
refereed to as string-inspired approach to quantum field theory. It abandons the
marvellous power of the field theoretic description of ensembles of lines in favor of
some calculational advantages [10]. By construction, this approach conserves the

1See Refs. [7, 8, 9].
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number of lines, i.e., the number of particles. Thus it will not be efficient when
particle condensation processes are important, since then vortex line numbers are
certainly not conserved.

10.4 The Two-Point Function

Let us now turn to the numerator in the perturbation expansion for the n-point
function (10.29). We shall first study the two-point function. Clearly, to zeroth
order there is only the free-particle expression

Ḡ(2)(x1, x2) = 〈0|Tφ(x1)φ(x2)|0〉 = G0 (x1, x2) (10.47)

corresponding to the Feynman diagram (10.43). To first order we have to find all
contractions of the expression

−ig
4!

∫

d4z〈0|Tφ(z)φ(z)φ(z)φ(z)φ(z1)φ(z2)|0〉. (10.48)

There are 5·3·1 = 15 of them. They fall into two classes: 3 diagrams contain contrac-
tions only among the four fields φ(z) with the same z, multiplied by a contraction
of φ(x1) with φ(x2). Analytically, they correspond to

3
(−ig

4!

) ∫

d4zG2
0(z, z)G0 (x1, x2) , (10.49)

i.e., this expression carries the same factor 3 that was found in the calculation (10.36)
of the vacuum diagrams by themselves. The diagrammatic representation consists
of a line and the vacuum diagram side by side

3 q q
x1 x2

q♥♥. (10.50)

Such a diagram is called disconnected. In general, the analytic expression represented
by the disconnected diagram is the product of the expressions corresponding to the
individual pieces.

The second class of first-order diagrams collects the contractions between the
four φ(z) and φ(x1) or φ(x2). There are 12 of them with the analytic expression

12
(−ig

4!

)∫

d4zG0 (x1, z)G0 (z, z)G0 (z, x2) . (10.51)

They are pictured by the connected Feynman diagram

♥q q
x1 x2

q . (10.52)

Thus the expansion to first order has the diagrammatic expansion

Ḡ(2)(x1, x2) = q q
x1 x2

+

(

3 q q
x1 x2

q♥♥ + 12 ♥q q
x1 x2

q

)

. (10.53)
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Remembering the expansion of the denominator to this order

Z[0] = 1 + 3 q♥♥ , (10.54)

we see that the two-particle Green function is, to order g, given by the free diagram
plus the diagram in Fig. 10.52:

G(2)(x1, x2) = q q
x1 x2

+ 12 ♥q q
x1 x2

q . (10.55)

The disconnected pieces involving the vacuum diagram have disappeared.
Consider now the second-order contributions. To obtain Ḡ we have to form all

contractions of

1

2!

(−ig
4!

)2 ∫

d4z1d
4z2〈0|Tφ (z1)φ(z1)φ(z1)φ(z1)φ(z2)φ(z2)φ(z2)φ(z2)

× φ(x1)φ(x2)|0〉. (10.56)

There are 9 · 7 · 5 · 3 · 1 = 945 of them. These decompose into three classes. The first
is disconnected and contains the 105 vacuum diagrams multiplied by G0(x1, x2),

1

2!
q q

x1 x2
×
(

9 q♥♥ q♥♥ + 24 q q♥
..
..
..
..
...
..
......................................................
...
...
..
..
..
. + 72 q q✐✐✐

)

. (10.57)

The second consists of mixed contributions in which the first order correction to Ḡ
is combined with a first-order vacuum diagram to

1

2!

(

36 · 2 ♥q q
x1 x2

q q♥♥
)

. (10.58)

The third contains only the connected diagrams

1

2!

(

144 · 2 q
qq q

x1 x2

❦
❦ + 144 · 2 q q

x1 x2

✐ ✐q q + 96 · 2 ♥q qq q
x1 x2

)

. (10.59)

In order to calculate the two-point function up to order g2 we consider the expansion

Ḡ(x1, x2) =

{

q q
x1 x2

+ 12 ♥q q
x1 x2

q + 3 q q
x1 x2

q♥♥

+
1

2!
q q

x1 x2

(

9 q♥♥ q♥♥ + 24 q q♥
..
..
..
..
...
....
....................................................
...
..
..
..
..
.. + 72 q q✐✐✐

)

(10.60)

+36 ♥q q
x1 x2

q q♥♥ + 144
q
qq q

x1 x2

❦
❦ + 144 q q

x1 x2

✐ ✐q q + 96 ♥q qq q
x1 x2

}

and divide it by the expansion of Z[0] calculated up to the same order. This consists
of the diagrams

Z[0] = 1 + 3 q♥♥ +
1

2!

(

9 q♥♥ q♥♥ + 24 q q♥
..
..
..
..
...
...
.....................................................
...
...
..
..
..
. + 72 q q✐✐✐

)

. (10.61)
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Dividing Ḡ(x1, x2) by Z[0] gives the two-point function

G(2)(x1, x2) = q q
x1 x2

+ 12 ♥q q
x1 x2

q

+
1

2!

(

144 · 2 q
qq q

x1 x2

❦
❦ + 144 · 2 q q

x1 x2

✐ ✐q q + 96 · 2 ♥q qq q
x1 x2

)

+ . . . . (10.62)

10.5 The Four-Point Function

Let us now study the four-point function. To zeroth order, the numerator has the
following trivial contributions in which all particles propagate freely

Ḡ(4)(x1, x2, x3, x4) =
x1

x2

x3

x4

x1

x2

x3

x4

x3

x4

x1

x2

+ + . (10.63)

To first order we must form all contractions in

−ig
4!

∫

d4z1d
4z2〈0|Tφ (z1)φ(z1)φ(z1)φ(z1)× φ(x1)φ(x2)φ(x3)φ(x4)|0〉, (10.64)

which yield the diagrams

q♥♥.

(10.65)

We observe again the appearance of a factor 1 + 3 q♥♥ containing the first-order

vacuum diagram, which is canceled when forming the quotient (10.32). Thus G(4)

can be written to this order as
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G(4)(x1, . . . , xn) =

. (10.66)

We now turn to the second-order diagrams for which we must form all contractions
in (10.56) after exchanging its second line by φ(x1)φ(x2)φ(x3)φ(x4)|0〉. Their total
number is 11 · 9 · 7 · 5 · 3 · 1 = 10395 diagrams in Ḡ(4)(x1, x2, x3, x4). These can be
grouped into 105 vacuum diagrams of second order multiplied with the previously
calculated zeroth-order diagram in Ḡ(4)(x1, x2, x3, x4):

.

(10.67)

Then there are those in which the vacuum diagrams appear in first order

. (10.68)

Finally, there are 9504 terms without vacuum contributions

.

(10.69)
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If the vacuum diagrams are divided out, we remain with

G(4)(x1, . . . , xn) =

.

(10.70)

10.6 Connected Green Functions

Faced with the rapid proliferation of diagrams for increasing order in the coupling
constant, there is need to economize the calculation procedure. The cancellation of
all disconnected pieces involving vacuum diagrams was a great simplification. But
the remaining diagrams are still many, even at low order in perturbation theory.
Fortunately, not all of these diagrams really require a separate calculation. First of
all, there are many diagrams which consist of disconnected pieces, each of which al-
ready occurs in the expansion (10.62) of the two-point function. The total amplitude
factorizes into the product of expressions, of which each is known from the calcula-
tion of G(2). Thus, we can save a great deal of labor if we separate the connected
diagrams in G(4) and consider them separately. They are called the connected four-
point functions with the notation G(4)

c (x1, x2, x3, x4). Their low-order expansion is
simply

G(4)(x1, . . . , x4) =

.

(10.71)
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We only have to learn how to recover the full Green function from the connected
one and the omitted diagrams which are all known from G(2). In our example it can
easily be verified that these omitted parts are simply the product of two propagators
G(2) together with the three perturbative corrections on the external legs

G(2)
c G(2)

c + 2 perm =

{

q q
x1 x2

+ 12 ♥q q
x1 x2

q

+
1

2!

(

144 · 2 q
qq q

x1 x2

❦
❦ + 144 · 2 q q

x1 x2

✐ ✐q q + 96 · 2 ♥q qq q
x1 x2

)

+ . . .

}2

+ 2 perm

.(10.72)

We shall see later that this is a completely general law if the field theory is in the
so-called normal phase. In that phase, the general connectedness structure is

G(4) (x1, . . . , xn) = G(4)
c (x1, . . . , xn) +

[

G(2)
c (x1, x2)G

(2)
c (x3, xn) + 2 perm

]

. (10.73)

Note that the expansion (10.62) of G(2) is connected. This is a general feature for
a system that is in the normal phase, which will be contrasted with the condensed

phase in a separated study in Chapters 16, 17, and 18.
For the higher Green functions we expect more elaborate connectedness relations

than (10.73) and an even more drastic reduction of labor using these relations when
calculating all diagrams. The question arises as to the general composition law of
n-point functions from connected subunits.

To gain a first idea what this law could be, consider the free theory. Its generating
functional is [see (5.438)]

Z0[j] = exp
{

−1

2

∫

d4x d4y j(x)G0(x, y)j(y)
}

. (10.74)

If expanded in powers of j, it gives the sum of all n-point functions of the free theory.
In accordance with Wick’s theorem all these free n-point functions are disconnected
and consist of sums of products of free Green functions G0, which themselves are
the only connected two-point diagrams of the theory. The important point is that
the exponential tells us in which way the connected diagrams G0 can be combined
such as to form all diagrams.
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This may best be visualized diagrammatically by expanding the exponential in
(10.74) in a power series

(10.75)

The numbers behind the factors 1/n! in the second line show how many combinations
of n/2 powers of G0 occur in Wick’s expansion. To obtain these numbers we have
rewritten the (n/2)th coefficient 1

(n/2)!
(1/2)n/2 as 1

n!
(n−1)!!. This establishes contact

with the previous counting rules: The denominator n! is factorized out since it
is canceled when going to the n-point function (which involves n differentiations
δ/δj). This leaves (n − 1)!! diagrams in agreement with the result found earlier
when counting the diagrams directly. Thus we have verified, in the free-field case,
the simple rule for the reconstruction and proper counting of all n-point functions,
given only the connected ones (of which in this case there is only one). By expanding
the exponential of the connected diagrams, which is here exp{−1

2
•−−−• }, we can

read off all connected plus disconnected diagrams behind the factors 1/n! . In this
way, the exponential of the connected diagram yields all diagrams.

Does this simple statement also hold in the interacting case? Here the generating
functional is given by

Z0[j] = exp

{

i
∫

d4xLint

(

δ

iδj

)}

exp
{

−1

2

∫

d4x d4y j(x)G0(x, y)j(y)
}

. (10.76)

The interactions also enter exponentially. It is then suggestive that also here the sum
of all Green functions can be obtained by exponentiating all connected ones. The
proof will be given later after having developed more powerful formal techniques.
Let us here state only the result which may be written as a relation

1 +
∞
∑

n=0,k=0

1

n!k!
G

(n)
k =exp







∞
∑

n=0,k=1

1

n!k!
G

(n)
c k







, (10.77)

where G
(n)
k are all diagrams and G

(n)
c k all connected diagrams in kth-order perturba-

tion theory. A similar relation holds separately for each number of external lines.
This will be of great help when it comes to calculating physical scattering amplitudes
and cross sections.

We may illustrate the relation (10.77) for the previously calculated diagrams
with n = 2 and n = 4. The left-hand side of relation (10.77) looks as follows
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(10.78)

The right-hand side has the form

(10.79)

Indeed, by multiplying out the square in the last line we recover the correct sum of
disconnected diagrams of the four-point function.

Also the vacuum diagrams satisfy the law of exponentiation: Up to the second
order we have for all disconnected pieces

Z[0] = 1+3 q♥♥+
1

2!

(

9 q♥♥ q♥♥ + 24 q q♥
..
..
..
..
...
...
.....................................................
...
..
..
..
..
.. + 72 q q✐✐✐

)

+. . . , (10.80)

and see that this can be obtained as an exponential of the connected vacuum dia-
grams

Z[0] = exp

{

3 q♥♥ +
1

2!

(

24 q q♥
..
..
..
..
...
...
....................................................
....
..
..
..
..
.. + 72 q q✐✐✐

)

+ . . .

}

≡ eW [0]. (10.81)
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This corresponds to equation (10.77) for n = 0:

1 +
∞
∑

k=0

1

k!
G

(0)
k = exp

[

∞
∑

k=1

1

k!
G

(0)
c k

]

, (10.82)

where G
(0)
k collect all vacuum diagrams and G

(0)
c k all connected ones in kth-order

perturbation theory.

10.6.1 One-Particle Irreducible Graphs

The decomposition into connected diagrams does not yet exhaust the possibilities
of reducing calculational labor. If we inspect the connected diagrams for two and
four-point functions

G(2)(x1, x2) = q q
x1 x2

+ 12 ♥q q
x1 x2

q +

+
1

2!

(

144 · 2 q
qq q

x1 x2

❦
❦ + 144 · 2 q q

x1 x2

✐ ✐q q + 96 · 2 ♥q qq q
x1 x2

)

+ . . . (10.83)

and

G(4)(x1, . . . , x4) =

, (10.84)

we discover that some of the diagrams contain a portion of others calculated at
a lower order of perturbation theory in the same connected two-point functions G(2)

c

or G(4)
c . An example is the fourth diagram in G(2)

c , which is a simple repetition of
the second one. Similarly, the second diagram in G(4)

c is the composition of the first
in G(4)

c with the second in G(2)
c . It would be useful to find the rule according to

which lower subdiagrams of G(2)
c , G(4)

c reappear in higher ones of G(2)
c and G(4)

c .

As far as G(2)
c is concerned, this rule turns out to be really simple: Let us

characterize the repetition of a former subdiagram of G(2)
c topologically by noting

that the diagram falls into two pieces by cutting one internal line. Such diagrams
are called one-particle reducible (OPR); otherwise irreducible (OPI). Then the full
connected two-point function G(2)

c may be composed from all OPI subdiagrams as
follows: Consider the set of all OPI diagrams to the two-point function. They all
carry a free Green function G

(2)
0 at the end of each leg which describes propagation of

the particle up to the first interaction vertex. Cutting off these last Green functions
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amounts diagramically to amputating the two legs of the diagram. The lowest order
correction to the two-point function is amputated as follows:

.

The two short little trunks indicate the places of amputation. Let −iΣ be the sum
of all these amputated OPI two-point functions. Then the geometric series

G(2)
c =

1

G−1
0 + Σ

= G0 +G0(−iΣ)G0 +G0(−iΣ)G0 + . . . (10.85)

gives precisely the connected two-point function G(2)
c . Thus the one-particle re-

ducibility in the two-point function exhausts itself in a simple geometric series type
of repetition of the irreducible pieces, each term in the string having the same factor.
Also this result will be proved later in Chapter 13 when studying the general formal
properties of perturbation theory.

The sum of all OPI connected two-point functions −iΣ is usually referred to as
self-energy.

Consider now the four-point function G(4)
c . Here we recognize that any ornamen-

tation of external legs can be taken care of by replacing the legs by the interacting
two-point function. Thus we decide to introduce the concept of an arbitrary one-
particle irreducible amputated Green function, shortly called the vertex function

Γ(n) (x1, . . . , xn). For any connected n-point function, cut all simple lines such that
the diagrams decompose. What remains are parts with two, four, or more trunks
sticking out. The first set consists of the OPI self-energy diagrams discussed before.
The others are called three-, four-, n-point vertex parts Γ(n), n = 3, 4, . . . . For
example,

can be cut into four proper self-energy diagrams and one four-point vertex part.
The sum of all composite diagrams obtained in this way composes the n-point ver-
tex function denoted by a fat dot. The important reconstruction principle for all
diagrams can now be states as follows: The set of all connected diagrams in a four-
point function is obtained by connecting all vertex functions in the four-point vertex
function G(4)

c with the full connected Green function G(2)
c at each truncated leg. An-

alytically, this amounts to the formula (valid in normal systems)
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G(4)
c (x1, . . . , x4) =

∫

d4x′1 d
4x′2 d

4x′3d
4x′4 G

(2)
c (x1, x

′
1) · · ·G(2)

c (x4, x
′
4) Γ

(4)(x′1, . . . , x
′
4).

(10.86)

For the Green function G(4)
c we see that, as far as it has been calculated in (10.84),

it can indeed be decomposed into a sum of a direct term plus a vertex function to
order g2:

iΓ(4)
c (x1, . . . , xn) = ,

(10.87)

with each pair of vertices being connected to each other by a two-point function

G(2)(x1, x2) = q q
x1 x2

+ 12 ♥q q
x1 x2

q . (10.88)

This decomposition of Green functions in terms of vertex functions shows its
particular strength when going to higher orders in perturbation theory. Then the
number of diagrams to be calculated is greatly reduced. For example, the third-
order contributions to the vertex function iΓ(4)

c (x1, x2, x3, x4) are

iΓ(4)
c (x1, x2, x3, x4)

.(10.89)

We leave it up to the reader to compare this with the diagrams in the connected
four-point function G(4)

c up to g3.
For theories with more general interactions than φ4, the composition law is more

involved. It will be discussed in Chapter 15.

10.6.2 Momentum Space Version of Diagrams

The spacetime formulation of Feynman rules is inconvenient when it comes to an
explicit evaluation of diagrams. It will be of great advantage to exploit the trans-
lational invariance of the theory by going to momentum space. The free Green
function G0(q1, q2), i.e. the propagator in momentum space, has the very simple
Fourier representation

G0(q1, q2) ≡
∫

d4x1d
4x2e

i(q1x1+q2x2)G0(x1, x2)

=
∫

d4x1d
4x2e

i(q1x1+q2x2)
∫

d4q

(2π)4
e−iq(x1−x2)

i

q2 −m2

= (2π)4δ(4) (q1 + q2)G0(q1). (10.90)
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There is an overall (2π)4 δ(4)-function which ensures the conservation of four-
momenta. This is a consequence of the translational invariance of G0 (x1, x2) =
G0 (x1 − x2). The same factor appears in the Fourier transform of all interacting
n-point functions since G(n) (x1, . . . , x1) depends only on the differences between the
coordinates

G(n)(x1, . . . , xn) = G(n)(x1 − xn, x2 − xn, . . . , xn−1 − xn, 0) (10.91)

such that we can write
∫

d4x1 . . . d
4xne

iΣn
i=1

qixiG(n)(x1, . . . xn)

=
∫

d4(x1 − xn) · · · d4(xn−1 − xn)e
i
∑n−1

i=1
qi(xi−xn)

(∫

d4xne
iΣ∞

i=1
qixn

)

×G(n)(x1 − xn, x2 − xn, . . . , xn−1 − xn, 0) . (10.92)

Thus we may define the Fourier transform of an n-point function directly without
the factor of momentum conservation as

(2π)4δ(4) (q1 + . . .+ qn)G
(n) (q1, . . . , qn)≡

∫

d4x1 · · · d4xn eiΣ
n
i=1

qixiG(n) (x1, . . . , xn) .

(10.93)

Consider now the vacuum diagrams evaluated via the Fourier transforms. To first
order we have

3 q♥♥ = − 3i
g

4!

∫

d4z G2(z, z) = −3i
g

4!

∫

d4z

[

∫ d4q

(2π)4
i

q2 −m2

]2

. (10.94)

The integral over z can be defined meaningfully only if the system is enclosed in a
finite box of volume V and studied in a finite time interval T . Then the integral
∫

d4z gives a factor V T . This would become infinite for large V T which is called
the thermodynamic limit.

Even if V T is finite, there is still a divergence coming from the integral over
the momenta p at large p. This is called an ultraviolet divergence. It reflects the
singularity of G0 (x1, x2) for x1 → x2 (a so-called short-distance singularity). It will
be the subject of the next chapter to show how to deal with this type of divergence.
For Ḡ(2) (x1, x2), the diagram of first order in g is

12 ♥q q
x1 x2

q = −12i
g

4!

∫

dzG(x1, z)G(z, z)G(z, x2) . (10.95)

Going to the Fourier transform this gives

∫

d4q

(2π)4
e−iq(x1−x2)

i

q2 −m2

(

∫

d4k

(2π)4
i

k2 −m2

)

i

q2 −m2
, (10.96)

which amounts to a contribution to the Fourier-transformed Green function:

Ḡ(2)(q) = −i g
4!
12

i

q2 −m2

∫

d4k

(2π)4
i

k2 −m2

i

q2 −m2
. (10.97)
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As another example take

♥q q .................
....
..
...
...
..
..
..
.

...
..
..
..
..
..
..
..
....
..
...
...
..
..
..
.

q3

q4

q1

q2

k2

k+q1+q2

=
(

−ig
4!

)2 ∫

-d4k
i

k2 −m2 + iη

i

(k + q1 + q2)2 −m2 + iη
. (10.98)

It is easy to see that the following rules hold for the translation of the spacetime
diagrams to the analytic expression for the Fourier transformed Green function:

1. With each line associate a momentum label q and specify its direction of flow.
Such a line represents a Fourier-transformed two-point function G0(q) pictured
by

= G0(q) =
i

q2 −m2
. (10.99)

The arrow has been omitted since its direction is irrelevant on account of the
symmetry of G0(q) under q → −q.

2. Each vertex

is associated with an amplitude

−i g
4!
(2π)4δ(4)(q1 + q2 + q3 + q4)

i

q24 −m2

i

q23 −m2

i

q22 −m2

i

q21 −m2

containing a four-momentum conserving (2π)4 δ(4)-function for the incoming
momenta. This is a consequence of the integration over z in the interaction.

3. We now distinguish external and internal lines, the latter connecting pairs of
vertices with each other. We also call the corresponding momenta qi external
and internal, respectively. Then for every internal line, we integrate over all
internal four momenta with the invariant measure

∫

d4qi/(2π)
4. At the end we

remove the associated overall δ-function of energy-momentum conservation.

Obviously, each (2π)4δ(4)-function on the vertices cancels one internal momentum
integral

∫

d4p/(2π)4. Thus in a diagram of nth order with I internal lines, only I−n
internal integrations remain. These are referred to as loop integrals.

In general, loop integrations diverge at large loop momenta, the so-called ultra-

violet regime. We shall learn in the next chapter how to deal with such divergent
momentum space integrals.

10.7 Green Functions and Scattering Amplitudes

The Green functions carry all informations contained in the theory. In particular
they can be used to extract scattering amplitudes. For definiteness, let us discuss
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here the simplest and most important case of the elastic scattering among two
particles. The free initial state that exists long before the interaction takes place is

|ψin〉 = a†q2
a†q1

|0〉. (10.100)

Long after the interaction, the state is given by

Uη
I (∞,−∞) a†q2

a†q1
|0〉. (10.101)

If we analyze this state with respect to its free-particle content we find the amplitude

〈0|aq4
aq3

Uη
I (∞,−∞) a†q2

a†q1
|0〉 = 〈0|aq4

aq3
Sηaq2

aq1
|0〉. (10.102)

We shall soon observe that this amplitude has a divergent phase arising in the limit
of the switching parameter η tending to zero. It is caused by the same vacuum
diagrams as before in the corresponding Green function. In order to obtain a well-
defined η → 0 -limit we define the 2× 2 scattering amplitude as the ratio

S (q4,q3|q1,q2) ≡ SN (q4,q3|q1,q2)

Z[0]
, (10.103)

with the numerator

SN (q4,q3|q1,q2) ≡ 〈0|aq4
aq3

Te
−i
∫

∞

−∞
dt VI(t)a†q2

a†q1
|0〉, (10.104)

and the denominator

Z[0] ≡ 〈0|e−i
∫

∞

−∞
dt VI (t)|0〉. (10.105)

We shall often use the four-momentum notation S (q4, q3|q1, q2) for S (q4,q3|q1,q2)
with the tacit understanding that, in the S-matrix, the energies are always on the
mass shells q0 =

√
q2 +m2.

It is now easy to see how these amplitudes can be extracted from the Green
functions calculated in the last section. There exists a mathematical framework to
do this known as the Lehmann-Symanzik-Zimmermann formalism (LSZ-reduction
formulas) [11]. Rather than presenting this we sketch here a simple pedestrian
approach to obtain the same results.

We begin with the observation that if the energies q0 on the mass shells of the
particles, i.e., if q0 = ωq =

√
p2 +M2, the particle operators aq, a

†
q can be written

as the large-time limits

aq = lim
x0→−∞

√

2q0

V

∫

d3x ei(q
0x0−qx)φ(x), (10.106)

a†q = lim
x0→∞

√

2q0

V

∫

d3x e−i(q0x0−qx)φ(x). (10.107)
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The limits have the important effect of eliminating undesired frequency contents in
φ(x). Indeed, if we expand the field into creation and annihilation operators, we see
that the right-hand side of Eq. (10.106) becomes

lim
x0→−∞

√

2q0
V

∫

d3xei(q
0x0−qx)

∑

q

1√
2p0V

(

e−ipxap + c.c.
)

= lim
x0→−∞

∑

p

δp,q
[

ei(q
0−p0)x0

ap + ei(q
0+p0)x0

a†p
]

. (10.108)

The spatial δ-function enforces q = p and thus q0 = p0, so that the right-hand side
becomes

aq + lim
x0→−∞

ei2q
0x0

a†q. (10.109)

In the limit x0 → −∞, the second exponential function oscillates rapidly with
diverging frequency. Such an oscillating expression can be set equal to zero. The
reason why this makes sense uses the fact that no physical state is completely sharp
in momentum space but contains some, possibly very narrow, distribution function
f(q− q′) in the momenta. Thus, instead of aq, we really deal with a packet state

∫

d3q′

(2π)3
f(q− q′)aq′ ,

with f(q− q′) sharply peaked around q. Then Eq. (10.114) has to be smeared out
with such a would-be δ-function, and the second term in (10.109) becomes

lim
x0→−∞

∫

d3q′

(2π)3
ei2q

′0x0

f(q− q′)a†q′ → 0 . (10.110)

The vanishing of this in the limit x0 → −∞ is a well-known consequence of the
Riemann-Lebesgue Lemma (recall the remarks on p. 262). The other equation
(10.107) is proved similarly.

We can now make use of formula (10.107), replace the operators aq, a
†
q by time-

ordered fields φ(x) and obtain, for the numerator part of the S matrix elements in
Eq. (10.104), the following expression:

SN (q4q3|q2q1)=

√

24q01q
0
2q

0
3q

0
4

V 2
lim

x0
1
>x0

2
→∞

x0
4
<x0

3
→−∞

ei[q
0

4
x0

4
−q4x4+q0

3
x0

3
−q3x3−q0

2
x0

2
+q2x2−q0

1
x0

1
+q1x1]

× 〈0|Tφ(x4)φ(x3)Sφ(x2)φ(x1)|0〉. (10.111)

The last factor is precisely the four-point function G(4) (x4, x3, x2, x1).
This formula looks somewhat cumbersome to implement in an actual calcula-

tion of the scattering amplitudes and it is useful to simplify it by evaluating the
infinite-time limits more explicitly. We observe that the perturbation series for
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G(n) (xn, . . . , x1) consists of sums of products of free two-point functions G0 which
contain, for each spacetime argument x1, x2, . . . , xn in G(n), a two-point function G0

whose line ends at that point. Consider, for example, the point x1, and an associ-
ated Green function G0(z1, x1). The operation (10.108) at this point corresponds to
taking the limit

√

2q01
V

lim
x0
1
→−∞

∫

d3x1e
−i(q0

1
x0

1
−q1x1)

∫ d4q

(2π)4
e−iq(z−x1)

i

q2 −m2 + iη
. (10.112)

The spatial integral over x1 enforces q = q1. The remaining integral over dq0 can
be done via Cauchy’s residue theorem. Since x01 → −∞, the contour of integration
may be closed in the lower half of the complex q0-plane, where it contains only a

pole at q0 = ωq1
=
√

q2
1 +m2 − iη. Thus the integral over q0 can be done trivially,

and we find, that the limit (10.111) has the effect of replacing, in the Green function
G(z, x1) of the external leg, the amplitude by

G(z, x1)−−−→
1

√

2q01V
e−iq1z, (10.113)

with q01 on the mass shell q01 =
√

q2
1 +m2. The right-hand side is simply the wave

function e−iq1z/
√

2q01V of the incoming particle with the argument z of the nearest
vertex in the Feynman diagram.

Similarly, we obtain for an outgoing particle of momentum q3 the replacement

G(x3, z)−−−→
1

√

2q03V
eiq3z . (10.114)

As a specific example, consider the simple vertex diagram in (10.84):

= −ig
∫

d4z G(x4, z)G(x3, z)G(z, x2)G(z, x1). (10.115)

Taking the limits in (10.111) this becomes

4
∏

i=1





1
√

2V q0i



 (−ig)
∫

d4z ei(q4z+q3z−q1z−q2z)

= −ig
4
∏

i=1





1
√

2V q0i



 (2π)4δ(4) (q4 + q3 − q2 − q1) . (10.116)

Thus, up to a factor 1/
√

2V q0i for each particle, we remain precisely with the vertex
contribution in momentum space, including the total four-momentum conservation
factor.

In momentum space, the Feynman diagram (10.115) reads
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.

Thus, the replacement of the four external lines by external physical states of
momenta qi corresponds to dropping the factors

i

q2i −m2
, (10.117)

and replacing them by
1

√

2V q0i
. (10.118)

This corresponds to the amputation of the Feynman diagram for the four-point
function introduced earlier when defining the vertex functions.

How about the disconnected diagrams in (10.70)? Consider first the three dia-
grams containing two disconnected lines

.

In each of the diagrams we have to do the operations of the type (10.100). Take the
first diagram and consider G0 (x3, x1). It contributes a factor

√

2q03
V

√

2q01
V

lim
x0
3
→∞

x0
1
→−∞

∫

d3x3d
3x1 ei(q

0
3
x0
3
−q3x3−q0

1
x0
1
+q1x1)G (x3, x1) . (10.119)

Performing the first limit x1 → −∞ we get

√

2q03
V

lim
x0

3
→∞

∫

d3x3 eiq3x3e−iq1x3
1

√

2q01V
= lim

x0

3
→∞

ei(q
0
3
−q0

1
)x0

3δq3q1
= δq3q1

. (10.120)

This is just the amplitude for the particle 1 running to the final state 2 without
interaction:

〈q3|q1〉 = 〈0|aq3
a†q1

|0〉 = δq3,q1
(10.121)

The same factor appears for the lower line of the diagram

〈q4|q2〉. (10.122)

Thus the first of the above three diagrams corresponds to the S-matrix element

δq3q1
δq2q4

. (10.123)
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The second diagram results in the same product of δ-functions, except that q3 and
q4 are interchanged. The third diagram is different. Here the Fourier limit to be
done is

√

2q01
V

√

2q02
V

lim
t1<t2→−∞

∫

d3x1d
4x32e

−i(q0
2
x0

2
−q2x2−q0

1
x0

1
+q1x1)G(x2, x1).

(10.124)

The first limit on x1 leads to
√

2q02
V

lim
t2→−∞

∫

d3x2e
−iq2x2−iq1x2

1
√

2q01V
, (10.125)

and the integration gives

lim
x2→−∞

e−i(q0
2
+q0

1
)x0

2δq2,−q1
. (10.126)

The limit x0 → −∞ of the exponential oscillates infinitely rapid, so that the result
vanishes for the same reasons as before.

Let us now look at the diagrams

(10.127)

contained in the set (10.70). From the lowest line, this obviously contains a factor

〈q4|q2〉 = δq4q2
, (10.128)

just as in (10.120). The upper line corresponds to the integral

12
(

−ig
4!

) ∫

d4z G(x3, z)G(z, z)G(z, x1) . (10.129)

Adding this to the line without the loop correction leads to the one-loop corrected
Green function

GR(x3, x1) = 12
(

−ig
4!

)∫

d4z G(x3, z)G(z, z)G(z, x1) . (10.130)

The Fourier representation of the free Green function i/(q2 −m2) is replaced by

i

q2 −m2
→ i

q2 −m2
− i

g

2

∫

d4q′

(2π)4
i

q′2 −m2

[

i

q2 −m2

]2

. (10.131)

This may be viewed as the first-order corrected Fourier transform of the renormalized
propagator

GR(x2, x1) =
∫

d4q

(2π)4
e−iq(x2−x1)

i

q2 −m2 − δm2
(10.132)
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with a mass shift

δm2 =
g

2

∫

d4q

(2π)4
i

q2 −m2
. (10.133)

The scattering amplitude is extracted from the amplitude with the renormalized
Green function as before, the only difference being that the factor (10.118) contains
now q0i with the renormalized masses.

A similar mass shift occurs in the diagrams

(10.134)

contained in the set (10.70). The remaining diagrams of (10.70) account for the
second-order mass shifts.

To study such mass shifts in general we make use of the Gell-Mann–Low formula
for the energy shift [5, 6]. For the vacuum, the energy shifts by ∆E0 can be taken
from the matrix element

e−i∆E0(t2−t1) = 〈0|Uη
I (t2, t1) |0〉 (10.135)

by going to the limit t2 → ∞, t1 → −∞. Consider now the single-particle state
a†q|0〉. If the interaction is applied for t1 → −∞ and t2 → ∞, the state

Uη
I (t2, t1) a

†
q|0〉 (10.136)

will be again a solution of the free Hamiltonian. Because of energy and momentum
conservation, it must be equal to a†q|0〉 up to a phase which, due to (10.135), contains
the information on the energy shift of this state. It consists of ∆E0 for the vacuum
plus ∆Eq for the particle. Collecting both together, we may write

e−∆E(t1−t0) =
t1→∞

t2→−∞

〈0|aqUη
I (t2t1) a

†
q|0〉

〈0|Uη
I (t2, t1) |0〉

. (10.137)

Expanding Uη
I in powers of g, the lowest diagrams on the right-hand side are precisely

the diagrams that appeared before:

G(2)(x1, x2) = q q
x1 x2

+ 12 ♥q q
x1 x2

q + . . . .

Indeed, we find from (10.137) with t1 − t0 = T :

1− i∆E T = 1 + 12
(−ig

4!

)

1

2q0V

∫

d4z G(z, z)

= 1− i

2
g
T

2q0

∫

d4q

(2π)4
i

q2 −m2
. (10.138)
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Similarly, we may use formulas (10.106), (10.107), and the energy shifts q0 → q0 +
∆E = q0R, to write

a†q = lim
x0→−∞

√

2q0R
V

∫

d3x ei(q
0

R
x0−qx)φ(x), (10.139)

aq = lim
x0→∞

√

2q0R
V

∫

d3x e−i(q0
R
x0−qx)φ(x). (10.140)

Now every particle line automatically receives a factor ei∆EqT , which removes pre-
cisely the phase factor (10.135).

To higher orders in g, it is somewhat hard to proceed in this fashion. The
problem will be solved in the next section with more elegance.

Note that formula (10.137) allows us to evaluate the shift in the particle mass
in another way. If q0 =

√
q2 +m2 is the energy before turning on the interaction,

then

q0 +∆E =
√

q2 +m2 + δm2 = q0 +
δm2

2q0
(10.141)

is the energy afterwards, and we find once more the mass shift (10.133).

10.8 Wick Rules for Scattering Amplitudes

The possibilityX of obtaining external particle states from fields with the help of
temporal limiting procedures of the type (10.107) allows us to incorporate the cre-
ation and annihilation operators of these particles into the general framework of
Wick’s contraction rules. Confronted with the numerator of the perturbative scat-
tering amplitude in (10.103),

SN (q4q3|q1q2) ≡ 〈0|aq4
aq3

Te
−i
∫

∞

−∞
dtVI (t)a†q2

a†q1
|0〉, (10.142)

we may imagine the incoming particle operators on the one side to carry negative
infinite time arguments, and the outgoing ones on the other side to carry positive
infinite times. Then they can be brought inside the parentheses of the time-ordering
operator. This, in turn, can be evaluated as usual via Wick contractions.

The results of the last section show that the Wick contractions leading to an
external particles are

φ(x)a†p = [φ(x),a†p] =
1

√

2V ωp

e−iqx, (10.143)

apφ(x) = [ap,φ(x)] =
1

√

2V ωp

e−iqx, (10.144)
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where ωp =
√
p+M2.

For Dirac particles, there are the corresponding contraction rules

ψ(x)a†p,s3 = {φ(x),a†p} =
1

√

V Ep

u(p, s3)e
−ipx, (10.145)

ap,s3ψ(x) = {ap,s3,ψ(x)} =
1

√

V Ep

eipxū(p, s3), (10.146)

and for antiparticles:

ψ̄(x)b†p,s3 = {φ̄(x),b†p} =
1

√

V Ep

e−ipxv̄(p, s3), (10.147)

bp,s3ψ(x) = {ap,s3,ψ(x)} =
1

√

V Ep

v(p, s3)e
ipx, (10.148)

where Ep ≡
√
p+M2.

10.9 Thermal Perturbation Theory

Since Wick’s theorem was valid for thermal Green functions, we expect all pertur-
bation expansions to have a simple generalization to the thermal case. Let us define
a thermal Heisenberg picture for operators by

OH(τ) = eHτ/h̄OSe
−Hτ/h̄, (10.149)

and an interaction picture which moves according to the free equations of motion,

OI(τ) = eH0Gτ/h̄OSe
−H0Gτ/h̄. (10.150)

Thus, a Heisenberg operator can be transformed to the free operator via

OH(τ) = UI(0, τ)OI(τ)UI(τ, 0) (10.151)

where

UI(τ2, τ1) = eH0Gτ2/h̄e−HG(τ2−τ1)e−H0Gτ1/h̄ (10.152)

is the time displacement operator along the euclidean time axis τ . Therefore it has
the same factorization property as the quantum mechanical operator UI(t2, t1) in
Eq. (9.17):

UI(τ3, τ2)UI(τ2, τ1) = UI(τ3, τ1). (10.153)
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Certainly

UI(τ1, τ1) = 1. (10.154)

However, in contrast to UI(t2, t1), this operator does not satisfy the unitarity relation
(9.26), but instead:

UI(τ2, τ1)
† = UI(−τ1,−τ2). (10.155)

It obeys the following equation of motion

h̄∂τUI(τ, τ
′) = eH0τ/h̄ (H0G −HG) e

−HG(τ−τ)/h̄e−H0Gτ/h̄

= −VI(τ)UI(τ, τ
′), (10.156)

where VI(τ) is the time-dependent thermal interaction picture of the time indepen-
dent Schrödinger perturbation V = VS

VI(τ) = eH0Gτ/h̄V e−H0Gτ/h̄. (10.157)

Therefore we can solve (10.156) for UI(τ, τ
′) using the standard exponential

Neumann-Liouville expansion (9.19), now time-ordered with respect to the euclidean
time τ :

UI(τ, τ
′) =

∞
∑

n=0

(

−1

h̄

)n 1

n!

∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 . . .

∫ τ

τ ′
dτnTT [VI(τ1) · · ·VI(τn)]

= Tτe
− 1

h̄

∫ τ

τ ′
dτ ′′VI (τ

′′). (10.158)

By construction, UI(τ, 0) satisfies the relation

e−HGτ/h̄ = e−H0τ/h̄UI(τ, 0). (10.159)

Thus, using the thermal value for the imaginary time τ/h̄ = 1/kBT ≡ β, we obtain
directly a perturbation expansion of the partition function

Z = Tr
(

e−βHG

)

= Tr
[

e−βH0GUI (β, 0)
]

(10.160)

=
∞
∑

n=0

(

−1

h̄

)n 1

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτnTr

[

e−βH0GTτ (VI(τ1) · · ·VI(τn))
]

.

Consider now a thermal two-body Green function in the presence of interaction,
defined for τ > τ ′ as follows:

G(x, τ ;x′, τ ′) ≡ Tr
[

e−βHGψ(x, τ)ψ†(x′, τ ′)
]

/Tr
(

e−βHG

)

= Tr
[

e−βH0GUI (β, 0)UI(0, τ)ψI(x, τ)UI(τ, 0) (10.161)

× UI(0, τ
′)ψ†

I(x
′, τ ′)UI(τ

′, 0)
]

/Tr
[

e−βH0GUI (β, 0)
]

.
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For τ < τ ′, on the other hand, we have

G(x, τ ;x′, τ ′) ≡ ±Tr
[

e−βHGψ†(x′, τ ′)ψ(x, τ)
]

/Tr
(

e−βHG

)

= Tr
[

e−βH0GUI (0, τ
′)ψ†

I(x
′, τ ′)UI(τ

′, 0) (10.162)

× UI(0, τ)ψI(x, τ)UI(τ, 0)] /Tr
[

e−βH0GUI (β, 0)
]

.

Both equations may be combined in the single formula

G(x, τ ;x′, τ ′) = Tr
[

e−βH0GTτUI (β, 0)ψ(x, τ)ψ
† (x′, τ ′)

]

/Tr
[

e−βH0GUI (β, 0)
]

.

(10.163)

In comparison with the field theoretic formulas (10.9) and (10.12), the vacuum ex-
pectation values are replaced by the Boltzmann-weighted thermal traces, and the
vacuum expectation value of the S matrix operator UI (∞,−∞) in the denom-
inators is replaced by the Boltzmann-weighted trace of the interaction operator
UI (h̄/kBT , 0) along the euclidean time axis τ .

Note that the denominator ensures the existence of the zero temperature limit
in just the same way as the phase factor did in the switching-on limit η → 0. In
fact, the grand canonical partition function in the denominator may be written as

ZG = eβΩ =
∑

n

e−(βEn−µNn), (10.164)

such that the limit T → 0 renders a pure exponential with the ground state energy

ZG →
T→0

e−β(E0−µN0) → e±∞. (10.165)

This is the analogue of the infinite phase factor for the field theoretic denominator
in Eq. (10.9).

Let us now expand the interaction operator UI (h̄/kBT , 0) in powers of the in-
teraction, just as before in real time. This leads to a series of thermally aver-
aged products of many fields ψI(x, τ) which move according to the free field equa-
tions. Therefore Wick’s theorem can be applied and we obtain an expansion of
G(x, τ ;x′, τ ′) completely analogous to the field theoretic one. The only difference
is the finite-time interaction. When going to Fourier transformed space, the finite
euclidean time interval is fully taken into account by the sum over the discrete
imaginary Matsubara frequencies.

We have seen before that the evaluation of field-theoretic Green functions pro-
ceeds best via a Wick rotation of the energy in the perturbative digrams to an
imaginary axis. This is precisely the axis along which the Matsubara frequencies
are situated. Thus, as far as perturbation theory in Fourier transformed space is
concerned, the diagrammatic rules are exactly the same, except that the Wick ro-
tated integrals over the imaginary energy have to be replaced by the Matsubara
frequency sums [recall Eq. (2.415)]:

∫ dp0

2π
→ i

∫ ∞

−∞

dpE
2π

→ kBT

h̄

∑

ωm

=
1

β

∑

ωm

, ωm=
2π

h̄β

{

m for bosons,
m+ 1

2
for fermions.

(10.166)
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In the limit of small temperatures, the Matsubara frequencies move closer and closer
to each other, and sums over them tend to frequency integrals.

The two descriptions coincide, apart from the trivial presence of the chemical
potential in the grand canonical energy. We conclude that the Wick-rotated calcula-
tion of field theoretic Green functions really amounts to thermal equilibrium physics
in the limit of zero temperature.

Let us point out that the result (10.163) implies the same periodicity in h̄/kBT =
β of the full Green functionG(x, τ ;x′, τ ′) as in the free case (2.413). First, we observe
that due to the time independence of the Hamiltonian, there is now translational
invariance in euclidean time T such that G(x, τ ;x′, τ ′) depends only on the difference
τ − τ ′:

G(x, τ ;x′, τ ′) =Tr
[

e−HG(β− τ
h̄)ψ(x, 0)e−HG

τ−τ ′

h̄ ψ†(x′, 0)e−HGτ ′/h̄
]

/ Tr(e−βHG)

=Tr
[

e−HG(β− τ
h̄)ψ(x, 0)e−HGτ−τ ′/h̄ψ†(x′, 0)

]

/Tr(e−βHG). (10.167)

Similarly, we conclude the dependence only on x− x′ by translational invariance in
space, using ψ (x, τ) = eiPx/h̄ψ(0, τ)e−iPx/h̄ with the momentum operator P. Thus
we may write

G(x, τ ;x′, τ ′) = G(x− x′, τ − τ ′), (10.168)

just as for the field theoretic Green functions in the vacuum. Now it is easy to see
the periodicity. For the interval τ − τ ′ ∈ (−h̄/kBT , 0) we calculate

G (x− x′, τ − τ ′) = ±Tr
[

e−βHGψ†(x′, τ ′)ψ(x, τ)
]

/Tr(e−βHG)

= ±Tr
[

ψ(x, τ)e−βHGψ†(x′, τ ′)
]

/Tr(e−βHG)

= ±Tr
[

e−βHGψ (x, τ + β)ψ†(x′, τ ′)
]

/Tr(e−βHG)

= ±G (x− x′, τ − τ ′ + β) , (10.169)

thus showing that interacting Boson and Fermion thermal Green functions are pe-
riodic and antiperiodic under the replacement τ → τ + β, just as in the free case in
Eq. (2.413).
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